
Workgroup: CFRG

Internet-Draft:

draft-irtf-cfrg-pairing-friendly-curves-07

Published: 18 June 2020

Intended Status: Experimental

Expires: 20 December 2020

Authors: Y. Sakemi, Ed.

Lepidum

T. Kobayashi

NTT

T. Saito

NTT

R. Wahby

Stanford University

Pairing-Friendly Curves

Abstract

Pairing-based cryptography, a subfield of elliptic curve

cryptography, has received attention due to its flexible and

practical functionality. Pairings are special maps defined using

elliptic curves and it can be applied to construct several

cryptographic protocols such as identity-based encryption,

attribute-based encryption, and so on. At CRYPTO 2016, Kim and

Barbulescu proposed an efficient number field sieve algorithm named

exTNFS for the discrete logarithm problem in a finite field. Several

types of pairing-friendly curves such as Barreto-Naehrig curves are

affected by the attack. In particular, a Barreto-Naehrig curve with

a 254-bit characteristic was adopted by a lot of cryptographic

libraries as a parameter of 128-bit security, however, it ensures no

more than the 100-bit security level due to the effect of the

attack. In this memo, we list the security levels of certain

pairing-friendly curves, and motivate our choices of curves. First,

we summarize the adoption status of pairing-friendly curves in

standards, libraries and applications, and classify them in the 128-

bit, 192-bit, and 256-bit security levels. Then, from the viewpoints

of "security" and "widely used", we select the recommended pairing-

friendly curves considering exTNFS.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 20 December 2020.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Pairing-based Cryptography

1.2. Applications of Pairing-based Cryptography

1.3. Motivation and Contribution

1.4. Requirements Terminology

2. Preliminaries

2.1. Elliptic Curves

2.2. Pairings

2.3. Barreto-Naehrig Curves

2.4. Barreto-Lynn-Scott Curves

2.5. Representation Convention for an Extension Field

3. Security of Pairing-Friendly Curves

3.1. Evaluating the Security of Pairing-Friendly Curves

3.2. Impact of Recent Attacks

4. Selection of Pairing-Friendly Curves

4.1. Adoption Status of Pairing-friendly Curves

4.1.1. International Standards

4.1.2. Cryptographic Libraries

4.1.3. Applications

4.2. For 128-bit Security

4.2.1. BLS Curves for the 128-bit security level

4.2.2. BN Curves for the 128-bit security level

4.3. For 192-bit Security

4.4. For 256-bit Security

5. Security Considerations

6. IANA Considerations

7. Acknowledgements

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://trustee.ietf.org/license-info

8. References

8.1. Normative References

8.2. Informative References

Appendix A. Computing the Optimal Ate Pairing

A.1. Optimal Ate Pairings over Barreto-Naehrig Curves

A.2. Optimal Ate Pairings over Barreto-Lynn-Scott Curves

Appendix B. Test Vectors of Optimal Ate Pairing

Appendix C. ZCash serialization format for BLS12-381

C.1. Point Serialization Procedure

C.2. Point deserialization procedure

Authors' Addresses

1. Introduction

1.1. Pairing-based Cryptography

Elliptic curve cryptography is an important area in currently

deployed cryptography. The cryptographic algorithms based on

elliptic curve cryptography, such as the Elliptic Curve Digital

Signature Algorithm (ECDSA), are widely used in many applications.

Pairing-based cryptography, a subfield of elliptic curve

cryptography, has attracted much attention due to its flexible and

practical functionality. Pairings are special maps defined using

elliptic curves. Pairings are fundamental in the construction of

several cryptographic algorithms and protocols such as identity-

based encryption (IBE), attribute-based encryption (ABE),

authenticated key exchange (AKE), short signatures, and so on.

Several applications of pairing-based cryptography are currently in

practical use.

As the importance of pairings grows, elliptic curves where pairings

are efficiently computable are studied and the special curves called

pairing-friendly curves are proposed.

1.2. Applications of Pairing-based Cryptography

Several applications using pairing-based cryptography have already

been standardized and deployed. We list here some examples of

applications available in the real world.

IETF published RFCs for pairing-based cryptography such as Identity-

Based Cryptography [RFC5091], Sakai-Kasahara Key Encryption (SAKKE)

[RFC6508], and Identity-Based Authenticated Key Exchange (IBAKE)

[RFC6539]. SAKKE is applied to Multimedia Internet KEYing (MIKEY)

[RFC6509] and used in 3GPP [SAKKE].

Pairing-based key agreement protocols are standardized in ISO/IEC

[ISOIEC11770-3]. In [ISOIEC11770-3], a key agreement scheme by Joux

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

[Joux00], identity-based key agreement schemes by Smart-Chen-Cheng

[CCS07] and Fujioka-Suzuki-Ustaoglu [FSU10] are specified.

MIRACL implements M-Pin, a multi-factor authentication protocol [M-

Pin]. The M-Pin protocol includes a type of zero-knowledge proof,

where pairings are used for its construction.

The Trusted Computing Group (TCG) specified the Elliptic Curve

Direct Anonymous Attestation (ECDAA) in the specification of a

Trusted Platform Module (TPM) [TPM]. ECDAA is a protocol for proving

the attestation held by a TPM to a verifier without revealing the

attestation held by that TPM. Pairings are used in the construction

of ECDAA. FIDO Alliance [FIDO] and W3C [W3C] also published an ECDAA

algorithm similar to TCG.

Intel introduced Intel Enhanced Privacy ID (EPID) that enables

remote attestation of a hardware device while preserving the privacy

of the device as part of the functionality of Intel Software Guard

Extensions (SGX) [EPID]. They extended TPM ECDAA to realize such

functionality. A pairing-based EPID was proposed [BL10] and

distributed along with Intel SGX applications.

Zcash implemented their own zero-knowledge proof algorithm named

Zero-Knowledge Succinct Non-Interactive Argument of Knowledge (zk-

SNARKs) [Zcash]. zk-SNARKs are used for protecting the privacy of

transactions of Zcash. They use pairings to construct zk-SNARKs.

Cloudflare introduced Geo Key Manager [Cloudflare] to restrict

distribution of customers' private keys to a subset of their data

centers. To achieve this functionality, ABE is used, and pairings

take a role as a building block. In addition, Cloudflare published a

new cryptographic library, the Cloudflare Interoperable, Reusable

Cryptographic Library (CIRCL) [CIRCL] in 2019. They plan to include

securely implemented subroutines for pairing computations on certain

secure pairing-friendly curves in CIRCL.

Currently, Boneh-Lynn-Shacham (BLS) signature schemes are being

standardized [I-D.boneh-bls-signature] and utilized in several

blockchain projects such as Ethereum [Ethereum], Algorand

[Algorand], Chia Network [Chia], and DFINITY [DFINITY]. The

aggregation functionality of BLS signatures is effective for their

applications of decentralization and scalability.

1.3. Motivation and Contribution

At CRYPTO 2016, Kim and Barbulescu proposed an efficient number

field sieve (NFS) algorithm for the discrete logarithm problem in a

finite field [KB16]. Several types of pairing-friendly curves such

as Barreto-Naehrig curves (BN curves)[BN05] and Barreto-Lynn-Scott

curves (BLS curves)[BLS02] are affected by the attack, since a

¶

¶

¶

¶

¶

¶

¶

pairing-friendly curve suitable for cryptographic applications

requires that the discrete logarithm problem is sufficiently

difficult. In particular, BN254, which is a BN curve with a 254-bit

characteristic effective for pairing calculations, was adopted by a

lot of cryptographic libraries as a parameter of the 128-bit

security level, however, BN254 ensures no more than the 100-bit

security level due to the effect of the attack, where the security

level described in this memo corresponds to the security strength of

NIST recommendation [NIST].

To resolve this effect immediately, several research groups and

implementers re-evaluated the security of pairing-friendly curves

and they respectively proposed various curves that are secure

against the attack [BD18] [BLS12-381].

In this memo, we list the security levels of certain pairing-

friendly curves, and motivate our choices of curves. First, we

summarize the adoption status of pairing-friendly curves in

international standards, libraries and applications, and classify

them in the 128-bit, 192-bit, and 256-bit security levels. Then,

from the viewpoints of "security" and "widely used", pairing-

friendly curves corresponding to each security level are selected in

accordance with the security evaluation by Barbulescu and Duquesne

[BD18].

As a result, we recommend the BLS curve with 381-bit characteristic

of embedding degree 12 and the BN curve with the 462-bit

characteristic for the 128-bit security level, and the BLS curves of

embedding degree 48 with the 581-bit characteristic for the 256-bit

security level. This memo shows their specific test vectors.

1.4. Requirements Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2. Preliminaries

2.1. Elliptic Curves

Let p > 3 be a prime and q = p^n for a natural number n. Let F_q be

a finite field. The curve defined by the following equation E is

called an elliptic curve:

¶

¶

¶

¶

¶

¶

 E : y^2 = x^3 + A * x + B,¶

O_E:

E(F_q^k):

#E(F_q^k):

r:

BP:

h:

and A and B in F_q satisfy the discriminant inequality 4 * A^3 + 27

* B^2 != 0 mod q. This is called the Weierstrass normal form of an

elliptic curve.

A solution (x,y) to the equation E can be thought of as a point on

the corresponding curve. For a natural number k, we define the set

of (F_q^k)-rational points of E, denoted by E(F_q^k), to be the set

of all solutions (x,y) in F_q^k, together with a 'point at infinity'

O_E, which is defined to lie on every vertical line passing through

the curve E.

The set E(F_q^k) forms a group under a group law which can be

defined geometrically as follows. For P and Q in E(F_q^k) define P +

Q to be the reflection about the x-axis of the unique third point of

intersection of the straight line passing through P and Q with the

curve E. If the straight line is tangent to E, we say that it passes

through that point twice. The identity of this group is the point at

infinity O_E. We also define scalar multiplication [a]P for a

positive integer a as the point P added to itself (a-1) times.

We define some of the terminology used in this memo as follows:

the point at infinity over an elliptic curve E.

the group of F_q-rational points of E.

the number of F_q-rational points of E.

the largest prime divisor of #E(F_q).

a point in E(F_q) of order r. (The 'base point' of a cyclic

subgroup of E(F_q))

the cofactor h = #E(F_q) / r.

2.2. Pairings

A pairing is a bilinear map defined on two subgroups of rational

points of an elliptic curve. Examples include the Weil pairing, the

Tate pairing, the optimal Ate pairing [Ver09], and so on. The

optimal Ate pairing is considered to be the most efficient to

compute and is the one that is most commonly used for practical

implementation.

Let E be an elliptic curve defined over a prime field F_p. Let k be

the minimum integer for which r is a divisor of p^k - 1; this is

called the embedding degree. Let G_1 be a cyclic subgroup of E(F_p)

of order r, there also exists a cyclic subgroup of E(F_p^k) of order

r, define this to be G_2. It can sometimes be convenient for

efficiency to do the computations of G_2 in the twist E', and so

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

consider G_2 to instead be a subgroup of E'. Let G_T be an order r

subgroup of the multiplicative group (F_p^k)^*; this exists by

definition of k.

A pairing is defined as a bilinear map e: (G_1, G_2) -> G_T

satisfying the following properties:

Bilinearity: for any S in G_1, T in G_2, and integers a and b,

e([a]S, [b]T) = e(S, T)^{a * b}.

Non-degeneracy: for any T in G_2, e(S, T) = 1 if and only if S

= O_E. Similarly, for any S in G_1, e(S, T) = 1 if and only if

T = O_E.

In applications, it is also necessary that for any S in G_1 and T in

G_2, this bilinear map is efficiently computable.

2.3. Barreto-Naehrig Curves

A BN curve [BN05] is one of the instantiations of pairing-friendly

curves proposed in 2005. A pairing over BN curves constructs optimal

Ate pairings.

A BN curve is defined by elliptic curves E and E' parameterized by a

well-chosen integer t. E is defined over F_p, where p is a prime

more than or equal to 5, and E(F_p) has a subgroup of prime order r.

The characteristic p and the order r are parameterized by

for an integer t.

The elliptic curve E has an equation of the form E: y^2 = x^3 + b,

where b is an element of a multiplicative group (F_p)^* of order (p

- 1).

BN curves always have order 6 twists. If m is an element that is

neither a square nor a cube in an extension field F_p^2, the twist

E' of E is defined over an extension field F_p^2 by the equation E':

y^2 = x^3 + b' with b' = b / m or b' = b * m. BN curves are called

D-type if b' = b / m, and M-type if b' = b * m. The embeddiing

degree k is 12.

A pairing e is defined by taking G_1 as a subgroup of E(F_p) of

order r, G_2 as a subgroup of E'(F_p^2), and G_T as a subgroup of a

multiplicative group (F_p^12)^* of order r.

¶

¶

1.

¶

2.

¶

¶

¶

¶

 p = 36 * t^4 + 36 * t^3 + 24 * t^2 + 6 * t + 1

 r = 36 * t^4 + 36 * t^3 + 18 * t^2 + 6 * t + 1

¶

¶

¶

¶

¶

2.4. Barreto-Lynn-Scott Curves

A BLS curve [BLS02] is another instantiation of pairings proposed in

2002. Similar to BN curves, a pairing over BLS curves constructs

optimal Ate pairings.

A BLS curve is defined by elliptic curves E and E' parameterized by

a well-chosen integer t. E is defined over a finite field F_p by an

equation of the form E: y^2 = x^3 + b, and its twist E': y^2 = x^3 +

b', is defined in the same way as BN curves. In contrast to BN

curves, E(F_p) does not have a prime order. Instead, its order is

divisible by a large parameterized prime r and denoted by h * r with

cofactor h. The pairing is defined on the r-torsion points. In the

same way as BN curves, BLS curves can be categorized into D-type and

M-type.

BLS curves vary in accordance with different embedding degrees. In

this memo, we deal with the BLS12 and BLS48 families with embedding

degrees 12 and 48 with respect to r, respectively.

In BLS curves, parameterized p and r are given by the following

equations:

for a well chosen integer t.

A pairing e is defined by taking G_1 as a subgroup of E(F_p) of

order r, G_2 as an order r subgroup of E'(F_p^2) for BLS12 and of

E'(F_p^8) for BLS48, and G_T as an order r subgroup of a

multiplicative group (F_p^12)^* for BLS12 and of a multiplicative

group (F_p^48)^* for BLS48.

2.5. Representation Convention for an Extension Field

Pairing-friendly curves use a tower of some extension fields. In

order to encode an element of an extension field, focusing on

interoperability, we adopt the representation convention shown in

Appendix J.4 of [I-D.ietf-lwig-curve-representations] as a standard

and effective method.

Let F_p be a finite field of characteristic p and F_p^d = F_p(i) be

an extension field of F_p of degree d.

¶

¶

¶

¶

 BLS12:

 p = (t - 1)^2 * (t^4 - t^2 + 1) / 3 + t

 r = t^4 - t^2 + 1

 BLS48:

 p = (t - 1)^2 * (t^16 - t^8 + 1) / 3 + t

 r = t^16 - t^8 + 1

¶

¶

¶

¶

¶

For an element s in F_p^d such that s = s_0 + s_1 * i + ... + s_{d -

1} * i^{d - 1} where s_0, s_1, ... , s_{d - 1} in the basefield

F_p, s is represented as octet string by oct(s) = s_0 || s_1 || ...

|| s_{d - 1}.

Let F_p^d' = F_p^d(j) be an extension field of F_p^d of degree d' /

d.

For an element s' in F_p^d' such that s' = s'_0 + s'_1 * j + ... +

s'_{d' / d - 1} * j^{d' / d - 1} where s'_0, s'_1, ..., s'_{d' / d -

1} in the basefield F_p^d, s' is represented as integer by oct(s') =

oct(s'_0) || oct(s'_1) || ... || oct(s'_{d' / d - 1}), where

oct(s'_0), ... , oct(s'_{d' / d - 1}) are octet strings encoded by

above convention.

In general, one can define encoding between integer and an element

of any finite field tower by inductively applying the above

convention.

The parameters and test vectors of extension fields described in

this memo are encoded by this convention and represented in an octet

stream.

When applications communicate elements in an extension field, using

the compression method [MP04] may be more effective. In that case,

care for interoperability must be taken.

3. Security of Pairing-Friendly Curves

3.1. Evaluating the Security of Pairing-Friendly Curves

The security of pairing-friendly curves is evaluated by the hardness

of the following discrete logarithm problems:

The elliptic curve discrete logarithm problem (ECDLP) in G_1 and

G_2

The finite field discrete logarithm problem (FFDLP) in G_T

There are other hard problems over pairing-friendly curves used for

proving the security of pairing-based cryptography. Such problems

include the computational bilinear Diffie-Hellman (CBDH) problem,

the bilinear Diffie-Hellman (BDH) problem, the decision bilinear

Diffie-Hellman (DBDH) problem, the gap DBDH problem, etc. [ECRYPT].

Almost all of these variants are reduced to the hardness of discrete

logarithm problems described above and are believed to be easier

than the discrete logarithm problems.

Although it would be sufficient to attack any of these problems to

attack paiting-based crytography, the only known attacks thus far

¶

¶

¶

¶

¶

¶

¶

*

¶

* ¶

¶

attack the discrete logarithm problem directly, so we focus on the

discrete logarithm in this memo.

The security level of pairing-friendly curves is estimated by the

computational cost of the most efficient algorithm to solve the

above discrete logarithm problems. The best known algorithms for

solving the discrete logarithm problems are based on Pollard's rho

algorithm [Pollard78] and Index Calculus [HR83]. To make index

calculus algorithms more efficient, number field sieve (NFS)

algorithms are utilized.

3.2. Impact of Recent Attacks

In 2016, Kim and Barbulescu proposed a new variant of the NFS

algorithms, the extended tower number field sieve (exTNFS), which

drastically reduces the complexity of solving FFDLP [KB16]. Due to

exTNFS, the security level of certain pairing-friendly curves

asymptotically dropped down. For instance, Barbulescu and Duquesne

estimated that the security of the BN curves, which had been

believed to provide 128-bit security (BN256, for example) was

reduced to approximately 100 bits [BD18]. Here, the security level

described in this memo corresponds to the security strength of NIST

recommendation [NIST].

There has since been research into the minimum bit length of the

parameters of pairing-friendly curves for each security level when

applying exTNFS as an attacking method for FFDLP. For 128-bit

security, Barbulescu and Duquesne estimated the minimum bit length

of p of BN curves and BLS12 curves after exTNFS as 461 bits [BD18].

For 256-bit security, Kiyomura et al. estimated the minimum bit

length of p^k of BLS48 curves as 27,410 bits, which indicated 572

bits of p [KIK17].

4. Selection of Pairing-Friendly Curves

In this section, we introduce some of the known secure pairing-

friendly curves that consider the impact of exTNFS.

First, we show the adoption status of pairing-friendly curves in

standards, libraries and applications, and classify them in

accordance with the 128-bit, 192-bit, and 256-bit security levels.

Then, from the viewpoints of "security" and "widely used", pairing-

friendly curves corresponding to each security level are selected

and their parameters are indicated.

In our selection policy, it is important that selected curves are

shown in peer-reviewed papers for security and that they are widely

used in cryptographic libraries. In addition, "efficiency" is one of

the important aspects but greatly dependant on implementations, so

we choose to prioritize "security" and "widely used" over

¶

¶

¶

¶

¶

¶

"efficiency" in consideration of future interconnections and

interoperability over the internet.

4.1. Adoption Status of Pairing-friendly Curves

We show the pairing-friendly curves that have been selected by

existing standards, cryptographic libraries, and applications.

Table 1 summarizes the adoption status of pairing-friendly curves.

In this table, "Arnd" is an abbreviation for "Around". The curves

categorized into 'Arnd 128-bit', 'Arnd 192-bit' and 'Arnd 256-bit'

for each label show that their security levels are within the range

of plus/minus 5 bits for each security level. Other labels shown

with '~' mean that the security level of the categorized curve is

outside the range of each security level. Specifically, the security

level of the categorized curves is more than the previous column and

is less than the next column. The details are described as the

following subsections. A BN curve with a XXX-bit characteristic p is

denoted as BNXXX and a BLS curve of embedding degree k with a XXX-

bit p is denoted as BLSk_XXX. Due to space limitations, Table 1

omits libraries that have not been maintained since the 2016 exTNFS

attacks and curves that have had the security levels below 128 bits

since before 2016 (ex. BN160). The full version of Table 1 is

available at https://lepidum.co.jp/blog/2020-03-27/ietf-draft-pfc/.

In this table, the security level for each curve is evaluated in

accordance with [BD18],[GMT19], [MAF19] and [FK18]. Note that the

Freeman curves and MNT curves are not included in this table because

[BD18] does not show the security level of these curves.

Category Name
Curve

Type

Security Levels (bit)

~
Arnd

128
~

Arnd

192
~

Arnd

256

Standard

ISO/IEC

BN256I X

BN384 X

BN512I X

TCG
BN256I X

BN638 X

FIDO/W3C

BN256I X

BN256D X

BN512I X

BN638 X

Library

mcl

BLS12_381 X

BN254N X

BN_SNARK1 X

BN382M X

BN462 X

TEPLA BN254B X

¶

¶

¶

https://lepidum.co.jp/blog/2020-03-27/ietf-draft-pfc/

Category Name
Curve

Type

Security Levels (bit)

~
Arnd

128
~

Arnd

192
~

Arnd

256

BN254N X

RELIC

BLS12_381 X

BLS12_446 X

BLS12_455 X

BLS12_638 X

BLS24_477 X

BLS48_575 X

BN254N X

BN256D X

BN382R X

BN446 X

BN638 X

CP8_544 X

K54_569 X

KSS18_508 X

OT8_511 X

AMCL

BLS12_381 X

BLS12_383 X

BLS12_461 X

BLS24_479 X

BLS48_556 X

BN254N X

BN254CX X

BN256I X

BN512I X

Intel IPP BN256I X

Kyushu

Univ.
BLS48_581 X

MIRACL

BLS12_381 X

BLS12_383 X

BLS12_461 X

BLS24_479 X

BLS48_556 X

BLS48_581 X

BN254N X

BN254CX X

BN256I X

BN462 X

BN512I X

Adjoint BLS12_381 X

BN_SNARK1 X

BN254B X

BN254N X

Category Name
Curve

Type

Security Levels (bit)

~
Arnd

128
~

Arnd

192
~

Arnd

256

BN254S1 X

BN254S2 X

BN462 X

Application

Zcash
BLS12_381 X

BN_SNARK1 X

Ethereum BLS12_381 X

Chia

Network
BLS12_381 X

DFINITY

BLS12_381 X

BN254N X

BN_SNARK1 X

BN382M X

BN462 X

Algorand BLS12_381 X

Table 1: Adoption Status of Pairing-Friendly Curves

4.1.1. International Standards

ISO/IEC 15946 series specifies public-key cryptographic techniques

based on elliptic curves. ISO/IEC 15946-5 [ISOIEC15946-5] shows

numerical examples of MNT curves[MNT01] with 160-bit p and 256-bit

p, Freeman curves [Freeman06] with 224-bit p and 256-bit p, and BN

curves with 160-bit p, 192-bit p, 224-bit p, 256-bit p, 384-bit p,

and 512-bit p. These parameters do not take into account the effects

of the exTNFS. On the other hand, the parameters may be revised in

future versions since ISO/IEC 15946-5 is currently under

development. As described below, BN curves with 256-bit p and 512-

bit p specified in ISO/IEC 15946-5 used by other standards and

libraries, these curves are especially denoted as BN256I and BN512I.

The suffix 'I' of BN256I and BN512I are given from the initials of

the standard name ISO.

TCG adopts the BN256I and a BN curve with 638-bit p specified by

their own[TPM]. FIDO Alliance [FIDO] and W3C [W3C] adopt BN256I,

BN512I, the BN638 by TCG, and the BN curve with 256-bit p proposed

by Devegili et al.[DSD07] (named BN256D). The suffix 'D' of BN256D

is given from the initials of the first author's name of the paper

which proposed the parameter.

4.1.2. Cryptographic Libraries

There are a lot of cryptographic libraries that support pairing

calculations.

¶

¶

¶

PBC is a library for pairing-based cryptography published by

Stanford University that supports BN curves, MNT curves, Freeman

curves, and supersingular curves [PBC]. Users can generate pairing

parameters by using PBC and use pairing operations with the

generated parameters.

mcl[mcl] is a library for pairing-based cryptography that supports

four BN curves and BLS12_381 [GMT19]. These BN curves include BN254

proposed by Nogami et al. [NASKM08] (named BN254N), BN_SNARK1

suitable for SNARK applications[libsnark], BN382M, and BN462. The

suffix 'N' of BN256N and the suffix 'M' of BN382M are respectively

given from the initials of the first author's name of the proposed

paper and the library's name mcl. Kyushu University published a

library that supports the BLS48_581 [BLS48]. The University of

Tsukuba Elliptic Curve and Pairing Library (TEPLA) [TEPLA] supports

two BN curves, BN254N and BN254 proposed by Beuchat et al.

[BGMORT10] (named BN254B). The suffix 'B' of BN254B is given from

the initials of the first author's name of the proposed paper. Intel

published a cryptographic library named Intel Integrated Performance

Primitives (Intel-IPP) [Intel-IPP] and the library supports BN256I.

RELIC [RELIC] uses various types of pairing-friendly curves

including six BN curves (BN158, BN254R, BN256R, BN382R, BN446, and

BN638), where BN254R, BN256R, and BN382R are RELIC specific

parameters that are different from BN254N, BN254B, BN256I, BN256D,

and BN382M. The suffix 'R' of BN382R is given from the initials of

the library's name RELIC. In addition, RELIC supports six BLS curves

(BLS12_381, BLS12_446, BLS12_445, BLS12_638, BLS24_477, and

BLS48_575 [MAF19]), Cocks-Pinch curves of embedding degree 8 with

544-bit p[GMT19], pairing-friendly curves constructed by Scott et

al. [SG19] based on Kachisa-Scott-Schaefer curves with embedding

degree 54 with 569-bit p (named K54_569)[MAF19], a KSS curve [KSS08]

of embedding degree 18 with 508-bit p (named KSS18_508) [AFKMR12],

Optimal TNFS-secure curve [FM19] of embedding degree 8 with 511-bit

p(OT8_511), and a supersingular curve [S86] with 1536-bit p

(SS_1536).

Apache Milagro Crypto Library (AMCL)[AMCL] supports four BLS curves

(BLS12_381, BLS12_461, BLS24_479 and BLS48_556) and four BN curves

(BN254N, BN254CX proposed by CertiVox, BN256I, and BN512I). In

addition to AMCL's supported curves, MIRACL [MIRACL] supports BN462

and BLS48_581.

Adjoint published a library that supports the BLS12_381 and six BN

curves (BN_SNARK1, BN254B, BN254N, BN254S1, BN254S2, and BN462)

[AdjointLib], where BN254S1 and BN254S2 are BN curves adopted by an

old version of AMCL [AMCLv2]. The suffix 'S' of BN254S1 and BN254S2

are given from the initials of developper's name because he proposed

these parameters.

¶

¶

¶

¶

¶

4.1.3. Applications

Zcash uses a BN curve (named BN128) in their library libsnark

[libsnark]. In response to the exTNFS attacks, they proposed new

parameters using BLS12_381 [BLS12-381] [GMT19]and published its

experimental implementation [zkcrypto].

Ethereum 2.0 adopted BLS12_381 and uses the implementation by Meyer

[pureGo-bls]. Chia Network published their implementation [Chia] by

integrating the RELIC toolkit [RELIC]. DFINITY uses mcl, and

Algorand published an implementation which supports BLS12_381.

4.2. For 128-bit Security

Table 1 shows a lot of cases of adopting BN and BLS curves. Among

them, BLS12_381 and BN462 match our selection policy. Especially,

the one that best matches the policy is BLS12_381 from the viewpoint

of "widely used" and "efficiency", so we introduce the parameters of

BLS12_381 in this memo.

On the other hand, from the viewpoint of the future use, the

parameter of BN462 is also introduced. As shown in recent security

evaluations for BLS12_381[BD18] [GMT19], its security level close to

128-bit but it is less than 128-bit. If the attack is improved even

a little, BLS12_381 will not be suitable for the curve of the 128-

bit security level. As curves of 128-bit security level are

currently the most widely used, we recommend both BLS12-381 and

BN462 in this memo in order to have a more efficient and a more

prudent option respectively.

4.2.1. BLS Curves for the 128-bit security level

In this part, we introduce the parameters of the Barreto-Lynn-Scott

curve of embedding degree 12 with 381-bit p that is adopted by a lot

of applications such as Zcash [Zcash], Ethereum [Ethereum], and so

on.

The BLS12_381 curve is shown in [BLS12-381] and it is defined by the

parameter

where the size of p becomes 381-bit length.

For the finite field F_p, the towers of extension field F_p^2, F_p^6

and F_p^12 are defined by indeterminates u, v, and w as follows:

¶

¶

¶

¶

¶

¶

 t = -2^63 - 2^62 - 2^60 - 2^57 - 2^48 - 2^16¶

¶

¶

 F_p^2 = F_p[u] / (u^2 + 1)

 F_p^6 = F_p^2[v] / (v^3 - u - 1)

 F_p^12 = F_p^6[w] / (w^2 - v).

¶

Defined by t, the elliptic curve E and its twist E' are represented

by E: y^2 = x^3 + 4 and E': y^2 = x^3 + 4(u + 1). BLS12_381 is

categorized into M-type.

We have to note that the security level of this pairing is expected

to be 126 rather than 128 bits [GMT19].

Parameters of BLS12_381 are given as follows.

G_1 is the largest prime-order subgroup of E(F_p)

r : the order of G_1

BP = (x,y) : a 'base point', i.e., a generator of G_1

h : the cofactor #E(F_p)/r

G_2 is an r-order subgroup of E'(F_p^2)

BP' = (x',y') : a 'base point', i.e., a generator of G_2

(encoded with [I-D.ietf-lwig-curve-representations])

x' = x'_0 + x'_1 * u (x'_0, x'_1 in F_p)

y' = y'_0 + y'_1 * u (y'_0, y'_1 in F_p)

h' : the cofactor #Et(F_p^8)/r

¶

¶

¶

* ¶

- ¶

- ¶

- ¶

* ¶

-

¶

o ¶

o ¶

- ¶

p:

r:

x:

y:

h:

b:

r':

x'_0:

x'_1:

y'_0:

y'_1:

h':

b':

0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaaab

0x73eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000001

0x17f1d3a73197d7942695638c4fa9ac0fc3688c4f9774b905a14e3a3f171bac586c55e83ff97a1aeffb3af00adb22c6bb

0x08b3f481e3aaa0f1a09e30ed741d8ae4fcf5e095d5d00af600db18cb2c04b3edd03cc744a2888ae40caa232946c5e7e1

0x396c8c005555e1568c00aaab0000aaab

4

0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaaab

0x024aa2b2f08f0a91260805272dc51051c6e47ad4fa403b02b4510b647ae3d1770bac0326a805bbefd48056c8c121bdb8

0x13e02b6052719f607dacd3a088274f65596bd0d09920b61ab5da61bbdc7f5049334cf11213945d57e5ac7d055d042b7e

0x0ce5d527727d6e118cc9cdc6da2e351aadfd9baa8cbdd3a76d429a695160d12c923ac9cc3baca289e193548608b82801

0x0606c4a02ea734cc32acd2b02bc28b99cb3e287e85a763af267492ab572e99ab3f370d275cec1da1aaa9075ff05f79be

0x5d543a95414e7f1091d50792876a202cd91de4547085abaa68a205b2e5a7ddfa628f1cb4d9e82ef21537e293a6691ae1616ec6e786f0c70cf1c38e31c7238e5

4 * (u + 1)

As mentioned above, BLS12_381 is adopted in a lot of applications.

Since it is expected that BLS12_381 will continue to be widely used

more and more in the future, Appendix C shows the serialization

format of points on an elliptic curve as useful information. This

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

serialization format is also adopted in [I-D.boneh-bls-signature]

[zkcrypto].

4.2.2. BN Curves for the 128-bit security level

A BN curve with the 128-bit security level is shown in [BD18], which

we call BN462. BN462 is defined by the parameter

for the definition in Section 2.3.

For the finite field F_p, the towers of extension field F_p^2, F_p^6

and F_p^12 are defined by indeterminates u, v, and w as follows:

Defined by t, the elliptic curve E and its twist E' are represented

by E: y^2 = x^3 + 5 and E': y^2 = x^3 - u + 2, respectively. The

size of p becomes 462-bit length. BN462 is categorized into D-type.

We have to note that BN462 is significantly slower than BLS12_381,

but has 134-bit security level [GMT19], so may be more resistant to

future small improvements to the exTNFS attack.

We note also that CP8_544 is more efficient than BN462, has 131-bit

security level,and that due to its construction will not be affected

by future small improvements to the exTNFS attack. However, as this

curve is not widely used (it is only implemented in one library), we

instead chose BN462 for our 'safe' option.

We give the following parameters for BN462.

G_1 is the largest prime-order subgroup of E(F_p)

r : the order of G_1

BP = (x,y) : a 'base point', i.e., a generator of G_1

h : the cofactor #E(F_p)/r

G_2 is an r-order subgroup of E'(F_p^2)

BP' = (x',y') : a 'base point', i.e., a generator of G_2

(encoded with [I-D.ietf-lwig-curve-representations])

x' = x'_0 + x'_1 * u (x'_0, x'_1 in F_p)

¶

¶

 t = 2^114 + 2^101 - 2^14 - 1¶

¶

¶

 F_p^2 = F_p[u] / (u^2 + 1)

 F_p^6 = F_p^2[v] / (v^3 - u - 2)

 F_p^12 = F_p^6[w] / (w^2 - v).

¶

¶

¶

¶

¶

* ¶

- ¶

- ¶

- ¶

* ¶

-

¶

o ¶

p:

r:

x:

y:

h:

b:

r':

x'_0:

x'_1:

y'_0:

y'_1:

h':

b':

y' = y'_0 + y'_1 * u (y'_0, y'_1 in F_p)

h' : the cofactor #Et(F_p^8)/r

0x240480360120023ffffffffff6ff0cf6b7d9bfca0000000000d812908f41c8020ffffffffff6ff66fc6ff687f640000000002401b00840138013

0x240480360120023ffffffffff6ff0cf6b7d9bfca0000000000d812908ee1c201f7fffffffff6ff66fc7bf717f7c0000000002401b007e010800d

0x21a6d67ef250191fadba34a0a30160b9ac9264b6f95f63b3edbec3cf4b2e689db1bbb4e69a416a0b1e79239c0372e5cd70113c98d91f36b6980d

0x0118ea0460f7f7abb82b33676a7432a490eeda842cccfa7d788c659650426e6af77df11b8ae40eb80f475432c66600622ecaa8a5734d36fb03de

1

5

0x240480360120023ffffffffff6ff0cf6b7d9bfca0000000000d812908ee1c201f7fffffffff6ff66fc7bf717f7c0000000002401b007e010800d

0x0257ccc85b58dda0dfb38e3a8cbdc5482e0337e7c1cd96ed61c913820408208f9ad2699bad92e0032ae1f0aa6a8b48807695468e3d934ae1e4df

0x1d2e4343e8599102af8edca849566ba3c98e2a354730cbed9176884058b18134dd86bae555b783718f50af8b59bf7e850e9b73108ba6aa8cd283

0x0a0650439da22c1979517427a20809eca035634706e23c3fa7a6bb42fe810f1399a1f41c9ddae32e03695a140e7b11d7c3376e5b68df0db7154e

0x073ef0cbd438cbe0172c8ae37306324d44d5e6b0c69ac57b393f1ab370fd725cc647692444a04ef87387aa68d53743493b9eba14cc552ca2a93a

0x240480360120023ffffffffff6ff0cf6b7d9bfca0000000000d812908fa1ce0227fffffffff6ff66fc63f5f7f4c0000000002401b008a0168019

-u + 2

o ¶

- ¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

4.3. For 192-bit Security

As shown in Table 1, there are only two candidates of pairing-

friendly curves for the 192-bit security level, BLS24_477 and

BLS24_479. BLS24_477 has only one implementation and BLS24_479 is an

experimental parameter that is not shown in any peer-reviewed paper.

Therefore, because neither match our selection policy, we do not

show the parameters for 192-bit security here.

4.4. For 256-bit Security

As shown in Table 1, there are three candidates of pairing-friendly

curves for 256-bit security. According to our selection policy, we

select BLS48_581, as it is the most widely adopted by cryptographic

libraries.

The selected BLS48 curve is shown in [KIK17] and it is defined by

the parameter

In this case, the size of p becomes 581-bit.

For the finite field F_p, the towers of extension field F_p^2,

F_p^4, F_p^8, F_p^24 and F_p^48 are defined by indeterminates u, v,

w, z, and s as follows:

The elliptic curve E and its twist E' are represented by E: y^2 =

x^3 + 1 and E': y^2 = x^3 - 1 / w. BLS48-581 is categorized into D-

type.

We then give the parameters for BLS48-581 as follows.

G_1 is the largest prime-order subgroup of E(F_p)

r : the order of G_1

BP = (x,y) : a 'base point', i.e., a generator of G_1

h : the cofactor #E(F_p)/r

G_2 is an r-order subgroup of E'(F_p^8)

r': an order

¶

¶

¶

 t = -1 + 2^7 - 2^10 - 2^30 - 2^32.¶

¶

¶

 F_p^2 = F_p[u] / (u^2 + 1)

 F_p^4 = F_p^2[v] / (v^2 + u + 1)

 F_p^8 = F_p^4[w] / (w^2 + v)

 F_p^24 = F_p^8[z] / (z^3 + w)

 F_p^48 = F_p^24[s] / (s^2 + z).

¶

¶

¶

* ¶

- ¶

- ¶

- ¶

* ¶

- ¶

BP' = (x',y') : a 'base point', i.e., a generator of G_2

(encoded with [I-D.ietf-lwig-curve-representations])

x' = x'_0 + x'_1 * u + x'_2 * v + x'_3 * u * v + x'_4 * w +

x'_5 * u * w + x'_6 * v * w + x'_7 * u * v * w (x'_0, ...,

x'_7 in F_p)

y' = y'_0 + y'_1 * u + y'_2 * v + y'_3 * u * v + y'_4 * w +

y'_5 * u * w + y'_6 * v * w + y'_7 * u * v * w (y'_0, ...,

y'_7 in F_p)

h' : the cofactor #E'(F_p^8)/r

-

¶

o

¶

o

¶

- ¶

p:

r:

x:

y:

x'_0:

x'_1:

x'_2:

x'_3:

x'_4:

x'_5:

x'_6:

x'_7:

y'_0:

0x1280f73ff3476f313824e31d47012a0056e84f8d122131bb3be6c0f1f3975444a48ae43af6e082acd9cd30394f4736daf68367a5513170ee0a578fdf721a4a48ac3edc154e6565912b

0x2386f8a925e2885e233a9ccc1615c0d6c635387a3f0b3cbe003fad6bc972c2e6e741969d34c4c92016a85c7cd0562303c4ccbe599467c24da118a5fe6fcd671c01

0x02af59b7ac340f2baf2b73df1e93f860de3f257e0e86868cf61abdbaedffb9f7544550546a9df6f9645847665d859236ebdbc57db368b11786cb74da5d3a1e6d8c3bce8732315af640

0x0cefda44f6531f91f86b3a2d1fb398a488a553c9efeb8a52e991279dd41b720ef7bb7beffb98aee53e80f678584c3ef22f487f77c2876d1b2e35f37aef7b926b576dbb5de3e2587a70

0x05d615d9a7871e4a38237fa45a2775debabbefc70344dbccb7de64db3a2ef156c46ff79baad1a8c42281a63ca0612f400503004d80491f510317b79766322154dec34fd0b4ace8bfab

0x07c4973ece2258512069b0e86abc07e8b22bb6d980e1623e9526f6da12307f4e1c3943a00abfedf16214a76affa62504f0c3c7630d979630ffd75556a01afa143f1669b36676b47c57

0x01fccc70198f1334e1b2ea1853ad83bc73a8a6ca9ae237ca7a6d6957ccbab5ab6860161c1dbd19242ffae766f0d2a6d55f028cbdfbb879d5fea8ef4cded6b3f0b46488156ca55a3e6a

0x0be2218c25ceb6185c78d8012954d4bfe8f5985ac62f3e5821b7b92a393f8be0cc218a95f63e1c776e6ec143b1b279b9468c31c5257c200ca52310b8cb4e80bc3f09a7033cbb7feafe

0x038b91c600b35913a3c598e4caa9dd63007c675d0b1642b5675ff0e7c5805386699981f9e48199d5ac10b2ef492ae589274fad55fc1889aa80c65b5f746c9d4cbb739c3a1c53f8cce5

0x0c96c7797eb0738603f1311e4ecda088f7b8f35dcef0977a3d1a58677bb037418181df63835d28997eb57b40b9c0b15dd7595a9f177612f097fc7960910fce3370f2004d914a3c093a

0x0b9b7951c6061ee3f0197a498908aee660dea41b39d13852b6db908ba2c0b7a449cef11f293b13ced0fd0caa5efcf3432aad1cbe4324c22d63334b5b0e205c3354e41607e60750e057

0x0827d5c22fb2bdec5282624c4f4aaa2b1e5d7a9defaf47b5211cf741719728a7f9f8cfca93f29cff364a7190b7e2b0d4585479bd6aebf9fc44e56af2fc9e97c3f84e19da00fbc6ae34

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

y'_1:

y'_2:

y'_3:

y'_4:

y'_5:

y'_6:

y'_7:

h:

b:

r':

h':

b':

0x00eb53356c375b5dfa497216452f3024b918b4238059a577e6f3b39ebfc435faab0906235afa27748d90f7336d8ae5163c1599abf77eea6d659045012ab12c0ff323edd3fe4d2d7971

0x0284dc75979e0ff144da6531815fcadc2b75a422ba325e6fba01d72964732fcbf3afb096b243b1f192c5c3d1892ab24e1dd212fa097d760e2e588b423525ffc7b111471db936cd5665

0x0b36a201dd008523e421efb70367669ef2c2fc5030216d5b119d3a480d370514475f7d5c99d0e90411515536ca3295e5e2f0c1d35d51a652269cbc7c46fc3b8fde68332a526a2a8474

0x0aec25a4621edc0688223fbbd478762b1c2cded3360dcee23dd8b0e710e122d2742c89b224333fa40dced2817742770ba10d67bda503ee5e578fb3d8b8a1e5337316213da92841589d

0x0d209d5a223a9c46916503fa5a88325a2554dc541b43dd93b5a959805f1129857ed85c77fa238cdce8a1e2ca4e512b64f59f430135945d137b08857fdddfcf7a43f47831f982e50137

0x07d0d03745736b7a513d339d5ad537b90421ad66eb16722b589d82e2055ab7504fa83420e8c270841f6824f47c180d139e3aafc198caa72b679da59ed8226cf3a594eedc58cf90bee4

0x0896767811be65ea25c2d05dfdd17af8a006f364fc0841b064155f14e4c819a6df98f425ae3a2864f22c1fab8c74b2618b5bb40fa639f53dccc9e884017d9aa62b3d41faeafeb23986

0x035e2524ff89029d393a5c07e84f981b5e068f1406be8e50c87549b6ef8eca9a9533a3f8e69c31e97e1ad0333ec719205417300d8c4ab33f748e5ac66e84069c55d667ffcb732718b6

0x85555841aaaec4ac

1

0x2386f8a925e2885e233a9ccc1615c0d6c635387a3f0b3cbe003fad6bc972c2e6e741969d34c4c92016a85c7cd0562303c4ccbe599467c24da118a5fe6fcd671c01

0x170e915cb0a6b7406b8d94042317f811d6bc3fc6e211ada42e58ccfcb3ac076a7e4499d700a0c23dc4b0c078f92def8c87b7fe63e1eea270db353a4ef4d38b5998ad8f0d042ea24c8f02be1c0c83992fe5d7725227bb27123a949e0876c0a8ce0a67326db0e955dcb791b867f31d6bfa62fbdd5f44a00504df04e186fae033f1eb43c1b1a08b6e086eff03c8fee9ebdd1e191a8a4b0466c90b389987de5637d5dd13dab33196bd2e5afa6cd19cf0fc3fc7db7ece1f3fac742626b1b02fcee04043b2ea96492f6afa51739597c54bb78aa6b0b99319fef9d09f768831018ee6564c68d054c62f2e0b4549426fec24ab26957a669dba2a2b6945ce40c9aec6afdeda16c79e15546cd7771fa544d5364236690ea06832679562a68731420ae52d0d35a90b8d10b688e31b6aee45f45b7a5083c71732105852decc888f64839a4de33b99521f0984a418d20fc7b0609530e454f0696fa2a8075ac01cc8ae3869e8d0fe1f3788ffac4c01aa2720e431da333c83d9663bfb1fb7a1a7b90528482c6be7892299030bb51a51dc7e91e9156874416bf4c26f1ea7ec578058563960ef92bbbb8632d3a1b695f954af10e9a78e40acffc13b06540aae9da5287fc4429485d44e6289d8c0d6a3eb2ece35012452751839fb48bc14b515478e2ff412d930ac20307561f3a5c998e6bcbfebd97effc6433033a2361bfcdc4fc74ad379a16c6dea49c209b1

-1 / w

5. Security Considerations

The recommended pairing-friendly curves are selected by considering

the exTNFS proposed by Kim et al. in 2016 [KB16] and they are

categorized in each security level in accordance with [BD18].

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Implementers who will newly develop pairing-based cryptography

applications SHOULD use the recommended parameters. As of 2020, as

far as we know, there are no fatal attacks that significantly reduce

the security of pairing-friendly curves after exTNFS.

BLS curves of embedding degree 12 typically require a characteristic

p of 461 bits or larger to achieve the 128-bit security level

[BD18]. Note that the security level of BLS12-381, which is adopted

by a lot of libraries and applications, is slightly below 128 bits

because a 381-bit characteristic is used [BD18] [GMT19].

BN254 is used in most of the existing implementations as shown in

Table 1, however, BN curves that were estimated as the 128-bit

security level before exTNFS including BN254 ensure no more than the

100-bit security level by the effect of exTNFS. Implementers MAY use

pairing-friendly curves with 100-bit security only if they need to

keep interoperability with the existing applications.

In addition, implementors should be aware of the following points

when they implement pairing-based cryptographic applications using

recommended curves.

In applications such as key agreement protocols, users exchange the

elements in G_1 and G_2 as public keys. To check these elements are

so-called sub-group secure [BCM15], implementors should validate if

the elements have the correct order r. Specifically, for public keys

P in G_1 and Q in G_2, a receiver should calculate scalar

multiplications [r]P and [r]Q, and check the results become points

at infinity.

The pairing-based protocols, such as the BLS signatures, calculate a

scalar multiplication with the secret key. In order to prevent the

leakage of secret key due to side channel attacks, implementors

should apply countermeasure techniques such as montgomery ladder

when they implement a module of scalar multiplication[Montgomery]

[RFC7748].

When converting between an element in extension field and an octet

string, implementors should check that the coefficient is within an

appropriate range [IEEE1363]. If the coefficient is out of range,

there is a possible that security vulnerabilities such as the

signature forgery may occur.

Recommended parameters are affected by the Cheon's attack which is a

solving algorithm for the strong DH problem [Cheon06]. Therefore,

implementers should be careful when they design cryptographic

protocols based on the strong DH problem. For example, in the case

of Short Signatures, they can prevent the Cheon's attack by

carefully setting the maximum number of queries.

¶

¶

¶

¶

¶

¶

¶

¶

[BD18]

[BLS02]

[BN05]

[GMT19]

[KB16]

[KIK17]

6. IANA Considerations

This document has no actions for IANA.

7. Acknowledgements

The authors would like to thank Akihiro Kato and Shoko Yonezawa for

their significant contribution to an early version of this memo. The

authors would also like to acknowledge Sakae Chikara, Kim Taechan,

Hoeteck Wee, Sergey Gorbunov, Michael Scott, Chloe Martindale as an

Expert Reviewer, Watson Ladd, Armand Faz, and Satoru Kanno for their

valuable comments.

8. References

8.1. Normative References

Barbulescu, R. and S. Duquesne, "Updating Key Size

Estimations for Pairings", DOI 10.1007/s00145-018-9280-5,

Journal of Cryptology, January 2018, <https://doi.org/

10.1007/s00145-018-9280-5>.

Barreto, P., Lynn, B., and M. Scott, "Constructing

Elliptic Curves with Prescribed Embedding Degrees", DOI

10.1007/3-540-36413-7_19, Security in Communication

Networks pp. 257-267, 2003, <https://doi.org/

10.1007/3-540-36413-7_19>.

Barreto, P. and M. Naehrig, "Pairing-Friendly Elliptic

Curves of Prime Order", DOI 10.1007/11693383_22, Selected

Areas in Cryptography pp. 319-331, 2006, <https://

doi.org/10.1007/11693383_22>.

Guillevic, A., Masson, S., and E. Thome, "Cocks-Pinch

curves of embedding degrees five to eight and optimal ate

pairing computation", DOI 10.1007/s10623-020-00727-w,

International Journal of Designs, Codes and Cryptography

vol. 88, pp. 1047-1081, 2019, <https://doi.org/10.1007/

s10623-020-00727-w>.

Kim, T. and R. Barbulescu, "Extended Tower Number Field

Sieve: A New Complexity for the Medium Prime Case", DOI

10.1007/978-3-662-53018-4_20, Advances in Cryptology -

CRYPTO 2016 pp. 543-571, 2016, <https://doi.org/

10.1007/978-3-662-53018-4_20>.

Kiyomura, Y., Inoue, A., Kawahara, Y., Yasuda, M.,

Takagi, T., and T. Kobayashi, "Secure and Efficient

Pairing at 256-Bit Security Level", DOI

10.1007/978-3-319-61204-1_4, Applied Cryptography and

¶

¶

https://doi.org/10.1007/s00145-018-9280-5
https://doi.org/10.1007/s00145-018-9280-5
https://doi.org/10.1007/3-540-36413-7_19
https://doi.org/10.1007/3-540-36413-7_19
https://doi.org/10.1007/11693383_22
https://doi.org/10.1007/11693383_22
https://doi.org/10.1007/s10623-020-00727-w
https://doi.org/10.1007/s10623-020-00727-w
https://doi.org/10.1007/978-3-662-53018-4_20
https://doi.org/10.1007/978-3-662-53018-4_20

[NIST]

[RFC2119]

[RFC8174]

[Ver09]

[AdjointLib]

[AFKMR12]

[Algorand]

[AMCL]

[AMCLv2]

[BCM15]

Network Security pp. 59-79, 2017, <https://doi.org/

10.1007/978-3-319-61204-1_4>.

Barker, E., "NIST special publication 800-57 part 1

(revised) : Recommendation for key management, part 1:

General (revised)", National Institute of Standards and

Technology (NIST), 2020.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Vercauteren, F., "Optimal Pairings", DOI 10.1109/tit.

2009.2034881, IEEE Transactions on Information Theory

Vol. 56, pp. 455-461, January 2010, <https://doi.org/

10.1109/tit.2009.2034881>.

8.2. Informative References

Adjoint Inc., "Optimised bilinear pairings over

elliptic curves", 2018, <https://github.com/adjoint-io/

pairing>.

Aranha, D.F., Fuentes-Castaneda, L., Knapp, E., Menezes,

A., and F. Rodríguez-Henríquez, "Implementing Pairings at

the 192-Bit Security Level", DOI /

10.1007/978-3-642-36334-4_11, Pairing 2012 pp. 177-195,

2012, <https://doi.org//10.1007/978-3-642-36334-4_11>.

Gorbunov, S., "Efficient and Secure Digital Signatures

for Proof-of-Stake Blockchains", , <https://medium.com/

algorand/digital-signatures-for-

blockchains-5820e15fbe95>.

The Apache Software Foundation, "The Apache Milagro

Cryptographic Library (AMCL)", 2016, <https://github.com/

apache/incubator-milagro-crypto>.

The Apache Software Foundation, "Old version of the

Apache Milagro Cryptographic Library", 2016, <https://

github.com/miracl/amcl/tree/master/version22>.

Barreto, P. S. L. M., Costello, C., Misoczki, R.,

Naehrig, M., Pereira, G. C. C. F., and G. Zanon,

"Subgroup security in pairing-based cryptography",

https://doi.org/10.1007/978-3-319-61204-1_4
https://doi.org/10.1007/978-3-319-61204-1_4
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8174
https://doi.org/10.1109/tit.2009.2034881
https://doi.org/10.1109/tit.2009.2034881
https://github.com/adjoint-io/pairing
https://github.com/adjoint-io/pairing
https://doi.org//10.1007/978-3-642-36334-4_11
https://medium.com/algorand/digital-signatures-for-blockchains-5820e15fbe95
https://medium.com/algorand/digital-signatures-for-blockchains-5820e15fbe95
https://medium.com/algorand/digital-signatures-for-blockchains-5820e15fbe95
https://github.com/apache/incubator-milagro-crypto
https://github.com/apache/incubator-milagro-crypto
https://github.com/miracl/amcl/tree/master/version22
https://github.com/miracl/amcl/tree/master/version22

[BGMORT10]

[BL10]

[BLS12-381]

[BLS48]

[CCS07]

[Cheon06]

[Chia]

[CIRCL]

[Cloudflare]

[DFINITY]

Cryptology ePrint Archive Report 2015/247, 2015,

<https://eprint.iacr.org/2015/247.pdf>.

Beuchat, J., González-Díaz, J., Mitsunari, S., Okamoto,

E., Rodríguez-Henríquez, F., and T. Teruya, "High-Speed

Software Implementation of the Optimal Ate Pairing over

Barreto-Naehrig Curves", DOI 10.1007/978-3-642-17455-1_2,

Pairing 2010 pp. 21-39, 2010, <https://doi.org/

10.1007/978-3-642-17455-1_2>.

Brickell, E. and J. Li, "Enhanced Privacy ID from

Bilinear Pairing for Hardware Authentication and

Attestation", DOI 10.1109/socialcom.2010.118, 2010 IEEE

Second International Conference on Social Computing,

August 2010, <https://doi.org/10.1109/socialcom.

2010.118>.

Bowe, S., "BLS12-381: New zk-SNARK Elliptic Curve

Construction", , <https://electriccoin.co/blog/new-snark-

curve/>.

Kyushu University, "bls48 - C++ library for Optimal Ate

Pairing on BLS48", 2017, <https://github.com/mk-math-

kyushu/bls48>.

Chen, L., Cheng, Z., and N. Smart, "Identity-based key

agreement protocols from pairings", DOI 10.1007/

s10207-006-0011-9, International Journal of Information

Security Vol. 6, pp. 213-241, January 2007, <https://

doi.org/10.1007/s10207-006-0011-9>.

Cheon, J. H., "Security Analysis of the Strong Diffie-

Hellman Problem", DOI 10.1007/11761679_1, EUROCRYPT 2006

pp. 1-11, 2006, <https://doi.org/10.1007/11761679_1>.

Chia Network, "BLS signatures in C++, using the relic

toolkit", , <https://github.com/Chia-Network/bls-

signatures>.

Cloudflare, "CIRCL: Cloudflare Interoperable, Reusable

Cryptographic Library", 2019, <https://github.com/

cloudflare/circl>.

Sullivan, N., "Geo Key Manager: How It Works", ,

<https://blog.cloudflare.com/geo-key-manager-how-it-

works/>.

Williams, D., "DFINITY Technology Overview Series

Consensus System Rev. 1", n.d., <https://dfinity.org/pdf-

viewer/library/dfinity-consensus.pdf>.

https://eprint.iacr.org/2015/247.pdf
https://doi.org/10.1007/978-3-642-17455-1_2
https://doi.org/10.1007/978-3-642-17455-1_2
https://doi.org/10.1109/socialcom.2010.118
https://doi.org/10.1109/socialcom.2010.118
https://electriccoin.co/blog/new-snark-curve/
https://electriccoin.co/blog/new-snark-curve/
https://github.com/mk-math-kyushu/bls48
https://github.com/mk-math-kyushu/bls48
https://doi.org/10.1007/s10207-006-0011-9
https://doi.org/10.1007/s10207-006-0011-9
https://doi.org/10.1007/11761679_1
https://github.com/Chia-Network/bls-signatures
https://github.com/Chia-Network/bls-signatures
https://github.com/cloudflare/circl
https://github.com/cloudflare/circl
https://blog.cloudflare.com/geo-key-manager-how-it-works/
https://blog.cloudflare.com/geo-key-manager-how-it-works/
https://dfinity.org/pdf-viewer/library/dfinity-consensus.pdf
https://dfinity.org/pdf-viewer/library/dfinity-consensus.pdf

[DSD07]

[ECRYPT]

[EPID]

[Ethereum]

[FIDO]

[FK18]

[FM19]

[Freeman06]

[FSU10]

[HR83]

Devegili, A. J., Scott, M., and R. Dahab, "Implementing

Cryptographic Pairings over Barreto-Naehrig Curves", DOI

10.1007/978-3-540-73489-5_10, Pairing 2007 pp. 197-207,

2007, <https://doi.org/10.1007/978-3-540-73489-5_10>.

ECRYPT, "Final Report on Main Computational Assumptions

in Cryptography", .

Intel Corporation, "Intel (R) SGX: Intel (R) EPID

Provisioning and Attestation Services", , <https://

software.intel.com/en-us/download/intel-sgx-intel-epid-

provisioning-and-attestation-services>.

Jordan, R., "Ethereum 2.0 Development Update #17 -

Prysmatic Labs", , <https://medium.com/prysmatic-labs/

ethereum-2-0-development-update-17-prysmatic-labs-

ed5bcf82ec00>.

Lindemann, R., "FIDO ECDAA Algorithm - FIDO Alliance

Review Draft 02", , <https://fidoalliance.org/specs/fido-

v2.0-rd-20180702/fido-ecdaa-algorithm-v2.0-

rd-20180702.html>.

Fotiadis, G. and E. Konstantinou, "TNFS Resistant

Families of Pairing-Friendly Elliptic Curves", Cryptology

ePrint Archive Report 2018/1017, 2018, <https://

eprint.iacr.org/2018/1017.pdf>.

Fotiadis, G. and C. Martindale, "Optimal TNFS-secure

pairings on elliptic curves with composite embedding

degree", Cryptology ePrint Archive Report 2019/555, 2019,

<https://eprint.iacr.org/2019/555.pdf>.

Freeman, D., "Constructing pairing-friendly elliptic

curves with embedding degree 10", DOI

10.1007/11792086_32, ANTS 2006 pp. 452-465, 2006,

<https://doi.org/10.1007/11792086_32>.

Fujioka, A., Suzuki, K., and B. Ustaoglu, "Ephemeral Key

Leakage Resilient and Efficient ID-AKEs That Can Share

Identities, Private and Master Keys", DOI

10.1007/978-3-642-17455-1_12, Lecture Notes in Computer

Science pp. 187-205, 2010, <https://doi.org/

10.1007/978-3-642-17455-1_12>.

Hellman, M. and J. Reyneri, "Fast Computation of Discrete

Logarithms in GF (q)", DOI 10.1007/978-1-4757-0602-4_1,

Advances in Cryptology pp. 3-13, 1983, <https://doi.org/

10.1007/978-1-4757-0602-4_1>.

https://doi.org/10.1007/978-3-540-73489-5_10
https://software.intel.com/en-us/download/intel-sgx-intel-epid-provisioning-and-attestation-services
https://software.intel.com/en-us/download/intel-sgx-intel-epid-provisioning-and-attestation-services
https://software.intel.com/en-us/download/intel-sgx-intel-epid-provisioning-and-attestation-services
https://medium.com/prysmatic-labs/ethereum-2-0-development-update-17-prysmatic-labs-ed5bcf82ec00
https://medium.com/prysmatic-labs/ethereum-2-0-development-update-17-prysmatic-labs-ed5bcf82ec00
https://medium.com/prysmatic-labs/ethereum-2-0-development-update-17-prysmatic-labs-ed5bcf82ec00
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-ecdaa-algorithm-v2.0-rd-20180702.html
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-ecdaa-algorithm-v2.0-rd-20180702.html
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-ecdaa-algorithm-v2.0-rd-20180702.html
https://eprint.iacr.org/2018/1017.pdf
https://eprint.iacr.org/2018/1017.pdf
https://eprint.iacr.org/2019/555.pdf
https://doi.org/10.1007/11792086_32
https://doi.org/10.1007/978-3-642-17455-1_12
https://doi.org/10.1007/978-3-642-17455-1_12
https://doi.org/10.1007/978-1-4757-0602-4_1
https://doi.org/10.1007/978-1-4757-0602-4_1

[I-D.boneh-bls-signature]

[I-D.ietf-lwig-curve-representations]

[IEEE1363]

[Intel-IPP]

[ISOIEC11770-3]

[ISOIEC15946-5]

[Joux00]

[KSS08]

[libsnark]

[M-Pin]

Boneh, D., Gorbunov, S., Wee, H., and Z. Zhang, "BLS

Signature Scheme", Work in Progress, Internet-Draft,

draft-boneh-bls-signature-00, 8 February 2019, <https://

tools.ietf.org/html/draft-boneh-bls-signature-00>.

Struik, R., "Alternative Elliptic Curve Representations",

Work in Progress, Internet-Draft, draft-ietf-lwig-curve-

representations-08, 24 July 2019, <https://

tools.ietf.org/html/draft-ietf-lwig-curve-

representations-08>.

"IEEE Standard Specifications for Public-Key

Cryptography", IEEE standard, DOI 10.1109/IEEESTD.

2000.92292, 2000, <https://doi.org/10.1109/IEEESTD.

2000.92292>.

Intel Corporation, "Developer Reference for Intel

Integrated Performance Primitives Cryptography 2019",

2018, <https://software.intel.com/en-us/ipp-crypto-

reference-arithmetic-of-the-group-of-elliptic-curve-

points>.

ISO/IEC, "ISO/IEC 11770-3:2015", ISO/IEC Information

technology -- Security techniques -- Key management --

Part 3: Mechanisms using asymmetric techniques, 2015.

ISO/IEC, "ISO/IEC 15946-5:2017", ISO/IEC Information

technology -- Security techniques -- Cryptographic

techniques based on elliptic curves -- Part 5: Elliptic

curve generation, 2017.

Joux, A., "A One Round Protocol for Tripartite Diffie-

Hellman", DOI 10.1007/10722028_23, Lecture Notes in

Computer Science pp. 385-393, 2000, <https://doi.org/

10.1007/10722028_23>.

Kachisa, E., Schaefer, E., and M. Scott, "Constructing

Brezing-Weng Pairing-Friendly Elliptic Curves Using

Elements in the Cyclotomic Field", DOI

10.1007/978-3-540-85538-5_9, Pairing 2008 pp. 126-135,

2008, <https://doi.org/10.1007/978-3-540-85538-5_9>.

SCIPR Lab, "libsnark: a C++ library for zkSNARK proofs",

2012, <https://github.com/zcash/libsnark>.

Scott, M., "M-Pin: A Multi-Factor Zero Knowledge

Authentication Protocol", July 2019, <https://

https://tools.ietf.org/html/draft-boneh-bls-signature-00
https://tools.ietf.org/html/draft-boneh-bls-signature-00
https://tools.ietf.org/html/draft-ietf-lwig-curve-representations-08
https://tools.ietf.org/html/draft-ietf-lwig-curve-representations-08
https://tools.ietf.org/html/draft-ietf-lwig-curve-representations-08
https://doi.org/10.1109/IEEESTD.2000.92292
https://doi.org/10.1109/IEEESTD.2000.92292
https://software.intel.com/en-us/ipp-crypto-reference-arithmetic-of-the-group-of-elliptic-curve-points
https://software.intel.com/en-us/ipp-crypto-reference-arithmetic-of-the-group-of-elliptic-curve-points
https://software.intel.com/en-us/ipp-crypto-reference-arithmetic-of-the-group-of-elliptic-curve-points
https://doi.org/10.1007/10722028_23
https://doi.org/10.1007/10722028_23
https://doi.org/10.1007/978-3-540-85538-5_9
https://github.com/zcash/libsnark
https://www.miracl.com/miracl-labs/m-pin-a-multi-factor-zero-knowledge-authentication-protocol

[MAF19]

[mcl]

[MIRACL]

[MNT01]

[Montgomery]

[MP04]

[NASKM08]

[PBC]

[Pollard78]

[pureGo-bls]

www.miracl.com/miracl-labs/m-pin-a-multi-factor-zero-

knowledge-authentication-protocol>.

Mbiang, N.B., Aranha, D.F., and E. Fouotsa, "Computing

the Optimal Ate Pairing over Elliptic Curves with

Embedding Degrees 54 and 48 at the 256-bit security

level", International Journal of Applied Cryptography to

appear, 2019, <https://www.researchgate.net/publication/

337011283_Computing_the_Optimal_Ate_Pairing_over_Elliptic

_Curves_with_Embedding_Degrees_54_and_48_at_the_256-

bit_security_level>.

Mitsunari, S., "mcl - A portable and fast pairing-based

cryptography library", 2016, <https://github.com/herumi/

mcl>.

MIRACL Ltd., "The MIRACL Core Cryptographic Library",

2019, <https://github.com/miracl/core>.

Miyaji, A., Nakabayashi, M., and S. Takano, "New explicit

conditions of Elliptic Curve Traces under FR reduction",

IEICE Trans. Fundamentals. E84-A(5) pp. 1234-1243, 2001.

Montgomery, P., "Speeding the Pollard and Elliptic

Curve Methods of Factorization", MATHEMATICS OF

COMPUTATION , January, 1987, <https://www.ams.org/

journals/mcom/1987-48-177/S0025-5718-1987-0866113-7/

S0025-5718-1987-0866113-7.pdf>.

Guillevic, A., Masson, S., and E. Thome, "Cocks-Pinch

curves of embedding degrees five to eight and optimal ate

pairing computation", Cryptology ePrint Archive Report

2019/431, 2019, <https://eprint.iacr.org/2004/032.pdf>.

Nogami, Y., Akane, M., Sakemi, Y., Kato, H., and Y.

Morikawa, "Integer Variable X-Based Ate Pairing", DOI

10.1007/978-3-540-85538-5_13, Pairing 2008 pp. 178-191,

2008, <https://doi.org/10.1007/978-3-540-85538-5_13>.

Lynn, B., "PBC Library - The Pairing-Based Cryptography

Library", 2006, <https://crypto.stanford.edu/pbc/>.

Pollard, J., "Monte Carlo methods for index computation

$({\rm mod}\ p)$", DOI 10.1090/s0025-5718-1978-0491431-9,

Mathematics of Computation Vol. 32, pp. 918-918,

September 1978, <https://doi.org/10.1090/

s0025-5718-1978-0491431-9>.

Meyer, J., "Pure GO bls library", 2019, <https://

github.com/phoreproject/bls>.

https://www.miracl.com/miracl-labs/m-pin-a-multi-factor-zero-knowledge-authentication-protocol
https://www.miracl.com/miracl-labs/m-pin-a-multi-factor-zero-knowledge-authentication-protocol
https://www.researchgate.net/publication/337011283_Computing_the_Optimal_Ate_Pairing_over_Elliptic_Curves_with_Embedding_Degrees_54_and_48_at_the_256-bit_security_level
https://www.researchgate.net/publication/337011283_Computing_the_Optimal_Ate_Pairing_over_Elliptic_Curves_with_Embedding_Degrees_54_and_48_at_the_256-bit_security_level
https://www.researchgate.net/publication/337011283_Computing_the_Optimal_Ate_Pairing_over_Elliptic_Curves_with_Embedding_Degrees_54_and_48_at_the_256-bit_security_level
https://www.researchgate.net/publication/337011283_Computing_the_Optimal_Ate_Pairing_over_Elliptic_Curves_with_Embedding_Degrees_54_and_48_at_the_256-bit_security_level
https://github.com/herumi/mcl
https://github.com/herumi/mcl
https://github.com/miracl/core
https://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866113-7/S0025-5718-1987-0866113-7.pdf
https://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866113-7/S0025-5718-1987-0866113-7.pdf
https://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866113-7/S0025-5718-1987-0866113-7.pdf
https://eprint.iacr.org/2004/032.pdf
https://doi.org/10.1007/978-3-540-85538-5_13
https://crypto.stanford.edu/pbc/
https://doi.org/10.1090/s0025-5718-1978-0491431-9
https://doi.org/10.1090/s0025-5718-1978-0491431-9
https://github.com/phoreproject/bls
https://github.com/phoreproject/bls

[RELIC]

[RFC5091]

[RFC6508]

[RFC6509]

[RFC6539]

[RFC7748]

[RFC8017]

[S86]

[SAKKE]

[SG19]

Gouvea, C.P.L., "RELIC is an Efficient LIbrary for

Cryptography", 2013, <https://github.com/relic-toolkit/

relic>.

Boyen, X. and L. Martin, "Identity-Based Cryptography

Standard (IBCS) #1: Supersingular Curve Implementations

of the BF and BB1 Cryptosystems", RFC 5091, DOI 10.17487/

RFC5091, December 2007, <https://www.rfc-editor.org/info/

rfc5091>.

Groves, M., "Sakai-Kasahara Key Encryption (SAKKE)", RFC

6508, DOI 10.17487/RFC6508, February 2012, <https://

www.rfc-editor.org/info/rfc6508>.

Groves, M., "MIKEY-SAKKE: Sakai-Kasahara Key Encryption

in Multimedia Internet KEYing (MIKEY)", RFC 6509, DOI

10.17487/RFC6509, February 2012, <https://www.rfc-

editor.org/info/rfc6509>.

Cakulev, V., Sundaram, G., and I. Broustis, "IBAKE:

Identity-Based Authenticated Key Exchange", RFC 6539, DOI

10.17487/RFC6539, March 2012, <https://www.rfc-

editor.org/info/rfc6539>.

Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves

for Security", RFC 7748, DOI 10.17487/RFC7748, January

2016, <https://www.rfc-editor.org/info/rfc7748>.

Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A.

Rusch, "PKCS #1: RSA Cryptography Specifications Version

2.2", RFC 8017, DOI 10.17487/RFC8017, November 2016,

<https://www.rfc-editor.org/info/rfc8017>.

Silverman, J. H., "The arithmetic of elliptic curves",

Springer GTM 106, 1986.

3GPP, "Security of the mission critical service (Release

15)", 3GPP TS 33.180 15.3.0, 2018.

Scott, M. and A. Guillevic, "A New Family of Pairing-

Friendly elliptic curves", Cryptology ePrint Archive

https://github.com/relic-toolkit/relic
https://github.com/relic-toolkit/relic
https://www.rfc-editor.org/info/rfc5091
https://www.rfc-editor.org/info/rfc5091
https://www.rfc-editor.org/info/rfc6508
https://www.rfc-editor.org/info/rfc6508
https://www.rfc-editor.org/info/rfc6509
https://www.rfc-editor.org/info/rfc6509
https://www.rfc-editor.org/info/rfc6539
https://www.rfc-editor.org/info/rfc6539
https://www.rfc-editor.org/info/rfc7748
https://www.rfc-editor.org/info/rfc8017

[TEPLA]

[TPM]

[W3C]

[Zcash]

[ZCashRep]

[zkcrypto]

Report 2019/193, 2019, <https://eprint.iacr.org/

2018/193.pdf>.

University of Tsukuba, "TEPLA: University of Tsukuba

Elliptic Curve and Pairing Library", 2013, <http://

www.cipher.risk.tsukuba.ac.jp/tepla/index_e.html>.

Trusted Computing Group (TCG), "Trusted Platform Module

Library Specification, Family \"2.0\", Level 00, Revision

01.38", , <https://trustedcomputinggroup.org/resource/

tpm-library-specification/>.

Lundberg, E., "Web Authentication: An API for accessing

Public Key Credentials Level 1 - W3C Recommendation", ,

<https://www.w3.org/TR/webauthn/>.

Lindemann, R., "What are zk-SNARKs?", , <https://z.cash/

technology/zksnarks.html>.

Electric Coin Company, "BLS12-381", July 2017, <https://

github.com/zkcrypto/pairing/blob/master/src/bls12_381/

README.md>.

zkcrypto, "zkcrypto - Pairing-friendly elliptic curve

library", 2017, <https://github.com/zkcrypto/pairing>.

Appendix A. Computing the Optimal Ate Pairing

Before presenting the computation of the optimal Ate pairing e(P, Q)

satisfying the properties shown in Section 2.2, we give the

subfunctions used for the pairing computation.

The following algorithm, Line_Function shows the computation of the

line function. It takes A = (A[1], A[2]), B = (B[1], B[2]) in G_2,

and P = ((P[1], P[2])) in G_1 as input, and outputs an element of

G_T.

When implementing the line function, implementers should consider

the isomorphism of E and its twist curve E' so that one can reduce

the computational cost of operations in G_2. We note that

Line_function does not consider such an isomorphism.

¶

¶

 if (A = B) then

 l := (3 * A[1]^2) / (2 * A[2]);

 else if (A = -B) then

 return P[1] - A[1];

 else

 l := (B[2] - A[2]) / (B[1] - A[1]);

 end if;

 return (l * (P[1] -A[1]) + A[2] -P[2]);

¶

¶

https://eprint.iacr.org/2018/193.pdf
https://eprint.iacr.org/2018/193.pdf
http://www.cipher.risk.tsukuba.ac.jp/tepla/index_e.html
http://www.cipher.risk.tsukuba.ac.jp/tepla/index_e.html
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://www.w3.org/TR/webauthn/
https://z.cash/technology/zksnarks.html
https://z.cash/technology/zksnarks.html
https://github.com/zkcrypto/pairing/blob/master/src/bls12_381/README.md
https://github.com/zkcrypto/pairing/blob/master/src/bls12_381/README.md
https://github.com/zkcrypto/pairing/blob/master/src/bls12_381/README.md
https://github.com/zkcrypto/pairing

The computation of the optimal Ate pairing for BN curves uses the

Frobenius map. The p-power Frobenius map pi for a point Q = (x, y)

over E' is pi(p, Q) = (x^p, y^p).

A.1. Optimal Ate Pairings over Barreto-Naehrig Curves

Let c = 6 * t + 2 for a parameter t and c_0, c_1, ... , c_L in

{-1,0,1} such that the sum of c_i * 2^i (i = 0, 1, ..., L) equals c.

The following algorithm shows the computation of the optimal Ate

pairing on BN curves. It takes P in G_1, Q in G_2, an integer c,

c_0, ...,c_L in {-1,0,1} such that the sum of c_i * 2^i (i = 0, 1,

..., L) equals c, and the order r of G_1 as input, and outputs e(P,

Q).

A.2. Optimal Ate Pairings over Barreto-Lynn-Scott Curves

Let c = t for a parameter t and c_0, c_1, ... , c_L in {-1,0,1} such

that the sum of c_i * 2^i (i = 0, 1, ..., L) equals c. The following

algorithm shows the computation of optimal Ate pairing over Barreto-

Lynn-Scott curves. It takes P in G_1, Q in G_2, a parameter c, c_0,

c_1, ..., c_L in {-1,0,1} such that the sum of c_i * 2^i (i = 0, 1,

..., L), and an order r as input, and outputs e(P, Q).

¶

¶

¶

 f := 1; T := Q;

 if (c_L = -1)

 T := -T;

 end if

 for i = L-1 to 0

 f := f^2 * Line_function(T, T, P); T := 2 * T;

 if (c_i = 1 | c_i = -1)

 f := f * Line_function(T, c_i * Q); T := T + c_i * Q;

 end if

 end for

 Q_1 := pi(p, Q); Q_2 := pi(p, Q_1);

 f := f * Line_function(T, Q_1, P); T := T + Q_1;

 f := f * Line_function(T, -Q_2, P);

 f := f^{(p^k - 1) / r}

 return f;

¶

¶

Appendix B. Test Vectors of Optimal Ate Pairing

We provide test vectors for Optimal Ate Pairing e(P, Q) given in

Appendix A for the curves BLS12-381, BN462 and BLS48-581 given in

Section 4. Here, the inputs P = (x, y) and Q = (x', y') are the

corresponding base points BP and BP' given in Section 4.

For BLS12-381 and BN462, Q = (x', y') is given by

where u is a indeterminate and x'_0, x'_1, y'_0, y'_1 are elements

of F_p.

For BLS48-581, Q = (x', y') is given by

where u, v and w are indeterminates and x'_0, ..., x'_7 and y'_0,

..., y'_7 are elements of F_p. The representation of Q = (x', y')

given below is followed by [I-D.ietf-lwig-curve-representations].

BLS12-381:

 f := 1; T := Q;

 if (c_L = -1)

 T := -T;

 end if

 for i = L-1 to 0

 f := f^2 * Line_function(T, T, P); T := 2 * T;

 if (c_i = 1 | c_i = -1)

 f := f * Line_function(T, c_i * Q, P); T := T + c_i * Q;

 end if

 end for

 f := f^{(p^k - 1) / r};

 return f;

¶

¶

¶

 x' = x'_0 + x'_1 * u and

 y' = y'_0 + y'_1 * u,

¶

¶

¶

 x' = x'_0 + x'_1 * u + x'_2 * v + x'_3 * u * v

 + x'_4 * w + x'_5 * u * w + x'_6 * v * w + x'_7 * u * v * w and

 y' = y'_0 + y'_1 * u + y'_2 * v + y'_3 * u * v

 + y'_4 * w + y'_5 * u * w + y'_6 * v * w + y'_7 * u * v * w,

¶

¶

¶

Input x value:

Input y value:

Input x'_0 value:

Input x'_1 value:

Input y'_0 value:

Input y'_1 value:

e_0:

e_1:

e_2:

e_3:

e_4:

e_5:

e_6:

0x17f1d3a73197d7942695638c4fa9ac0fc3688c4f9774b905a14e3a3f171bac586c55e83ff97a1aeffb3af00adb22c6bb

0x08b3f481e3aaa0f1a09e30ed741d8ae4fcf5e095d5d00af600db18cb2c04b3edd03cc744a2888ae40caa232946c5e7e1

0x024aa2b2f08f0a91260805272dc51051c6e47ad4fa403b02b4510b647ae3d1770bac0326a805bbefd48056c8c121bdb8

0x13e02b6052719f607dacd3a088274f65596bd0d09920b61ab5da61bbdc7f5049334cf11213945d57e5ac7d055d042b7e

0x0ce5d527727d6e118cc9cdc6da2e351aadfd9baa8cbdd3a76d429a695160d12c923ac9cc3baca289e193548608b82801

0x0606c4a02ea734cc32acd2b02bc28b99cb3e287e85a763af267492ab572e99ab3f370d275cec1da1aaa9075ff05f79be

0x11619b45f61edfe3b47a15fac19442526ff489dcda25e59121d9931438907dfd448299a87dde3a649bdba96e84d54558

0x153ce14a76a53e205ba8f275ef1137c56a566f638b52d34ba3bf3bf22f277d70f76316218c0dfd583a394b8448d2be7f

0x095668fb4a02fe930ed44767834c915b283b1c6ca98c047bd4c272e9ac3f3ba6ff0b05a93e59c71fba77bce995f04692

0x16deedaa683124fe7260085184d88f7d036b86f53bb5b7f1fc5e248814782065413e7d958d17960109ea006b2afdeb5f

0x09c92cf02f3cd3d2f9d34bc44eee0dd50314ed44ca5d30ce6a9ec0539be7a86b121edc61839ccc908c4bdde256cd6048

0x111061f398efc2a97ff825b04d21089e24fd8b93a47e41e60eae7e9b2a38d54fa4dedced0811c34ce528781ab9e929c7

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

e_7:

e_8:

e_9:

e_10:

e_11:

0x01ecfcf31c86257ab00b4709c33f1c9c4e007659dd5ffc4a735192167ce197058cfb4c94225e7f1b6c26ad9ba68f63bc

0x08890726743a1f94a8193a166800b7787744a8ad8e2f9365db76863e894b7a11d83f90d873567e9d645ccf725b32d26f

0x0e61c752414ca5dfd258e9606bac08daec29b3e2c57062669556954fb227d3f1260eedf25446a086b0844bcd43646c10

0x0fe63f185f56dd29150fc498bbeea78969e7e783043620db33f75a05a0a2ce5c442beaff9da195ff15164c00ab66bdde

0x10900338a92ed0b47af211636f7cfdec717b7ee43900eee9b5fc24f0000c5874d4801372db478987691c566a8c474978

0x1454814f3085f0e6602247671bc408bbce2007201536818c901dbd4d2095dd86c1ec8b888e59611f60a301af7776be3d

BN462:

¶

¶

¶

¶

¶

¶

¶

Input x value:

Input y value:

Input x'_0 value:

Input x'_1 value:

Input y'_0 value:

Input y'_1 value:

e_0:

e_1:

e_2:

e_3:

e_4:

e_5:

e_6:

0x21a6d67ef250191fadba34a0a30160b9ac9264b6f95f63b3edbec3cf4b2e689db1bbb4e69a416a0b1e79239c0372e5cd70113c98d91f36b6980d

0x0118ea0460f7f7abb82b33676a7432a490eeda842cccfa7d788c659650426e6af77df11b8ae40eb80f475432c66600622ecaa8a5734d36fb03de

0x0257ccc85b58dda0dfb38e3a8cbdc5482e0337e7c1cd96ed61c913820408208f9ad2699bad92e0032ae1f0aa6a8b48807695468e3d934ae1e4df

0x1d2e4343e8599102af8edca849566ba3c98e2a354730cbed9176884058b18134dd86bae555b783718f50af8b59bf7e850e9b73108ba6aa8cd283

0x0a0650439da22c1979517427a20809eca035634706e23c3fa7a6bb42fe810f1399a1f41c9ddae32e03695a140e7b11d7c3376e5b68df0db7154e

0x073ef0cbd438cbe0172c8ae37306324d44d5e6b0c69ac57b393f1ab370fd725cc647692444a04ef87387aa68d53743493b9eba14cc552ca2a93a

0x0cf7f0f2e01610804272f4a7a24014ac085543d787c8f8bf07059f93f87ba7e2a4ac77835d4ff10e78669be39cd23cc3a659c093dbe3b9647e8c

0x00ef2c737515694ee5b85051e39970f24e27ca278847c7cfa709b0df408b830b3763b1b001f1194445b62d6c093fb6f77e43e369edefb1200389

0x04d685b29fd2b8faedacd36873f24a06158742bb2328740f93827934592d6f1723e0772bb9ccd3025f88dc457fc4f77dfef76104ff43cd430bf7

0x090067ef2892de0c48ee49cbe4ff1f835286c700c8d191574cb424019de11142b3c722cc5083a71912411c4a1f61c00d1e8f14f545348eb7462c

0x1437603b60dce235a090c43f5147d9c03bd63081c8bb1ffa7d8a2c31d673230860bb3dfe4ca85581f7459204ef755f63cba1fbd6a4436f10ba0e

0x13191b1110d13650bf8e76b356fe776eb9d7a03fe33f82e3fe5732071f305d201843238cc96fd0e892bc61701e1844faa8e33446f87c6e29e75f

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

e_7:

e_8:

e_9:

e_10:

e_11:

0x07b1ce375c0191c786bb184cc9c08a6ae5a569dd7586f75d6d2de2b2f075787ee5082d44ca4b8009b3285ecae5fa521e23be76e6a08f17fa5cc8

0x05b64add5e49574b124a02d85f508c8d2d37993ae4c370a9cda89a100cdb5e1d441b57768dbc68429ffae243c0c57fe5ab0a3ee4c6f2d9d34714

0x0fd9a3271854a2b4542b42c55916e1faf7a8b87a7d10907179ac7073f6a1de044906ffaf4760d11c8f92df3e50251e39ce92c700a12e77d0adf3

0x17fa0c7fa60c9a6d4d8bb9897991efd087899edc776f33743db921a689720c82257ee3c788e8160c112f18e841a3dd9a79a6f8782f771d542ee5

0x0c901397a62bb185a8f9cf336e28cfb0f354e2313f99c538cdceedf8b8aa22c23b896201170fc915690f79f6ba75581f1b76055cd89b7182041c

0x20f27fde93cee94ca4bf9ded1b1378c1b0d80439eeb1d0c8daef30db0037104a5e32a2ccc94fa1860a95e39a93ba51187b45f4c2c50c16482322

BLS48-581:

¶

¶

¶

¶

¶

¶

¶

Input x value:

Input y value:

x'_0:

x'_1:

x'_2:

x'_3:

x'_4:

x'_5:

x'_6:

x'_7:

y'_0:

y'_1:

y'_2:

0x02af59b7ac340f2baf2b73df1e93f860de3f257e0e86868cf61abdbaedffb9f7544550546a9df6f9645847665d859236ebdbc57db368b11786cb74da5d3a1e6d8c3bce8732315af640

0x0cefda44f6531f91f86b3a2d1fb398a488a553c9efeb8a52e991279dd41b720ef7bb7beffb98aee53e80f678584c3ef22f487f77c2876d1b2e35f37aef7b926b576dbb5de3e2587a70

0x05d615d9a7871e4a38237fa45a2775debabbefc70344dbccb7de64db3a2ef156c46ff79baad1a8c42281a63ca0612f400503004d80491f510317b79766322154dec34fd0b4ace8bfab

0x07c4973ece2258512069b0e86abc07e8b22bb6d980e1623e9526f6da12307f4e1c3943a00abfedf16214a76affa62504f0c3c7630d979630ffd75556a01afa143f1669b36676b47c57

0x01fccc70198f1334e1b2ea1853ad83bc73a8a6ca9ae237ca7a6d6957ccbab5ab6860161c1dbd19242ffae766f0d2a6d55f028cbdfbb879d5fea8ef4cded6b3f0b46488156ca55a3e6a

0x0be2218c25ceb6185c78d8012954d4bfe8f5985ac62f3e5821b7b92a393f8be0cc218a95f63e1c776e6ec143b1b279b9468c31c5257c200ca52310b8cb4e80bc3f09a7033cbb7feafe

0x038b91c600b35913a3c598e4caa9dd63007c675d0b1642b5675ff0e7c5805386699981f9e48199d5ac10b2ef492ae589274fad55fc1889aa80c65b5f746c9d4cbb739c3a1c53f8cce5

0x0c96c7797eb0738603f1311e4ecda088f7b8f35dcef0977a3d1a58677bb037418181df63835d28997eb57b40b9c0b15dd7595a9f177612f097fc7960910fce3370f2004d914a3c093a

0x0b9b7951c6061ee3f0197a498908aee660dea41b39d13852b6db908ba2c0b7a449cef11f293b13ced0fd0caa5efcf3432aad1cbe4324c22d63334b5b0e205c3354e41607e60750e057

0x0827d5c22fb2bdec5282624c4f4aaa2b1e5d7a9defaf47b5211cf741719728a7f9f8cfca93f29cff364a7190b7e2b0d4585479bd6aebf9fc44e56af2fc9e97c3f84e19da00fbc6ae34

0x00eb53356c375b5dfa497216452f3024b918b4238059a577e6f3b39ebfc435faab0906235afa27748d90f7336d8ae5163c1599abf77eea6d659045012ab12c0ff323edd3fe4d2d7971

0x0284dc75979e0ff144da6531815fcadc2b75a422ba325e6fba01d72964732fcbf3afb096b243b1f192c5c3d1892ab24e1dd212fa097d760e2e588b423525ffc7b111471db936cd5665

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

y'_3:

y'_4:

y'_5:

y'_6:

y'_7:

e_0:

e_1:

e_2:

e_3:

e_4:

e_5:

e_6:

0x0b36a201dd008523e421efb70367669ef2c2fc5030216d5b119d3a480d370514475f7d5c99d0e90411515536ca3295e5e2f0c1d35d51a652269cbc7c46fc3b8fde68332a526a2a8474

0x0aec25a4621edc0688223fbbd478762b1c2cded3360dcee23dd8b0e710e122d2742c89b224333fa40dced2817742770ba10d67bda503ee5e578fb3d8b8a1e5337316213da92841589d

0x0d209d5a223a9c46916503fa5a88325a2554dc541b43dd93b5a959805f1129857ed85c77fa238cdce8a1e2ca4e512b64f59f430135945d137b08857fdddfcf7a43f47831f982e50137

0x07d0d03745736b7a513d339d5ad537b90421ad66eb16722b589d82e2055ab7504fa83420e8c270841f6824f47c180d139e3aafc198caa72b679da59ed8226cf3a594eedc58cf90bee4

0x0896767811be65ea25c2d05dfdd17af8a006f364fc0841b064155f14e4c819a6df98f425ae3a2864f22c1fab8c74b2618b5bb40fa639f53dccc9e884017d9aa62b3d41faeafeb23986

0x035e2524ff89029d393a5c07e84f981b5e068f1406be8e50c87549b6ef8eca9a9533a3f8e69c31e97e1ad0333ec719205417300d8c4ab33f748e5ac66e84069c55d667ffcb732718b6

0x0e26c3fcb8ef67417814098de5111ffcccc1d003d15b367bad07cef2291a93d31db03e3f03376f3beae2bd877bcfc22a25dc51016eda1ab56ee3033bc4b4fec5962f02dffb3af5e38e

0x069061b8047279aa5c2d25cdf676ddf34eddbc8ec2ec0f03614886fa828e1fc066b26d35744c0c38271843aa4fb617b57fa9eb4bd256d17367914159fc18b10a1085cb626e5bedb145

0x02b9bece645fbf9d8f97025a1545359f6fe3ffab3cd57094f862f7fb9ca01c88705c26675bcc723878e943da6b56ce25d063381fcd2a292e0e7501fe572744184fb4ab4ca071a04281

0x0080d267bf036c1e61d7fc73905e8c630b97aa05ef3266c82e7a111072c0d2056baa8137fba111c9650dfb18cb1f43363041e202e3192fced29d2b0501c882543fb370a56bfdc2435b

0x03c6b4c12f338f9401e6a493a405b33e64389338db8c5e592a8dd79eac7720dd83dd6b0c189eeda20809160cd57cdf3e2edc82db15f553c1f6c953ea27114cb6bd8a38e273f407dae0

0x016e46224f28bfd8833f76ac29ee6e406a9da1bde55f5e82b3bd977897a9104f18b9ee41ea9af7d4183d895102950a12ce9975669db07924e1b432d9680f5ce7e5c67ed68f381eba45

0x008ddce7a4a1b94be5df3ceea56bef0077dcdde86d579938a50933a47296d337b7629934128e2457e24142b0eeaa978fd8e70986d7dd51fccbbeb8a1933434fec4f5bc538de2646e90

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

e_7:

e_8:

e_9:

e_10:

e_11:

e_12:

e_13:

e_14:

e_15:

e_16:

e_17:

e_18:

e_19:

0x060ef6eae55728e40bd4628265218b24b38cdd434968c14bfefb87f0dcbfc76cc473ae2dc0cac6e69dfdf90951175178dc75b9cc08320fcde187aa58ea047a2ee00b1968650eec2791

0x0c3943636876fd4f9393414099a746f84b2633dfb7c36ba6512a0b48e66dcb2e409f1b9e150e36b0b4311165810a3c721525f0d43a021f090e6a27577b42c7a57bed3327edb98ba8f8

0x02d31eb8be0d923cac2a8eb6a07556c8951d849ec53c2848ee78c5eed40262eb21822527a8555b071f1cd080e049e5e7ebfe2541d5b42c1e414341694d6f16d287e4a8d28359c2d2f9

0x07f19673c5580d6a10d09a032397c5d425c3a99ff1dd0abe5bec40a0d47a6b8daabb22edb6b06dd8691950b8f23faefcdd80c45aa3817a840018965941f4247f9f97233a84f58b262e

0x0d3fe01f0c114915c3bdf8089377780076c1685302279fd9ab12d07477aac03b69291652e9f179baa0a99c38aa8851c1d25ffdb4ded2c8fe8b30338c14428607d6d822610d41f51372

0x0662eefd5fab9509aed968866b68cff3bc5d48ecc8ac6867c212a2d82cee5a689a3c9c67f1d611adac7268dc8b06471c0598f7016ca3d1c01649dda4b43531cffc4eb41e691e27f2eb

0x0aad8f4a8cfdca8de0985070304fe4f4d32f99b01d4ea50d9f7cd2abdc0aeea99311a36ec6ed18208642cef9e09b96795b27c42a5a744a7b01a617a91d9fb7623d636640d61a6596ec

0x0ffcf21d641fd9c6a641a749d80cab1bcad4b34ee97567d905ed9d5cfb74e9aef19674e2eb6ce3dfb706aa814d4a228db4fcd707e571259435393a27cac68b59a1b690ae8cde7a94c3

0x0cbe92a53151790cece4a86f91e9b31644a86fc4c954e5fa04e707beb69fc60a858fed8ebd53e4cfd51546d5c0732331071c358d721ee601bfd3847e0e904101c62822dd2e4c7f8e5c

0x0202db83b1ff33016679b6cfc8931deea6df1485c894dcd113bacf564411519a42026b5fda4e16262674dcb3f089cd7d552f8089a1fec93e3db6bca43788cdb06fc41baaa5c5098667

0x070a617ed131b857f5b74b625c4ef70cc567f619defb5f2ab67534a1a8aa72975fc4248ac8551ce02b68801703971a2cf1cb934c9c354cadd5cfc4575cde8dbde6122bd54826a9b3e9

0x070e1ebce457c141417f88423127b7a7321424f64119d5089d883cb953283ee4e1f2e01ffa7b903fe7a94af4bb1acb02ca6a36678e41506879069cee11c9dcf6a080b6a4a7c7f21dc9

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

e_20:

e_21:

e_22:

e_23:

e_24:

e_25:

e_26:

e_27:

e_28:

e_29:

e_30:

e_31:

0x058a06be5a36c6148d8a1287ee7f0e725453fa1bb05cf77239f235b417127e370cfa4f88e61a23ea16df3c45d29c203d04d09782b39e9b4037c0c4ac8e8653e7c533ad752a640b233e

0x0dfdfaaeb9349cf18d21b92ad68f8a7ecc509c35fcd4b8abeb93be7a204ac871f2195180206a2c340fccb69dbc30b9410ed0b122308a8fc75141f673ae5ec82b6a45fc2d664409c6b6

0x0d06c8adfdd81275da2a0ce375b8df9199f3d359e8cf50064a3dc10a592417124a3b705b05a7ffe78e20f935a08868ecf3fc5aba0ace7ce4497bb59085ca277c16b3d53dd7dae5c857

0x0708effd28c4ae21b6969cb9bdd0c27f8a3e341798b6f6d4baf27be259b4a47688b50cb68a69a917a4a1faf56cec93f69ac416512c32e9d5e69bd8836b6c2ba9c6889d507ad571dbc4

0x09da7c7aa48ce571f8ece74b98431b14ae6fb4a53ae979cd6b2e82320e8d25a0ece1ca1563aa5aa6926e7d608358af8399534f6b00788e95e37ef1b549f43a58ad250a71f0b2fdb2bf

0x0a7150a14471994833d89f41daeaa999dfc24a9968d4e33d88ed9e9f07aa2432c53e486ba6e3b6e4f4b8d9c989010a375935c06e4b8d6c31239fad6a61e2647b84a0e3f76e57005ff7

0x084696f31ff27889d4dccdc4967964a5387a5ae071ad391c5723c9034f16c2557915ada07ec68f18672b5b2107f785c15ddf9697046dc633b5a23cc0e442d28ef6eea9915d0638d4d8

0x0398e76e3d2202f999ac0f73e0099fe4e0fe2de9d223e78fc65c56e209cdf48f0d1ad8f6093e924ce5f0c93437c11212b7841de26f9067065b1898f48006bcc6f2ab8fa8e0b93f4ba4

0x06d683f556022368e7a633dc6fe319fd1d4fc0e07acff7c4d4177e83a911e73313e0ed980cd9197bd17ac45942a65d90e6cb9209ede7f36c10e009c9d337ee97c4068db40e34d0e361

0x0d764075344b70818f91b13ee445fd8c1587d1c0664002180bbac9a396ad4a8dc1e695b0c4267df4a09081c1e5c256c53fd49a73ffc817e65217a44fc0b20ef5ee92b28d4bc3e38576

0x0aa6a32fdc4423b1c6d43e5104159bcd8e03a676d055d4496f7b1bc8761164a2908a3ff0e4c4d1f4362015c14824927011e2909531b8d87ee0acd676e7221a1ca1c21a33e2cf87dc51

0x1147719959ac8eeab3fc913539784f1f947df47066b6c0c1beafecdb5fa784c3be9de5ab282a678a2a0cbef8714141a6c8aaa76500819a896b46af20509953495e2a85eff58348b38d

0x11a377bcebd3c12702bb34044f06f8870ca712fb5caa6d30c48ace96898fcbcddbcf31f331c9e524684c02c90db7f30b9fc470d6e651a7e8b1f684383f3705d7a47a1b4fe463d623c8

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

e_32:

e_33:

e_34:

e_35:

e_36:

e_37:

e_38:

e_39:

e_40:

e_41:

e_42:

e_43:

e_44:

0x0b8b4511f451ba2cc58dc28e56d5e1d0a8f557ecb242f4d994a627e07cf3fa44e6d83cb907deacf303d2f761810b5d943b46c4383e1435ec23fec196a70e33946173c78be3c75dfc83

0x090962d632ee2a57ce4208052ce47a9f76ea0fdad724b7256bb07f3944e9639a981d3431087241e30ae9bf5e2ea32af323ce7ed195d383b749cb25bc09f678d385a49a0c09f6d9efca

0x0931c7befc80acd185491c68af886fa8ee39c21ed3ebd743b9168ae3b298df485bfdc75b94f0b21aecd8dca941dfc6d1566cc70dc648e6ccc73e4cbf2a1ac83c8294d447c66e74784d

0x020ac007bf6c76ec827d53647058aca48896916269c6a2016b8c06f0130901c8975779f1672e581e2dfdbcf504e96ecf6801d0d39aad35cf79fbe7fe193c6c882c15bce593223f0c7c

0x0c0aed0d890c3b0b673bf4981398dcbf0d15d36af6347a39599f3a22584184828f78f91bbbbd08124a97672963ec313ff142c456ec1a2fc3909fd4429fd699d827d48777d3b0e0e699

0x0ef7799241a1ba6baaa8740d5667a1ace50fb8e63accc3bc30dc07b11d78dc545b68910c027489a0d842d1ba3ac406197881361a18b9fe337ff22d730fa44afabb9f801f759086c8e4

0x016663c940d062f4057257c8f4fb9b35e82541717a34582dd7d55b41ebadf40d486ed74570043b2a3c4de29859fdeae9b6b456cb33bb401ecf38f9685646692300517e9b035d6665fc

0x1184a79510edf25e3bd2dc793a5082fa0fed0d559fa14a5ce9ffca4c61f17196e1ffbb84326272e0d079368e9a735be1d05ec80c20dc6198b50a22a765defdc151d437335f1309aced

0x120e47a747d942a593d202707c936dafa6fed489967dd94e48f317fd3c881b1041e3b6bbf9e8031d44e39c1ab5ae41e487eac9acd90e869129c38a8e6c97cf55d6666d22299951f91a

0x026b6e374108ecb2fe8d557087f40ab7bac8c5af0644a655271765d57ad71742aa331326d871610a8c4c30ccf5d8adbeec23cdff20d9502a5005fce2593caf0682c82e4873b89d6d71

0x041be63a2fa643e5a66faeb099a3440105c18dca58d51f74b3bf281da4e689b13f365273a2ed397e7b1c26bdd4daade710c30350318b0ae9a9b16882c29fe31ca3b884c92916d6d07a

0x124018a12f0f0af881e6765e9e81071acc56ebcddadcd107750bd8697440cc16f190a3595633bb8900e6829823866c5769f03a306f979a3e039e620d6d2f576793d36d840b168eeedd

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

e_45:

e_46:

e_47:

0x0d422de4a83449c535b4b9ece586754c941548f15d50ada6740865be9c0b066788b6078727c7dee299acc15cbdcc7d51cdc5b17757c07d9a9146b01d2fdc7b8c562002da0f9084bde5

0x1119f6c5468bce2ec2b450858dc073fea4fb05b6e83dd20c55c9cf694cbcc57fc0effb1d33b9b5587852d0961c40ff114b7493361e4cfdff16e85fbce667869b6f7e9eb804bcec46db

0x061eaa8e9b0085364a61ea4f69c3516b6bf9f79f8c79d053e646ea637215cf6590203b275290872e3d7b258102dd0c0a4a310af3958165f2078ff9dc3ac9e995ce5413268d80974784

0x0add8d58e9ec0c9393eb8c4bc0b08174a6b421e15040ef558da58d241e5f906ad6ca2aa5de361421708a6b8ff6736efbac6b4688bf752259b4650595aa395c40d00f4417f180779985

Appendix C. ZCash serialization format for BLS12-381

This section describes the serialization format defined by

[ZCashRep]. This format applies to points on the BLS12-381 elliptic

curves E and E', whose parameters are given in Section 4.2.1.

At a high level, the serialization format is defined as follows:

Serialized points include three metadata bits that indicate

whether a point is compressed or not, whether a point is the

point at infinity or not, and (for compressed points) the sign of

the point's y-coordinate.

Points on E are serialized into 48 bytes (compressed) or 96 bytes

(uncompressed). Points on E' are serialized into 96 bytes

(compressed) or 192 bytes (uncompressed).

The serialization of a point at infinity comprises a string of

zero bytes, except that the metadata bits may be nonzero.

The serialization of a compressed point other than the point at

infinity comprises a serialized x-coordinate.

The serialization of an uncompressed point other than the point

at infinity comprises a serialized x-coordinate followed by a

serialized y-coordinate.

Below, we give detailed serialization and de-serialization

procedures. The following notation is used in the rest of this

section:

Elements of F_p^2 are represented as polynomial with F_p

coefficients like Section 2.5.

¶

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

*

¶

For a byte string str, str[0] is defined as the first byte of

str.

The function sign_F_p(y) returns one bit representing the sign of

an element of F_p. This function is defined as follows:

The function sign_F_p^2(y') returns one bit representing the sign

of an element in F_p^2. This function is defined as follows:

C.1. Point Serialization Procedure

The serialization procedure is defined as follows for a point P =

(x, y). This procedure uses the I2OSP function defined in [RFC8017].

Compute the metadata bits C_bit, I_bit, and S_bit, as follows:

C_bit is 1 if point compression should be used, otherwise it

is 0.

I_bit is 1 if P is the point at infinity, otherwise it is 0.

S_bit is 0 if P is the point at infinity or if point

compression is not used. Otherwise (i.e., when point

compression is used and P is not the point at infinity), if

P is a point on E, S_bit = sign_F_p(y), else if P is a point

on E', S_bit = sign_F_p^2(y).

Let m_byte = (C_bit * 2^7) + (I_bit * 2^6) + (S_bit * 2^5).

Let x_string be the serialization of x, which is defined as

follows:

If P is the point at infinity on E, let x_string = I2OSP(0,

48).

If P is a point on E other than the point at infinity, then

x is an element of F_p, i.e., an integer in the inclusive

range [0, p - 1]. In this case, let x_string = I2OSP(x, 48).

If P is the point at infinity on E', let x_string = I2OSP(0,

96).

*

¶

*

¶

 sign_F_p(y) := { 1 if y > (p - 1) / 2, else

 { 0 otherwise.

¶

*

¶

 sign_F_p^2(y') := { sign_F_p(y'_0) if y'_1 equals 0, else

 { 1 if y'_1 > (p - 1) / 2, else

 { 0 otherwise.

¶

¶

1. ¶

*

¶

* ¶

*

¶

2. ¶

3.

¶

*

¶

*

¶

*

¶

If P is a point on E' other than the point at infinity, then

x can be represented as (x_0, x_1) where x_0 and x_1 are

elements of F_p, i.e., integers in the inclusive range [0, p

- 1] (see discussion of vector representations above). In

this case, let x_string = I2OSP(x_1, 48) || I2OSP(x_0, 48).

Notice that in all of the above cases, the 3 most significant

bits of x_string[0] are guaranteed to be 0.

If point compression is used, let y_string be the empty string.

Otherwise (i.e., when point compression is not used), let

y_string be the serialization of y, which is defined in Step 3.

Let s_string = x_string || y_string.

Set s_string[0] = x_string[0] OR m_byte, where OR is computed

bitwise. After this operation, the most significant bit of

s_string[0] equals C_bit, the next bit equals I_bit, and the

next equals S_bit. (This is true because the three most

significant bits of x_string[0] are guaranteed to be zero, as

discussed above.)

Output s_string.

C.2. Point deserialization procedure

The deserialization procedure is defined as follows for a string

s_string. This procedure uses the OS2IP function defined in

[RFC8017].

Let m_byte = s_string[0] AND 0xE0, where AND is computed

bitwise. In other words, the three most significant bits of

m_byte equal the three most significant bits of s_string[0],

and the remaining bits are 0.

If m_byte equals any of 0x20, 0x60, or 0xE0, output INVALID and

stop decoding.

Otherwise:

Let C_bit equal the most significant bit of m_byte,

Let I_bit equal the second most significant bit of m_byte,

and

Let S_bit equal the third most significant bit of m_byte.

*

¶

¶

4.

¶

5. ¶

6.

¶

7. ¶

¶

1.

¶

¶

¶

* ¶

*

¶

* ¶

If C_bit is 1:

If s_string has length 48 bytes, the output point is on the

curve E.

If s_string has length 96 bytes, the output point is on the

curve E'.

If s_string has any other length, output INVALID and stop

decoding.

If C_bit is 0:

If s_string has length 96 bytes, the output point is on E.

If s_string has length 192 bytes, the output point is on E'.

If s_string has any other length, output INVALID and stop

decoding.

Let s_string[0] = s_string[0] AND 0x1F, where AND is computed

bitwise. In other words, set the three most significant bits of

s_string[0] to 0.

If I_bit is 1:

If s_string is not the all zeros string, output INVALID and

stop decoding.

Otherwise (i.e., if s_string is the all zeros string),

output the point at infinity on the curve that was

determined in step 2 and stop decoding.

Otherwise, I_bit must be 0. Continue decoding.

If C_bit is 0:

Let x_string be the first half of s_string.

Let y_string be the last half of s_string.

Let x = OS2IP(x_string).

Let y = OS2IP(y_string).

If the point P = (x, y) is not a valid point on the curve

that was determined in step 2, output INVALID and stop

decoding.

Otherwise, output the point P = (x, y) and stop decoding.

2. ¶

*

¶

*

¶

*

¶

¶

* ¶

* ¶

*

¶

3.

¶

4. ¶

*

¶

*

¶

¶

5. ¶

* ¶

* ¶

* ¶

* ¶

*

¶

* ¶

Otherwise, C_bit must be 1. Continue decoding.

Let x = OS2IP(s_string).

If the curve that was determined in step 2 is E:

Let y2 = x^3 + 4 in F_p.

If y2 is not square in F_p, output INVALID and stop

decoding.

Otherwise, let y = sqrt(y2) in F_p and let Y_bit =

sign_F_p(y).

Otherwise, (i.e., when the curve that was determined in step 2

is E'):

Let y2 = x^3 + 4 * (u + 1) in F_p^2.

If y2 is not square in F_p^2, output INVALID and stop

decoding.

Otherwise, let y = sqrt(y2) in F_p^2 and let Y_bit =

sign_F_p^2(y).

If S_bit equals Y_bit, output P = (x, y) and stop decoding.

Otherwise, output P = (x, -y) and stop decoding.

Authors' Addresses

Yumi Sakemi (editor)

Lepidum

Email: yumi.sakemi@lepidum.co.jp

Tetsutaro Kobayashi

NTT

Email: tetsutaro.kobayashi.dr@hco.ntt.co.jp

Tsunekazu Saito

NTT

Email: tsunekazu.saito.hg@hco.ntt.co.jp

Riad S. Wahby

Stanford University

Email: rsw@cs.stanford.edu

¶

6. ¶

7. ¶

* ¶

*

¶

*

¶

¶

* ¶

*

¶

*

¶

8.

¶

mailto:yumi.sakemi@lepidum.co.jp
mailto:tetsutaro.kobayashi.dr@hco.ntt.co.jp
mailto:tsunekazu.saito.hg@hco.ntt.co.jp
mailto:rsw@cs.stanford.edu

	Pairing-Friendly Curves
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Pairing-based Cryptography
	1.2. Applications of Pairing-based Cryptography
	1.3. Motivation and Contribution
	1.4. Requirements Terminology

	2. Preliminaries
	2.1. Elliptic Curves
	2.2. Pairings
	2.3. Barreto-Naehrig Curves
	2.4. Barreto-Lynn-Scott Curves
	2.5. Representation Convention for an Extension Field

	3. Security of Pairing-Friendly Curves
	3.1. Evaluating the Security of Pairing-Friendly Curves
	3.2. Impact of Recent Attacks

	4. Selection of Pairing-Friendly Curves
	4.1. Adoption Status of Pairing-friendly Curves
	4.1.1. International Standards
	4.1.2. Cryptographic Libraries
	4.1.3. Applications

	4.2. For 128-bit Security
	4.2.1. BLS Curves for the 128-bit security level
	4.2.2. BN Curves for the 128-bit security level

	4.3. For 192-bit Security
	4.4. For 256-bit Security

	5. Security Considerations
	6. IANA Considerations
	7. Acknowledgements
	8. References
	8.1. Normative References
	8.2. Informative References

	Appendix A. Computing the Optimal Ate Pairing
	A.1. Optimal Ate Pairings over Barreto-Naehrig Curves
	A.2. Optimal Ate Pairings over Barreto-Lynn-Scott Curves
	Appendix B. Test Vectors of Optimal Ate Pairing
	Appendix C. ZCash serialization format for BLS12-381
	C.1. Point Serialization Procedure
	C.2. Point deserialization procedure
	Authors' Addresses

