workgroup: CFRG
Internet-Draft:
draft-irtf-cfrg-pairing-friendly-curves-10
Published: 30 July 2021
Intended Status: Informational
Expires: 31 January 2022
Authors: Y. Sakemi, Ed. T. Kobayashi T. Saito
Infours NTT NTT
R. Wahby
Stanford University
Pairing-Friendly Curves

Abstract

Pairing-based cryptography, a subfield of elliptic curve
cryptography, has received attention due to its flexible and
practical functionality. Pairings are special maps defined using
elliptic curves and it can be applied to construct several
cryptographic protocols such as identity-based encryption,
attribute-based encryption, and so on. At CRYPTO 2016, Kim and
Barbulescu proposed an efficient number field sieve algorithm named
exTNFS for the discrete logarithm problem in a finite field. Several
types of pairing-friendly curves such as Barreto-Naehrig curves are
affected by the attack. In particular, a Barreto-Naehrig curve with
a 254-bit characteristic was adopted by a lot of cryptographic
libraries as a parameter of 128-bit security, however, it ensures no
more than the 100-bit security level due to the effect of the
attack. In this memo, we list the security levels of certain
pairing-friendly curves, and motivate our choices of curves. First,
we summarize the adoption status of pairing-friendly curves in
standards, libraries and applications, and classify them in the 128-
bit, 192-bit, and 256-bit security levels. Then, from the viewpoints
of "security" and "widely used", we select the recommended pairing-
friendly curves considering exTNFS.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six
months and may be updated, replaced, or obsoleted by other documents

https://datatracker.ietf.org/drafts/current/

at any time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

This Internet-Draft will expire on 31 January 2022.
Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with
respect to this document. Code Components extracted from this
document must include Simplified BSD License text as described in
Section 4.e of the Trust Legal Provisions and are provided without
warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction
1.1 Pairing-based Cryptography
1.2. Applications of Pairing-based Cryptography
1.3 Motivation and Contribution
1.4. Requirements Terminology
2 Preliminaries
2.1 Elliptic Curves
2.2 Pairings
2.3 Barreto-Naehrig Curves
2.4 Barreto-Lynn-Scott Curves
2.5 Representation Convention for an Extension Field
3. Security of Pairing-Friendly Curves
3.1. Evaluating the Security of Pairing-Friendly Curves
3.2. Impact of Recent Attacks
4 Selection of Pairing-Friendly Curves

4.1. Adoption Status of Pairing-friendly Curves
4.1.1. International Standards
4.1.2. Cryptographic Libraries
4.1.3. Applications
4.2. For 128-bit Security
4.2.1. BLS Curves for the 128-bit security level (BLS12 381)
4.2.2. BN Curves for the 128-bit security level (BN462)
4.3. For 256-bit Security
Security Considerations
IANA Considerations
Acknowledgements

N o [»n

https://trustee.ietf.org/license-info

8. References
8.1. Normative References
8.2. Informative References
Appendix A. Computing the Optimal Ate Pairing
A.1. Optimal Ate Pairings over Barreto-Naehrig Curves
A.2. Optimal Ate Pairings over Barreto-Lynn-Scott Curves
Appendix B. Test Vectors of Optimal Ate Pairing
Appendix C. ZCash serialization format for BLS12 381
C.1. Point Serjalization Procedure
C.2. Point deserialization procedure
Appendix D. Adoption Status of Pairing-Friendly Curves with the
100-bit Security Level
Authors' Addresses

1. Introduction
1.1. Pairing-based Cryptography

Elliptic curve cryptography is an important area in currently
deployed cryptography. The cryptographic algorithms based on
elliptic curve cryptography, such as the Elliptic Curve Digital
Signature Algorithm (ECDSA), are widely used in many applications.

Pairing-based cryptography, a subfield of elliptic curve
cryptography, has attracted much attention due to its flexible and
practical functionality. Pairings are special maps defined using
elliptic curves. Pairings are fundamental in the construction of
several cryptographic algorithms and protocols such as identity-
based encryption (IBE), attribute-based encryption (ABE),
authenticated key exchange (AKE), short signatures, and so on.
Several applications of pairing-based cryptography are currently in
practical use.

As the importance of pairings grows, elliptic curves where pairings
are efficiently computable are studied and the special curves called
pairing-friendly curves are proposed.

1.2. Applications of Pairing-based Cryptography

Several applications using pairing-based cryptography have already
been standardized and deployed. We list here some examples of
applications available in the real world.

IETF published RFCs for pairing-based cryptography such as Identity-
Based Cryptography [RFC5091], Sakai-Kasahara Key Encryption (SAKKE)
[REC6508], and Identity-Based Authenticated Key Exchange (IBAKE)
[REC6539]. SAKKE is applied to Multimedia Internet KEYing (MIKEY)
[REC6509] and used in 3GPP [SAKKE].

Pairing-based key agreement protocols are standardized in ISO/IEC
[ISOIEC11770-3]. In [ISOIEC11770-3], a key agreement scheme by Joux
[Joux00], identity-based key agreement schemes by Smart-Chen-Cheng
[CCSO7] and Fujioka-Suzuki-Ustaoglu [FSU10] are specified.

MIRACL implements M-Pin, a multi-factor authentication protocol [M-
Pin]. The M-Pin protocol includes a type of zero-knowledge proof,
where pairings are used for its construction.

The Trusted Computing Group (TCG) specified the Elliptic Curve
Direct Anonymous Attestation (ECDAA) in the specification of a
Trusted Platform Module (TPM) [TPM]. ECDAA is a protocol for proving
the attestation held by a TPM to a verifier without revealing the
attestation held by that TPM. Pairings are used in the construction
of ECDAA. FIDO Alliance [FIDO] and W3C [W3C] also published an ECDAA
algorithm similar to TCG.

Intel introduced Intel Enhanced Privacy ID (EPID) that enables
remote attestation of a hardware device while preserving the privacy
of the device as part of the functionality of Intel Software Guard
Extensions (SGX) [EPID]. They extended TPM ECDAA to realize such
functionality. A pairing-based EPID was proposed [BL10] and
distributed along with Intel SGX applications.

Zcash implemented their own zero-knowledge proof algorithm named
Zero-Knowledge Succinct Non-Interactive Argument of Knowledge (zk-
SNARKs) [Zcash]. zk-SNARKs are used for protecting the privacy of
transactions of Zcash. They use pairings to construct zk-SNARKs.

Cloudflare introduced Geo Key Manager [Cloudflare] to restrict
distribution of customers' private keys to a subset of their data
centers. To achieve this functionality, ABE 1is used, and pairings
take a role as a building block. In addition, Cloudflare published a
new cryptographic library, the Cloudflare Interoperable, Reusable
Cryptographic Library (CIRCL) [CIRCL] in 2019. They plan to include
securely implemented subroutines for pairing computations on certain
secure pairing-friendly curves in CIRCL.

Currently, Boneh-Lynn-Shacham (BLS) signature schemes are being
standardized [I-D.boneh-bls-signature] and utilized in several
blockchain projects such as Ethereum [Ethereum], Algorand
[Algorand], Chia Network [Chia], and DFINITY [DFINITY]. The
aggregation functionality of BLS signatures is effective for their
applications of decentralization and scalability.

1.3. Motivation and Contribution

At CRYPTO 2016, Kim and Barbulescu proposed an efficient number
field sieve (NFS) algorithm for the discrete logarithm problem in a
finite field GF(p~k) [KB16]. The attack improves the polynomial

selection that is the first step in the number field sieve algorithm
for discrete logarithms in GF(pAk). The idea is applicable when the
embedding degree k is a composite that satisfies k = i*j (gcd (i, j)
=1, i, j> 1). The basic idea is based on the equality GF(p/k) =
(GF(p~ri)Aj) and one of the improvement for reducing the amount of
cost for solving the discrete logarithm problem is using sub-field
calculation. Several types of pairing-friendly curves such as
Barreto-Naehrig curves (BN curves)[BNO5] and Barreto-Lynn-Scott
curves (BLS curves)[BLS02] are affected by the attack, since a
pairing-friendly curve suitable for cryptographic applications
requires that the discrete logarithm problem is sufficiently
difficult. Please refer to [KB16] for detailed ideas and calculation
algorithms of the attack by Kim. In particular, BN254, which is a BN
curve with a 254-bit characteristic effective for pairing
calculations, was adopted by a lot of cryptographic libraries as a
parameter of the 128-bit security level, however, BN254 ensures no
more than the 100-bit security level due to the effect of the
attack, where the security levels described in this memo correspond
to the security strength of NIST recommendation [NIST].

To resolve this effect immediately, several research groups and
implementers re-evaluated the security of pairing-friendly curves
and they respectively proposed various curves that are secure
against the attack [BD18] [BLS12 381].

In this memo, we list the security levels of certain pairing-
friendly curves, and motivate our choices of curves. First, we
summarize the adoption status of pairing-friendly curves in
international standards, libraries and applications, and classify
them in the 128-bit, 192-bit, and 256-bit security levels. Then,
from the viewpoints of "security" and "widely used", pairing-
friendly curves corresponding to each security level are selected in
accordance with the security evaluation by Barbulescu and Duquesne
[BD18].

As a result, we recommend the BLS curve with 381-bit characteristic
of embedding degree 12 and the BN curve with the 462-bit
characteristic for the 128-bit security level, and the BLS curves of
embedding degree 48 with the 581-bit characteristic for the 256-bit
security level. This memo shows their specific test vectors.

1.4. Requirements Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
BCP 14 [REC2119] [REC8174] when, and only when, they appear in all
capitals, as shown here.

2.

2

2.

Preliminaries

.1. Elliptic Curves

Let p be a prime number and q = pAn for a natural number n > 0,
where p at least 5. Let GF(q) be a finite field. The curve defined
by the following equation E is called an elliptic curve:

E : yN2 = xA3 +a * x + b,

and a and b in GF(q) satisfy the discriminant inequality 4 * an3 +
27 * bAr2 '= 0 mod q. This is called the Weierstrass normal form of
an elliptic curve.

A solution (x,y) to the equation E can be thought of as a point on
the corresponding curve. For a natural number k, we define the set
of (GF(qnk))-rational points of E, denoted by E(GF(g”k)), to be the
set of all solutions (x,y) in GF(g~ k), together with a 'point at
infinity' O_E, which is defined to lie on every vertical line
passing through the curve E.

The set E(GF(g~rk)) forms a group under a group law that can be
defined geometrically as follows. For P and Q in E(GF(q”k)) define P
+ Q to be the reflection around the x-axis of the unique third point
R of intersection of the straight line passing through P and Q with
the curve E. If the straight line is tangent to E, we say that it
passes through that point twice. The identity of this group is the
point at infinity O_E. We also define scalar multiplication [K]P for
a positive integer K as the point P added to itself (K-1) times.
Here, [O]P becomes the point at infinity O_E and the relation [-K]P
= -([K]P) is satisfied.

2. Pairings

A pairing is a bilinear map defined on two subgroups of rational
points of an elliptic curve. Examples include the Weil pairing, the
Tate pairing, the optimal Ate pairing [Ver09], and so on. The
optimal Ate pairing is considered to be the most efficient to
compute and is the one that is most commonly used for practical
implementation.

Let E be an elliptic curve defined over a prime field GF(p). Let k
be the minimum integer for which r is a divisor of pAk - 1; this is
called the embedding degree of E over GF(p). Let G_1 be a cyclic
subgroup of E(GF(p)) of order r, there also exists a cyclic subgroup
of E(GF(p"k)) of order r, define this to be G_2. Let d be a divisor
of k and E' be an elliptic curve defined over GF(pA(k/d)). If an
isomorphism from E' to E(GF(p~k)) exists, then E' is called the
twist of E. It can sometimes be convenient for efficiency to do the
computations of G_2 in the twist E', and so consider G_2 to instead

be a subgroup of E'. Let G_T be an order r subgroup of the
multiplicative group (GF(p~k))A*; this exists by definition of k.

A pairing is defined as a bilinear map e: (G_1, G_2) -> G_T
satisfying the following properties:

1. Bilinearity: for any S in G_1, T in G_2, and integers K and L,
e([K]s, [LIT) = e(S, T)MK * L}.

2. Non-degeneracy: for any T in G_2, e(S, T) = 1 if and only if S
= 0_E. Similarly, for any S in G_1, e(S, T) = 1 if and only if
T = O_E.

In applications, it is also necessary that for any S in G_1 and T in
G_2, this bilinear map is efficiently computable.

We define some of the terminology used in this memo as follows:
GF(p): a finite field with characteristic p.
GF(pnk): an extension field of degree K.
(GF(p))*: a multiplicative group of GF(p).
(GF(pnk))*: a multiplicative group of GF(p~k).
b: a primitive element of the multiplicative group (GF(p))A*.
O_E: the point at infinity over an elliptic curve E.
E(GF(p"k)): the group of GF(pAk)-rational points of E.
#E(GF(p~k)): the number of GF(pAk)-rational points of E.
r: the order of G_1 and G_2.
BP: a point in G_1. (The 'base point' of a cyclic subgroup of G_1)
h: the cofactor h = #E(GF(p)) / r, where gcd(h, r)=1.

2.3. Barreto-Naehrig Curves

A BN curve [BN05] is a family of pairing-friendly curves proposed in
2005. A pairing over BN curves constructs optimal Ate pairings.

A BN curve is defined by elliptic curves E and E' parameterized by a
well-chosen integer t. E is defined over GF(p), where p is a prime
number and at least 5, and E(GF(p)) has a subgroup of prime order r.
The characteristic p and the order r are parameterized by

36 * th4 + 36 * tA3 + 24 * th2 + 6 Ft + 1
36 * th4 + 36 * tA3 + 18 * th2 + 6 *t + 1

e
1

for an integer t.

The elliptic curve E has an equation of the form E: yA2 = XA3 + b,
where b is a primitive element of the multiplicative group (GF(p))A*
of order (p - 1).

In the case of BN curves, we can use twists of the degree 6. If m is
an element that is neither a square nor a cube in an extension field
GF(p~n2), the twist E' of E is defined over an extension field
GF(pn2) by the equation E': ynr2 = xA3 + b' with b' = b / m or b'
* m. BN curves are called D-type if b' = b / m, and M-type if b'
* m. The embedding degree k is 12.

(|
o T

A pairing e is defined by taking G_1 as a subgroup of E(GF(p)) of
order r, G_2 as a subgroup of E'(GF(p”2)), and G_T as a subgroup of
a multiplicative group (GF(p~12))A* of order r.

2.4. Barreto-Lynn-Scott Curves

A BLS curve [BLS02] is a another family of pairing-frinedly curves
proposed in 2002. Similar to BN curves, a pairing over BLS curves
constructs optimal Ate pairings.

A BLS curve 1is defined by elliptic curves E and E' parameterized by
a well-chosen integer t. E is defined over a finite field GF(p) by
an equation of the form E: yA2 = xA3 + b, and its twist E': yN2 =
xA3 + b', is defined in the same way as BN curves. In contrast to BN
curves, E(GF(p)) does not have a prime order. Instead, its order is
divisible by a large parameterized prime r and denoted by h * r with
cofactor h. The pairing is defined on the r-torsion points. In the
same way as BN curves, BLS curves can be categorized as D-type and
M-type.

BLS curves vary in accordance with different embedding degrees. In
this memo, we deal with the BLS12 and BLS48 families with embedding
degrees 12 and 48 with respect to r, respectively.

In BLS curves, parameters p and r are given by the following

equations:

BLS12:
p = (t-1)A2 * (thd - tA2 + 1) / 3 + t
r=thd - tA2 + 1

BLS48:
p=(t - 1)A2 * (tr16 - tA8 + 1) / 3 + ¢t
r = tnle - tA8 + 1

for a well chosen integer t where t must be 1 (mod 3).

A pairing e is defined by taking G_1 as a subgroup of E(GF(p)) of
order r, G_2 as an order r subgroup of E'(GF(p~r2)) for BLS12 and of
E'(GF(p~n8)) for BLS48, and G_T as an order r subgroup of a
multiplicative group (GF(p~12))A* for BLS12 and of a multiplicative
group (GF(pn48))n* for BLS48.

2.5. Representation Convention for an Extension Field

Pairing-friendly curves use a tower of some extension fields. In
order to encode an element of an extension field, focusing on
interoperability, we adopt the representation convention shown in
Appendix J.4 of [I-D.ietf-lwig-curve-representations] as a standard
and effective method. Note that the big-endian encoding is used for
an element in GF(p) which follows to mcl [mcl], ISO/IEC 15946-5
[ISOIEC15946-5] and etc.

Let GF(p) be a finite field of characteristic p and GF(p~d) = GF(p)
(1) be an extension field of GF(p) of degree d.

For an element s in GF(pAd) such that s = s_ 0 + s_1 * i+ ... + s_{d
- 1}y * in{d - 1} where s_0, s_1, ... , s_{d - 1} in the basefield
GF(p), s 1is represented as octet string by oct(s) = s_0 || s_1 ||

[] s_{d - 1}.

Let GF(pAd') = GF(pAd)(]j) be an extension field of GF(pAd) of degree
d' / d.

For an element s' in GF(pAd') such that s' = s'_ 0 + s'_1 * j + ... +
s' {d'"/d- 1} * jA{d' / d - 1} where s' 0, s' 1, ..., s' {d' / d -
1} in the basefield GF(p~d), s' is represented as integer by oct(s')
= oct(s'_@®) || oct(s'_1) || ... || oct(s'_{d" / d - 1}), where
oct(s'_0), ... , oct(s'_{d' / d - 1}) are octet strings encoded by
above convention.

In general, one can define encoding between integer and an element
of any finite field tower by inductively applying the above
convention.

The parameters and test vectors of extension fields described in
this memo are encoded by this convention and represented in an octet
stream.

When applications communicate elements in an extension field, using
the compression method [MP04] may be more effective. In that case,
care for interoperability must be taken.

3. Security of Pairing-Friendly Curves
3.1. Evaluating the Security of Pairing-Friendly Curves

The security of pairing-friendly curves is evaluated by the hardness
of the following discrete logarithm problems:

*The elliptic curve discrete logarithm problem (ECDLP) in G_1 and
G_2

*The finite field discrete logarithm problem (FFDLP) in G_T

There are other hard problems over pairing-friendly curves used for
proving the security of pairing-based cryptography. Such problems
include the computational bilinear Diffie-Hellman (CBDH) problem,
the bilinear Diffie-Hellman (BDH) problem, the decision bilinear
Diffie-Hellman (DBDH) problem, the gap DBDH problem, etc. [ECRYPT].
Almost all of these variants are reduced to the hardness of discrete
logarithm problems described above and are believed to be easier
than the discrete logarithm problems.

Although it would be sufficient to attack any of these problems to
attack pairing-based crytography, the only known attacks thus far
attack the discrete logarithm problem directly, so we focus on the
discrete logarithm in this memo.

The security levels of pairing-friendly curves are estimated by the
computational cost of the most efficient algorithm for solving the
above discrete logarithm problems. The best-known algorithms for
solving the discrete logarithm problems are based on Pollard's rho
algorithm [Pollard78] and Index Calculus [HR83]. To make index
calculus algorithms more efficient, number field sieve (NFS)
algorithms are utilized.

3.2. Impact of Recent Attacks

In 2016, Kim and Barbulescu proposed a new variant of the NFS
algorithms, the extended tower number field sieve (exTNFS), which
drastically reduces the complexity of solving FFDLP [KB16]. The
exXTNFS improves the polynomial selection that is the first step in
the number field sieve algorithm for discrete logarithms in GF(p~k).
The idea is applicable when the embedding degree k is a composite
that satisfies k = i * j (gcd (i, j) =1, i, j> 1). Since the above
condition is satisfied especially when k = 2An*3Am (n, m> 1), BN
curves and BLS curves whose embedding degree is divisible by 6 are
affected by the exTNFS. The basic idea of the exTNFS is based on the
equality GF(p~k) = (GF(p~i)~j) and one of the improvement for
reducing the amount of cost for solving FFDLP is using sub-field
calculation. Please refer to [KB16] for detailed ideas and
calculation algorithms of exTNFS. Due to exTNFS, the security levels

of certain pairing-friendly curves asymptotically dropped down. For
instance, Barbulescu and Duquesne estimated that the security of the
BN curves, which had been believed to provide 128-bit security
(BN256, for example) was reduced to approximately 100 bits [BD18].
Here, the security levels described in this memo correspond to the
security strength of NIST recommendation [NIST].

There has since been research into the minimum bit length of the
parameters of pairing-friendly curves for each security level when
applying exTNFS as an attacking method for FFDLP. For 128-bit
security, Barbulescu and Duquesne estimated the minimum bit length
of p of BN curves and BLS12 curves after exTNFS as 461 bits [BD18].
For 256-bit security, Kiyomura et al. estimated the minimum bit
length of pAk of BLS48 curves as 27,410 bits, which indicated 572
bits of p [KIK17].

4. Selection of Pairing-Friendly Curves

In this section, we introduce some of the known secure pairing-
friendly curves that consider the impact of exTNFS.

First, we show the adoption status of pairing-friendly curves in
standards, libraries and applications, and classify them in
accordance with the 128-bit, 192-bit, and 256-bit security levels.
Then, from the viewpoints of "security" and "widely used", pairing-
friendly curves corresponding to each security level are selected
and their parameters are indicated.

In our selection policy, it is important that selected curves are
shown in peer-reviewed papers for security and that they are widely
used in cryptographic libraries. In addition, "efficiency" is one of
the important aspects but greatly dependant on implementations, so
we choose to prioritize "security" and "widely used" over
"efficiency" in consideration of future interconnections and
interoperability over the internet.

As a result, we recommend the BLS curve with 381-bit characteristic
of embedding degree 12 and the BN curve with the 462-bit
characteristic for the 128-bit security level, and the BLS curves of
embedding degree 48 with the 581-bit characteristic for the 256-bit
security level. On the other hand, we do not show the parameters for
192-bit security here because there are no curves that match our
selection policy.

4.1. Adoption Status of Pairing-friendly Curves

We show the pairing-friendly curves that have been selected by
existing standards, cryptographic libraries, and applications.

Table 1 summarizes the adoption status of pairing-friendly curves.
In this table, "Arnd" is an abbreviation for "Around". The curves
categorized as 'Arnd 128-bit', 'Arnd 192-bit' and 'Arnd 256-bit' for
each label show that their security levels are within the range of
plus/minus 5 bits for each security level. Other labels shown with
'~' mean that the security level of the categorized curve is outside
the range of each security level. Specifically, the security level
of the categorized curves is more than the previous column and is
less than the next column. The details are described as the
following subsections. A BN curve with a XXX-bit characteristic p is
denoted as BNXXX and a BLS curve of embedding degree k with a XXX-
bit p is denoted as BLSKk_XXX.

Table 1 omits parameters with security levels below the "Arnd 128-
bit" range due to space limitations and viewpoints of secure usage
of parameters. On the other hand, indicating which standards,
libraries, and applications use these lower security level
parameters would be useful information for implementers, therefore
Appendix D shows these parameters. In addition, the full version of
Table 1 is available at https://lepidum.co.jp/blog/2020-03-27/ietf-

draft-pfc/.

In Table 1, the security level for each curve is evaluated in
accordance with [BD18], [GMT19], [MAF19] and [FK18]. Note that the
Freeman curves and MNT curves are not included in this table because
[BD18] does not show the security levels of these curves.

Security Levels (bit)
Category Name Curve Arnd Arnd Arnd
Type ~ ~
128 192 256
BN384 X
BN5121
Standard TCG BN638
BN5121
BN638
Library BLS12_381
mcl BN382M
BN462
RELIC BLS12_ 381
BLS12_446
BLS12_455
BLS12_ 638 X
BLS24_477 X
BLS48_575 X
BN382R
BN446
BN638 X

ISO/IEC

FIDO/W3C

X X X X

X X X X X X

xX X

https://lepidum.co.jp/blog/2020-03-27/ietf-draft-pfc/
https://lepidum.co.jp/blog/2020-03-27/ietf-draft-pfc/

Security Levels (bit)
Category Name curve Arnd Arnd Arnd
Type 128 T 102 "~ 256
CP8_544 X
K54_569 X
KSS18_508 X
0T8_511
BLS12_ 381
BLS12_383
BLS12_ 461
BLS24_479 X
BLS48_556 X
BN5121 X

X X X X

AMCL

Kyushu
Univ. BLS48_581 X
BLS12_381 X
BLS12_383
BLS12_ 461 X
BLS24_479 X
BLS48_556 X
BLS48_581 X
BN462 X
BN5121 X
BLS12_381
BN462
b1s12377js BLS12_ 377
Zcash BLS12_ 381
Ethereum BLS12_ 381
Chia
Network

X

MIRACL

Adjoint

X X X X X

BLS12_ 381

x

Application
BLS12 381

DFINITY BN382M
BN462

Algorand BLS12_381 X
Table 1: Adoption Status of Pairing-Friendly Curves

X X X

4.1.1. International Standards

ISO/IEC 15946 series specifies public-key cryptographic techniques
based on elliptic curves. ISO/IEC 15946-5 [ISOIEC15946-5] shows
numerical examples of MNT curves[MNTO1] with 160-bit p and 256-bit
p, Freeman curves [Freeman06] with 224-bit p and 256-bit p, and BN
curves with 160-bit p, 192-bit p, 224-bit p, 256-bit p, 384-bit p,
and 512-bit p. These parameters do not take into account the effects
of the exTNFS. On the other hand, the parameters may be revised in
future versions since ISO/IEC 15946-5 is currently under
development. As described below, BN curves with 256-bit p and 512-

bit p specified in ISO/IEC 15946-5 used by other standards and
libraries, these curves are especially denoted as BN256I and BN512I.
The suffix 'I' of BN256I and BN512I are given from the initials of
the standard name ISO.

TCG adopts the BN256I and a BN curve with 638-bit p specified by
their own[TPM]. FIDO Alliance [FIDO] and W3C [W3C] adopt BN2561I,
BN512I, the BN638 by TCG, and the BN curve with 256-bit p proposed
by Devegili et al.[DSDO7] (named BN256D). The suffix 'D' of BN256D
is given from the initials of the first author's name of the paper
which proposed the parameter.

.2. Cryptographic Libraries

There are a lot of cryptographic libraries that support pairing
calculations.

PBC is a library for pairing-based cryptography published by
Stanford University that supports BN curves, MNT curves, Freeman
curves, and supersingular curves [PBC]. Users can generate pairing
parameters by using PBC and use pairing operations with the
generated parameters.

mcl[mcl] is a library for pairing-based cryptography that supports
four BN curves and BLS12_381 [GMT19]. These BN curves include BN254
proposed by Nogami et al. [NASKMO8] (named BN254N), BN_SNARK1
suitable for SNARK applications[libsnark], BN382M, and BN462. The
suffix 'N' of BN256N and the suffix 'M' of BN382M are respectively
given from the initials of the first author's name of the proposed
paper and the library's name mcl. Kyushu University published a
library that supports the BLS48_581 [BLS48]. The University of
Tsukuba Elliptic Curve and Pairing Library (TEPLA) [TEPLA] supports
two BN curves, BN254N and BN254 proposed by Beuchat et al.
[BGMORT10] (named BN254B). The suffix 'B' of BN254B is given from
the initials of the first author's name of the proposed paper. Intel
published a cryptographic library named Intel Integrated Performance
Primitives (Intel-IPP) [Intel-IPP] and the library supports BN256I.

RELIC [RELIC] uses various types of pairing-friendly curves
including six BN curves (BN158, BN254R, BN256R, BN382R, BN446, and
BN638), where BN254R, BN256R, and BN382R are RELIC specific
parameters that are different from BN254N, BN254B, BN256I, BN256D,
and BN382M. The suffix 'R' of BN382R is given from the initials of
the library's name RELIC. In addition, RELIC supports six BLS curves
(BLS12_381, BLS12_ 446, BLS12_445, BLS12_638, BLS24_477, and
BLS48_575 [MAF19]), Cocks-Pinch curves of embedding degree 8 with
544-bit p[GMT19], pairing-friendly curves constructed by Scott et
al. [SG19] based on Kachisa-Scott-Schaefer curves with embedding
degree 54 with 569-bit p (named K54_569)[MAF19], a KSS curve [KSS08]

of embedding degree 18 with 508-bit p (named KSS18_508) [AFKMR12],
Optimal TNFS-secure curve [FM19] of embedding degree 8 with 511-bit
p(0T8_511), and a supersingular curve [S86] with 1536-bit p
(SS_1536).

Apache Milagro Crypto Library (AMCL)[AMCL] supports four BLS curves
(BLS12_ 381, BLS12_ 461, BLS24_479 and BLS48 556) and four BN curves
(BN254N, BN254CX proposed by CertiVox, BN256I, and BN512I). In
addition to AMCL's supported curves, MIRACL [MIRACL] supports BN462
and BLS48_581.

Adjoint published a library that supports the BLS12_381 and six BN
curves (BN_SNARK1, BN254B, BN254N, BN254S1, BN254S2, and BN462)
[AdjointLib], where BN254S1 and BN254S2 are BN curves adopted by an
old version of AMCL [AMCLv2]. The suffix 'S' of BN254S1 and BN254S2
are given from the initials of developper's name because he proposed
these parameters.

The Celo foundation published the bls12377js library [bl1s12377js].
The supported curve is the BLS12_377 curve which is shown in
[BCGMMW20] .

4.1.3. Applications

Zcash uses a BN curve (named BN128) in their library libsnark
[1libsnark]. In response to the exTNFS attacks, they proposed new
parameters using BLS12_381 [BLS12 381] [GMT19]and published its
experimental implementation [zkcrypto].

Ethereum 2.0 adopted BLS12_381 and uses the implementation by Meyer
[pureGo-bls]. Chia Network published their implementation [Chia] by
integrating the RELIC toolkit [RELIC]. DFINITY uses mcl, and
Algorand published an implementation which supports BLS12_381.

4.2. For 128-bit Security

Table 1 shows a lot of cases of adopting BN and BLS curves. Among
them, BLS12_381 and BN462 match our selection policy. Especially,
the one that best matches the policy is BLS12_381 from the viewpoint
of "widely used" and "efficiency", so we introduce the parameters of
BLS12_381 in this memo.

On the other hand, from the viewpoint of the future use, the
parameter of BN462 is also introduced. As shown in recent security
evaluations for BLS12_381[BD18] [GMT19], its security level close to
128-bit but it is less than 128-bit. If the attack is improved even
a little, BLS12_381 will not be suitable for the curve of the 128-
bit security level. As curves of 128-bit security level are
currently the most widely used, we recommend both BLS12_381 and

BN462 in this memo in order to have a more efficient and a more
prudent option respectively.

4.2.1. BLS Curves for the 128-bit security level (BLS12_381)

In this part, we introduce the parameters of the Barreto-Lynn-Scott
curve of embedding degree 12 with 381-bit p that is adopted by a lot
of applications such as Zcash [Zcash], Ethereum [Ethereum], and so
on.

The BLS12 381 curve is shown in [BLS12 381] and it is defined by the
parameter

t = -2A63 - 27A62 - 2N60 - 2A57 - 2M48 - 2716
where the size of p becomes 381-bit length.

For the finite field GF(p), the towers of extension field GF(p~/2),
GF(pn6) and GF(pnN12) are defined by indeterminates u, v, and w as

follows:
GF(pn2) = GF(p)[u] 7/ (ur2 + 1)
GF(pn"6) = GF(p”r2)[v] / (vA3 - u - 1)

GF(pN12) = GF(pr6)[w] / (wh2 - V).
Defined by t, the elliptic curve E and its twist E' are represented
by E: yr2 = xA3 + 4 and E': yA2 = XA3 + 4(u + 1). BLS12 381 is

categorized as M-type.

We have to note that the security level of this pairing is expected
to be 126 rather than 128 bits [GMT19].

Parameters of BLS12_381 are given as follows.
*G_1 is the largest prime-order subgroup of E(GF(p))
-BP = (Xx,y) : a 'base point', i.e., a generator of G_1
*G_2 is an r-order subgroup of E'(GF(p"2))

-BP' = (x',y') : a 'base point', i.e., a generator of G_2
(encoded with [I-D.ietf-lwig-curve-representations])

ox' = x'_ 0@+ x'_1*u (x'_0, x'"_1 in GF(p))
oy' =y' @+y' 1*u(y'_ e, y'_1in GF(p))

-h' : the cofactor #E'(GF(p~"2))/r

0xla@lllea397fe69a4blba7b6434bacd764774b84138512bf6730d2a0f6b0T6241eabfffebl153ffffbofe

0x73eda753299d7d483339d80809a1d80553bda402fffesbfeffffffff00000001

0x17f1d3a73197d7942695638c4fa9ac0fc3688c4f9774b905al14e3a3f171bac586c55e83ff97alaeffb3a

0x08b3f481e3aaadfl1af9e30ed741d8ae4fcf5e095d5d00af600db18ch2c04b3edd®@3cc744a2888ae40caa:

h: 0x396c8c005555e1568c00aaab00O0aaab
b: 4

x'_0:
0x024aa2b2f08f0a91260805272dc51051c6ed47ad4fa403b02b4510b647ae3d1770bac0326a805bbefd480!

x'_1:
0x13e02b606052719f607dacd3a088274f65596bd0d09920b61ab5da61lbbdc7f5049334cf11213945d57e5ac

y'_0:
0x0ce5d527727d6el118cc9cdcb6daze351aadfd9baa8chdd3a76d429a695160d12c923ac9cc3baca289e193!

y'_1:
0x0606c4a02ea734cc32acd2b02bc28b99ch3e287e85a763af267492ab572e99ab31f370d275cecldalaaa9l

h':
0x5d543a95414e7f1091d50792876a202cd91de4547085abaa68a205b2e5a7ddfa628f1cb4d9e82ef21537¢

b': 4 * (u+ 1)

As mentioned above, BLS12_381 is adopted in a lot of applications.
Since it is expected that BLS12_381 will continue to be widely used
more and more in the future, Appendix C shows the serialization
format of points on an elliptic curve as useful information. This
serialization format is also adopted in [I-D.boneh-bls-signature]

[zkcrypto].

In addition, many pairing-based cryptographic applications use a
hashing to an elliptic curve procedure that outputs a rational point

on an elliptic curve from an arbitrary input. A standard
specification of ciphersuites for a hashing to an elliptic curve,
including BLS12_381, is under discussion in the IETF [I-D.irtf-cfrg-
hash-to-curve] and it will be valuable information for implementers.

.2.2. BN Curves for the 128-bit security level (BN462)

A BN curve with the 128-bit security level is shown in [BD18], which
we call BN462. BN462 is defined by the parameter

t = 2A114 + 2A101 - 2A14 - 1
for the definition in Section 2.3.
For the finite field GF(p), the towers of extension field GF(p/2),

GF(pn6) and GF(pnN12) are defined by indeterminates u, v, and w as
follows:

GF(pn2) GF(p)[u] 7/ (unr2 + 1)
GF(p~6) GF(p~r2)[v] / (VA3 - u - 2)
GF(pM12) = GF(pn6)[wW] 7/ (wh2 - V).

Defined by t, the elliptic curve E and its twist E' are represented
by E: yr2 = xA3 + 5 and E': yA2 = xA3 - u + 2, respectively. The
size of p becomes 462-bit length. BN462 is categorized as D-type.

We have to note that BN462 is significantly slower than BLS12_381,
but has 134-bit security level [GMT19], so may be more resistant to

future small improvements to the exTNFS attack.

We note also that CP8_544 is about 20% faster that BN462 [GMT19],
has 131-bit security level, and that due to its construction will
not be affected by future small improvements to the exTNFS attack.
However, as this curve is not widely used (it is only implemented in
one library), we instead chose BN462 for our 'safe' option.
We give the following parameters for BN462.
*G_1 is the largest prime-order subgroup of E(GF(p))
-BP = (x,y) : a 'base point', i.e., a generator of G_1

*G_2 is an r-order subgroup of E'(GF(p"2))

-BP' = (x',y') : a 'base point', i.e., a generator of G_2
(encoded with [I-D.ietf-lwig-curve-representations])

ox' = x'_ 0@+ x'_1*u (x'_0, x'"_1 in GF(p))

oy' =y' 0+y' 1*u(y' 0, y' 1in GF(p))

Xl

Xl

yl

yl

-h' : the cofactor #E'(GF(p~"2))/r

0x240480360120023ffffffffff6ffocf6b7dobfcan00OOEEO00d812908F41c8020ffffffffff6ffe6fcef

0x240480360120023ffffffffff6ffocf6b7dobfcanfOOEEOO00d812908eelc201f7fffffffff6ffe6fc7b

0x21a6d67ef250191fadba34a0a30160b9ac9264b6f95f63b3edbec3cf4b2e689dblbbb4e69a416a@ble79:

0x0118ea0460f7f7abb82h33676a7432a490eeda842cccfa7d788c659650426e6af77df11b8ae40eb80T47!

_0:
0x0257ccc85b58dda@dfb38e3a8chdc5482e0337e7¢c1cd96ed61¢c913820408208f9ad2699bad92e0032ael-

_1:
0x1d2e4343e8599102af8edca849566ba3c98e2a354730ched9176884058b18134dd86bae555b78371850:

_0:
0x0a0650439da22¢1979517427a20809eca035634706e23c3fa7a6bb42fe810f1399a1f41c9ddae32e0369!

_1:
0x073efOchd438che0172c8ae37306324d44d5e6b0c69ac57b393f1ab370Fd725cc647692444a04ef87387:

h':

b':

4.3.

0x240480360120023ffffffffff6ffocf6b7dobfcan000000000d812908falced227fffffffff6ff66fc63:

-u + 2

For 256-bit Security

As shown in Table 1, there are three candidates of pairing-friendly
curves for 256-bit security. According to our selection policy, we
select BLS48_581, as it is the most widely adopted by cryptographic
libraries.

The selected BLS48 curve is shown in [KIK17] and it is defined by
the parameter

t = -1+ 2A7 - 2A10 - 2730 - 2A32.
In this case, the size of p becomes 581-bit.
For the finite field GF(p), the towers of extension field GF(p~/2),

GF(pn4), GF(p"8), GF(p~24) and GF(pN48) are defined by
indeterminates u, v, w, z, and s as follows:

GF(pn2) = GF(p)[u] /7 (ur2 + 1)
GF(pn4) = GF(pr2)[v] / (vA2 + u + 1)
GF(pM8) = GF(pM)[w] / (wA2 + v)

GF(pn24) = GF(p~r8)[z] / (z"3 + w)
GF(pn48)= GF(pnr24)([s] / (sn2 + z).

The elliptic curve E and its twist E' are represented by E: yr2 =
XxA3 + 1 and E': yn2 = xA3 - 1 / w. BLS48_581 is categorized as D-

type.
We then give the parameters for BLS48_581 as follows.
*G_1 is the largest prime-order subgroup of E(GF(p))
-BP = (X,y) : a 'base point', i.e., a generator of G_1
*G_2 is an r-order subgroup of E'(GF(p~"8))

-BP' = (x',y') : a 'base point', i.e., a generator of G_2
(encoded with [I-D.ietf-lwig-curve-representations])

ox' = x'" 0+ x'" 1 *u+x'2*v+x'"3*u*rv+x'_4*w+
x'5*u*w+x'"_6*v *w+x'_7*u*v*r*w ((x'_0, ...,
x'_7 in GF(p))

oy' =y' 0+y' 1 *u+y' 2*v+y' 3*Fu*rv+y' 4°w+
y'5*u *w+y' 6 *Vv*wt+ty' 7 u*rv* w((y_0 ...
y'_7 in GF(p))

-h' : the cofactor #E'(GF(p”"8))/r

0x1280f73ff34761313824e31d47012a0056e8418d122131bb3be6cOf1f3975444a48ae43af6e®@82acd9cd:

0x238618a925e2885e233a9ccc1615c0d6c635387a3f0b3chbe003fad6bc972c2e6e741969d34c4c92016a8!

0x02af59b7ac340f2baf2b73df1e93f860de3f257e0e86868cf6labdbaedffb9f7544550546a9df61 96458

y:
0x0cefdad4f6531f91f86b3a2d1fb398a488a553c9efeh8a52e991279dd41b720ef7bb7beffb98aee53e801

X' _0:

0x05d615d9a7871e4a38237fad45a2775debabbefc70344dbccb7de64db3a2ef156c46ff79baadla8c42281:

x'_1:
OXx07c4973ece2258512069b0e86abc®7e8b22bb6d980e1623e9526f6dal12307f4el1c3943a00abfedf16214:

x'_2:
0x01fccc70198T1334el1b2eal853ad83bc73a8a6ca9ae237ca7a6d6957cchab5ab6860161cl1dbd19242f fal

x'_3:
0Ox0be2218c25ceb6185¢c78d8012954d4bfe8f5985ac62f3e5821b7b92a39318be0Occ218a95f63elc776e6e

x'_4:
Ox038b91c600b35913a3c598e4caa9dd63007c675d0b1642b5675Ff0e7c5805386699981f9e48199d5ac10l

x'_5:
OX0c96¢c7797eb0738603f1311ed4ecdaf88f7b8f35dcef0977a3d1a58677bb037418181df63835d28997eb5’

x'_6:
Ox0b9b7951c6061ee3f0197a498908aee660dead1b39d13852b6db908ha2cOb7a449cef11f293b13cedOfd(

X' 7:
0x0827d5c22fbh2bdec5282624c4f4aaa2bles5d7a9defaf47b5211cf741719728a7f9f8cfca93f29cff364a’

y'_0:
0Xx00eb53356c375b5dfa497216452f3024b918b4238059a577e6T3b39ebfc435faab0906235afa27748d906

y'_1:
0x0284dc75979e0ff144da6531815fcadc2b75a422ba325e6fba01d72964732fchbf3afb096b243b1f192¢c5

y'_2:

0x0b36a201dd008523e421efb70367669ef2c2fc5030216d5b119d3a480d37051447577d5¢c99d0e9041151!

y'_3:
Ox0aec25a4621edc0688223fbbd478762blc2cded3360dcee23dd8hb0e710e122d2742c89b224333fa40dce

y'_4:
0x0d209d5a223a9¢c46916503fa5a88325a2554dc541b43dd93b5a95980511129857ed85¢c77fa238cdce8ails

y'_5:
0x07d0d03745736b7a513d339d5ad537b90421ad66ehb16722b589d82e2055ab7504fa83420e8c27084168:

y'_6:
0x0896767811be65ea25c2d05dfdd17af8a006T364Ffc0841b064155F14e4c819a6df98f425ae3a2864f22c:

y'_7:
0x035e2524ff89029d393a5c07e841f981b5e068T1406be8e50c87549b6ef8ecafa9533a3f8e69¢c31e97elal

h: 0x85555841aaaec4ac

h':
0x170e915cbh0a6b7406b8d94042317f811d6bc3fc6e21l1adad42e58ccfch3ac076a7e4499d700a@c23dc4bOc

b': -1/ w
Security Considerations

The recommended pairing-friendly curves are selected by considering
the exTNFS proposed by Kim et al. in 2016 [KB16] and they are
categorized in each security level in accordance with [BD18].
Implementers who will newly develop pairing-based cryptography
applications SHOULD use the recommended parameters. As of 2020, as
far as we've investigated the top cryptographic conferences in the
past, there are no fatal attacks that significantly reduce the
security of pairing-friendly curves after exTNFS.

BLS curves of embedding degree 12 typically require a characteristic
p of 461 bits or larger to achieve the 128-bit security level
[BD18]. Note that the security level of BLS12_381, which is adopted
by a lot of libraries and applications, is slightly below 128 bits
because a 381-bit characteristic is used [BD18] [GMT19].

BN254 is used in most of the existing implementations as shown in
Section 4.1 (and Appendix D), however, BN curves that were
estimated as the 128-bit security level before exTNFS including
BN254 ensure no more than the 100-bit security level by the effect
of exTNFS.

In addition, implementors should be aware of the following points
when they implement pairing-based cryptographic applications using
recommended curves. Regarding the use case and applications of
pairing-based cryptographic applications, please refer Section 1.2.

In applications such as key agreement protocols, users exchange the
elements in G_1 and G_2 as public keys. To check these elements are
so-called sub-group secure [BCM15], implementors should validate if
the elements have the correct order r. Specifically, for public keys
P in G_1 and Q in G_2, a receiver should calculate scalar
multiplications [r]P and [r]Q, and check the results become points
at infinity.

The pairing-based protocols, such as the BLS signatures, use a
scalar multiplication in G_1, G_2 and an exponentiation in G_3 with
the secret key. In order to prevent the leakage of secret key due to
side channel attacks, implementors should apply countermeasure
techniques such as montgomery ladder [Montgomery] [CFO6] when they
implement modules of a scalar multiplication and an exponentiation.
Please refer [Montgomery] and [CF06] for the detailed algorithms of
montgomery ladder.

When converting between an element in extension field and an octet
string, implementors should check that the coefficient is within an
appropriate range [IEEE1363]. If the coefficient is out of range,
there is a possible that security vulnerabilities such as the
signature forgery may occur.

Recommended parameters are affected by the Cheon's attack which is a
solving algorithm for the strong DH problem [Cheon@6]. The
mathematical problem that provides the security of the strong DH
problem is called ECDLP with Auxiliary Inputs (ECDLPwAI). In
ECDLPwWAI, given rational points P, [K]P, [KAi]lP, for i=1,...,n, then
we find a secret K. Since the complexity of ECDLPwAI is given as
O(sqrt((r-1)/n + sqgrt(n)) where n|r-1 by using Cheon's algorithm
whereas the complexity of ECDLP is given as 0(sqrt(r)), the
complexity of ECDLPwAI with the ideal value n becomes dramatically
smaller than that of ECDLP. Please refer [Cheon@6] for the details
of Cheon's algorithm. Therefore, implementers should be careful when
they design cryptographic protocols based on the strong DH problem.
For example, in the case of Short Signatures, they can prevent the
Cheon's attack by carefully setting the maximum number of queries
which corresponds to the parameter n.

6. IANA Considerations
This document has no actions for IANA.
7. Acknowledgements

The authors would like to appreciate a lot of authors including
Akihiro Kato for their significant contribution to early versions of
this memo. The authors would also like to acknowledge Kim Taechan,
Hoeteck Wee, Sergey Gorbunov, Michael Scott, Chloe Martindale as an
Expert Reviewer, Watson Ladd, Armando Faz, Rene Struik, and Satoru
Kanno for their valuable comments.

8. References
8.1. Normative References
[BD18] Barbulescu, R. and S. Duquesne, "Updating Key Size
Estimations for Pairings", DOI 10.1007/s00145-018-9280-5,

Journal of Cryptology, January 2018, <https://doi.org/
10.1007/s00145-018-9280-5>.

[BLS02] Barreto, P., Lynn, B., and M. Scott, "Constructing
Elliptic Curves with Prescribed Embedding Degrees", DOI
10.1007/3-540-36413-7_19, Security in Communication
Networks pp. 257-267, 2003, <https://doi.org/
10.1007/3-540-36413-7_19>.

[BNO5] Barreto, P. and M. Naehrig, "Pairing-Friendly Elliptic
Curves of Prime Order", DOI 10.1007/11693383_22, Selected
Areas in Cryptography pp. 319-331, 2006, <https://
doi.org/10.1007/11693383 22>.

[GMT19] Guillevic, A., Masson, S., and E. Thome, "Cocks-Pinch
curves of embedding degrees five to eight and optimal ate
pairing computation", DOI 10.1007/s10623-020-00727-w,
International Journal of Designs, Codes and Cryptography
vol. 88, pp. 1047-1081, 2019, <https://doi.org/10.1007/
$10623-020-00727 -w>.

[KB16] Kim, T. and R. Barbulescu, "Extended Tower Number Field
Sieve: A New Complexity for the Medium Prime Case", DOI
10.1007/978-3-662-53018-4_20, Advances in Cryptology -
CRYPTO 2016 pp. 543-571, 2016, <https://doi.org/
10.1007/978-3-662-53018-4 20>.

[KIK17] Kiyomura, Y., Inoue, A., Kawahara, Y., Yasuda, M.,
Takagi, T., and T. Kobayashi, "Secure and Efficient
Pairing at 256-Bit Security Level", DOI
10.1007/978-3-319-61204-1_4, Applied Cryptography and

https://doi.org/10.1007/s00145-018-9280-5
https://doi.org/10.1007/s00145-018-9280-5
https://doi.org/10.1007/3-540-36413-7_19
https://doi.org/10.1007/3-540-36413-7_19
https://doi.org/10.1007/11693383_22
https://doi.org/10.1007/11693383_22
https://doi.org/10.1007/s10623-020-00727-w
https://doi.org/10.1007/s10623-020-00727-w
https://doi.org/10.1007/978-3-662-53018-4_20
https://doi.org/10.1007/978-3-662-53018-4_20

[NIST]

[RFC2119]

[RFC8174]

[Ver09]

Network Security pp. 59-79, 2017, <https://doi.org/
10.1007/978-3-319-61204-1 4>,

Barker, E., "NIST special publication 800-57 part 1
(revised) : Recommendation for key management, part 1:
General (revised)", National Institute of Standards and
Technology (NIST), 2020.

Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/
RFC2119, March 1997, <https://www.rfc-editor.org/info/
rfc2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Vercauteren, F., "Optimal Pairings", DOI 10.1109/tit.
2009.2034881, IEEE Transactions on Information Theory
Vol. 56, pp. 455-461, January 2010, <https://doi.org/
10.1109/tit.2009.2034881>.

8.2. Informative References

[AdjointLib] Adjoint Inc., "Optimised bilinear pairings over

[AFKMR12]

[Algorand]

[AMCL]

[AMCLV2]

[BCGMMW20]

elliptic curves", 2018, <https://github.com/adjoint-io/
pairing>.

Aranha, D.F., Fuentes-Castaneda, L., Knapp, E., Menezes,
A., and F. Rodriguez-Henriquez, "Implementing Pairings at
the 192-Bit Security Level", DOI /
10.1007/978-3-642-36334-4_11, Pairing 2012 pp. 177-195,
2012, <https://doi.org//10.1007/978-3-642-36334-4_11>.

Gorbunov, S., "Efficient and Secure Digital Signatures
for Proof-of-Stake Blockchains", <https://medium.com/
algorand/digital-signatures-for-
blockchains-5820e15fbe95>.

The Apache Software Foundation, "The Apache Milagro
Cryptographic Library (AMCL)", 2016, <https://github.com/

apache/incubator-milagro-crypto>.

The Apache Software Foundation, "Old version of the
Apache Milagro Cryptographic Library", 2016, <https://
github.com/miracl/amcl/tree/master/version22>.

Bowe, S., Chiesa, A., Green, M., Miers, I., Mishra, P.,
and H. Wu, "ZEXE: Enabling Decentralized Private
Computation", DOI 10.1109/SP40000.2020.00050, IEEE

https://doi.org/10.1007/978-3-319-61204-1_4
https://doi.org/10.1007/978-3-319-61204-1_4
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8174
https://doi.org/10.1109/tit.2009.2034881
https://doi.org/10.1109/tit.2009.2034881
https://github.com/adjoint-io/pairing
https://github.com/adjoint-io/pairing
https://doi.org//10.1007/978-3-642-36334-4_11
https://medium.com/algorand/digital-signatures-for-blockchains-5820e15fbe95
https://medium.com/algorand/digital-signatures-for-blockchains-5820e15fbe95
https://medium.com/algorand/digital-signatures-for-blockchains-5820e15fbe95
https://github.com/apache/incubator-milagro-crypto
https://github.com/apache/incubator-milagro-crypto
https://github.com/miracl/amcl/tree/master/version22
https://github.com/miracl/amcl/tree/master/version22

Symposium on Security and Privacy 2020, 2020, <https://
doi.org/10.1109/SP40000.2020.00050>.

[BCM15] Barreto, P. S. L. M., Costello, C., Misoczki, R.,
Naehrig, M., Pereira, G. C. C. F., and G. Zanon,
"Subgroup security in pairing-based cryptography",
Cryptology ePrint Archive Report 2015/247, 2015,
<https://eprint.iacr.org/2015/247.pdf>.

[BGMORT10] Beuchat, J., Gonzalez-Diaz, J., Mitsunari, S., Okamoto,
E., Rodriguez-Henriquez, F., and T. Teruya, "High-Speed
Software Implementation of the Optimal Ate Pairing over
Barreto-Naehrig Curves'", DOI 10.1007/978-3-642-17455-1_2,
Pairing 2010 pp. 21-39, 2010, <https://doi.org/
10.1007/978-3-642-17455-1_ 2>,

[BL1O] Brickell, E. and J. Li, "Enhanced Privacy ID from
Bilinear Pairing for Hardware Authentication and
Attestation", DOI 10.1109/socialcom.2010.118, 2010 IEEE
Second International Conference on Social Computing,
August 2010, <https://doi.org/10.1109/socialcom.
2010.118>.

[b1ls12377js] The Celo Foundation, "bls12377js", 2019, <https://
github.com/celo-org/bls12377js>.

[BLS12_381] Bowe, S., "BLS12-381: New zk-SNARK Elliptic Curve
Construction", <https://electriccoin.co/blog/new-snark-
curve/>.

[BLS48] Kyushu University, "bls48 - C++ library for Optimal Ate
Pairing on BLS48", 2017, <https://github.com/mk-math-

kyushu/bls48>.

[cCS07] Chen, L., Cheng, Z., and N. Smart, "Identity-based key
agreement protocols from pairings", DOI 10.1007/
s10207-006-0011-9, International Journal of Information
Security Vol. 6, pp. 213-241, January 2007, <https://
doi.org/10.1007/s10207-006-0011-9>,

[CFo6] Cohen, H. and G. Frey, "Handbook of Elliptic and
Hyperelliptic Curve Cryptography", DOI

https://doi.org/10.1109/SP40000.2020.00050
https://doi.org/10.1109/SP40000.2020.00050
https://eprint.iacr.org/2015/247.pdf
https://doi.org/10.1007/978-3-642-17455-1_2
https://doi.org/10.1007/978-3-642-17455-1_2
https://doi.org/10.1109/socialcom.2010.118
https://doi.org/10.1109/socialcom.2010.118
https://github.com/celo-org/bls12377js
https://github.com/celo-org/bls12377js
https://electriccoin.co/blog/new-snark-curve/
https://electriccoin.co/blog/new-snark-curve/
https://github.com/mk-math-kyushu/bls48
https://github.com/mk-math-kyushu/bls48
https://doi.org/10.1007/s10207-006-0011-9
https://doi.org/10.1007/s10207-006-0011-9

[Cheon06]

[Chia]

[CIRCL]

[CLNO9]

10.1201/9780367801625, Chapman and Hall CRC, 2006,
<https://doi.org/10.1201/9780367801625>.

Cheon, J. H., "Security Analysis of the Strong Diffie-
Hellman Problem", DOI 10.1007/11761679_1, EUROCRYPT 2006
pp. 1-11, 2006, <https://doi.org/10.1007/11761679 1>.

Chia Network, "BLS signatures in C++, using the relic
toolkit", <https://github.com/Chia-Network/bls-
signhatures>.

Cloudflare, "CIRCL: Cloudflare Interoperable, Reusable
Cryptographic Library", 2019, <https://github.com/
cloudflare/circl>.

Costello, C., Lange, T., and M. Naehrig, "Faster Pairing
Computations on Curves with High-Degree Twists",
Cryptology ePrint Archive Report 2009/615, 2009,
<https://eprint.iacr.org/2009/615.pdf>.

[Cloudflare] Sullivan, N., "Geo Key Manager: How It Works",

[DFINITY]

[DSDO7]

[ECRYPT]

[EPID]

[Ethereum]

[FIDO]

<https://blog.cloudflare.com/geo-key-manager-how-it-
works/>.

wWilliams, D., "DFINITY Technology Overview Series
Consensus System Rev. 1", n.d., <https://dfinity.org/pdf-

viewer/library/dfinity-consensus.pdf>.

Devegili, A. J., Scott, M., and R. Dahab, "Implementing

Cryptographic Pairings over Barreto-Naehrig Curves", DOI
10.1007/978-3-540-73489-5_10, Pairing 2007 pp. 197-207,

2007, <https://doi.org/10.1007/978-3-540-73489-5_10>.

ECRYPT, "Final Report on Main Computational Assumptions
in Cryptography".

Intel Corporation, "Intel (R) SGX: Intel (R) EPID
Provisioning and Attestation Services", <https://
software.intel.com/en-us/download/intel-sgx-intel-epid-
provisioning-and-attestation-services>.

Jordan, R., "Ethereum 2.0 Development Update #17 -
Prysmatic Labs", <https://medium.com/prysmatic-labs/
ethereum-2-0-development-update-17-prysmatic-labs-
ed5bcf82ec00>.

Lindemann, R., "FIDO ECDAA Algorithm - FIDO Alliance
Review Draft 02", <https://fidoalliance.org/specs/fido-
v2.0-rd-20180702/fido-ecdaa-algorithm-v2.0-
rd-20180702.html>.

https://doi.org/10.1201/9780367801625
https://doi.org/10.1007/11761679_1
https://github.com/Chia-Network/bls-signatures
https://github.com/Chia-Network/bls-signatures
https://github.com/cloudflare/circl
https://github.com/cloudflare/circl
https://eprint.iacr.org/2009/615.pdf
https://blog.cloudflare.com/geo-key-manager-how-it-works/
https://blog.cloudflare.com/geo-key-manager-how-it-works/
https://dfinity.org/pdf-viewer/library/dfinity-consensus.pdf
https://dfinity.org/pdf-viewer/library/dfinity-consensus.pdf
https://doi.org/10.1007/978-3-540-73489-5_10
https://software.intel.com/en-us/download/intel-sgx-intel-epid-provisioning-and-attestation-services
https://software.intel.com/en-us/download/intel-sgx-intel-epid-provisioning-and-attestation-services
https://software.intel.com/en-us/download/intel-sgx-intel-epid-provisioning-and-attestation-services
https://medium.com/prysmatic-labs/ethereum-2-0-development-update-17-prysmatic-labs-ed5bcf82ec00
https://medium.com/prysmatic-labs/ethereum-2-0-development-update-17-prysmatic-labs-ed5bcf82ec00
https://medium.com/prysmatic-labs/ethereum-2-0-development-update-17-prysmatic-labs-ed5bcf82ec00
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-ecdaa-algorithm-v2.0-rd-20180702.html
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-ecdaa-algorithm-v2.0-rd-20180702.html
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-ecdaa-algorithm-v2.0-rd-20180702.html

[FK18]

[FM19]

Fotiadis, G. and E. Konstantinou, "TNFS Resistant
Families of Pairing-Friendly Elliptic Curves", Cryptology
ePrint Archive Report 2018/1017, 2018, <https://
eprint.iacr.org/2018/1017.pdf>.

Fotiadis, G. and C. Martindale, "Optimal TNFS-secure
pairings on elliptic curves with composite embedding
degree", Cryptology ePrint Archive Report 2019/555, 2019,
<https://eprint.jiacr.org/2019/555. pdf>.

[Freeman06] Freeman, D., "Constructing pairing-friendly elliptic

[FSU10]

[HR83]

curves with embedding degree 10", DOI
10.1007/11792086_32, ANTS 2006 pp. 452-465, 2006,
<https://doi.org/10.1007/11792086 32>.

Fujioka, A., Suzuki, K., and B. Ustaoglu, "Ephemeral Key
Leakage Resilient and Efficient ID-AKEs That Can Share
Identities, Private and Master Keys'", DOI
10.1007/978-3-642-17455-1_12, Lecture Notes in Computer
Science pp. 187-205, 2010, <https://doi.org/
10.1007/978-3-642-17455-1_12>.

Hellman, M. and J. Reyneri, "Fast Computation of Discrete
Logarithms in GF (q)", DOI 10.1007/978-1-4757-0602-4_1,
Advances in Cryptology pp. 3-13, 1983, <https://doi.org/
10.1007/978-1-4757-0602-4 1>,

[I-D.boneh-bls-signature] Boneh, D., Gorbunov, S., Wee, H., and Z.

Zhang, "BLS Signature Scheme", Work in Progress,
Internet-Draft, draft-boneh-bls-signature-00, 8 February
2019, <https://datatracker.ietf.org/doc/html/draft-boneh-
bls-signature-00>.

[I-D.ietf-1wig-curve-representations]

Struik, R., "Alternative Elliptic Curve Representations",
Work in Progress, Internet-Draft, draft-ietf-lwig-curve-
representations-08, 24 July 2019, <https://
datatracker.ietf.org/doc/html/draft-jetf-Iwig-curve-
representations-08>.

[I-D.irtf-cfrg-hash-to-curve] Faz-Hernandez, A., Scott, S.,

[IEEE1363]

Sullivan, N., Wahby, R., and C. Wood, "Hashing to
Elliptic Curves", Work in Progress, Internet-Draft,
draft-irtf-cfrg-hash-to-curve-09, 29 June 2020, <https://
datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-
curve-09>.

"IEEE Standard Specifications for Public-Key
Cryptography", IEEE standard, DOI 10.1109/IEEESTD.

https://eprint.iacr.org/2018/1017.pdf
https://eprint.iacr.org/2018/1017.pdf
https://eprint.iacr.org/2019/555.pdf
https://doi.org/10.1007/11792086_32
https://doi.org/10.1007/978-3-642-17455-1_12
https://doi.org/10.1007/978-3-642-17455-1_12
https://doi.org/10.1007/978-1-4757-0602-4_1
https://doi.org/10.1007/978-1-4757-0602-4_1
https://datatracker.ietf.org/doc/html/draft-boneh-bls-signature-00
https://datatracker.ietf.org/doc/html/draft-boneh-bls-signature-00
https://datatracker.ietf.org/doc/html/draft-ietf-lwig-curve-representations-08
https://datatracker.ietf.org/doc/html/draft-ietf-lwig-curve-representations-08
https://datatracker.ietf.org/doc/html/draft-ietf-lwig-curve-representations-08
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-09
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-09
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-09

2000.92292, 2000, <https://doi.org/10.1109/IEEESTD.
2000.92292>,

[Intel-IPP] Intel Corporation, "Developer Reference for Intel
Integrated Performance Primitives Cryptography 2019",
2018, <https://software.intel.com/en-us/ipp-crypto-
reference-arithmetic-of-the-group-of-elliptic-curve-

points>.

[ISOIEC11770-3] ISO/IEC, "ISO/IEC 11770-3:2015", ISO/IEC Information
technology -- Security techniques -- Key management --
Part 3: Mechanisms using asymmetric techniques, 2015.

[ISOIEC15946-5] ISO/IEC, "ISO/IEC 15946-5:2017", ISO/IEC Information
technology -- Security techniques -- Cryptographic
techniques based on elliptic curves -- Part 5: Elliptic
curve generation, 2017.

[Joux060] Joux, A., "A One Round Protocol for Tripartite Diffie-
Hellman", DOI 10.1007/10722028_23, Lecture Notes in
Computer Science pp. 385-393, 2000, <https://doi.org/
10.1007/10722028 23>.

[KSS08] Kachisa, E., Schaefer, E., and M. Scott, "Constructing
Brezing-Weng Pairing-Friendly Elliptic Curves Using
Elements in the Cyclotomic Field", DOI
10.1007/978-3-540-85538-5_9, Pairing 2008 pp. 126-135,
2008, <https://doi.org/10.1007/978-3-540-85538-5_9>.

[1libsnark] SCIPR Lab, "libsnark: a C++ library for zkSNARK proofs",
2012, <https://github.com/zcash/libsnark>.

[M-Pin] Scott, M., "M-Pin: A Multi-Factor Zero Knowledge
Authentication Protocol", July 2019, <https://
www.miracl.com/miracl-labs/m-pin-a-multi-factor-zero-
knowledge-authentication-protocol>.

[MAF19] Mbiang, N.B., Aranha, D.F., and E. Fouotsa, "Computing
the Optimal Ate Pairing over Elliptic Curves with
Embedding Degrees 54 and 48 at the 256-bit security
level"”, International Journal of Applied Cryptography to
appear, 2019, <https://www.researchgate.net/publication/
337011283 Computing the Optimal Ate Pairing over Elliptic
Curves with Embedding Degrees 54 and 48 at the 256-
bit security level>.

[mcl] Mitsunari, S., "mcl - A portable and fast pairing-based
cryptography library", 2016, <https://github.com/herumi/
mcl>.

https://doi.org/10.1109/IEEESTD.2000.92292
https://doi.org/10.1109/IEEESTD.2000.92292
https://software.intel.com/en-us/ipp-crypto-reference-arithmetic-of-the-group-of-elliptic-curve-points
https://software.intel.com/en-us/ipp-crypto-reference-arithmetic-of-the-group-of-elliptic-curve-points
https://software.intel.com/en-us/ipp-crypto-reference-arithmetic-of-the-group-of-elliptic-curve-points
https://doi.org/10.1007/10722028_23
https://doi.org/10.1007/10722028_23
https://doi.org/10.1007/978-3-540-85538-5_9
https://github.com/zcash/libsnark
https://www.miracl.com/miracl-labs/m-pin-a-multi-factor-zero-knowledge-authentication-protocol
https://www.miracl.com/miracl-labs/m-pin-a-multi-factor-zero-knowledge-authentication-protocol
https://www.miracl.com/miracl-labs/m-pin-a-multi-factor-zero-knowledge-authentication-protocol
https://www.researchgate.net/publication/337011283_Computing_the_Optimal_Ate_Pairing_over_Elliptic_Curves_with_Embedding_Degrees_54_and_48_at_the_256-bit_security_level
https://www.researchgate.net/publication/337011283_Computing_the_Optimal_Ate_Pairing_over_Elliptic_Curves_with_Embedding_Degrees_54_and_48_at_the_256-bit_security_level
https://www.researchgate.net/publication/337011283_Computing_the_Optimal_Ate_Pairing_over_Elliptic_Curves_with_Embedding_Degrees_54_and_48_at_the_256-bit_security_level
https://www.researchgate.net/publication/337011283_Computing_the_Optimal_Ate_Pairing_over_Elliptic_Curves_with_Embedding_Degrees_54_and_48_at_the_256-bit_security_level
https://github.com/herumi/mcl
https://github.com/herumi/mcl

[MIRACL]
MIRACL Ltd., "The MIRACL Core Cryptographic Library",
2019, <https://github.com/miracl/core>.

[MNTO1] Miyaji, A., Nakabayashi, M., and S. Takano, "New explicit
conditions of Elliptic Curve Traces under FR reduction",
IEICE Trans. Fundamentals. E84-A(5) pp. 1234-1243, 2001.

[Montgomery] Montgomery, P., "Speeding the Pollard and Elliptic
Curve Methods of Factorization", MATHEMATICS OF
COMPUTATION , January, 1987, <https://www.ams.org/
journals/mcom/1987-48-177/S0025-5718-1987-0866113-7/
S0025-5718-1987-0866113-7 . pdf>.

[MPO4] Guillevic, A., Masson, S., and E. Thome, "Cocks-Pinch
curves of embedding degrees five to eight and optimal ate
pairing computation", Cryptology ePrint Archive Report
2019/431, 2019, <https://eprint.iacr.org/2004/032.pdf>.

[NASKMO8] Nogami, Y., Akane, M., Sakemi, Y., Kato, H., and Y.
Morikawa, "Integer Variable X-Based Ate Pairing", DOI
10.1007/978-3-540-85538-5_13, Pairing 2008 pp. 178-191,
2008, <https://doi.org/10.1007/978-3-540-85538-5 13>.

[PBC] Lynn, B., "PBC Library - The Pairing-Based Cryptography
Library", 2006, <https://crypto.stanford.edu/pbc/>.

[Pollard78] Pollard, J., "Monte Carlo methods for index computation
$({\rm mod}\ p)$", DOI 10.1090/s0025-5718-1978-0491431-9,
Mathematics of Computation Vol. 32, pp. 918-918,
September 1978, <https://doi.org/10.1090/
S0025-5718-1978-0491431-9>.

[pureGo-bls] Meyer, J., "Pure GO bls library", 2019, <https://
github.com/phoreproject/bls>.

[RELIC] Gouvea, C.P.L., "RELIC is an Efficient LIbrary for
Cryptography", 2013, <https://github.com/relic-toolkit/
relic>.

[RFC5091] Boyen, X. and L. Martin, "Identity-Based Cryptography
Standard (IBCS) #1: Supersingular Curve Implementations
of the BF and BB1 Cryptosystems", RFC 5091, DOI 10.17487/
RFC5091, December 2007, <https://www.rfc-editor.org/info/
rfc5091>.

[RFC6508] Groves, M., "Sakai-Kasahara Key Encryption (SAKKE)", RFC
6508, DOI 10.17487/RFC6508, February 2012, <https://
www.rfc-editor.org/info/rfc6508>.

https://github.com/miracl/core
https://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866113-7/S0025-5718-1987-0866113-7.pdf
https://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866113-7/S0025-5718-1987-0866113-7.pdf
https://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866113-7/S0025-5718-1987-0866113-7.pdf
https://eprint.iacr.org/2004/032.pdf
https://doi.org/10.1007/978-3-540-85538-5_13
https://crypto.stanford.edu/pbc/
https://doi.org/10.1090/s0025-5718-1978-0491431-9
https://doi.org/10.1090/s0025-5718-1978-0491431-9
https://github.com/phoreproject/bls
https://github.com/phoreproject/bls
https://github.com/relic-toolkit/relic
https://github.com/relic-toolkit/relic
https://www.rfc-editor.org/info/rfc5091
https://www.rfc-editor.org/info/rfc5091
https://www.rfc-editor.org/info/rfc6508
https://www.rfc-editor.org/info/rfc6508

[RFC6509]

[RFC6539]

[RFC8017]

[S86]

[SAKKE]

[SEC1]

[S619]

[TEPLA]

[TPM]

[w3C]

[Zcash]

[ZCashRep]

Groves, M., "MIKEY-SAKKE: Sakai-Kasahara Key Encryption
in Multimedia Internet KEYing (MIKEY)", RFC 6509, DOI
10.17487/RFC6509, February 2012, <https://www.rfc-
editor.org/info/rfc6509>.

Cakulev, V., Sundaram, G., and I. Broustis, "IBAKE:
Identity-Based Authenticated Key Exchange", RFC 6539, DOI
10.17487/RFC6539, March 2012, <https://www.rfc-
editor.org/info/rfc6539>.

Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A.
Rusch, "PKCS #1: RSA Cryptography Specifications Version
2.2", RFC 8017, DOI 10.17487/RFC8017, November 2016,
<https://www.rfc-editor.org/info/rfc8017>.

Silverman, J. H., "The arithmetic of elliptic curves",
Springer GTM 106, 1986.

3GPP, "Security of the mission critical service (Release
15)", 3GPP TS 33.180 15.3.0, 2018.

Standards for Efficient Cryptography Group (SECG), "SEC
1: Elliptic Curve Cryptography", 2009, <https://
www.secg.org/secl-v2.pdf>.

Scott, M. and A. Guillevic, "A New Family of Pairing-
Friendly elliptic curves", Cryptology ePrint Archive
Report 2019/193, 2019, <https://eprint.iacr.org/

2018/193.pdf>.

University of Tsukuba, "TEPLA: University of Tsukuba
Elliptic Curve and Pairing Library", 2013, <http://
www.cipher.risk.tsukuba.ac.jp/tepla/index e.html>.

Trusted Computing Group (TCG), "Trusted Platform Module
Library Specification, Family \"2.0\", Level 00, Revision
01.38", <https://trustedcomputinggroup.org/resource/tpm-
library-specification/>.

Lundberg, E., "Web Authentication: An API for accessing
Public Key Credentials Level 1 - W3C Recommendation",
<https://www.w3.0rg/TR/webauthn/>.

Lindemann, R., "What are zk-SNARKs?", <https://z.cash/
technology/zksnarks.html>.

Electric Coin Company, "BLS12-381", July 2017, <https://
github.com/zkcrypto/pairing/blob/master/src/bls12 381/
README . md>.

https://www.rfc-editor.org/info/rfc6509
https://www.rfc-editor.org/info/rfc6509
https://www.rfc-editor.org/info/rfc6539
https://www.rfc-editor.org/info/rfc6539
https://www.rfc-editor.org/info/rfc8017
https://www.secg.org/sec1-v2.pdf
https://www.secg.org/sec1-v2.pdf
https://eprint.iacr.org/2018/193.pdf
https://eprint.iacr.org/2018/193.pdf
http://www.cipher.risk.tsukuba.ac.jp/tepla/index_e.html
http://www.cipher.risk.tsukuba.ac.jp/tepla/index_e.html
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://www.w3.org/TR/webauthn/
https://z.cash/technology/zksnarks.html
https://z.cash/technology/zksnarks.html
https://github.com/zkcrypto/pairing/blob/master/src/bls12_381/README.md
https://github.com/zkcrypto/pairing/blob/master/src/bls12_381/README.md
https://github.com/zkcrypto/pairing/blob/master/src/bls12_381/README.md

[zkcrypto]
zkcrypto, "zkcrypto - Pairing-friendly elliptic curve
library", 2017, <https://github.com/zkcrypto/pairing>.

Appendix A. Computing the Optimal Ate Pairing

Before presenting the computation of the optimal Ate pairing e(P, Q)
satisfying the properties shown in Section 2.2, we give the
subfunctions used for the pairing computation.

The following algorithm, Line_Function shows the computation of the
line function. It takes Q_1 = (x_1, x_2), Q.2 = (x_2, y_2) in G_2,
and P = (X, y) in G_1 as input, and outputs an element of G_T.

if (Q_1 = Q_2) then

1 := (3 * x.1r2) / (2 * y_1);
else if (Q_1 = -Q_2) then

return x - x_1;
else

1:=(y2-y1)/ (x2-x1);
end if;
return (1 * (x - x_1) + y_1 - vy);

When implementing the line function, implementers should consider
the isomorphism of E and its twist curve E' so that one can reduce
the computational cost of operations in G_2 [CLNG9][KIK17]. We note
that Line_function does not consider such an isomorphism.

The computation of the optimal Ate pairing uses the Frobenius
endomorphism. The p-power Frobenius endomorphism pi for a point Q =

(x, y) over E' is pi(p, Q) = (X"p, y"p).
A.1. Optimal Ate Pairings over Barreto-Naehrig Curves

Let c =6 * t + 2 for a parameter t and ¢c_0, c_1, ... , c_L in
{-1,0,1} such that the sum of c_i * 221 (i =0, 1, ..., L) equals c.

The following algorithm shows the computation of the optimal Ate
pairing on BN curves. It takes P in G_1, Q in G_2, an integer c,
c_0, ...,c_L in {-1,0,1} such that the sum of c_i * 2Ai (i = 0, 1,

., L) equals c, and the order r of G_1 as input, and outputs e(P,
Q).

https://github.com/zkcrypto/pairing

f: =1, T :=Q;
if (c_L = -1) then
T = -T;
end if
for i = L-1 downto ©
f := fA2 * Line_function(T, T, P); T (=T + T;
if (c_i = 1) then
f := f * Line_function(T, Q, P); T :=T + Q;

else if (c_i = -1) then
f = f * Line_function(T, -Q, P); T :=T - Q;
end if
end for

Q_1 := pi(p, Q); Q2 := pi(p, Q.1);

f = f * Line_function(T, Q_.1, P); T := T + Q_1;
f := f * Line_function(T, -Q_2, P);

f = fA{(prk - 1) / r}

return f;

A.2. Optimal Ate Pairings over Barreto-Lynn-Scott Curves

Let ¢ = t for a parameter t and ¢c_0, c_1, ... , c_L in {-1,0,1} such
that the sum of c_i * 2Ai (i =0, 1, ..., L) equals c.

The following algorithm shows the computation of the optimal Ate
pairing on Barreto-Lynn-Scott curves. It takes P in G_1, Q in G_2,
an integer ¢, ¢c_0, ...,c_L in {-1,0,1} such that the sum of c_i *
2Ani (1 =0, 1, ..., L) equals c, and the order r of G_1 as input,
and outputs e(P, Q).

f:=1;, T :=Q;
if (c_L = -1) then
T := -T,
end if
for 1 = L-1 downto 0@
f := fA2 * Line_function(T, T, P); T (=T + T;
if (c_i = 1) then
f := f * Line_function(T, Q, P); T :=T + Q;
else if (c_i = -1) then
f := f * Line_function(T, -Q, P); T :=T - Q;
end if
end for
f = fA{(prk - 1) / r};
return f;

Appendix B. Test Vectors of Optimal Ate Pairing

We provide test vectors for Optimal Ate Pairing e(P, Q) given in
Appendix A for the curves BLS12_381, BN462 and BLS48_581 given in

Section 4. Here, the inputs P = (x, y) and Q = (x', y') are the
corresponding base points BP and BP' given in Section 4.

For BLS12_381 and BN462, Q = (x', y') is given by

X' 0+ x'_1 * u and
y' 0 +y' 1*u,

X
y 1

where u is an indeterminate and x'_0, x'_1, y'_0, y'_1 are elements
of GF(p).

For BLS48_581, Q = (x', y') is given hy

X'"=x"0+x"_1*u+x'_2*v+x'_3* v
+ x' 4 *w+ x'"5*u*w+x'_6* *w+ Xx'_7*u*v *wand
yl :yl_0+yl_1*u+yl_2~kv+yl_3~k *V
+y'_4*W+y'_5*U*W+y'_6*V*W+y'_7*U*V*W,
where u, v and w are indeterminates and x'_0, ..., x'_7 and y'_0,

., y'_7 are elements of GF(p). The representation of Q = (x', y')
given below is followed by [I-D.ietf-lwig-curve-representations].

In addition, we use the notation e_i (i =0, ..., k-1) to represent
each element in e(P, Q), where the extension field that e(P, Q)
belongs is constructed according to [I-D.ietf-lwig-curve-
representations].

BLS12 381:

Input x value:
0x17f1d3a73197d7942695638c4fa9ac0fc3688c4f9774b905a14e3a3f171bac586c55e83ff97alaeffb3a

Input y value:
0x08b3f481e3aaa®flaf9e30ed741d8ae4fcf5e095d5d00af600db18ch2c04b3edd@3cc744a2888ae40caar

Input x'_0 value:
0x024aa2b2f08f0a91260805272dc51051c6e47ad4fa403b02b4510b647ae3d1770bac0326a805bbefd480!

Input x'_1 value:
0x13e02b6052719f607dacd3a088274165596bd0d09920b61ab5da61bbdc75049334cf11213945d57e5ac

Input y'_0 value:
Ox0ce5d527727d6el118cc9cdcb6daze35laadfd9baa8chdd3a76d429a695160d12c923ac9cc3baca289e193!

Input y'_1 value:
0x0606c4a02ea734cc32acd2b02bc28b99ch3e287e85a763af267492ab572e99ab3f370d275cecidalaaa9l

e_0:
0x11619b45f61edfe3b47al15fac19442526TF489dcda25e59121d9931438907dfd448299a87dde3a649bdb:

e_1:
0x153cel4a76a53e205ba8f275ef1137¢c56a566T638b52d34ba3bf3bf221277d70176316218c0dfd583a39:

e 2:
0x095668Tb4a02fe930ed44767834c915hb283b1c6ca98c047bd4c272e9ac3f3babffOb05a93e59c71fba77l

e_3:
0x16deedaa683124fe7260085184d88f7d036b86T53bb5b7f1fc5e248814782065413e7d958d17960109eal

e_4:
0x09c92cfP2f3cd3d2f9d34bc44eee0dd50314ed44casd30ce6a9ecO539be7a86b121edc61839ccc908c4bi

e_b:
0x111061f398efc2a97ff825b04d21089e24fd8b93ad47ed41e60eae7e9b2a38d54fad4dedced®811c34ce528

0x01lecfcf31c86257ab00b4709c33T1c9c4e007659dd5fc4a735192167cel97058cfb4c94225e7T1b6C26:

e 7:
0x08890726743a1194a8193a166800b7787744a8ad8e2f9365db76863e894b7a11d83190d873567e9d645¢C

e_8:
Ox0e61c752414ca5dfd258e9606bac08daec29h3e2c57062669556954Fh227d37f1260eedf25446a086b084-

e_9:
Ox0fe637f185f56dd29150Tc498bbeea78969e7e783043620db33f75a05a0a2ce5c442beatf9dal95ff1516-

e_10:
0x10900338a92ed0b47af211636Ff7cfdec717b7ee43900eee9b5fc24f0000c5874d4801372db478987691cC!

e_11:
0x1454814f308570e6602247671bc408bbce2007201536818c901dbd4d2095dd86c1ec8b888e59611f60a3

BN462:

Input x value:
0x21a6d67ef250191fadba34a0al30160b9ac9264b6f95f63b3edbec3cf4b2e689dblbbb4e69a416a0ble79:

Input y value:
0x0118ea0460f7f7abb82b33676a7432a490eeda842cccfa7d788c659650426e6af77df11b8ae40eb80T47!

Input x'_0 value:
0x0257ccc85b58dda®dfb38e3a8chdc5482e0337e7c1cd96ed61c913820408208F9ad2699bad92e0032ae1l !

Input x'_1 value:
0x1d2e4343e8599102af8edca849566ba3c98e2a354730chbed9176884058b18134dd86bae555b78371850:

Input y'_0 value:
0x0a0650439da22¢c1979517427a20809eca035634706e23c3fa7abbb42fe810f1399a1f41c9ddae32e0369!

Input y'_1 value:
0x073efOchd438che0172c8ae37306324d44d5e6b0c69ac57b393F1ab370fd725¢cc647692444a04ef87387:

e_0:
OX0cT7f0f2e01610804272Ff4a7a24014ac085543d787¢c8F8bTO7059F93Ff87ba7e2a4ac77835d4ff10e7866!

e_1:
0x00ef2c737515694ee5b85051e39970T24e27¢ca278847c7cfa709b0df408b830b3763b1b00111194445h6:!

e 2:
0x04d685b29fd2b8faedacd36873124a06158742bb2328740193827934592d611723e0772bb9ccd3025188

e_3:
0x090067ef2892de0c48ee49chbe4ff1f835286¢c700c8d191574ch424019del11142b3c722cc5083a7191241:

e_4:
0x1437603b60dce235a090¢c43f5147d9¢c03bd63081c8bb1ffa7d8a2c31d673230860bb3dfe4ca85581f745¢

e 5:
0x13191b1110d13650bT8e76b356fe776eb9d7a03fe33f82e3fe5732071f305d201843238cc96fd0e892bc!

0x07b1ce375c0191c786bb184cc9cO8abae5a569dd7586F75d6d2de2b2f075787ee5082d44ca4b8009b328!

e 7:
0x05b64add5e49574b124a02d857508c8d2d37993ae4c370a9cda89a100cdb5e1d441b57768dbc68429f far

e_8:
0x0fd9a3271854a2hb4542b42c55916el1faf7a8b87a7d10907179ac7073f6al1de044906ffaf4760d11c8T92¢

e_9:
Ox17fabGc7fab60c9a6d4d8bb9897991efd087899edc776f33743db921a689720c82257ee3¢c788e8160c112f:

e_10:
0x0c901397a62bb185a8f9cf336e28cfh0f354e2313f99¢c538cdceedf8b8aa22¢c23b896201170fc915690f

e_11:
0x20f27fde93cee94ca4bf9ded1b1378c1b0d80439eeb1d0c8daef30db0037104a5e32a2ccc94fal860a95¢

BLS48_581:

Input x value:
0x02af59b7ac340f2baf2b73df1e93f860de3f257e0e86868cf6labdbaedffb9f7544550546a9df61 96458

Input y value:
Ox0cefdad44f6531f91f86b3a2d1fbh398a488a553c9efeh8a52e€991279dd41b720ef7bb7beffb98aee53e80

X' _0:

0x05d615d9a7871e4a38237fad45a2775debabbefc70344dbccb7de64db3a2ef156c46ff79baadla8c42281:

x'_1:
OXx07c4973ece2258512069b0e86abc®7e8b22bb6d980e1623e9526f6dal12307f4el1c3943a00abfedf16214:

x'_2:
0x01fccc70198T1334el1b2eal853ad83bc73a8a6ca9ae237ca7a6d6957cchab5ab6860161cl1dbd19242f fal

x'_3:
0Ox0be2218c25ceb6185¢c78d8012954d4bfe8f5985ac62f3e5821b7b92a39318be0Occ218a95f63elc776e6e

x'_4:
Ox038b91c600b35913a3c598e4caa9dd63007c675d0b1642b5675Ff0e7c5805386699981f9e48199d5ac10l

x'_5:
OX0c96¢c7797eb0738603f1311ed4ecdaf88f7b8f35dcef0977a3d1a58677bb037418181df63835d28997eb5’

x'_6:
Ox0b9b7951c6061ee3f0197a498908aee660dead1b39d13852b6db908ha2cOb7a449cef11f293b13cedOfd(

X' 7:
0x0827d5c22fbh2bdec5282624c4f4aaa2bles5d7a9defaf47b5211cf741719728a7f9f8cfca93f29cff364a’

y'_0:
0Xx00eb53356c375b5dfa497216452f3024b918b4238059a577e6T3b39ebfc435faab0906235afa27748d906

y'_1:
0x0284dc75979e0ff144da6531815fcadc2b75a422ba325e6fba01d72964732fchbf3afb096b243b1f192¢c5

y'_2:

0x0b36a201dd008523e421efb70367669ef2c2fc5030216d5b119d3a480d37051447577d5¢c99d0e9041151!

y'_3:
Ox0aec25a4621edc0688223fbbd478762blc2cded3360dcee23dd8hb0e710e122d2742c89b224333fa40dce

y'_4:
0x0d209d5a223a9¢c46916503fa5a88325a2554dc541b43dd93b5a95980511129857ed85¢c77fa238cdce8ails

y'_5:
0x07d0d03745736b7a513d339d5ad537b90421ad66ehb16722b589d82e2055ab7504fa83420e8c27084168:

y'_6:
0x0896767811be65ea25c2d05dfdd17af8a006T364Ffc0841b064155F14e4c819a6df98f425ae3a2864f22c:

y'_7:
0x035e2524ff89029d393a5c07e841f981b5e068T1406be8e50c87549b6ef8ecafa9533a3f8e69¢c31e97elal

e_0:
0x0e26c3fch8ef67417814098de5111ffccccl1d003d15b367bad07cef2291a93d31db03e3f0337613beae?]

e_1:
0x069061b8047279aa5c2d25cdf676ddf34eddbc8ec2ecOf03614886Ffa828el1fc066b26d35744c0c382718-

e _2:
0x02b9bece645Fbf9d8f97025a1545359Ff6Fe3ffab3cd57094Ff862F7fb9cadl1c88705¢c26675bcc723878e9:-

e_3:
0Ox0080d267bf036c1e61d7fc73905e8c630b97aak5ef3266c82e7a111072¢c0d2056baa8137fbal111c9650d

e _4:
0x03c6b4c12133819401e6a493a405b33e64389338db8c5e592a8dd79eac7720dd83dd6b0c189eeda20809:

e 5:
0x016e46224128bfd8833f76ac29eeb6e406a9dalbde5515e82b3bd977897a9104f18b9eed1lea9af7d4183d:

e_6:
0x008ddce7ad4alb94be5df3ceeas56bef0077dcdde86d579938a50933a47296d337b7629934128e2457e241.-

e_

e_

e_

e

e_

e

e_

e_

e_

e_

e_

e_

7:
0Ox060ef6eae55728e40bd4628265218b24b38cdd434968c14bfefb87fodchfc76cc473ae2dcOcac6e69dfd:

8:
0x0c3943636876Fd419393414099a746T84b2633dfb7c36ba6512a0b48e66dch2e409f1b9e150e36b0b431:

9:
0x02d31eb8bedd923cac2a8ebh6a07556c8951d849ec53c2848ee78c5eed40262eb21822527a8555b071f1c

_10:

0x07119673c5580d6a10d09a032397c5d425c3a99ffldd@abe5bec40a0d47a6b8daabb22edb6b06dd86919!

11:
0x0d3fe01f0c114915¢c3bdf8089377780076c1685302279fd9ab12d07477aac03bh69291652e9f179baada9

_12:

0x0662eefd5fab9509aed968866bh68cTT3bc5d48ecc8ac6867c212a2d82cee5a689a3c9c67f1d6lladac? 2

13:
Ox0aad8f4a8cfdca8de0985070304fe4f4d32f99b01d4ea50d9f7cd2abdcPaeea99311a36ec6ed18208642¢

14:
Ox0ffcf21d641fd9c6a641a749d80cablbcad4b34ee97567d905ed9d5¢cfb74e9aef19674e2eb6ce3dfb706:

15:
0x0che92a53151790cece4a86f91e9b31644a86fc4c954e5fa04e707beb69fc60a858fed8ebd53e4cfd515-

16:
0x0202db83b1ff33016679b6cfc8931deeacdf1485c894dcdl113bact564411519a42026b5fda4e1626267 4

17:
OXx070a617ed131b857f5b74b625c4ef70cc567f619defb5f2ab67534al1a8aa72975fc4248ac8551ce02hb68:¢

18:
Ox070elebced57c141417188423127b7a7321424f64119d5089d883¢chb953283ee4el1f2e01ffa7b903fe7a9-

_19:

e_

e

e_

e_

e_

e_

e_

e_

e_

e_

e

e_

0x058a06be5a36c6148d8al1287ee7f0e725453falbb05cf77239f235b417127e370cfa4f88e61a23eal6df:

20:
Ox0dfdfaaeb9349cf18d21b92ad68f8a7ecc509c35fcd4b8abeb93be7a204ac87112195180206a2c340fccl

_21:

0Ox0d06c8adfdd81275da2a®cel375b8df9199Ff3d359e8cf50064a3dc10a592417124a3b705b05a7ffe78e20

22:
0x0708effd28c4ae21b6969ch9bddOc27f8a3e341798b6T6d4bat27be259b4a47688b50ch68a69a917a4al:

23:
Ox09da7c7aad48ce571f8ece74b98431bl14ae6fb4a53ae979cd6b2e82320e8d25a0ecelcals63aabaa6926e

24:
0x0a7150a14471994833d89f41daeaa999dfc24a9968d4e33d88ed9e9f07aa2432c53e486ba6e3b6e4f4b8

25:
0x084696731ff27889d4dccdc4967964a5387a5ae071ad391¢c5723¢c9034f16c2557915ada®7ec68f18672b!

26:
0x0398e76e3d22021f999acOf73e0099fe4edfe2de9d223e78fc65¢c56e209cdf48f0d1ad8f6093e924ce5T 0«

27 :
0x06d683f556022368e7a633dc6Te319fd1d4fcOed7actf7c4d4177e83a911e73313e0ed980cd9197bd17ar

28:
0x0d764075344b70818f91b13ee445fd8c1587d1c0664002180bbac9a396ad4a8dc1e695b0c4267df4a090:!

29:
Ox0aaba32fdc4423b1c6d43e5104159bcd8e03a676d055d4496F7b1bc8761164a2908a3ff0e4c4d1f43620:

_30:

0x1147719959ac8eeah3fc913539784f1f947df47066b6cOclbeafecdb5fa784c3be9de5ab282a678a2a0cl

31:
0x11a377bcebd3c12702bb34044T06T8870ca712fb5caa6d30c48ace96898fchcddbcf31T331c9e524684c!

e_

e_

e_

e

e_

e

e_

e_

e_

e_

e_

e_

32:
0x0b8b4511f451ba2cc58dc28e56d5e1d0a8f557ech242f4d994a627e07cf3fa44e6d83ch907deact303d2

33:
0x090962d632ee2a57ce4208052ced47a9f76ead0fdad724b7256bb071f3944€9639a981d3431087241e30ae9l

34:
0x0931c7befc80acd185491c68af886fa8ee39c21ed3ebd743b9168ae3b298df485bfdc75b94fOb21aecd8

_35:

0x020aco07bf6c76ec827d53647058aca48896916269c6a2016b8c06T0130901c8975779F1672e581e2dfdl

36:
0x0c0aed0d890c3bOb673bT4981398dchTf0d15d36af6347a3959913a22584184828F78F91bbbbd08124a97!

_37:

Ox0ef7799241alba6baaa8740d5667alace50fbh8e63accc3bc30dcO7b11d78dc545b68910c027489a0d842¢

38:
0x016663c940d06214057257c8f4fb9b35e82541717a34582dd7d55b41ebadf40d486ed74570043b2a3c4d:

39:
0x1184a79510edf25e3bd2dc793a5082fa0fed0ds559fald4as5ce9ffcadc61f17196el1ffbb84326272e0dO79:

40:
0x120e47a747d942a593d202707c936dafa6fed489967dd94e48f317fd3c881b1041e3b6bbf9e8031d44e3!

41:
0x026b6e374108ecb2fe8d557087f40ab7bac8c5af0644a655271765d57ad71742aa331326d871610a8c4c:

42:
0x041be63a2fa643e5a66Taeb099a3440105c18dca58d51f74b3bf281da4e689b13f365273a2ed397e7blc:

43:
0x124018a12f0feaf881e6765e9e81071acc56ebcddadcd107750bd8697440cc16f190a3595633bb8900e6b:!

_44:

0x0d422de4a83449c535b4b9ece586754c941548715d50ada6740865be9cOb066788b6078727Cc7dee299ac

e_45:
0x1119f6c5468bce2ec2b450858dc073feadfbo5b6e83dd20c55¢c9cf694chcc57fcOeffb1d33b9b55878520

e_46:
0x061eaa8e9b0085364a61ea4f69c3516b6bTOT79T8c79d053e646€a637215¢cT6590203b275290872e3d7b:

e_47:
0x0add8d58e9ec0c9393ebh8c4bcOb08174a6b421e15040ef558da58d241e5f906ad6ca2aasde361421708at

Appendix C. ZCash serialization format for BLS12_381

This section describes the serialization format defined by
[ZCashRep]. It is not officially standardized by the standards
organization, however we show it in this appendix as a useful
reference for implementers. This format applies to points on the
BLS12_381 elliptic curves E and E', whose parameters are given in
Section 4.2.1. Note that this serialization method is based on the
representation shown in [SEC1] and it is a tiny tweak so as to apply
to GF(p”m).

At a high level, the serialization format is defined as follows:

*Serialized points include three metadata bits that indicate
whether a point is compressed or not, whether a point is the
point at infinity or not, and (for compressed points) the sign of
the point's y-coordinate.

*Points on E are serialized into 48 bytes (compressed) or 96 bytes
(uncompressed). Points on E' are serialized into 96 bytes
(compressed) or 192 bytes (uncompressed).

*The serialization of a point at infinity comprises a string of
zero bytes, except that the metadata bits may be nonzero.

*The serialization of a compressed point other than the point at
infinity comprises a serialized x-coordinate.

*The serialization of an uncompressed point other than the point
at infinity comprises a serialized x-coordinate followed by a
serialized y-coordinate.

Below, we give detailed serialization and de-serialization
procedures. The following notation is used in the rest of this
section:

*Elements of GF(p~2) are represented as polynomial with GF(p)
coefficients like Section 2.5.

*For a byte string str, str[0] is defined as the first byte of
str.

*The function sign_GF_p(y) returns one bit representing the sign
of an element of GF(p). This function is defined as follows:

sign_GF_p(y) (= {1 ify > (p - 1) / 2, else
{ 0 otherwise.

*The function sign_GF_p~2(y') returns one bit representing the
sign of an element in GF(p~2). This function is defined as
follows:

sign_GF_pA2(y') := { sign_GF_p(y'_0) if y'_1 equals 0, else
{1if y' 1> (p - 1) / 2, else
{ 0 otherwise.

C.1. Point Serialization Procedure

The serialization procedure is defined as follows for a point P =
(X, y). This procedure uses the I20SP function defined in [RFC8017].

1. Compute the metadata bits C_bit, I_bit, and S_bit, as follows:

*C_bit is 1 if point compression should be used, otherwise it
is 0.

*I_bit is 1 if P is the point at infinity, otherwise it is 0.

*S_bit is @ if P is the point at infinity or if point
compression is not used. Otherwise (i.e., when point
compression is used and P is not the point at infinity), if
P is a point on E, S_bit = sign_GF_p(y), else if P is a
point on E', S_bit = sign_GF_p~2(y).

2. Let m_byte = (C_bit * 2A7) + (I_bit * 2A6) + (S_bit * 2A5),

3. Let x_string be the serialization of x, which is defined as
follows:

*If P is the point at infinity on E, let x_string = I20SP(0,
48).

c.2.

*If P is a point on E other than the point at infinity, then
X 1is an element of GF(p), i.e., an integer in the inclusive
range [0, p - 1]. In this case, let x_string = I20SP(x, 48).

*If P is the point at infinity on E', let x_string = I20SP(0,
96).

*If P is a point on E' other than the point at infinity, then
X can be represented as (x_0, x_1) where x_0 and x_1 are
elements of GF(p), i.e., integers in the inclusive range [O,
p - 1] (see discussion of vector representations above). In
this case, let x_string = I20SP(x_1, 48) || I20SP(x_0, 48).

Notice that in all of the above cases, the 3 most significant
bits of x_string[0@] are guaranteed to be 0.

If point compression is used, let y_string be the empty string.
Otherwise (i.e., when point compression is not used), let
y_string be the serialization of y, which is defined in Step 3.

Let s_string = x_string || y_string.

Set s_string[0] = x_string[0®] OR m_byte, where OR is computed
bitwise. After this operation, the most significant bit of
s_string[0] equals C_bit, the next bit equals I_bit, and the
next equals S_bit. (This is true because the three most
significant bits of x_string[@] are guaranteed to be zero, as
discussed above.)

Output s_string.

Point deserialization procedure

The deserialization procedure is defined as follows for a string
s_string. This procedure uses the 0S2IP function defined in
[REC8017].

1.

Let m_byte = s_string[0@] AND OXE®, where AND is computed
bitwise. In other words, the three most significant bits of
m_byte equal the three most significant bits of s_string[0],
and the remaining bits are 0.

If m_byte equals any of 0x20, 0x60, or OxE®, output INVALID and
stop decoding.

Otherwise:

*Let C_bit equal the most significant bit of m_byte,

*Let I_bit equal the second most significant bit of m_byte,
and

*Let S_bit equal the third most significant bit of m_byte.
If C_bit is 1:

*If s_string has length 48 bytes, the output point is on the
curve E.

*If s_string has length 96 bytes, the output point is on the
curve E'.

*If s_string has any other length, output INVALID and stop
decoding.

If C_bit is 0:
*If s_string has length 96 bytes, the output point is on E.
*If s_string has length 192 bytes, the output point is on E'.

*If s_string has any other length, output INVALID and stop
decoding.

Let s_string[@] = s_string[@] AND Ox1F, where AND is computed
bitwise. In other words, set the three most significant bits of
s_string[0] to 0.

If I_bit is 1:

*If s_string is not the all zeros string, output INVALID and
stop decoding.

*Otherwise (i.e., if s_string is the all zeros string),
output the point at infinity on the curve that was
determined in step 2 and stop decoding.

Otherwise, I_bit must be 0. Continue decoding.
If C_bit is 0:
*Let x_string be the first half of s_string.
*Let y_string be the last half of s_string.

*Let x = 0S2IP(x_string).

*Let y = 0S2IP(y_string).

*If the point P = (X, y) is not a valid point on the curve
that was determined in step 2, output INVALID and stop
decoding.

*Otherwise, output the point P = (x, y) and stop decoding.
Otherwise, C_bit must be 1. Continue decoding.
6. Let x = 0S2IP(s_string).
7. If the curve that was determined in step 2 is E:
*Let y2 = xA3 + 4 in GF(p).

*If y2 is not square in GF(p), output INVALID and stop
decoding.

*Otherwise, let y = sqrt(y2) in GF(p) and let Y_bit =
sign_GF_p(y).

Otherwise, (i.e., when the curve that was determined in step 2
is E'):

*Let y2 = xA3 + 4 * (u + 1) in GF(pr2).

*If y2 is not square in GF(p~2), output INVALID and stop
decoding.

*Otherwise, let y = sqrt(y2) in GF(p”r2) and let Y_bit =
sign_GF_p~2(y).

8. If S_bit equals Y_bit, output P = (x, y) and stop decoding.
Otherwise, output P = (x, -y) and stop decoding.

Appendix D. Adoption Status of Pairing-Friendly Curves with the 100-
bit Security Level

BN curves including BN254 that were estimated as the 128-bit
security level before exTNFS ensure no more than the 100-bit
security level by the effect of exTNFS. Table 2 summarizes the
adoption status of the parameters with a security level lower than
the "Arnd 128-bit" range. Please refer the Section 4 for the naming
conventions for each curve listed in Table 2.

Category Name Supported 100-bit Curves
IS0/IEC BN2561
TCG BN2561
Standard
BN2561
FIDO/W3C

BN256D

Category Name Supported 100-bit Curves

BN254N
BN_SNARK1
BN254B
BN254N
BN254N
BN256D
BN254N

AMCL BN254CX
BN2561

Intel IPP BN256I
BN254N

MIRACL BN254CX
BN2561
BN_SNARK1
BN254B

Adjoint BN254N
BN254S1
BN254S2

Zcash BN_SNARK1

Application BN254N

DFINITY

BN_SNARK1
Table 2: Adoption Status of Pairing-Friendly
Curves with 100-bit Security Level(Legacy)

mcl

TEPLA

RELIC

Library

Authors' Addresses

Yumi Sakemi (editor)
Infours

Email: yumi.sakemi@infours.co.ijp

Tetsutaro Kobayashi
NTT

Email: tetsutaro.kobayashi.dr@hco.ntt.co.jp

Tsunekazu Saito
NTT

Email: tsunekazu.saito.hg@hco.ntt.co.jp

Riad S. Wahby
Stanford University

Email: rsw@cs.stanford.edu

mailto:yumi.sakemi@infours.co.jp
mailto:tetsutaro.kobayashi.dr@hco.ntt.co.jp
mailto:tsunekazu.saito.hg@hco.ntt.co.jp
mailto:rsw@cs.stanford.edu

	Pairing-Friendly Curves
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Pairing-based Cryptography
	1.2. Applications of Pairing-based Cryptography
	1.3. Motivation and Contribution
	1.4. Requirements Terminology

	2. Preliminaries
	2.1. Elliptic Curves
	2.2. Pairings
	2.3. Barreto-Naehrig Curves
	2.4. Barreto-Lynn-Scott Curves
	2.5. Representation Convention for an Extension Field

	3. Security of Pairing-Friendly Curves
	3.1. Evaluating the Security of Pairing-Friendly Curves
	3.2. Impact of Recent Attacks

	4. Selection of Pairing-Friendly Curves
	4.1. Adoption Status of Pairing-friendly Curves
	4.1.1. International Standards
	4.1.2. Cryptographic Libraries
	4.1.3. Applications

	4.2. For 128-bit Security
	4.2.1. BLS Curves for the 128-bit security level (BLS12_381)
	4.2.2. BN Curves for the 128-bit security level (BN462)

	4.3. For 256-bit Security

	5. Security Considerations
	6. IANA Considerations
	7. Acknowledgements
	8. References
	8.1. Normative References
	8.2. Informative References

	Appendix A. Computing the Optimal Ate Pairing
	A.1. Optimal Ate Pairings over Barreto-Naehrig Curves
	A.2. Optimal Ate Pairings over Barreto-Lynn-Scott Curves

	Appendix B. Test Vectors of Optimal Ate Pairing
	Appendix C. ZCash serialization format for BLS12_381
	C.1. Point Serialization Procedure
	C.2. Point deserialization procedure

	Appendix D. Adoption Status of Pairing-Friendly Curves with the 100-bit Security Level
	Authors' Addresses

