
Network Working Group C. Cremers
Internet-Draft L. Garratt
Intended status: Informational University of Oxford
Expires: January 16, 2019 S. Smyshlyaev
 CryptoPro
 N. Sullivan
 Cloudflare
 C. Wood
 Apple Inc.
 July 15, 2018

Randomness Improvements for Security Protocols
draft-irtf-cfrg-randomness-improvements-02

Abstract

 Randomness is a crucial ingredient for TLS and related security
 protocols. Weak or predictable "cryptographically-strong"
 pseudorandom number generators (CSPRNGs) can be abused or exploited
 for malicious purposes. The Dual EC random number backdoor and
 Debian bugs are relevant examples of this problem. This document
 describes a way for security protocol participants to mix their long-
 term private key into the entropy pool(s) from which random values
 are derived. This augments and improves randomness from broken or
 otherwise subverted CSPRNGs.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 16, 2019.

Cremers, et al. Expires January 13, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft Randomness Improvements July 2018

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Randomness Wrapper . 3
3. Tag Generation . 4
4. Application to TLS . 4
5. IANA Considerations . 5
6. Security Considerations 5
7. Comparison to RFC 6979 6
8. Normative References . 6

 Authors' Addresses . 7

1. Introduction

 Randomness is a crucial ingredient for TLS and related transport
 security protocols. TLS in particular uses Random Number Generators
 (RNGs) to generate several values: session IDs, ephemeral key shares,
 and ClientHello and ServerHello random values. RNG failures such as
 the Debian bug described in [DebianBug] can lead to insecure TLS
 connections. RNGs may also be intentionally weakened to cause harm
 [DualEC]. In such cases where RNGs are poorly implemented or
 insecure, an adversary may be able to predict its output and recover
 secret Diffie-Hellman key shares that protect the connection.

 This document proposes an improvement to randomness generation in
 security protocols inspired by the "NAXOS trick" [NAXOS].
 Specifically, instead of using raw entropy where needed, e.g., in
 generating ephemeral key shares, a party's long-term private key is
 mixed into the entropy pool. In the NAXOS key exchange protocol, raw
 entropy output x is replaced by H(x, sk), where sk is the sender's
 private key. Unfortunately, as private keys are often isolated in
 HSMs, direct access to compute H(x, sk) is impossible. An alternate
 yet functionally equivalent construction is needed.

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/rfc6979

Cremers, et al. Expires January 13, 2019 [Page 2]

Internet-Draft Randomness Improvements July 2018

 The approach described herein replaces the NAXOS hash with a keyed
 hash, or pseudorandom function (PRF), where the key is derived from
 raw entropy output and a private key signature. Implementations
 SHOULD apply this technique when indirect access to a private key is
 available and CSPRNG randomness guarantees are dubious, or to provide
 stronger guarantees about possible future issues with the randomness.
 Roughly, the security properties provided by the proposed
 construction are as follows:

 1. If the CSPRNG works fine, that is, in a certain adversary model
 the CSPRNG output is indistinguishable from a truly random
 sequence, then the output of the proposed construction is also
 indistinguishable from a truly random sequence in that adversary
 model.

 2. An adversary Adv with full control of a (potentially broken)
 CSPRNG and able to observe all outputs of the proposed
 construction, does not obtain any non-negligible advantage in
 leaking the private key, modulo side channel attacks.

 3. If the CSPRNG is broken or controlled by adversary Adv, the
 output of the proposed construction remains indistinguishable
 from random provided the private key remains unknown to Adv.

2. Randomness Wrapper

 Let x be the raw entropy output of a CSPRNG. When properly
 instantiated, x should be indistinguishable from a random string of
 length |x|. However, as previously discussed, this is not always
 true. To mitigate this problem, we propose an approach for wrapping
 the CSPRNG output with a construction that artificially injects
 randomness into a value that may be lacking entropy.

 Let G(n) be an algorithm that generates n random bytes from raw
 entropy, i.e., the output of a CSPRNG. Let Sig(sk, m) be a function
 that computes a signature of message m given private key sk. Let H
 be a cryptographic hash function that produces output of length M.
 Let Extract be a randomness extraction function, e.g., HKDF-Extract
 [RFC5869], which accepts a salt and input keying material (IKM)
 parameter and produces a pseudorandom key of length L suitable for
 cryptographic use. Let Expand(k, info, n) be a randomness extractor,
 e.g., HKDF-Expand [RFC5869], that takes as input a pseudorandom key k
 of length L, info string, and output length n, and produces output of
 length n. Finally, let tag1 be a fixed, context-dependent string,
 and let tag2 be a dynamically changing string.

 The construction works as follows. Instead of using x = G(n) when
 randomness is needed, use:

https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc5869

Cremers, et al. Expires January 13, 2019 [Page 3]

Internet-Draft Randomness Improvements July 2018

 x = Expand(Extract(G(L), H(Sig(sk, tag1))), tag2, n)

 Functionally, this expands n random bytes from a key derived from the
 CSPRNG output and signature over a fixed string (tag1). See

Section 3 for details about how "tag1" and "tag2" should be generated
 and used per invocation of the randomness wrapper. Expand()
 generates a string that is computationally indistinguishable from a
 truly random string of length n. Thus, the security of this
 construction depends upon the secrecy of H(Sig(sk, tag1)) and G(n).
 If the signature is leaked, then security reduces to the scenario
 wherein randomness is expanded directly from G(n).

 Also, in systems where signature computations are expensive, these
 values may be precomputed in anticipation of future randomness
 requests. This is possible since the construction depends solely
 upon the CSPRNG output and private key.

 Sig(sk, tag1) should only be computed once for the lifetime of the
 randomness wrapper, and MUST NOT be used or exposed beyond its role
 in this computation. Moreover, Sig MUST be a deterministic signature
 function, e.g., deterministic ECDSA [RFC6979], or use an independent
 (and completely reliable) entropy source, e.g., if Sig is implemented
 in an HSM with its own internal trusted entropy source for signature
 generation.

3. Tag Generation

 Both tags SHOULD be generated such that they never collide with
 another contender or owner of the private key. This can happen if,
 for example, one HSM with a private key is used from several servers,
 or if virtual machines are cloned.

 To mitigate collisions, tag strings SHOULD be constructed as follows:

 o tag1: Constant string bound to a specific device and protocol in
 use. This allows caching of Sig(sk, tag1). Device specific
 information may include, for example, a MAC address. See

Section 4 for example protocol information that can be used in the
 context of TLS 1.3.

 o tag2: Non-constant string that includes a timestamp or counter.
 This ensures change over time even if randomness were to repeat.

4. Application to TLS

 The PRF randomness wrapper can be applied to any protocol wherein a
 party has a long-term private key and also generates randomness.
 This is true of most TLS servers. Thus, to apply this construction

https://datatracker.ietf.org/doc/html/rfc6979

Cremers, et al. Expires January 13, 2019 [Page 4]

Internet-Draft Randomness Improvements July 2018

 to TLS, one simply replaces the "private" PRNG, i.e., the PRNG that
 generates private values, such as key shares, with:

 HKDF-Expand(HKDF-Extract(G(L), H(Sig(sk, tag1))), tag2, n)

 Moreover, we fix tag1 to protocol-specific information such as "TLS
 1.3 Additional Entropy" for TLS 1.3. Older variants use similarly
 constructed strings.

5. IANA Considerations

 This document makes no request to IANA.

6. Security Considerations

 A security analysis was performed by two authors of this document.
 Generally speaking, security depends on keeping the private key
 secret. If this secret is compromised, the scheme reduces to the
 scenario wherein the PRF provides only an outer wrapper on usual
 CSPRNG generation.

 The main reason one might expect the signature to be exposed is via a
 side-channel attack. It is therefore prudent when implementing this
 construction to take into consideration the extra long-term key
 operation if equipment is used in a hostile environment when such
 considerations are necessary.

 The signature in the construction as well as in the protocol itself
 MUST NOT use randomness from entropy sources with dubious randomness
 guarantees. Thus, the signature scheme MUST either use a reliable
 entropy source (independent from the CSPRNG that is being improved
 with the proposed construction) or be deterministic: if the
 signatures are probabilistic and use weak entropy, our construction
 does not help and the signatures are still vulnerable due to repeat
 randomness attacks. In such an attack, the adversary might be able
 to recover the long-term key used in the signature.

 Under these conditions, applying this construction should never yield
 worse security guarantees than not applying it assuming that applying
 the PRF does not reduce entropy. We believe there is always merit in
 analyzing protocols specifically. However, this construction is
 generic so the analyses of many protocols will still hold even if
 this proposed construction is incorporated.

Cremers, et al. Expires January 13, 2019 [Page 5]

Internet-Draft Randomness Improvements July 2018

7. Comparison to RFC 6979

 The construction proposed herein has similarities with that of RFC
6979 [RFC6979]: both of them use private keys to seed a DRBG.
Section 3.3 of RFC 6979 recommends deterministically instantiating an

 instance of the HMAC DRBG pseudorandom number generator, described in
 [SP80090A] and Annex D of [X962], using the private key sk as the
 entropy_input parameter and H(m) as the nonce. The construction
 provided herein is similar, with such difference that a key derived
 from G(x) and H(Sig(sk, tag1)) is used as the entropy input and tag2
 is the nonce.

 However, the semantics and the security properties obtained by using
 these two constructions are different. The proposed construction
 aims to improve CSPRNG usage such that certain trusted randomness
 would remain even if the CSPRNG is completely broken. Using a
 signature scheme which requires entropy sources according to RFC 6979
 is intended for different purposes and does not assume possession of
 any entropy source - even an unstable one. For example, if in a
 certain system all private key operations are performed within an
 HSM, then the differences will manifest as follows: the HMAC DRBG
 construction of RFC 6979 may be implemented inside the HSM for the
 sake of signature generation, while the proposed construction would
 assume calling the signature implemented in the HSM.

8. Normative References

 [DebianBug]
 Yilek, Scott, et al, ., "When private keys are public -
 Results from the 2008 Debian OpenSSL vulnerability", n.d.,
 <https://pdfs.semanticscholar.org/fcf9/

fe0946c20e936b507c023bbf89160cc995b9.pdf>.

 [DualEC] Bernstein, Daniel et al, ., "Dual EC - A standardized back
 door", n.d., <https://projectbullrun.org/dual-

ec/documents/dual-ec-20150731.pdf>.

 [NAXOS] LaMacchia, Brian et al, ., "Stronger Security of
 Authenticated Key Exchange", n.d.,
 <https://www.microsoft.com/en-us/research/wp-

content/uploads/2016/02/strongake-submitted.pdf>.

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 DOI 10.17487/RFC2104, February 1997,
 <https://www.rfc-editor.org/info/rfc2104>.

https://datatracker.ietf.org/doc/html/rfc6979
https://datatracker.ietf.org/doc/html/rfc6979
https://datatracker.ietf.org/doc/html/rfc6979
https://datatracker.ietf.org/doc/html/rfc6979
https://datatracker.ietf.org/doc/html/rfc6979#section-3.3
https://datatracker.ietf.org/doc/html/rfc6979
https://datatracker.ietf.org/doc/html/rfc6979
https://pdfs.semanticscholar.org/fcf9/fe0946c20e936b507c023bbf89160cc995b9.pdf
https://pdfs.semanticscholar.org/fcf9/fe0946c20e936b507c023bbf89160cc995b9.pdf
https://projectbullrun.org/dual-ec/documents/dual-ec-20150731.pdf
https://projectbullrun.org/dual-ec/documents/dual-ec-20150731.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/strongake-submitted.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/strongake-submitted.pdf
https://datatracker.ietf.org/doc/html/rfc2104
https://www.rfc-editor.org/info/rfc2104

Cremers, et al. Expires January 13, 2019 [Page 6]

Internet-Draft Randomness Improvements July 2018

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869,
 DOI 10.17487/RFC5869, May 2010,
 <https://www.rfc-editor.org/info/rfc5869>.

 [RFC6979] Pornin, T., "Deterministic Usage of the Digital Signature
 Algorithm (DSA) and Elliptic Curve Digital Signature
 Algorithm (ECDSA)", RFC 6979, DOI 10.17487/RFC6979, August
 2013, <https://www.rfc-editor.org/info/rfc6979>.

 [SP80090A]
 "Recommendation for Random Number Generation Using
 Deterministic Random Bit Generators (Revised), NIST
 Special Publication 800-90A, January 2012.", n.d.,
 <National Institute of Standards and Technology>.

 [X9.62] American National Standards Institute, ., "Public Key
 Cryptography for the Financial Services Industry -- The
 Elliptic Curve Digital Signature Algorithm (ECDSA). ANSI
 X9.62-2005, November 2005.", n.d..

 [X962] "Public Key Cryptography for the Financial Services
 Industry -- The Elliptic Curve Digital Signature Algorithm
 (ECDSA), ANSI X9.62-2005, November 2005.", n.d., <American
 National Standards Institute>.

Authors' Addresses

 Cas Cremers
 University of Oxford
 Wolfson Building, Parks Road
 Oxford
 England

 Email: cas.cremers@cs.ox.ac.uk

 Luke Garratt
 University of Oxford
 Wolfson Building, Parks Road
 Oxford
 England

 Email: luke.garratt@cs.ox.ac.uk

https://datatracker.ietf.org/doc/html/rfc5869
https://www.rfc-editor.org/info/rfc5869
https://datatracker.ietf.org/doc/html/rfc6979
https://www.rfc-editor.org/info/rfc6979

Cremers, et al. Expires January 13, 2019 [Page 7]

Internet-Draft Randomness Improvements July 2018

 Stanislav Smyshlyaev
 CryptoPro
 18, Suschevsky val
 Moscow
 Russian Federation

 Email: svs@cryptopro.ru

 Nick Sullivan
 Cloudflare
 101 Townsend St
 San Francisco
 United States of America

 Email: nick@cloudflare.com

 Christopher A. Wood
 Apple Inc.
 One Apple Park Way
 Cupertino, California 95014
 United States of America

 Email: cawood@apple.com

Cremers, et al. Expires January 13, 2019 [Page 8]

