
Network Working Group C. Cremers
Internet-Draft CISPA Helmholtz Center for Information Security
Intended status: Informational L. Garratt
Expires: 30 July 2020 Cisco Meraki
 S. Smyshlyaev
 CryptoPro
 N. Sullivan
 Cloudflare
 C. Wood
 Apple Inc.
 27 January 2020

Randomness Improvements for Security Protocols
draft-irtf-cfrg-randomness-improvements-09

Abstract

 Randomness is a crucial ingredient for TLS and related security
 protocols. Weak or predictable "cryptographically-strong"
 pseudorandom number generators (CSPRNGs) can be abused or exploited
 for malicious purposes. The Dual EC random number backdoor and
 Debian bugs are relevant examples of this problem. An initial
 entropy source that seeds a CSPRNG might be weak or broken as well,
 which can also lead to critical and systemic security problems. This
 document describes a way for security protocol participants to
 augment their CSPRNGs using long-term private keys. This improves
 randomness from broken or otherwise subverted CSPRNGs.

Note to Readers

 Source for this draft and an issue tracker can be found at
https://github.com/chris-wood/draft-irtf-cfrg-randomness-improvements

 (https://github.com/chris-wood/draft-irtf-cfrg-randomness-
improvements).

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any

Cremers, et al. Expires 30 July 2020 [Page 1]

https://github.com/chris-wood/draft-irtf-cfrg-randomness-improvements
https://github.com/chris-wood/draft-irtf-cfrg-randomness-improvements
https://github.com/chris-wood/draft-irtf-cfrg-randomness-improvements
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft Randomness Improvements January 2020

 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 30 July 2020.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/

license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Simplified BSD License text
 as described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Conventions Used in This Document 3
3. Randomness Wrapper . 4
4. Tag Generation . 5
5. Application to TLS . 6
6. Implementation Guidance 6
7. Acknowledgements . 6
8. IANA Considerations . 6
9. Security Considerations 6
10. Comparison to RFC 6979 7
11. Normative References . 8

 Authors' Addresses . 9

1. Introduction

 Randomness is a crucial ingredient for TLS and related transport
 security protocols. TLS in particular uses random number generators
 (generally speaking, CSPRNGs) to generate several values: session
 IDs, ephemeral key shares, and ClientHello and ServerHello random
 values. CSPRNG failures such as the Debian bug described in
 [DebianBug] can lead to insecure TLS connections. CSPRNGs may also
 be intentionally weakened to cause harm [DualEC]. Initial entropy
 sources can also be weak or broken, and that would lead to insecurity
 of all CSPRNG instances seeded with them. In such cases where
 CSPRNGs are poorly implemented or insecure, an adversary may be able
 to predict its output and recover secret key material used to protect
 the connection.

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/rfc6979

Cremers, et al. Expires 30 July 2020 [Page 2]

Internet-Draft Randomness Improvements January 2020

 This document proposes an improvement to randomness generation in
 security protocols inspired by the "NAXOS trick" [NAXOS].
 Specifically, instead of using raw randomness where needed, e.g., in
 generating ephemeral key shares, a party's long-term private key is
 mixed into the entropy pool. In the NAXOS key exchange protocol, raw
 random value x is replaced by H(x, sk), where sk is the sender's
 private key. Unfortunately, as private keys are often isolated in
 HSMs, direct access to compute H(x, sk) is impossible. Moreover,
 some HSM APIs may only offer the option to sign messages using a
 private key, yet offer no other operations involving that key. An
 alternate yet functionally equivalent construction is needed.

 The approach described herein replaces the NAXOS hash with a keyed
 hash, or pseudorandom function (PRF), where the key is derived from a
 raw random value and a private key signature. Implementations SHOULD
 apply this technique when indirect access to a private key is
 available and CSPRNG randomness guarantees are dubious, or to provide
 stronger guarantees about possible future issues with the randomness.
 Roughly, the security properties provided by the proposed
 construction are as follows:

 1. If the CSPRNG works fine, that is, in a certain adversary model
 the CSPRNG output is indistinguishable from a truly random
 sequence, then the output of the proposed construction is also
 indistinguishable from a truly random sequence in that adversary
 model.

 2. An adversary Adv with full control of a (potentially broken)
 CSPRNG and able to observe all outputs of the proposed
 construction, does not obtain any non-negligible advantage in
 leaking the private key, modulo side channel attacks.

 3. If the CSPRNG is broken or controlled by adversary Adv, the
 output of the proposed construction remains indistinguishable
 from random provided the private key remains unknown to Adv.

2. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119], [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Cremers, et al. Expires 30 July 2020 [Page 3]

Internet-Draft Randomness Improvements January 2020

3. Randomness Wrapper

 The output of a properly instantiated CSPRNG should be
 indistinguishable from a random string of the same length. However,
 as previously discussed, this is not always true. To mitigate this
 problem, we propose an approach for wrapping the CSPRNG output with a
 construction that mixes secret data into a value that may be lacking
 randomness.

 Let G(n) be an algorithm that generates n random bytes, i.e., the
 output of a CSPRNG. Define an augmented CSPRNG G' as follows. Let
 Sig(sk, m) be a function that computes a signature of message m given
 private key sk. Let H be a cryptographic hash function that produces
 output of length M. Let Extract(salt, IKM) be a randomness
 extraction function, e.g., HKDF-Extract [RFC5869], which accepts a
 salt and input keying material (IKM) parameter and produces a
 pseudorandom key of L bytes suitable for cryptographic use. It must
 be a secure PRF (for salt as a key) and preserve uniformness of IKM
 (for details see [SecAnalysis]). L SHOULD be a fixed length. Let
 Expand(k, info, n) be a variable-length output PRF, e.g., HKDF-Expand
 [RFC5869], that takes as input a pseudorandom key k of L bytes, info
 string, and output length n, and produces output of n bytes.
 Finally, let tag1 be a fixed, context-dependent string, and let tag2
 be a dynamically changing string (e.g., a counter) of L' bytes. We
 require that L >= n - L' for each value of tag2.

 The construction works as follows. Instead of using G(n) when
 randomness is needed, use G'(n), where

 G'(n) = Expand(Extract(H(Sig(sk, tag1)), G(L)), tag2, n)

 Functionally, this expands n random bytes from a key derived from the
 CSPRNG output and signature over a fixed string (tag1). See

Section 4 for details about how "tag1" and "tag2" should be generated
 and used per invocation of the randomness wrapper. Expand()
 generates a string that is computationally indistinguishable from a
 truly random string of n bytes. Thus, the security of this
 construction depends upon the secrecy of H(Sig(sk, tag1)) and G(L).
 If the signature is leaked, then security of G'(n) reduces to the
 scenario wherein randomness is expanded directly from G(L).

 If a private key sk is stored and used inside an HSM, then the
 signature calculation is implemented inside it, while all other
 operations (including calculation of a hash function, Extract and
 Expand functions) can be implemented either inside or outside the
 HSM.

https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc5869

Cremers, et al. Expires 30 July 2020 [Page 4]

Internet-Draft Randomness Improvements January 2020

 Sig(sk, tag1) need only be computed once for the lifetime of the
 randomness wrapper, and MUST NOT be used or exposed beyond its role
 in this computation. Additional recommendations for tag1 are given
 in the following section.

 Sig MUST be a deterministic signature function, e.g., deterministic
 ECDSA [RFC6979], or use an independent (and completely reliable)
 entropy source, e.g., if Sig is implemented in an HSM with its own
 internal trusted entropy source for signature generation.

 Because Sig(sk, tag1) can be cached, the relative cost of using G'(n)
 instead of G(n) tends to be negligible with respect to cryptographic
 operations in protocols such as TLS (the relatively inexpensive
 computational cost of HKDF dominates when comparing G' to G). A
 description of the performance experiments and their results can be
 found in the appendix of [SecAnalysis].

 Moreover, the values of G'(n) may be precomputed and pooled. This is
 possible since the construction depends solely upon the CSPRNG output
 and private key.

4. Tag Generation

 Both tags SHOULD be generated such that they never collide with
 another contender or owner of the private key. This can happen if,
 for example, one HSM with a private key is used from several servers,
 or if virtual machines are cloned.

 Tag strings SHOULD be constructed as follows:

 * tag1: Constant string bound to a specific device and protocol in
 use. This allows caching of Sig(sk, tag1). Device specific
 information may include, for example, a MAC address. To provide
 security in the cases of usage of CSPRNGs in virtual environments,
 it is RECOMMENDED to incorporate all available information
 specific to the process that would ensure the uniqueness of each
 tag1 value among different instances of virtual machines
 (including ones that were cloned or recovered from snapshots).
 This is needed to address the problem of CSPRNG state cloning (see
 [RY2010]). See Section 5 for example protocol information that
 can be used in the context of TLS 1.3. If sk could be used for
 other purposes, then selecting a value for tag1 that is different
 than the form allowed by those other uses ensures that the
 signature is not exposed.

 * tag2: A nonce. That is, a value that is unique for each use of
 the same combination of G(L), tag1, and sk values. The tag2 value

https://datatracker.ietf.org/doc/html/rfc6979

Cremers, et al. Expires 30 July 2020 [Page 5]

Internet-Draft Randomness Improvements January 2020

 can be implemented using a counter, or a timer, provided that the
 timer is guaranteed to be different for each invocation of G'(n).

5. Application to TLS

 The PRF randomness wrapper can be applied to any protocol wherein a
 party has a long-term private key and also generates randomness.
 This is true of most TLS servers. Thus, to apply this construction
 to TLS, one simply replaces the "private" CSPRNG G(n), i.e., the
 CSPRNG that generates private values, such as key shares, with:

 G'(n) = HKDF-Expand(HKDF-Extract(H(Sig(sk, tag1)), G(L)), tag2, n)

6. Implementation Guidance

 Recall that the wrapper defined in Section 3 requires L >= n - L',
 where L is the Extract output length and n is the desired amount of
 randomness. Some applications may require n to exceed this bound.
 Wrapper implementations SHOULD support this use case by invoking G'
 multiple times and concatenating the results.

7. Acknowledgements

 We thank Liliya Akhmetzyanova for her deep involvement in the
 security assessment in [SecAnalysis]. We thank John Mattsson, Martin
 Thomson, Rich Salz for their careful readings and useful comments.

8. IANA Considerations

 This document makes no request to IANA.

9. Security Considerations

 A security analysis was performed in [SecAnalysis]. Generally
 speaking, the following security theorem has been proven: if the
 adversary learns only one of the signature or the usual randomness
 generated on one particular instance, then under the security
 assumptions on our primitives, the wrapper construction should output
 randomness that is indistinguishable from a random string.

 The main reason one might expect the signature to be exposed is via a
 side-channel attack. It is therefore prudent when implementing this
 construction to take into consideration the extra long-term key
 operation if equipment is used in a hostile environment when such
 considerations are necessary. Hence, it is recommended to generate a
 key specifically for the purposes of the defined construction and not
 to use it another way.

Cremers, et al. Expires 30 July 2020 [Page 6]

Internet-Draft Randomness Improvements January 2020

 The signature in the construction as well as in the protocol itself
 MUST NOT use randomness from entropy sources with dubious security
 guarantees. Thus, the signature scheme MUST either use a reliable
 entropy source (independent from the CSPRNG that is being improved
 with the proposed construction) or be deterministic: if the
 signatures are probabilistic and use weak entropy, our construction
 does not help and the signatures are still vulnerable due to repeat
 randomness attacks. In such an attack, the adversary might be able
 to recover the long-term key used in the signature.

 Under these conditions, applying this construction should never yield
 worse security guarantees than not applying it assuming that applying
 the PRF does not reduce entropy. We believe there is always merit in
 analyzing protocols specifically. However, this construction is
 generic so the analyses of many protocols will still hold even if
 this proposed construction is incorporated.

 The proposed construction cannot provide any guarantees of security
 if the CSPRNG state is cloned due to the virtual machine snapshots or
 process forking (see [MAFS2017]). Thus tag1 SHOULD incorporate all
 available information about the environment, such as process
 attributes, virtual machine user information, etc.

10. Comparison to RFC 6979

 The construction proposed herein has similarities with that of RFC
6979 [RFC6979]: both of them use private keys to seed a DRBG.
Section 3.3 of RFC 6979 recommends deterministically instantiating an

 instance of the HMAC DRBG pseudorandom number generator, described in
 [SP80090A] and Annex D of [X962], using the private key sk as the
 entropy_input parameter and H(m) as the nonce. The construction
 G'(n) provided herein is similar, with such difference that a key
 derived from G(n) and H(Sig(sk, tag1)) is used as the entropy input
 and tag2 is the nonce.

 However, the semantics and the security properties obtained by using
 these two constructions are different. The proposed construction
 aims to improve CSPRNG usage such that certain trusted randomness
 would remain even if the CSPRNG is completely broken. Using a
 signature scheme which requires entropy sources according to RFC 6979
 is intended for different purposes and does not assume possession of
 any entropy source - even an unstable one. For example, if in a
 certain system all private key operations are performed within an
 HSM, then the differences will manifest as follows: the HMAC DRBG
 construction of RFC 6979 may be implemented inside the HSM for the
 sake of signature generation, while the proposed construction would
 assume calling the signature implemented in the HSM.

https://datatracker.ietf.org/doc/html/rfc6979
https://datatracker.ietf.org/doc/html/rfc6979
https://datatracker.ietf.org/doc/html/rfc6979
https://datatracker.ietf.org/doc/html/rfc6979
https://datatracker.ietf.org/doc/html/rfc6979#section-3.3
https://datatracker.ietf.org/doc/html/rfc6979
https://datatracker.ietf.org/doc/html/rfc6979

Cremers, et al. Expires 30 July 2020 [Page 7]

Internet-Draft Randomness Improvements January 2020

11. Normative References

 [DebianBug]
 Yilek, Scott, et al, ., "When private keys are public -
 Results from the 2008 Debian OpenSSL vulnerability", 2009,
 <https://pdfs.semanticscholar.org/fcf9/

fe0946c20e936b507c023bbf89160cc995b9.pdf>.

 [DualEC] Bernstein, Daniel et al, ., "Dual EC - A standardized back
 door", 2016,
 <https://projectbullrun.org/dual-ec/documents/dual-ec-

20150731.pdf>.

 [MAFS2017] McGrew, Anderson, Fluhrer, Shenefeil, ., "PRNG Failures
 and TLS Vulnerabilities in the Wild", 2017,
 <https://rwc.iacr.org/2017/Slides/david.mcgrew.pptx>.

 [NAXOS] LaMacchia, Brian et al, ., "Stronger Security of
 Authenticated Key Exchange", 2007,
 <https://www.microsoft.com/en-us/research/wp-

content/uploads/2016/02/strongake-submitted.pdf>.

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 DOI 10.17487/RFC2104, February 1997,
 <https://www.rfc-editor.org/info/rfc2104>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869,
 DOI 10.17487/RFC5869, May 2010,
 <https://www.rfc-editor.org/info/rfc5869>.

 [RFC6979] Pornin, T., "Deterministic Usage of the Digital Signature
 Algorithm (DSA) and Elliptic Curve Digital Signature
 Algorithm (ECDSA)", RFC 6979, DOI 10.17487/RFC6979, August
 2013, <https://www.rfc-editor.org/info/rfc6979>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RY2010] Ristenpart, Yilek, ., "When Good Randomness Goes Bad|:|
 Virtual Machine Reset Vulnerabilities and Hedging Deployed

https://pdfs.semanticscholar.org/fcf9/fe0946c20e936b507c023bbf89160cc995b9.pdf
https://pdfs.semanticscholar.org/fcf9/fe0946c20e936b507c023bbf89160cc995b9.pdf
https://projectbullrun.org/dual-ec/documents/dual-ec-20150731.pdf
https://projectbullrun.org/dual-ec/documents/dual-ec-20150731.pdf
https://rwc.iacr.org/2017/Slides/david.mcgrew.pptx
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/strongake-submitted.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/strongake-submitted.pdf
https://datatracker.ietf.org/doc/html/rfc2104
https://www.rfc-editor.org/info/rfc2104
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc5869
https://www.rfc-editor.org/info/rfc5869
https://datatracker.ietf.org/doc/html/rfc6979
https://www.rfc-editor.org/info/rfc6979
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174

Cremers, et al. Expires 30 July 2020 [Page 8]

Internet-Draft Randomness Improvements January 2020

 Cryptography", 2010,
 <https://rist.tech.cornell.edu/papers/sslhedge.pdf>.

 [SecAnalysis]
 Akhmetzyanova, Cremers, Garratt, Smyshlyaev, Sullivan, .,
 "Limiting the impact of unreliable randomness in deployed
 security protocols", 2019,
 <https://eprint.iacr.org/2018/1057>.

 [SP80090A] "Recommendation for Random Number Generation Using
 Deterministic Random Bit Generators (Revised), NIST
 Special Publication 800-90A.", January 2012, <National
 Institute of Standards and Technology>.

 [X9.62] American National Standards Institute, ., "Public Key
 Cryptography for the Financial Services Industry -- The
 Elliptic Curve Digital Signature Algorithm (ECDSA). ANSI
 X9.62-2005", November 2005.

 [X962] "Public Key Cryptography for the Financial Services
 Industry -- The Elliptic Curve Digital Signature Algorithm
 (ECDSA), ANSI X9.62-2005", November 2005, <American
 National Standards Institute>.

Authors' Addresses

 Cas Cremers
 CISPA Helmholtz Center for Information Security
 Saarland Informatics Campus
 Saarbruecken
 Germany

 Email: cremers@cispa.saarland

 Luke Garratt
 Cisco Meraki
 500 Terry A Francois Blvd
 San Francisco,
 United States of America

 Email: lgarratt@cisco.com

 Stanislav Smyshlyaev
 CryptoPro
 18, Suschevsky val
 Moscow

https://rist.tech.cornell.edu/papers/sslhedge.pdf
https://eprint.iacr.org/2018/1057

Cremers, et al. Expires 30 July 2020 [Page 9]

Internet-Draft Randomness Improvements January 2020

 Russian Federation

 Email: svs@cryptopro.ru

 Nick Sullivan
 Cloudflare
 101 Townsend St
 San Francisco,
 United States of America

 Email: nick@cloudflare.com

 Christopher A. Wood
 Apple Inc.
 One Apple Park Way
 Cupertino, California 95014,
 United States of America

 Email: cawood@apple.com

Cremers, et al. Expires 30 July 2020 [Page 10]

