
CFRG S. Smyshlyaev, Ed.
Internet-Draft CryptoPro
Intended status: Informational October 9, 2017
Expires: April 12, 2018

Re-keying Mechanisms for Symmetric Keys
draft-irtf-cfrg-re-keying-08

Abstract

 A certain maximum amount of data can be safely encrypted when
 encryption is performed under a single key. This amount is called
 "key lifetime". This specification describes a variety of methods to
 increase the lifetime of symmetric keys. It provides external and
 internal re-keying mechanisms based on hash functions and on block
 ciphers, that can be used with modes of operations such as CTR, GCM,
 CBC, CFB and OMAC.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 12, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Smyshlyaev Expires April 12, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft Re-keying Mechanisms for Symmetric Keys October 2017

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Conventions Used in This Document 5
3. Basic Terms and Definitions 5
4. Choosing Constructions and Security Parameters 6
5. External Re-keying Mechanisms 9
5.1. Methods of Key Lifetime Control 12
5.2. Parallel Constructions 12

 5.2.1. Parallel Construction Based on a KDF on a Block
 Cipher . 13

5.2.2. Parallel Construction Based on HKDF 13
5.2.3. Tree-based Construction 14

5.3. Serial Constructions 15
 5.3.1. Serial Construction Based on a KDF on a Block Cipher 16

5.3.2. Serial Construction Based on HKDF 17
6. Internal Re-keying Mechanisms 17
6.1. Methods of Key Lifetime Control 20
6.2. Constructions that Do Not Require Master Key 20
6.2.1. ACPKM Re-keying Mechanisms 20
6.2.2. CTR-ACPKM Encryption Mode 22
6.2.3. GCM-ACPKM Authenticated Encryption Mode 23

6.3. Constructions that Require Master Key 26
6.3.1. ACPKM-Master Key Derivation from the Master Key . . . 26
6.3.2. CTR-ACPKM-Master Encryption Mode 28
6.3.3. GCM-ACPKM-Master Authenticated Encryption Mode . . . 30
6.3.4. CBC-ACPKM-Master Encryption Mode 32
6.3.5. CFB-ACPKM-Master Encryption Mode 35
6.3.6. OMAC-ACPKM-Master Authentication Mode 37

7. Joint Usage of External and Internal Re-keying 38
8. Security Considerations 38
9. References . 39
9.1. Normative References 39
9.2. Informative References 40

Appendix A. Test examples 41
Appendix B. Contributors . 49
Appendix C. Acknowledgments 49

 Author's Address . 49

1. Introduction

 A certain maximum amount of data can be safely encrypted when
 encryption is performed under a single key. This amount is called
 "key lifetime" and can be calculated from the following
 considerations:

Smyshlyaev Expires April 12, 2018 [Page 2]

Internet-Draft Re-keying Mechanisms for Symmetric Keys October 2017

 1. Methods based on the combinatorial properties of the used block
 cipher mode of operation

 These methods do not depend on the underlying block cipher.
 Common modes restrictions derived from such methods are of
 order 2^{n/2}. [Sweet32] is an example of attack that is
 based on such methods.

 2. Methods based on side-channel analysis issues

 In most cases these methods do not depend on the used
 encryption modes and weakly depend on the used block cipher
 features. Limitations resulting from these considerations are
 usually the most restrictive ones. [TEMPEST] is an example of
 attack that is based on such methods.

 3. Methods based on the properties of the used block cipher

 The most common methods of this type are linear and
 differential cryptanalysis [LDC]. In most cases these methods
 do not depend on the used modes of operation. In case of
 secure block ciphers, bounds resulting from such methods are
 roughly the same as the natural bounds of 2^n, and are
 dominated by the other bounds above. Therefore, they can be
 excluded from the considerations here.

 As a result, it is important to replace a key as soon as the total
 size of the processed plaintext under that key reaches the lifetime
 limitation. A specific value of the key lifetime should be
 determined in accordance with some safety margin for protocol
 security and the methods outlined above.

 Suppose L is a key lifetime limitation in some protocol P. For
 simplicity, assume that all messages have the same length m. Hence,
 the number of messages q that can be processed with a single key K
 should be such that m * q <= L. This can be depicted graphically as
 a rectangle with sides m and q which is enclosed by area L (see
 Figure 1).

Smyshlyaev Expires April 12, 2018 [Page 3]

Internet-Draft Re-keying Mechanisms for Symmetric Keys October 2017

 +------------------------+
 | L |
 | +--------m---------+ |
 | |==================| |
 | |==================| |
 | q==================| | m * q <= L
 | |==================| |
 | |==================| |
 | +------------------+ |
 +------------------------+

 Figure 1: Graphic display of the key lifetime limitation

 In practice, such amount of data that corresponds to limitation L may
 not be enough. The simplest and obvious way in this situation is a
 regular renegotiation of an initial key after processing this
 threshold amount of data L. However, this reduces the total
 performance, since it usually entails termination of application data
 transmission, additional service messages, the use of random number
 generator and many other additional calculations, including resource-
 intensive public key cryptography.

 This specification presents two approaches to extend the lifetime of
 a key while avoiding renegotiation: external and internal re-keying.

 External re-keying is performed by a protocol, and it is independent
 of the underlying block cipher and the mode of operation. External
 re-keying can use parallel and serial constructions. In the parallel
 case, data processing keys K^1, K^2, ... are generated directly from
 the initial key K independently of each other. In the serial case,
 every data processing key depends on the state that is updated after
 the generation of each new data processing key.

 Internal re-keying is built into the mode, and it depends heavily on
 the properties of the mode of operation and the block size.

 The re-keying approaches extend the key lifetime for a single initial
 key by providing the possibility to limit the leakages (via side
 channels) and by improving combinatorial properties of the used block
 cipher mode of operation.

 In practical applications, re-keying can be useful for protocols that
 need to operate in hostile environments or under restricted resource
 conditions (e.g., that require lightweight cryptography, where
 ciphers have a small block size, that imposes strict combinatorial
 limitations). Moreover, mechanisms that use external and internal

Smyshlyaev Expires April 12, 2018 [Page 4]

Internet-Draft Re-keying Mechanisms for Symmetric Keys October 2017

 re-keying may provide some properties of forward security and
 potentially some protection against future attacks (by limiting the
 number of plaintext-ciphertext pairs that an adversary can collect).

2. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. Basic Terms and Definitions

 This document uses the following terms and definitions for the sets
 and operations on the elements of these sets:

 V* the set of all bit strings of a finite length (hereinafter
 referred to as strings), including the empty string;
 substrings and string components are enumerated from right to
 left starting from one;

 V_s the set of all bit strings of length s, where s is a non-
 negative integer;

 |X| the bit length of the bit string X;

 A | B concatenation of strings A and B both belonging to V*, i.e.,
 a string in V_{|A|+|B|}, where the left substring in V_|A| is
 equal to A, and the right substring in V_|B| is equal to B;

 (xor) exclusive-or of two bit strings of the same length;

 Z_{2^n} ring of residues modulo 2^n;

 Int_s: V_s -> Z_{2^s} the transformation that maps a string a =
 (a_s, ... , a_1), a in V_s, into the integer Int_s(a) =
 2^{s-1} * a_s + ... + 2 * a_2 + a_1;

 Vec_s: Z_{2^s} -> V_s the transformation inverse to the mapping
 Int_s;

 MSB_i: V_s -> V_i the transformation that maps the string a = (a_s,
 ... , a_1) in V_s, into the string MSB_i(a) = (a_s, ... ,
 a_{s-i+1}) in V_i;

 LSB_i: V_s -> V_i the transformation that maps the string a = (a_s,
 ... , a_1) in V_s, into the string LSB_i(a) = (a_i, ... ,
 a_1) in V_i;

https://datatracker.ietf.org/doc/html/rfc2119

Smyshlyaev Expires April 12, 2018 [Page 5]

Internet-Draft Re-keying Mechanisms for Symmetric Keys October 2017

 Inc_c: V_s -> V_s the transformation that maps the string a = (a_s,
 ... , a_1) in V_s, into the string Inc_c(a) = MSB_{|a|-
 c}(a) | Vec_c(Int_c(LSB_c(a)) + 1(mod 2^c)) in V_s;

 a^s denotes the string in V_s that consists of s 'a' bits;

 E_{K}: V_n -> V_n the block cipher permutation under the key K in
 V_k;

 ceil(x) the smallest integer that is greater than or equal to x;

 floor(x) the biggest integer that is less than or equal to x;

 k the bit-length of the K; k is assumed to be divisible by 8;

 n the block size of the block cipher (in bits); n is assumed to
 be divisible by 8;

 b the number of data blocks in the plaintext P (b =
 ceil(|P|/n));

 N the section size (the number of bits that are processed with
 one section key before this key is transformed);

 A plaintext message P and the corresponding ciphertext C are divided
 into b = ceil(|P|/n) blocks, denoted P = P_1 | P_2 | ... | P_b and C
 = C_1 | C_2 | ... | C_b, respectively. The first b-1 blocks P_i and
 C_i are in V_n, for i = 1, 2, ... , b-1. The b-th block P_b, C_b may
 be an incomplete block, i.e., in V_r, where r <= n if not otherwise
 specified.

4. Choosing Constructions and Security Parameters

 External re-keying is an approach assuming that a key is transformed
 after encrypting a limited number of entire messages. External re-
 keying method is chosen at the protocol level, regardless of the
 underlying block cipher or the encryption mode. External re-keying
 is recommended for protocols that process relatively short messages
 or for protocols that have a way to divide a long message into
 manageable pieces. Through external re-keying the number of messages
 that can be securely processed with a single initial key K is
 substantially increased without loss in message length.

 External re-keying has the following advantages:

 1. it increases the lifetime of an initial key by increasing the
 number of messages processed with this key;

Smyshlyaev Expires April 12, 2018 [Page 6]

Internet-Draft Re-keying Mechanisms for Symmetric Keys October 2017

 2. it has negligible affect on the performance, when the number of
 messages processed under one initial key is sufficiently large;

 3. it provides forward and backward security of data processing
 keys.

 However, the use of external re-keying has the following
 disadvantage: in case of restrictive key lifetime limitations the
 message sizes can become inconvenient due to impossibility of
 processing sufficiently large messages, so it could be necessary to
 perform additional fragmentation at the protocol level. E.g. if the
 key lifetime L is 1 GB and the message length m = 3 GB, then this
 message cannot be processed as a whole and it should be divided into
 three fragments that will be processed separately.

 Internal re-keying is an approach assuming that a key is transformed
 during each separate message processing. Such procedures are
 integrated into the base modes of operations, so every internal re-
 keying mechanism is defined for the particular operation mode and the
 block size of the used cipher. Internal re-keying is recommended for
 protocols that process long messages: the size of each single message
 can be substantially increased without loss in number of messages
 that can be securely processed with a single initial key.

 Internal re-keying has the following advantages:

 1. it increases the lifetime of an initial key by increasing the
 size of the messages processed with one initial key;

 2. it has minimal impact on performance;

 3. internal re-keying mechanisms without a master key does not
 affect short messages transformation at all;

 4. it is transparent (works like any mode of operation): does not
 require changes of IV's and restarting MACing.

 However, the use of internal re-keying has the following
 disadvantages:

 1. a specific method must not be chosen independently of a mode of
 operation;

 2. internal re-keying mechanisms without a master key do not provide
 backward security of data processing keys.

 Any block cipher modes of operations with internal re-keying can be
 jointly used with any external re-keying mechanisms. Such joint

Smyshlyaev Expires April 12, 2018 [Page 7]

Internet-Draft Re-keying Mechanisms for Symmetric Keys October 2017

 usage increases both the number of messages processed with one
 initial key and their maximum possible size.

 If the adversary has access to the data processing interface the use
 of the same cryptographic primitives both for data processing and re-
 keying transformation decreases the code size but can lead to some
 possible vulnerabilities. This vulnerability can be eliminated by
 using different primitives for data processing and re-keying,
 however, in this case the security of the whole scheme cannot be
 reduced to standard notions like PRF or PRP, so security estimations
 become more difficult and unclear.

 Summing up the above-mentioned issues briefly:

 1. If a protocol assumes processing long records (e.g., [CMS]),
 internal re-keying should be used. If a protocol assumes
 processing a significant amount of ordered records, which can be
 considered as a single data stream (e.g., [TLS], [SSH]), internal
 re-keying may also be used.

 2. For protocols which allow out-of-order delivery and lost records
 (e.g., [DTLS], [ESP]) external re-keying should be used. If at
 the same time records are long enough, internal re-keying should
 be additionally used during each separate message processing.

 For external re-keying:

 1. If it is desirable to separate transformations used for data
 processing and for key update, hash function based re-keying
 should be used.

 2. If parallel data processing is required, then parallel external
 re-keying should be used.

 3. In case of restrictive key lifetime limitations external tree-
 based re-keying should be used.

 For internal re-keying:

 1. If the property of forward and backward security is desirable for
 data processing keys and if additional key material can be easily
 obtained for the data processing stage, internal re-keying with a
 master key should be used.

Smyshlyaev Expires April 12, 2018 [Page 8]

Internet-Draft Re-keying Mechanisms for Symmetric Keys October 2017

5. External Re-keying Mechanisms

 This section presents an approach to increase the initial key
 lifetime by using a transformation of a data processing key (frame
 key) after processing a limited number of entire messages (frame).
 It provides external parallel and serial re-keying mechanisms (see
 [AbBell]). These mechanisms use initial key K only for frame key
 generation and never use it directly for data processing. Such
 mechanisms operate outside of the base modes of operations and do not
 change them at all, therefore they are called "external re-keying"
 mechanisms in this document.

 External re-keying mechanisms are recommended for usage in protocols
 that process quite small messages, since the maximum gain in
 increasing the initial key lifetime is achieved by increasing the
 number of messages.

 External re-keying increases the initial key lifetime through the
 following approach. Suppose there is a protocol P with some mode of
 operation (base encryption or authentication mode). Let L1 be a key
 lifetime limitation induced by side-channel analysis methods (side-
 channel limitation), let L2 be a key lifetime limitation induced by
 methods based on the combinatorial properties of a used mode of
 operation (combinatorial limitation) and let q1, q2 be the total
 numbers of messages of length m, that can be safely processed with an
 initial key K according to these limitations.

 Let L = min(L1, L2), q = min (q1, q2), q * m <= L. As L1 limitation
 is usually much stronger than L2 limitation (L1 < L2), the final key
 lifetime restriction is equal to the most restrictive limitation L1.
 Thus, as displayed in Figure 2, without re-keying only q1 (q1 * m <=
 L1) messages can be safely processed.

Smyshlyaev Expires April 12, 2018 [Page 9]

Internet-Draft Re-keying Mechanisms for Symmetric Keys October 2017

 <--------m------->
 +----------------+ ^ ^
 |================| | |
 |================| | |
 K-->|================| q1|
 |================| | |
 |==============L1| | |
 +----------------+ v |
 | | |
 | | |
 | | q2
 | | |
 | | |
 | | |
 | | |
 | | |
 | | |
 | | |
 | | |
 | L2| |
 +----------------+ v

Figure 2: Basic principles of message processing without external re-keying

 Suppose that the safety margin for the protocol P is fixed and the
 external re-keying approach is applied to the initial key K to
 generate the sequence of frame keys. The frame keys are generated in
 such a way that the leakage of a previous frame key does not have any
 impact on the following one, so the side channel limitation L1 goes
 off. Thus, the resulting key lifetime limitation of the initial key
 K can be calculated on the basis of a new combinatorial limitation
 L2'. It is proven (see [AbBell]) that the security of the mode of
 operation that uses external re-keying leads to an increase when
 compared to base mode without re-keying (thus, L2 < L2'). Hence, as
 displayed in Figure 3, the resulting key lifetime limitation in case
 of using external re-keying can be increased up to L2'.

Smyshlyaev Expires April 12, 2018 [Page 10]

Internet-Draft Re-keying Mechanisms for Symmetric Keys October 2017

 <--------m------->
 K +----------------+
 | |================|
 v |================|
 K^1--> |================|
 | |================|
 | |==============L1|
 | +----------------+
 | |================|
 v |================|
 K^2--> |================|
 | |================|
 | |==============L1|
 | +----------------+
 | |================|
 v |================|
 ... | . . . |
 | |
 | |
 | L2|
 +----------------+
 | |

 | L2'|
 +----------------+

Figure 3: Basic principles of message processing with external re-keying

 Note: the key transformation process is depicted in a simplified
 form. A specific approach (parallel and serial) is described below.

 Consider an example. Let the message size in a protocol P be equal
 to 1 KB. Suppose L1 = 128 MB and L2 = 1 TB. Thus, if an external
 re-keying mechanism is not used, the initial key K must be
 renegotiated after processing 128 MB / 1 KB = 131072 messages.

 If an external re-keying mechanism is used, the key lifetime
 limitation L1 goes off. Hence the resulting key lifetime limitation
 L2' can be set to more then 1 TB. Thus if an external re-keying
 mechanism is used, more then 1 TB / 1 KB = 2^30 messages can be
 processed before the initial key K is renegotiated. This is 8192
 times greater than the number of messages that can be processed, when
 external re-keying mechanism is not used.

Smyshlyaev Expires April 12, 2018 [Page 11]

Internet-Draft Re-keying Mechanisms for Symmetric Keys October 2017

5.1. Methods of Key Lifetime Control

 Suppose L is an amount of data that can be safely processed with one
 section key. For i in {1, 2, ... , t} the frame key K^i (see
 Figure 4 and Figure 5) should be transformed after processing q_i
 messages, where q_i can be calculated in accordance with one of the
 following two approaches:

 o Explicit approach:
 q_i is such that |M^{i,1}| + ... + |M^{i,q_i}| <= L, |M^{i,1}| +
 ... + |M^{i,q_i+1}| > L.
 This approach allows to use the frame key K^i in almost optimal
 way but it can be applied only in case when messages cannot be
 lost or reordered (e.g., TLS records).

 o Implicit approach:
 q_i = L / m_max, i = 1, ... , t.
 The amount of data processed with one frame key K^i is calculated
 under the assumption that every message has the maximum length
 m_max. Hence this amount can be considerably less than the key
 lifetime limitation L. On the other hand, this approach can be
 applied in case when messages may be lost or reordered (e.g., DTLS
 records).

5.2. Parallel Constructions

 The main idea behind external re-keying with a parallel construction
 is presented in Figure 4:

Smyshlyaev Expires April 12, 2018 [Page 12]

Internet-Draft Re-keying Mechanisms for Symmetric Keys October 2017

 Maximum message size = m_max.

 m_max
 <---------------->
 M^{1,1} |=== |
 M^{1,2} |=============== |
 +->K^1-->
 | M^{1,q_1} |======== |
 |
 |
 | M^{2,1} |================|
 | M^{2,2} |===== |
 K-----|->K^2-->
 | M^{2,q_2} |========== |
 |
 ...
 | M^{t,1} |============ |
 | M^{t,2} |============= |
 +->K^t-->
 M^{t,q_t} |========== |

 Figure 4: External parallel re-keying mechanisms

 The frame key K^i, i = 1, ... , t-1, is updated after processing a
 certain amount of messages (see Section 5.1).

5.2.1. Parallel Construction Based on a KDF on a Block Cipher

 ExtParallelC re-keying mechanism is based on the key derivation
 function on a block cipher and is used to generate t frame keys as
 follows:

 K^1 | K^2 | ... | K^t = ExtParallelC(K, t * k) = MSB_{t *
 k}(E_{K}(Vec_n(0)) |
 E_{K}(Vec_n(1)) | ... | E_{K}(Vec_n(R - 1))),

 where R = ceil(t * k/n).

5.2.2. Parallel Construction Based on HKDF

 ExtParallelH re-keying mechanism is based on the key derivation
 function HKDF-Expand, described in [RFC5869], and is used to generate
 t frame keys as follows:

https://datatracker.ietf.org/doc/html/rfc5869

Smyshlyaev Expires April 12, 2018 [Page 13]

Internet-Draft Re-keying Mechanisms for Symmetric Keys October 2017

 K^1 | K^2 | ... | K^t = ExtParallelH(K, t * k) = HKDF-Expand(K,
 label, t * k),

 where label is a string (may be a zero-length string) that is defined
 by a specific protocol.

5.2.3. Tree-based Construction

 The application of external tree-based mechanism leads to the
 construction of the key tree with the initial key K (root key) at the
 0-level and the frame keys K^1, K^2, ... at the last level as
 described in Figure 6.

 K_root = K
 ___________|___________
 | ... |
 V V
 K{1,1} K{1,W1}
 ______|______ ______|______
 | ... | | ... |
 V V V V
 K{2,1} K{2,W2} K{2,(W1-1)*W2+1} K{2,W1*W2}
 __|__ __|__ __|__ __|__
 | ... | | ... | | ... | | ... |
 V V V V V V V V
 K{3,1} K{3,W1*W2*W3}

 __|__ ... __|__
 | ... | | ... |
 V V V V
 K{h,1} K{h,Wh} K{h,(W1*...*W{h-1}-1)*Wh+1} K{h,W1*...*Wh}
 // \\ // \\
 K^1 K^{Wh} K^{(W1*...*W{h-1}-1)*Wh+1} K^{W1*...*Wh}

 Figure 6: External Tree-based Mechanism

 The height of tree h and the number of keys Wj, j in {1, ... , h},
 which can be partitioned from "parent" key, are defined in accordance
 with a specific protocol and key lifetime limitations for a used
 derivation functions.

 Each j-level key K{j,w}, where j in {1, ... , h}, w in {1, ... , W1 *
 ... * Wj}, is derived from the (j-1)-level "parent" key K{j-1,ceil(w/

Smyshlyaev Expires April 12, 2018 [Page 14]

Internet-Draft Re-keying Mechanisms for Symmetric Keys October 2017

 Wi)} (and other appropriate input data) using j-th level derivation
 function that can be based on the block cipher function or on the
 hash function and that is defined in accordance with a specific
 protocol.

 The i-th frame K^i, i in {1, 2, ... , W1*...*Wh}, can be calculated
 as follows:

 K^i = ExtKeyTree(K, i) = KDF_h(KDF_{h-1}(... KDF_1(K, ceil(i / (W2
 * ... * Wh)) ... , ceil(i / Wh)), i),

 where KDF_j is a j-th level derivation function that takes two
 arguments (the parent key value and the integer in range from 1 to W1
 * ... * Wj) and outputs the j-th level key value.

 The frame key K^i is updated after processing a certain amount of
 messages (see Section 5.1).

 In order to create an effective implementation, during frame key K^i
 generation the derivation functions KDF_j, j in {1, ... , h-1},
 should be used only in case when ceil(i / (W{j+1} * ... * Wh)) !=
 ceil((i - 1) / (W{j+1} * ... * Wh)); otherwise it is necessary to use
 previously generated value. This approach also makes it possible to
 take countermeasures against side channels attacks.

 Consider an example. Suppose h = 3, W1 = W2 = W3 = W and KDF_1,
 KDF_2, KDF_3 are key derivation functions based on
 KDF_GOSTR3411_2012_256 (hereafter simply KDF) function described in
 [RFC7836]. The resulting ExtKeyTree function can be defined as
 follows:

 ExtKeyTree(K, i) = KDF(KDF(KDF(K, "level1", ceil(i / W^2)),
 "level2", ceil(i / W)), "level3", i).

 where i in {1, 2, ... , W^3}.

 The structure similar to external tree-based mechanism can be found
 in Section 6 of [NISTSP800-108].

5.3. Serial Constructions

 The main idea behind external re-keying with a serial construction is
 presented in Figure 5:

https://datatracker.ietf.org/doc/html/rfc7836

Smyshlyaev Expires April 12, 2018 [Page 15]

Internet-Draft Re-keying Mechanisms for Symmetric Keys October 2017

 Maximum message size = m_max.

 m_max
 <---------------->
 M^{1,1} |=== |
 M^{1,2} |=============== |
 K*_1 = K --->K^1-->
 | M^{1,q_1} |======== |
 |
 |
 | M^{2,1} |================|
 v M^{2,2} |===== |
 K*_2 ------->K^2-->
 | M^{2,q_2} |========== |
 |
 ...
 | M^{t,1} |============ |
 v M^{t,2} |============= |
 K*_t ------->K^t-->
 M^{t,q_t} |========== |

 Figure 5: External serial re-keying mechanisms

 The frame key K^i, i = 1, ... , t - 1, is updated after processing a
 certain amount of messages (see Section 5.1).

5.3.1. Serial Construction Based on a KDF on a Block Cipher

 The frame key K^i is calculated using ExtSerialC transformation as
 follows:

 K^i = ExtSerialC(K, i) =
 MSB_k(E_{K*_i}(Vec_n(0)) |E_{K*_i}(Vec_n(1)) | ... |
 E_{K*_i}(Vec_n(J - 1))),

 where J = ceil(k / n), i = 1, ... , t, K*_i is calculated as follows:

 K*_1 = K,

 K*_{j+1} = MSB_k(E_{K*_j}(Vec_n(J)) | E_{K*_j}(Vec_n(J + 1)) |
 ... |
 E_{K*_j}(Vec_n(2 * J - 1))),

 where j = 1, ... , t - 1.

Smyshlyaev Expires April 12, 2018 [Page 16]

Internet-Draft Re-keying Mechanisms for Symmetric Keys October 2017

5.3.2. Serial Construction Based on HKDF

 The frame key K^i is calculated using ExtSerialH transformation as
 follows:

 K^i = ExtSerialH(K, i) = HKDF-Expand(K*_i, label1, k),

 where i = 1, ... , t, HKDF-Expand is the HMAC-based key derivation
 function, described in [RFC5869], K*_i is calculated as follows:

 K*_1 = K,

 K*_{j+1} = HKDF-Expand(K*_j, label2, k), where j = 1, ... , t - 1,

 where label1 and label2 are different strings from V* that are
 defined by a specific protocol (see, for example, TLS 1.3 updating
 traffic keys algorithm [TLSDraft]).

6. Internal Re-keying Mechanisms

 This section presents an approach to increase the key lifetime by
 using a transformation of a data processing key (section key) during
 each separate message processing. Each message is processed starting
 with the same key (the first section key) and each section key is
 updated after processing N bits of message (section).

 This section provides internal re-keying mechanisms called ACPKM
 (Advanced Cryptographic Prolongation of Key Material) and ACPKM-
 Master that do not use a master key and use a master key
 respectively. Such mechanisms are integrated into the base modes of
 operation and actually form new modes of operation, therefore they
 are called "internal re-keying" mechanisms in this document.

 Internal re-keying mechanisms are recommended to be used in protocols
 that process large single messages (e.g., CMS messages), since the
 maximum gain in increasing the key lifetime is achieved by increasing
 the length of a message, while it provides almost no increase in the
 number of messages that can be processed with one initial key.

 Internal re-keying increases the key lifetime through the following
 approach. Suppose protocol P uses some base mode of operation. Let
 L1 and L2 be a side channel and combinatorial limitations
 respectively and for some fixed amount of messages q let m1, m2 be
 the lengths of messages, that can be safely processed with a single
 initial key K according to these limitations.

https://datatracker.ietf.org/doc/html/rfc5869

Smyshlyaev Expires April 12, 2018 [Page 17]

Internet-Draft Re-keying Mechanisms for Symmetric Keys October 2017

 Thus, by analogy with the Section 5 without re-keying the final key
 lifetime restriction, as displayed in Figure 7, is equal to L1 and
 only q messages of the length m1 can be safely processed.

 K
 |
 v
 ^ +----------------+------------------------------------+
 | |==============L1| L2|
 | |================| |
 q |================| |
 | |================| |
 | |================| |
 v +----------------+------------------------------------+
 <-------m1------->
 <----------------------------m2----------------------->

Figure 7: Basic principles of message processing without internal re-keying

 Suppose that the safety margin for the protocol P is fixed and
 internal re-keying approach is applied to the base mode of operation.
 Suppose further that every message is processed with a section key,
 which is transformed after processing N bits of data, where N is a
 parameter. If q * N does not exceed L1 then the side channel
 limitation L1 goes off and the resulting key lifetime limitation of
 the initial key K can be calculated on the basis of a new
 combinatorial limitation L2'. The security of the mode of operation
 that uses internal re-keying increases when compared to base mode of
 operation without re-keying (thus, L2 < L2'). Hence, as displayed in
 Figure 8, the resulting key lifetime limitation in case of using
 internal re-keying can be increased up to L2'.

Smyshlyaev Expires April 12, 2018 [Page 18]

Internet-Draft Re-keying Mechanisms for Symmetric Keys October 2017

 K-----> K^1-------------> K^2 -----------> . . .
 | |
 v v
^ +----------------+----------------+-------------------+--...--+
| |==============L1|==============L1|====== L2| L2'|
| |================|================|====== | |
q |================|================|====== . . . | |
| |================|================|====== | |
| |================|================|====== | |
v +----------------+----------------+-------------------+--...--+
 <-------N-------->

Figure 8: Basic principles of message processing with internal re-keying

 Note: the key transformation process is depicted in a simplified
 form. A specific approach (ACPKM and ACPKM-Master re-keying
 mechanisms) is described below.

 Since the performance of encryption can slightly decrease for rather
 small values of N, the parameter N should be selected for a
 particular protocol as maximum possible to provide necessary key
 lifetime for the security models that are considered.

 Consider an example. Suppose L1 = 128 MB and L2 = 10 TB. Let the
 message size in the protocol be large/unlimited (may exhaust the
 whole key lifetime L2). The most restrictive resulting key lifetime
 limitation is equal to 128 MB.

 Thus, there is a need to put a limit on the maximum message size
 m_max. For example, if m_max = 32 MB, it may happen that the
 renegotiation of initial key K would be required after processing
 only four messages.

 If an internal re-keying mechanism with section size N = 1 MB is
 used, more than L1 / N = 128 MB / 1 MB = 128 messages can be
 processed before the renegotiation of initial key K (instead of 4
 messages in case when an internal re-keying mechanism is not used).
 Note that only one section of each message is processed with the
 section key K^i, and, consequently, the key lifetime limitation L1
 goes off. Hence the resulting key lifetime limitation L2' can be set
 to more then 10 TB (in the case when a single large message is
 processed using the initial key K).

Smyshlyaev Expires April 12, 2018 [Page 19]

Internet-Draft Re-keying Mechanisms for Symmetric Keys October 2017

6.1. Methods of Key Lifetime Control

 Suppose L is an amount of data that can be safely processed with one
 section key, N is a section size (fixed parameter). Suppose M^{i}_1
 is the first section of message M^{i}, i = 1, ... , q (see Figure 9
 and Figure 10), then the parameter q can be calculated in accordance
 with one of the following two approaches:

 o Explicit approach:
 q_i is such that |M^{1}_1| + ... + |M^{q}_1| <= L, |M^{1}_1| + ...
 + |M^{q+1}_1| > L
 This approach allows to use the section key K^i in an almost
 optimal way but it can be applied only in case when messages
 cannot be lost or reordered (e.g., TLS records).

 o Implicit approach:
 q = L / N.
 The amount of data processed with one section key K^i is
 calculated under the assumption that the length of every message
 is equal or greater than section size N and so it can be
 considerably less than the key lifetime limitation L. On the
 other hand, this approach can be applied in case when messages may
 be lost or reordered (e.g., DTLS records).

6.2. Constructions that Do Not Require Master Key

 This section describes the block cipher modes that use the ACPKM re-
 keying mechanism, which does not use a master key: an initial key is
 used directly for the encryption of the data.

6.2.1. ACPKM Re-keying Mechanisms

 This section defines periodical key transformation without a master
 key, which is called ACPKM re-keying mechanism. This mechanism can
 be applied to one of the basic encryption modes (CTR and GCM block
 cipher modes) for getting an extension of this encryption mode that
 uses periodical key transformation without a master key. This
 extension can be considered as a new encryption mode.

 An additional parameter that defines functioning of base encryption
 modes with the ACPKM re-keying mechanism is the section size N. The
 value of N is measured in bits and is fixed within a specific
 protocol based on the requirements of the system capacity and the key
 lifetime. The section size N MUST be divisible by the block size n.

 The main idea behind internal re-keying without a master key is
 presented in Figure 9:

Smyshlyaev Expires April 12, 2018 [Page 20]

Internet-Draft Re-keying Mechanisms for Symmetric Keys October 2017

 Section size = const = N,
 maximum message size = m_max.
 __

 ACPKM ACPKM ACPKM
 K^1 = K ---> K^2 ---...-> K^{l_max-1} ----> K^{l_max}
 | | | |
 | | | |
 v v v v
 M^{1} |==========|==========| ... |==========|=======: |
 M^{2} |==========|==========| ... |=== | : |
 :
 : : : : : : :
 M^{q} |==========|==========| ... |==========|===== : |
 section :
 <----------> m_max
 N bit

 l_max = ceil(m_max/N).

 Figure 9: Internal re-keying without a master key

 During the processing of the input message M with the length m in
 some encryption mode that uses ACPKM key transformation of the
 initial key K the message is divided into l = ceil(m / N) sections
 (denoted as M = M_1 | M_2 | ... | M_l, where M_i is in V_N for i in
 {1, 2, ... , l - 1} and M_l is in V_r, r <= N). The first section of
 each message is processed with the section key K^1 = K. To process
 the (i + 1)-th section of each message the section key K^{i+1} is
 calculated using ACPKM transformation as follows:

 K^{i+1} = ACPKM(K^i) = MSB_k(E_{K^i}(D_1) | ... | E_{K^i}(D_J)),

 where J = ceil(k/n) and D_1, D_2, ... , D_J are in V_n and are
 calculated as follows:

 D_1 | D_2 | ... | D_J = MSB_{J * n}(D),

 where D is the following constant in V_{1024}:

Smyshlyaev Expires April 12, 2018 [Page 21]

Internet-Draft Re-keying Mechanisms for Symmetric Keys October 2017

 D = (80 | 81 | 82 | 83 | 84 | 85 | 86 | 87
 | 88 | 89 | 8a | 8b | 8c | 8d | 8e | 8f
 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97
 | 98 | 99 | 9a | 9b | 9c | 9d | 9e | 9f
 | a0 | a1 | a2 | a3 | a4 | a5 | a6 | a7
 | a8 | a9 | aa | ab | ac | ad | ae | af
 | b0 | b1 | b2 | b3 | b4 | b5 | b6 | b7
 | b8 | b9 | ba | bb | bc | bd | be | bf
 | c0 | c1 | c2 | c3 | c4 | c5 | c6 | c7
 | c8 | c9 | ca | cb | cc | cd | ce | cf
 | d0 | d1 | d2 | d3 | d4 | d5 | d6 | d7
 | d8 | d9 | da | db | dc | dd | de | df
 | e0 | e1 | e2 | e3 | e4 | e5 | e6 | e7
 | e8 | e9 | ea | eb | ec | ed | ee | ef
 | f0 | f1 | f2 | f3 | f4 | f5 | f6 | f7
 | f8 | f9 | fa | fb | fc | fd | fe | ff)

 N o t e : The constant D is such that D_1, ... , D_J are pairwise
 different for any allowed n and k values.

 N o t e : The constant D is such that the highest bit of its each
 octet is equal to 1. This condition is important, as in conjunction
 with message length limitation it allows to prevent collisions of
 block cipher permutation inputs in cases of key transformation and
 message processing.

6.2.2. CTR-ACPKM Encryption Mode

 This section defines a CTR-ACPKM encryption mode that uses internal
 ACPKM re-keying mechanism for the periodical key transformation.

 The CTR-ACPKM mode can be considered as the basic encryption mode CTR
 (see [MODES]) extended by the ACPKM re-keying mechanism.

 The CTR-ACPKM encryption mode can be used with the following
 parameters:

 o 64 <= n <= 512;

 o 128 <= k <= 512;

 o the number of bits c in a specific part of the block to be
 incremented is such that 32 <= c <= 3 / 4 n, c is a multiple of 8;

 o the maximum message size m_max = n * 2^{c-1}.

 The CTR-ACPKM mode encryption and decryption procedures are defined
 as follows:

Smyshlyaev Expires April 12, 2018 [Page 22]

Internet-Draft Re-keying Mechanisms for Symmetric Keys October 2017

 +--+
CTR-ACPKM-Encrypt(N, K, ICN, P)
Input:
- section size N,
- initial key K,
- initial counter nonce ICN in V_{n-c},
- plaintext P = P_1
Output:
- ciphertext C.
--
1. CTR_1 = ICN
2. For j = 2, 3, ... , b do
CTR_{j} = Inc_c(CTR_{j-1})
3. K^1 = K
4. For i = 2, 3, ... , ceil(
K^i = ACPKM(K^{i-1})
5. For j = 1, 2, ... , b do
i = ceil(j * n / N),
G_j = E_{K^i}(CTR_j)
6. C = P (xor) MSB_{
7. Return C
 +--+

 +--+
CTR-ACPKM-Decrypt(N, K, ICN, C)
Input:
- section size N,
- initial key K,
- initial counter nonce ICN in V_{n-c},
- ciphertext C = C_1
Output:
- plaintext P.
--
1. P = CTR-ACPKM-Encrypt(N, K, ICN, C)
2. Return P
 +--+

 The initial counter nonce ICN value for each message that is
 encrypted under the given initial key K must be chosen in a unique
 manner.

6.2.3. GCM-ACPKM Authenticated Encryption Mode

 This section defines GCM-ACPKM authenticated encryption mode that
 uses internal ACPKM re-keying mechanism for the periodical key
 transformation.

Smyshlyaev Expires April 12, 2018 [Page 23]

Internet-Draft Re-keying Mechanisms for Symmetric Keys October 2017

 The GCM-ACPKM mode can be considered as the basic authenticated
 encryption mode GCM (see [GCM]) extended by the ACPKM re-keying
 mechanism.

 The GCM-ACPKM authenticated encryption mode can be used with the
 following parameters:

 o n in {128, 256};

 o 128 <= k <= 512;

 o the number of bits c in a specific part of the block to be
 incremented is such that 1 / 4 n <= c <= 1 / 2 n, c is a multiple
 of 8;

 o authentication tag length t;

 o the maximum message size m_max = min{n * (2^{c-1} - 2), 2^{n/2} -
 1}.

 The GCM-ACPKM mode encryption and decryption procedures are defined
 as follows:

 +---+
GHASH(X, H)
Input:
- bit string X = X_1
Output:
- block GHASH(X, H) in V_n.

1. Y_0 = 0^n
2. For i = 1, ... , m do
Y_i = (Y_{i-1} (xor) X_i) * H
3. Return Y_m
 +---+

 +---+
GCTR(N, K, ICB, X)
Input:
- section size N,
- initial key K,
- initial counter block ICB,
- X = X_1
Output:
- Y in V_{

Smyshlyaev Expires April 12, 2018 [Page 24]

Internet-Draft Re-keying Mechanisms for Symmetric Keys October 2017

 |---|
 | 1. If X in V_0 then return Y, where Y in V_0 |
 | 2. GCTR_1 = ICB |
 | 3. For i = 2, ... , b do |
 | GCTR_i = Inc_c(GCTR_{i-1}) |
 | 4. K^1 = K |
 | 5. For j = 2, ... , ceil(|X| / N) |
 | K^j = ACPKM(K^{j-1}) |
 | 6. For i = 1, ... , b do |
 | j = ceil(i * n / N), |
 | G_i = E_{K_j}(GCTR_i) |
 | 7. Y = X (xor) MSB_{|X|}(G_1 | ... | G_b) |
 | 8. Return Y |
 +---+

 +---+
GCM-ACPKM-Encrypt(N, K, ICN, P, A)
Input:
- section size N,
- initial key K,
- initial counter nonce ICN in V_{n-c},
- plaintext P = P_1
- additional authenticated data A.
Output:
- ciphertext C,
- authentication tag T.

1. H = E_{K}(0^n)
2. ICB_0 = ICN
3. C = GCTR(N, K, Inc_c(ICB_0), P)
4. u = n * ceil(
v = n * ceil(
5. S = GHASH(A
6. T = MSB_t(E_{K}(ICB_0) (xor) S)
7. Return C
 +---+

 +---+
GCM-ACPKM-Decrypt(N, K, ICN, A, C, T)
Input:
- section size N,
- initial key K,
- initial counter block ICN,
- additional authenticated data A,
- ciphertext C = C_1

Smyshlyaev Expires April 12, 2018 [Page 25]

Internet-Draft Re-keying Mechanisms for Symmetric Keys October 2017

 | - authentication tag T. |
 | Output: |
- plaintext P or FAIL.
1. H = E_{K}(0^n)
2. ICB_0 = ICN
3. P = GCTR(N, K, Inc_c(ICB_0), C)
4. u = n * ceil(
v = n * ceil(
5. S = GHASH(A
6. T' = MSB_t(E_{K}(ICB_0) (xor) S)
7. If T = T' then return P; else return FAIL
 +---+

 The * operation on (pairs of) the 2^n possible blocks corresponds to
 the multiplication operation for the binary Galois (finite) field of
 2^n elements defined by the polynomial f as follows (by analogy with
 [GCM]):

 n = 128: f = a^128 + a^7 + a^2 + a^1 + 1,

 n = 256: f = a^256 + a^10 + a^5 + a^2 + 1.

 The initial vector IV value for each message that is encrypted under
 the given initial key K must be chosen in a unique manner.

 The key for computing values E_{K}(ICB_0) and H is not updated and is
 equal to the initial key K.

6.3. Constructions that Require Master Key

 This section describes the block cipher modes that use the ACPKM-
 Master re-keying mechanism, which use the initial key K as a master
 key, so K is never used directly for data processing but is used for
 key derivation.

6.3.1. ACPKM-Master Key Derivation from the Master Key

 This section defines periodical key transformation with a master key,
 which is called ACPKM-Master re-keying mechanism. This mechanism can
 be applied to one of the basic modes of operation (CTR, GCM, CBC,
 CFB, OMAC modes) for getting an extension that uses periodical key
 transformation with a master key. This extension can be considered
 as a new mode of operation.

 Additional parameters that define the functioning of modes of
 operation that use the ACPKM-Master re-keying mechanism are the

Smyshlyaev Expires April 12, 2018 [Page 26]

Internet-Draft Re-keying Mechanisms for Symmetric Keys October 2017

 section size N, the change frequency T* of the master keys K*_1,
 K*_2, ... (see Figure 10) and the size d of the section key material.
 The values of N and T* are measured in bits and are fixed within a
 specific protocol, based on the requirements of the system capacity
 and the key lifetime. The section size N MUST also be divisible by
 the block size n. The master key frequency T* MUST be divisible by d
 and by n.

 The main idea behind internal re-keying with a master key is
 presented in Figure 10:

Master key frequency T*,
section size N,
maximum message size = m_max.
__

 ACPKM ACPKM
 K*_1 = K--------------> K*_2 ---------...---------> K*_l_max
 ___|___ ___|___ ___|___
 | | | | | |
 v ... v v ... v v ... v
 K[1] K[t] K[t+1] K[2t] K[(l_max-1)t+1]
K[l_max*t]
 | | | | | |
 | | | | | |
 v v v v v v
M^{1}||========|...|========||========|...|========||...||========|...|== :
||
M^{2}||========|...|========||========|...|========||...||========|...|======:
||
 ... || | | || | | || || | | :
||
M^{q}||========|...|========||==== |...| ||...|| |...| :
||
 section :
 <--------> :
 N bit
m_max
__
|K[i]| = d,
t = T* / d,
l_max = ceil(m_max / (N * t)).

 Figure 10: Internal re-keying with a master key

 During the processing of the input message M with the length m in

 some mode of operation that uses ACPKM-Master key transformation with
 the initial key K and the master key frequency T* the message M is
 divided into l = ceil(m / N) sections (denoted as M = M_1 | M_2 |
 ... | M_l, where M_i is in V_N for i in {1, 2, ... , l - 1} and M_l
 is in V_r, r <= N). The j-th section of each message is processed

Smyshlyaev Expires April 12, 2018 [Page 27]

Internet-Draft Re-keying Mechanisms for Symmetric Keys October 2017

 with the key material K[j], j in {1, ... , l}, |K[j]| = d, that is
 calculated with the ACPKM-Master algorithm as follows:

 K[1] | ... | K[l] = ACPKM-Master(T*, K, d, l) = CTR-ACPKM-Encrypt
 (T*, K, 1^{n/2}, 0^{d*l}).

 Note: the parameters d and l MUST be such that d * l <= n *
 2^{n/2-1}.

6.3.2. CTR-ACPKM-Master Encryption Mode

 This section defines a CTR-ACPKM-Master encryption mode that uses
 internal ACPKM-Master re-keying mechanism for the periodical key
 transformation.

 The CTR-ACPKM-Master encryption mode can be considered as the basic
 encryption mode CTR (see [MODES]) extended by the ACPKM-Master re-
 keying mechanism.

 The CTR-ACPKM-Master encryption mode can be used with the following
 parameters:

 o 64 <= n <= 512;

 o 128 <= k <= 512;

 o the number of bits c in a specific part of the block to be
 incremented is such that 32 <= c <= 3 / 4 n, c is a multiple of 8;

 o the maximum message size m_max = min{N * (n * 2^{n/2-1} / k), n *
 2^c}.

 The key material K[j] that is used for one section processing is
 equal to K^j, |K^j| = k bits.

 The CTR-ACPKM-Master mode encryption and decryption procedures are
 defined as follows:

Smyshlyaev Expires April 12, 2018 [Page 28]

Internet-Draft Re-keying Mechanisms for Symmetric Keys October 2017

 +--+
CTR-ACPKM-Master-Encrypt(N, K, T*, ICN, P)
Input:
- section size N,
- initial key K,
- master key frequency T*,
- initial counter nonce ICN in V_{n-c},
- plaintext P = P_1
Output:
- ciphertext C.
--
1. CTR_1 = ICN
2. For j = 2, 3, ... , b do
CTR_{j} = Inc_c(CTR_{j-1})
3. l = ceil(
4. K^1
5. For j = 1, 2, ... , b do
i = ceil(j * n / N),
G_j = E_{K^i}(CTR_j)
6. C = P (xor) MSB_{
7. Return C
--+

 +--+
CTR-ACPKM-Master-Decrypt(N, K, T*, ICN, C)
Input:
- section size N,
- initial key K,
- master key frequency T*,
- initial counter nonce ICN in V_{n-c},
- ciphertext C = C_1
Output:
- plaintext P.
--
1. P = CTR-ACPKM-Master-Encrypt(N, K, T*, ICN, C)
1. Return P
 +--+

 The initial counter nonce ICN value for each message that is
 encrypted under the given initial key must be chosen in a unique
 manner.

Smyshlyaev Expires April 12, 2018 [Page 29]

Internet-Draft Re-keying Mechanisms for Symmetric Keys October 2017

6.3.3. GCM-ACPKM-Master Authenticated Encryption Mode

 This section defines a GCM-ACPKM-Master authenticated encryption mode
 that uses internal ACPKM-Master re-keying mechanism for the
 periodical key transformation.

 The GCM-ACPKM-Master authenticated encryption mode can be considered
 as the basic authenticated encryption mode GCM (see [GCM]) extended
 by the ACPKM-Master re-keying mechanism.

 The GCM-ACPKM-Master authenticated encryption mode can be used with
 the following parameters:

 o n in {128, 256};

 o 128 <= k <= 512;

 o the number of bits c in a specific part of the block to be
 incremented is such that 1 / 4 n <= c <= 1 / 2 n, c is a multiple
 of 8;

 o authentication tag length t;

 o the maximum message size m_max = min{N * (n * 2^{n/2-1} / k), n *
 (2^c - 2), 2^{n/2} - 1}.

 The key material K[j] that is used for the j-th section processing is
 equal to K^j, |K^j| = k bits.

 The GCM-ACPKM-Master mode encryption and decryption procedures are
 defined as follows:

 +---+
GHASH(X, H)
Input:
- bit string X = X_1
Output:
- block GHASH(X, H) in V_n

1. Y_0 = 0^n
2. For i = 1, ... , m do
Y_i = (Y_{i-1} (xor) X_i) * H
3. Return Y_m
 +---+

 +---+

Smyshlyaev Expires April 12, 2018 [Page 30]

Internet-Draft Re-keying Mechanisms for Symmetric Keys October 2017

GCTR(N, K, T*, ICB, X)
Input:
- section size N,
- initial key K,
- master key frequency T*,
- initial counter block ICB,
- X = X_1
Output:
- Y in V_{

1. If X in V_0 then return Y, where Y in V_0
2. GCTR_1 = ICB
3. For i = 2, ... , b do
GCTR_i = Inc_c(GCTR_{i-1})
4. l = ceil(
5. K^1
6. For j = 1, ... , b do
i = ceil(j * n / N),
G_j = E_{K^i}(GCTR_j)
7. Y = X (xor) MSB_{
8. Return Y
 +---+

 +---+
GCM-ACPKM-Master-Encrypt(N, K, T*, ICN, P, A)
Input:
- section size N,
- initial key K,
- master key frequency T*,
- initial counter nonce ICN in V_{n-c},
- plaintext P = P_1
- additional authenticated data A.
Output:
- ciphertext C,
- authentication tag T.

1. K^1 = ACPKM-Master(T*, K, k, 1)
2. H = E_{K^1}(0^n)
3. ICB_0 = ICN
4. C = GCTR(N, K, T*, Inc_c(ICB_0), P)
5. u = n * ceil(
v = n * ceil(
6. S = GHASH(A
7. T = MSB_t(E_{K^1}(ICB_0) (xor) S)
8. Return C

Smyshlyaev Expires April 12, 2018 [Page 31]

Internet-Draft Re-keying Mechanisms for Symmetric Keys October 2017

 +---+

 +---+
GCM-ACPKM-Master-Decrypt(N, K, T*, ICN, A, C, T)
Input:
- section size N,
- initial key K,
- master key frequency T*,
- initial counter nonce ICN in V_{n-c},
- additional authenticated data A.
- ciphertext C = C_1
- authentication tag T.
Output:
- plaintext P or FAIL.

1. K^1 = ACPKM-Master(T*, K, k, 1)
2. H = E_{K^1}(0^n)
3. ICB_0 = ICN
4. P = GCTR(N, K, T*, Inc_c(ICB_0), C)
5. u = n * ceil(
v = n * ceil(
6. S = GHASH(A
7. T' = MSB_t(E_{K^1}(ICB_0) (xor) S)
8. IF T = T' then return P; else return FAIL.
 +---+

 The * operation on (pairs of) the 2^n possible blocks corresponds to
 the multiplication operation for the binary Galois (finite) field of
 2^n elements defined by the polynomial f as follows (by analogy with
 [GCM]):

 n = 128: f = a^128 + a^7 + a^2 + a^1 + 1,

 n = 256: f = a^256 + a^10 + a^5 + a^2 + 1.

 The initial vector IV value for each message that is encrypted under
 the given initial key must be chosen in a unique manner.

6.3.4. CBC-ACPKM-Master Encryption Mode

 This section defines a CBC-ACPKM-Master encryption mode that uses
 internal ACPKM-Master re-keying mechanism for the periodical key
 transformation.

Smyshlyaev Expires April 12, 2018 [Page 32]

Internet-Draft Re-keying Mechanisms for Symmetric Keys October 2017

 The CBC-ACPKM-Master encryption mode can be considered as the basic
 encryption mode CBC (see [MODES]) extended by the ACPKM-Master re-
 keying mechanism.

 The CBC-ACPKM-Master encryption mode can be used with the following
 parameters:

 o 64 <= n <= 512;

 o 128 <= k <= 512;

 o the maximum message size m_max = N * (n * 2^{n/2-1} / k).

 In the specification of the CBC-ACPKM-Master mode the plaintext and
 ciphertext must be a sequence of one or more complete data blocks.
 If the data string to be encrypted does not initially satisfy this
 property, then it MUST be padded to form complete data blocks. The
 padding methods are out of the scope of this document. An example of
 a padding method can be found in Appendix A of [MODES].

 The key material K[j] that is used for the j-th section processing is
 equal to K^j, |K^j| = k bits.

 We will denote by D_{K} the decryption function which is a
 permutation inverse to the E_{K}.

 The CBC-ACPKM-Master mode encryption and decryption procedures are
 defined as follows:

Smyshlyaev Expires April 12, 2018 [Page 33]

Internet-Draft Re-keying Mechanisms for Symmetric Keys October 2017

 +--+
CBC-ACPKM-Master-Encrypt(N, K, T*, IV, P)
Input:
- section size N,
- initial key K,
- master key frequency T*,
- initialization vector IV in V_n,
- plaintext P = P_1
Output:
- ciphertext C.
--
1. l = ceil(
2. K^1
3. C_0 = IV
4. For j = 1, 2, ... , b do
i = ceil(j * n / N),
C_j = E_{K^i}(P_j (xor) C_{j-1})
5. Return C = C_1
--+

 +--+
CBC-ACPKM-Master-Decrypt(N, K, T*, IV, C)
Input:
- section size N,
- initial key K,
- master key frequency T*,
- initialization vector IV in V_n,
- ciphertext C = C_1
Output:
- plaintext P.
--
1. l = ceil(
2. K^1
3. C_0 = IV
4. For j = 1, 2, ... , b do
i = ceil(j * n / N)
P_j = D_{K^i}(C_j) (xor) C_{j-1}
5. Return P = P_1
 +--+

 The initialization vector IV for each message that is encrypted under
 the given initial key does not need to be secret, but must be
 unpredictable.

Smyshlyaev Expires April 12, 2018 [Page 34]

Internet-Draft Re-keying Mechanisms for Symmetric Keys October 2017

6.3.5. CFB-ACPKM-Master Encryption Mode

 This section defines a CFB-ACPKM-Master encryption mode that uses
 internal ACPKM-Master re-keying mechanism for the periodical key
 transformation.

 The CFB-ACPKM-Master encryption mode can be considered as the basic
 encryption mode CFB (see [MODES]) extended by the ACPKM-Master re-
 keying mechanism.

 The CFB-ACPKM-Master encryption mode can be used with the following
 parameters:

 o 64 <= n <= 512;

 o 128 <= k <= 512;

 o the maximum message size m_max = N * (n * 2^{n/2-1} / k).

 The key material K[j] that is used for the j-th section processing is
 equal to K^j, |K^j| = k bits.

 The CFB-ACPKM-Master mode encryption and decryption procedures are
 defined as follows:

Smyshlyaev Expires April 12, 2018 [Page 35]

Internet-Draft Re-keying Mechanisms for Symmetric Keys October 2017

 +---+
CFB-ACPKM-Master-Encrypt(N, K, T*, IV, P)
Input:
- section size N,
- initial key K,
- master key frequency T*,
- initialization vector IV in V_n,
- plaintext P = P_1
Output:
- ciphertext C.

1. l = ceil(
2. K^1
3. C_0 = IV
4. For j = 1, 2, ... , b - 1 do
i = ceil(j * n / N),
C_j = E_{K^i}(C_{j-1}) (xor) P_j
5. C_b = MSB_{
6. Return C = C_1
---+

 +---+
CFB-ACPKM-Master-Decrypt(N, K, T*, IV, C)
Input:
- section size N,
- initial key K,
- master key frequency T*,
- initialization vector IV in V_n,
- ciphertext C = C_1
Output:
- plaintext P.

1. l = ceil(
2. K^1
3. C_0 = IV
4. For j = 1, 2, ... , b - 1 do
i = ceil(j * n / N),
P_j = E_{K^i}(C_{j-1}) (xor) C_j
5. P_b = MSB_{
6. Return P = P_1
 +---+

 The initialization vector IV for each message that is encrypted under
 the given initial key need not to be secret, but must be
 unpredictable.

Smyshlyaev Expires April 12, 2018 [Page 36]

Internet-Draft Re-keying Mechanisms for Symmetric Keys October 2017

6.3.6. OMAC-ACPKM-Master Authentication Mode

 This section defines an OMAC-ACPKM-Master message authentication code
 calculation mode that uses internal ACPKM-Master re-keying mechanism
 for the periodical key transformation.

 The OMAC-ACPKM-Master mode can be considered as the basic message
 authentication code calculation mode OMAC, which is also known as
 CMAC (see [RFC4493]), extended by the ACPKM-Master re-keying
 mechanism.

 The OMAC-ACPKM-Master message authentication code calculation mode
 can be used with the following parameters:

 o n in {64, 128, 256};

 o 128 <= k <= 512;

 o the maximum message size m_max = N * (n * 2^{n/2-1} / (k + n)).

 The key material K[j] that is used for one section processing is
 equal to K^j | K^j_1, where |K^j| = k and |K^j_1| = n.

 The following is a specification of the subkey generation process of
 OMAC:

 +---+
Generate_Subkey(K1, r)
Input:
- key K1.
Output:
- key SK.

1. If r = n then return K1
2. If r < n then
if MSB_1(K1) = 0
return K1 << 1
else
return (K1 << 1) (xor) R_n
 +---+

 Where R_n takes the following values:

 o n = 64: R_{64} = 0^{59} | 11011;

https://datatracker.ietf.org/doc/html/rfc4493

Smyshlyaev Expires April 12, 2018 [Page 37]

Internet-Draft Re-keying Mechanisms for Symmetric Keys October 2017

 o n = 128: R_{128} = 0^{120} | 10000111;

 o n = 256: R_{256} = 0^{145} | 10000100101.

 The OMAC-ACPKM-Master message authentication code calculation mode is
 defined as follows:

+--+
OMAC-ACPKM-Master(K, N, T*, M)
Input:
- section size N,
- initial key K,
- master key frequency T*,
- plaintext M = M_1
Output:
- message authentication code T.
--
1. C_0 = 0^n
2. l = ceil(
3. K^1
4. For j = 1, 2, ... , b - 1 do
i = ceil(j * n / N),
C_j = E_{K^i}(M_j (xor) C_{j-1})
5. SK = Generate_Subkey(K^l_1,
6. If
else M*_b = M_b
7. T = E_{K^l}(M*_b (xor) C_{b-1} (xor) SK)
8. Return T
+--+

7. Joint Usage of External and Internal Re-keying

 Any mechanism described in Section 5 can be used with any mechanism
 described in Section 6.

8. Security Considerations

 Re-keying should be used to increase "a priori" security properties
 of ciphers in hostile environments (e.g., with side-channel
 adversaries). If some efficient attacks are known for a cipher, it
 must not be used. So re-keying cannot be used as a patch for
 vulnerable ciphers. Base cipher properties must be well analyzed,
 because the security of re-keying mechanisms is based on the security
 of a block cipher as a pseudorandom function.

Smyshlyaev Expires April 12, 2018 [Page 38]

Internet-Draft Re-keying Mechanisms for Symmetric Keys October 2017

 Re-keying is not intended to solve any post-quantum security issues
 for symmetric crypto, since the reduction of security caused by
 Grover's algorithm is not connected with a size of plaintext
 transformed by a cipher - only a negligible (sufficient for key
 uniqueness) material is needed; and the aim of re-keying is to limit
 a size of plaintext transformed on one initial key.

 Re-keying can provide backward security only if previous traffic keys
 are securely deleted by all parties that have the keys.

9. References

9.1. Normative References

 [CMS] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
RFC 5652, DOI 10.17487/RFC5652, September 2009,

 <http://www.rfc-editor.org/info/rfc5652>.

 [DTLS] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <http://www.rfc-editor.org/info/rfc6347>.

 [ESP] Kent, S., "IP Encapsulating Security Payload (ESP)",
RFC 4303, DOI 10.17487/RFC4303, December 2005,

 <http://www.rfc-editor.org/info/rfc4303>.

 [GCM] McGrew, D. and J. Viega, "The Galois/Counter Mode of
 Operation (GCM)", Submission to NIST

http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/
gcm/gcm-spec.pdf, January 2004.

 [MODES] Dworkin, M., "Recommendation for Block Cipher Modes of
 Operation: Methods and Techniques", NIST Special
 Publication 800-38A, December 2001.

 [NISTSP800-108]
 National Institute of Standards and Technology,
 "Recommendation for Key Derivation Using Pseudorandom
 Functions", NIST Special Publication 800-108, November
 2008, <http://nvlpubs.nist.gov/nistpubs/Legacy/SP/

nistspecialpublication800-108.pdf>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

https://datatracker.ietf.org/doc/html/rfc5652
http://www.rfc-editor.org/info/rfc5652
https://datatracker.ietf.org/doc/html/rfc6347
http://www.rfc-editor.org/info/rfc6347
https://datatracker.ietf.org/doc/html/rfc4303
http://www.rfc-editor.org/info/rfc4303
http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/gcm/gcm-spec.pdf
http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/gcm/gcm-spec.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-108.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-108.pdf
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119

Smyshlyaev Expires April 12, 2018 [Page 39]

Internet-Draft Re-keying Mechanisms for Symmetric Keys October 2017

 [RFC4493] Song, JH., Poovendran, R., Lee, J., and T. Iwata, "The
 AES-CMAC Algorithm", RFC 4493, DOI 10.17487/RFC4493, June
 2006, <https://www.rfc-editor.org/info/rfc4493>.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869,
 DOI 10.17487/RFC5869, May 2010,
 <https://www.rfc-editor.org/info/rfc5869>.

 [RFC7836] Smyshlyaev, S., Ed., Alekseev, E., Oshkin, I., Popov, V.,
 Leontiev, S., Podobaev, V., and D. Belyavsky, "Guidelines
 on the Cryptographic Algorithms to Accompany the Usage of
 Standards GOST R 34.10-2012 and GOST R 34.11-2012",

RFC 7836, DOI 10.17487/RFC7836, March 2016,
 <https://www.rfc-editor.org/info/rfc7836>.

 [SSH] Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
 Transport Layer Protocol", RFC 4253, DOI 10.17487/RFC4253,
 January 2006, <http://www.rfc-editor.org/info/rfc4253>.

 [TLS] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

 [TLSDraft]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", 2017,
 <https://tools.ietf.org/html/draft-ietf-tls-tls13-20>.

9.2. Informative References

 [AbBell] Michel Abdalla and Mihir Bellare, "Increasing the Lifetime
 of a Key: A Comparative Analysis of the Security of Re-
 keying Techniques", ASIACRYPT2000, LNCS 1976, pp. 546-559,
 2000.

 [LDC] Howard M. Heys, "A Tutorial on Linear and Differential
 Cryptanalysis", 2017,
 <http://www.cs.bc.edu/~straubin/crypto2017/heys.pdf>.

 [Sweet32] Karthikeyan Bhargavan, Gaetan Leurent, "On the Practical
 (In-)Security of 64-bit Block Ciphers: Collision Attacks
 on HTTP over TLS and OpenVPN", Cryptology ePrint
 Archive Report 2016/798, 2016,
 <https://sweet32.info/SWEET32_CCS16.pdf>.

https://datatracker.ietf.org/doc/html/rfc4493
https://www.rfc-editor.org/info/rfc4493
https://datatracker.ietf.org/doc/html/rfc5869
https://www.rfc-editor.org/info/rfc5869
https://datatracker.ietf.org/doc/html/rfc7836
https://www.rfc-editor.org/info/rfc7836
https://datatracker.ietf.org/doc/html/rfc4253
http://www.rfc-editor.org/info/rfc4253
https://datatracker.ietf.org/doc/html/rfc5246
http://www.rfc-editor.org/info/rfc5246
https://tools.ietf.org/html/draft-ietf-tls-tls13-20
http://www.cs.bc.edu/~straubin/crypto2017/heys.pdf
https://sweet32.info/SWEET32_CCS16.pdf

Smyshlyaev Expires April 12, 2018 [Page 40]

Internet-Draft Re-keying Mechanisms for Symmetric Keys October 2017

 [TEMPEST] By Craig Ramsay, Jasper Lohuis, "TEMPEST attacks against
 AES. Covertly stealing keys for 200 euro", 2017,
 <https://www.fox-it.com/en/wp-content/uploads/sites/11/

Tempest_attacks_against_AES.pdf>.

Appendix A. Test examples

 External re-keying with a parallel construction based on AES-256
 **
 k = 256
 t = 128

 Initial key:
 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
 0F 0E 0D 0C 0B 0A 09 08 07 06 05 04 03 02 01 00

 K^1:
 51 16 8A B6 C8 A8 38 65 54 85 31 A5 D2 BA C3 86
 64 7D 5C D5 1C 3D 62 98 BC 09 B1 D8 64 EC D9 B1

 K^2:
 6F ED F5 D3 77 57 48 75 35 2B 5F 4D B6 5B E0 15
 B8 02 92 32 D8 D3 8D 73 FE DC DD C6 C8 36 78 BD

 K^3:
 B6 40 24 85 A4 24 BD 35 B4 26 43 13 76 26 70 B6
 5B F3 30 3D 3B 20 EB 14 D1 3B B7 91 74 E3 DB EC

 ...

 K^126:
 2F 3F 15 1B 53 88 23 CD 7D 03 FC 3D FD B3 57 5E
 23 E4 1C 4E 46 FF 6B 33 34 12 27 84 EF 5D 82 23

 K^127:
 8E 51 31 FB 0B 64 BB D0 BC D4 C5 7B 1C 66 EF FD
 97 43 75 10 6C AF 5D 5E 41 E0 17 F4 05 63 05 ED

 K^128:
 77 4F BF B3 22 60 C5 3B A3 8E FE B1 96 46 76 41
 94 49 AF 84 2D 84 65 A7 F4 F7 2C DC A4 9D 84 F9

 External re-keying with a serial construction based on SHA-256
 **
 k = 256

https://www.fox-it.com/en/wp-content/uploads/sites/11/Tempest_attacks_against_AES.pdf
https://www.fox-it.com/en/wp-content/uploads/sites/11/Tempest_attacks_against_AES.pdf

Smyshlyaev Expires April 12, 2018 [Page 41]

Internet-Draft Re-keying Mechanisms for Symmetric Keys October 2017

 t = 128

 Initial key:
 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
 0F 0E 0D 0C 0B 0A 09 08 07 06 05 04 03 02 01 00

 label1:
 SHA2label1

 label2:
 SHA2label2

 K*_1:
 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
 0F 0E 0D 0C 0B 0A 09 08 07 06 05 04 03 02 01 00

 K^1:
 2D A8 D1 37 6C FD 52 7F F7 36 A4 E2 81 C6 0A 9B
 F3 8E 66 97 ED 70 4F B5 FB 10 33 CC EC EE D5 EC

 K*_2:
 14 65 5A D1 7C 19 86 24 9B D3 56 DF CC BE 73 6F
 52 62 4A 9D E3 CC 40 6D A9 48 DA 5C D0 68 8A 04

 K^2:
 2F EA 8D 57 2B EF B8 89 42 54 1B 8C 1B 3F 8D B1
 84 F9 56 C7 FE 01 11 99 1D FB 98 15 FE 65 85 CF

 K*_3:
 18 F0 B5 2A D2 45 E1 93 69 53 40 55 43 70 95 8D
 70 F0 20 8C DF B0 5D 67 CD 1B BF 96 37 D3 E3 EB

 K^3:
 53 C7 4E 79 AE BC D1 C8 24 04 BF F6 D7 B1 AC BF
 F9 C0 0E FB A8 B9 48 29 87 37 E1 BA E7 8F F7 92

 ...

 K*_126:
 A3 6D BF 02 AA 0B 42 4A F2 C0 46 52 68 8B C7 E6
 5E F1 62 C3 B3 2F DD EF E4 92 79 5D BB 45 0B CA

 K^126:
 6C 4B D6 22 DC 40 48 0F 29 C3 90 B8 E5 D7 A7 34
 23 4D 34 65 2C CE 4A 76 2C FE 2A 42 C8 5B FE 9A

 K*_127:
 84 5F 49 3D B8 13 1D 39 36 2B BE D3 74 8F 80 A1

Smyshlyaev Expires April 12, 2018 [Page 42]

Internet-Draft Re-keying Mechanisms for Symmetric Keys October 2017

 05 A7 07 37 BA 15 72 E0 73 49 C2 67 5D 0A 28 A1

 K^127:
 57 F0 BD 5A B8 2A F3 6B 87 33 CF F7 22 62 B4 D0
 F0 EE EF E1 50 74 E5 BA 13 C1 23 68 87 36 29 A2

 K*_128:
 52 F2 0F 56 5C 9C 56 84 AF 69 AD 45 EE B8 DA 4E
 7A A6 04 86 35 16 BA 98 E4 CB 46 D2 E8 9A C1 09

 K^128:
 9B DD 24 7D F3 25 4A 75 E0 22 68 25 68 DA 9D D5
 C1 6D 2D 2B 4F 3F 1F 2B 5E 99 82 7F 15 A1 4F A4

 CTR-ACPKM mode with AES-256

 k = 256
 n = 128
 c = 64
 N = 256

 Initial key K:
 88 99 AA BB CC DD EE FF 00 11 22 33 44 55 66 77
 FE DC BA 98 76 54 32 10 01 23 45 67 89 AB CD EF

 Plain text P:
 11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88
 00 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A
 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00
 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11
 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22
 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22 33
 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22 33 44

 ICN:
 12 34 56 78 90 AB CE F0 A1 B2 C3 D4 E5 F0 01 12
 23 34 45 56 67 78 89 90 12 13 14 15 16 17 18 19

 D_1:
 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

 D_2:
 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

 ACPKM's iteration 1
 Process block 1

Smyshlyaev Expires April 12, 2018 [Page 43]

Internet-Draft Re-keying Mechanisms for Symmetric Keys October 2017

 Input block (CTR):
 12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 00

 Output block (G):
 FD 7E F8 9A D9 7E A4 B8 8D B8 B5 1C 1C 9D 6D D0

 Plain text block:
 11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88

 Cipher text block:
 EC 5C CB DE 8C 18 D3 B8 72 56 68 D0 A7 37 F4 58

 Process block 2
 Input block (CTR):
 12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 01

 Output block (G):
 19 98 C5 71 76 37 FB 17 11 E4 48 F0 0C 0D 60 B2

 Plain text block:
 00 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A

 Cipher text block:
 19 89 E7 42 32 62 9D 60 99 7D E2 4B C0 E3 9F B8

 Updated key:
 F6 80 D1 21 2F A4 3D F4 EC 3A 91 DE 2A B1 6F 1B
 36 B0 48 8A 4F C1 2E 09 98 D2 E4 A8 88 E8 4F 3D

 ACPKM's iteration 2
 Process block 1
 Input block (CTR):
 12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 02

 Output block (G):
 E4 88 89 4F B6 02 87 DB 77 5A 07 D9 2C 89 46 EA

 Plain text block:
 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00

 Cipher text block:
 F5 AA BA 0B E3 64 F0 53 EE F0 BC 15 C2 76 4C EA

 Process block 2
 Input block (CTR):
 12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 03

 Output block (G):

Smyshlyaev Expires April 12, 2018 [Page 44]

Internet-Draft Re-keying Mechanisms for Symmetric Keys October 2017

 BC 4F 87 23 DB F0 91 50 DD B4 06 C3 1D A9 7C A4

 Plain text block:
 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11

 Cipher text block:
 9E 7C C3 76 BD 87 19 C9 77 0F CA 2D E2 A3 7C B5

 Updated key:
 8E B9 7E 43 27 1A 42 F1 CA 8E E2 5F 5C C7 C8 3B
 1A CE 9E 5E D0 6A A5 3B 57 B9 6A CF 36 5D 24 B8

 ACPKM's iteration 3
 Process block 1
 Input block (CTR):
 12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 04

 Output block (G):
 68 6F 22 7D 8F B2 9C BD 05 C8 C3 7D 22 FE 3B B7

 Plain text block:
 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22

 Cipher text block:
 5B 2B 77 1B F8 3A 05 17 BE 04 2D 82 28 FE 2A 95

 Process block 2
 Input block (CTR):
 12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 05

 Output block (G):
 C0 1B F9 7F 75 6E 12 2F 80 59 55 BD DE 2D 45 87

 Plain text block:
 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22 33

 Cipher text block:
 84 4E 9F 08 FD F7 B8 94 4C B7 AA B7 DE 3C 67 B4

 Updated key:
 C5 71 6C C9 67 98 BC 2D 4A 17 87 B7 8A DF 94 AC
 E8 16 F8 0B DB BC AD 7D 60 78 12 9C 0C B4 02 F5

 ACPKM's iteration 4
 Process block 1
 Input block (CTR):
 12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 06

Smyshlyaev Expires April 12, 2018 [Page 45]

Internet-Draft Re-keying Mechanisms for Symmetric Keys October 2017

 Output block (G):
 03 DE 34 74 AB 9B 65 8A 3B 54 1E F8 BD 2B F4 7D

 Plain text block:
 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22 33 44

 Cipher text block:
 56 B8 43 FC 32 31 DE 46 D5 AB 14 F8 AC 09 C7 39

 Cipher text C:
 EC 5C CB DE 8C 18 D3 B8 72 56 68 D0 A7 37 F4 58
 19 89 E7 42 32 62 9D 60 99 7D E2 4B C0 E3 9F B8
 F5 AA BA 0B E3 64 F0 53 EE F0 BC 15 C2 76 4C EA
 9E 7C C3 76 BD 87 19 C9 77 0F CA 2D E2 A3 7C B5
 5B 2B 77 1B F8 3A 05 17 BE 04 2D 82 28 FE 2A 95
 84 4E 9F 08 FD F7 B8 94 4C B7 AA B7 DE 3C 67 B4
 56 B8 43 FC 32 31 DE 46 D5 AB 14 F8 AC 09 C7 39

 OMAC-ACPKM-Master mode with AES-256

 k = 256
 n = 128
 N = 256
 T* = 768

 Initial key K:
 88 99 AA BB CC DD EE FF 00 11 22 33 44 55 66 77
 FE DC BA 98 76 54 32 10 01 23 45 67 89 AB CD EF

 Plaintext M:
 11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88
 00 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A
 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00
 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11
 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22

 D_1:
 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

 D_2:
 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

 K^1|K^1_1 K^2|K^2_1 K^3|K^3_1
 9F 10 BB F1 3A 79 FB BD 4A 4C A8 64 C4 90 74 64
 39 FE 50 6D 4B 86 9B 21 03 A3 B6 A4 79 28 3C 60
 77 91 17 50 E0 D1 77 E5 9A 13 78 2B F1 89 08 D0

Smyshlyaev Expires April 12, 2018 [Page 46]

Internet-Draft Re-keying Mechanisms for Symmetric Keys October 2017

 AB 6B 59 EE 92 49 05 B3 AB C7 A4 E3 69 65 76 C3
 9D CC 66 42 0D FF 45 5B 21 F3 93 F0 D4 D6 6E 67
 BB 1B 06 0B 87 66 6D 08 7A 9D A7 49 55 C3 5B 48
 F2 EE 91 45 6B DC 3D E4 91 2C 87 C3 29 CF 31 A9
 2F 20 2E 5A C4 9A 2A 65 31 33 D6 74 8C 4F F9 12
 78 21 C7 C7 6C BD 79 63 56 AC F8 8E 69 6A 00 07

 OMAC's iteration 1
 K^1:
 9F 10 BB F1 3A 79 FB BD 4A 4C A8 64 C4 90 74 64
 39 FE 50 6D 4B 86 9B 21 03 A3 B6 A4 79 28 3C 60

 K^1_1:
 77 91 17 50 E0 D1 77 E5 9A 13 78 2B F1 89 08 D0

 Block number 1
 Plain text:
 11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88

 Input block:
 11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88

 Output block:
 0B A5 89 BF 55 C1 15 42 53 08 89 76 A0 FE 24 3E

 Block number 2
 Plain text:
 00 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A

 Input block:
 0B B4 AB 8C 11 94 73 35 DB 91 23 CD 6C 10 DB 34

 Output block:
 1C 53 DD A3 6D DC E1 17 ED 1F 14 09 D8 6A F3 2C

 OMAC's iteration 2
 K^2:
 AB 6B 59 EE 92 49 05 B3 AB C7 A4 E3 69 65 76 C3
 9D CC 66 42 0D FF 45 5B 21 F3 93 F0 D4 D6 6E 67

 K^2_1:
 BB 1B 06 0B 87 66 6D 08 7A 9D A7 49 55 C3 5B 48

 Block number 3
 Plain text:
 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00

Smyshlyaev Expires April 12, 2018 [Page 47]

Internet-Draft Re-keying Mechanisms for Symmetric Keys October 2017

 Input block:
 0D 71 EE E7 38 BA 96 9F 74 B5 AF C5 36 95 F9 2C

 Output block:
 4E D4 BC A6 CE 6D 6D 16 F8 63 85 13 E0 48 59 75

 Block number 4
 Plain text:
 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11

 Input block:
 6C E7 F8 F3 A8 1A E5 8F 52 D8 49 FD 1F 42 59 64

 Output block:
 B6 83 E3 96 FD 30 CD 46 79 C1 8B 24 03 82 1D 81

 OMAC's iteration 3
 K^3:
 F2 EE 91 45 6B DC 3D E4 91 2C 87 C3 29 CF 31 A9
 2F 20 2E 5A C4 9A 2A 65 31 33 D6 74 8C 4F F9 12

 K^3_1:
 78 21 C7 C7 6C BD 79 63 56 AC F8 8E 69 6A 00 07

 MSB1(K1) == 0 -> K2 = K1 << 1

 Last block
 K1:
 78 21 C7 C7 6C BD 79 63 56 AC F8 8E 69 6A 00 07

 K2:
 F0 43 8F 8E D9 7A F2 C6 AD 59 F1 1C D2 D4 00 0E

 Block number 5
 Plain text:
 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22

 Using K1, src doesn't require padding
 Input block:
 FD E6 71 37 E6 05 2D 8F 94 A1 9D 55 60 E8 0C A4

 Output block:
 B3 AD B8 92 18 32 05 4C 09 21 E7 B8 08 CF A0 B8

 Message authentication code T:
 B3 AD B8 92 18 32 05 4C 09 21 E7 B8 08 CF A0 B8

Smyshlyaev Expires April 12, 2018 [Page 48]

Internet-Draft Re-keying Mechanisms for Symmetric Keys October 2017

Appendix B. Contributors

 o Russ Housley
 Vigil Security, LLC
 housley@vigilsec.com

 o Evgeny Alekseev
 CryptoPro
 alekseev@cryptopro.ru

 o Ekaterina Smyshlyaeva
 CryptoPro
 ess@cryptopro.ru

 o Shay Gueron
 University of Haifa, Israel
 Intel Corporation, Israel Development Center, Israel
 shay.gueron@gmail.com

 o Daniel Fox Franke
 Akamai Technologies
 dfoxfranke@gmail.com

 o Lilia Ahmetzyanova
 CryptoPro
 lah@cryptopro.ru

Appendix C. Acknowledgments

 We thank Mihir Bellare, Scott Fluhrer, Dorothy Cooley, Yoav Nir, Jim
 Schaad, Paul Hoffman and Dmitry Belyavsky for their useful comments.

Author's Address

 Stanislav Smyshlyaev (editor)
 CryptoPro
 18, Suschevsky val
 Moscow 127018
 Russian Federation

 Phone: +7 (495) 995-48-20
 Email: svs@cryptopro.ru

Smyshlyaev Expires April 12, 2018 [Page 49]

