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Abstract

This document describes extensions to existing digital signature

schemes for key blinding. The core property of signing with key

blinding is that a blinded public key and all signatures produced

using the blinded key pair are independent of the unblinded key

pair. Moreover, signatures produced using blinded key pairs are

indistinguishable from signatures produced using unblinded key

pairs. This functionality has a variety of applications, including

Tor onion services and privacy-preserving airdrop for bootstrapping

cryptocurrency systems.

About This Document

This note is to be removed before publishing as an RFC.

The latest revision of this draft can be found at https://

cfrg.github.io/draft-irtf-cfrg-signature-key-blinding/draft-irtf-

cfrg-signature-key-blinding.html. Status information for this

document may be found at https://datatracker.ietf.org/doc/draft-

irtf-cfrg-signature-key-blinding/.

Discussion of this document takes place on the CFRG Working Group

mailing list (mailto:cfrg@irtf.org), which is archived at https://

mailarchive.ietf.org/arch/browse/cfrg/.

Source for this draft and an issue tracker can be found at https://

github.com/cfrg/draft-irtf-cfrg-signature-key-blinding.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute
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Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 3 February 2023.
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1. Introduction

Digital signature schemes allow a signer to sign a message using a

private signing key and produce a digital signature such that anyone

can verify the digital signature over the message with the public

verification key corresponding to the signing key. Digital signature

schemes typically consist of three functions:

KeyGen: A function for generating a private signing key skS and

the corresponding public verification key pkS.

Sign(skS, msg): A function for signing an input message msg using

a private signing key skS, producing a digital signature sig.

Verify(pkS, msg, sig): A function for verifying the digital

signature sig over input message msg against a public

verification key pkS, yielding true if the signature is valid and

false otherwise.

In some applications, it's useful for a signer to produce digital

signatures using the same long-term private signing key such that a

verifier cannot link any two signatures to the same signer. In other

words, the signature produced is independent of the long-term

private-signing key, and the public verification key for verifying

the signature is independent of the long-term public verification

key. This type of functionality has a number of practical

applications, including, for example, in the Tor onion services

protocol [TORDIRECTORY] and privacy-preserving airdrop for

bootstrapping cryptocurrency systems [AIRDROP]. It is also necessary

for a variant of the Privacy Pass issuance protocol [RATELIMITED].

One way to accomplish this is by signing with a private key which is

a function of the long-term private signing key and a freshly chosen

blinding key, and similarly by producing a public verification key

which is a function of the long-term public verification key and

same blinding key. A signature scheme with this functionality is

referred to as signing with key blinding.

A signature scheme with key blinding aims to achieve unforgeability

and unlinkability. Informally, unforgeability means that one cannot

produce a valid (message, signature) pair for any blinding key

without access to the private signing key. Similarly, unlinkability

means that one cannot distinguish between two signatures produced

from two separate key signing keys, and two signatures produced from

the same signing key but with different blinding keys.
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This document describes extensions to EdDSA [RFC8032] and ECDSA 

[ECDSA] to enable signing with key blinding. Security analysis of

these extensions is currently underway; see Section 8 for more

details.

This functionality is also possible with other signature schemes,

including some post-quantum signature schemes [ESS21], though such

extensions are not specified here.

1.1. DISCLAIMER

This document is a work in progress and is still undergoing security

analysis. As such, it MUST NOT be used for real world applications.

See Section 8 for additional information.

2. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

The following terms are used throughout this document to describe

the blinding modification.

G: The standard base point.

sk: A signature scheme private key. For EdDSA, this is a a

randomly generated private seed of length 32 bytes or 57 bytes

according to [RFC8032], Section 5.1.5 or 

[RFC8032], Section 5.2.5, respectively. For [ECDSA], sk is a

random scalar in the prime-order elliptic curve group.

pk(sk): The public key corresponding to the private key sk.

concat(x0, ..., xN): Concatenation of byte strings. concat(0x01,

0x0203, 0x040506) = 0x010203040506.

ScalarMult(pk, k): Multiply the public key pk by scalar k,

producing a new public key as a result.

ModInverse(x, L): Compute the multiplicative inverse of x modulo

L.

In pseudocode descriptions below, integer multiplication of two

scalar values is denoted by the * operator. For example, the product

of two scalars x and y is denoted as x * y.
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3. Key Blinding

At a high level, a signature scheme with key blinding allows signers

to blind their private signing key such that any signature produced

with a private signing key and blinding key is independent of the

private signing key. Similar to the signing key, the blinding key is

also a private key. For example, the blind is a 32-byte or 57-byte

random seed for Ed25519 or Ed448 variants, respectively, whereas the

blind for ECDSA over P-256 is a random value in the scalar field for

the P-256 elliptic curve group.

In more detail, consider first the basic digital signature syntax,

which is a combination of the following functionalities:

KeyGen: A function for generating a private and public key pair 

(skS, pkS).

Sign(skS, msg): A function for signing a message msg with the

given private key skS, producing a signature sig.

Verify(pkS, msg, sig): A function for verifying a signature sig

over message msg against the public key pkS, which returns 1 upon

success and 0 otherwise.

Key blinding introduces three new functionalities for the signature

scheme syntax:

BlindKeyGen: A function for generating a private blind key.

BlindPublicKey(pkS, bk, ctx): Blind the public verification key 

pkS using the private blinding key bk and context ctx, yielding a

blinded public key pkR.

BlindKeySign(skS, bk, ctx, msg): Sign a message msg using the

private signing key skS with the private blind key bk and context 

ctx.

For a given bk produced from BlindKeyGen, key pair (skS, pkS)

produced from KeyGen, a context value ctx, and message msg,

correctness requires the following equivalence to hold with

overwhelming probability:

Security requires that signatures produced using BlindKeySign are

unlinkable from signatures produced using the standard signature

generation function with the same private key.
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When the context value is known, a signature scheme with key

blinding may also support the ability to unblind public keys. This

is represented with the following function.

UnblindPublicKey(pkR, bk, ctx): Unblind the public verification

key pkR using the private blinding key bk and context ctx.

For a given bk produced from BlindKeyGen, (skS, pkS) produced from

KeyGen, and context value ctx, correctness of this function requires

the following equivalence to hold:

Considerations for choosing context strings are discussed in Section

7.

4. Ed25519ph, Ed25519ctx, and Ed25519

This section describes implementations of BlindPublicKey,

UnblindPublicKey, and BlindKeySign as modifications of routines in 

[RFC8032], Section 5.1. BlindKeyGen invokes the key generation

routine specified in [RFC8032], Section 5.1.5 and outputs only the

private key. This section assumes a context value ctx has been

configured or otherwise chosen by the application.

4.1. BlindPublicKey and UnblindPublicKey

BlindPublicKey transforms a private blind bk into a scalar for the

edwards25519 group and then multiplies the target key by this

scalar. UnblindPublicKey performs essentially the same steps except

that it multiplies the target public key by the multiplicative

inverse of the scalar, where the inverse is computed using the order

of the group L, described in [RFC8032], Section 5.1.

More specifically, BlindPublicKey(pk, bk, ctx) works as follows.

Construct the blind_ctx as concat(bk, 0x00, ctx), where bk is a

32-byte octet string, hash the result using SHA-512(blind_ctx),

and store the digest in a 64-octet large buffer, denoted b.

Interpret the lower 32 bytes buffer as a little-endian integer,

forming a secret scalar s. Note that this explicitly skips the

buffer pruning step in [RFC8032], Section 5.1.

Perform a scalar multiplication ScalarMult(pk, s), and output

the encoding of the resulting point as the public key.

UnblindPublicKey(pkR, bk, ctx) works as follows.

Compute the secret scalar s from bk and ctx as in

BlindPublicKey.
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Compute the sInv = ModInverse(s, L), where L is as defined in 

[RFC8032], Section 5.1.

Perform a scalar multiplication ScalarMult(pk, sInv), and

output the encoding of the resulting point as the public key.

4.2. BlindKeySign

BlindKeySign transforms a private key bk into a scalar for the

edwards25519 group and a message prefix to blind both the signing

scalar and the prefix of the message used in the signature

generation routine.

More specifically, BlindKeySign(skS, bk, msg) works as follows:

Hash the private key skS, 32 octets, using SHA-512. Let h

denote the resulting digest. Construct the secret scalar s1

from the first half of the digest, and the corresponding public

key A1, as described in [RFC8032], Section 5.1.5. Let prefix1

denote the second half of the hash digest, h[32],...,h[63].

Construct the blind_ctx as concat(bk, 0x00, ctx), where bk is a

32-byte octet string, hash the result using SHA-512(blind_ctx),

and store the digest in a 64-octet large buffer, denoted b.

Interpret the lower 32 bytes buffer as a little-endian integer,

forming a secret scalar s2. Note that this explicitly skips the

buffer pruning step in [RFC8032], Section 5.1.5. Let prefix2

denote the second half of the hash digest, b[32],...,b[63].

Compute the signing scalar s = s1 * s2 (mod L) and the signing

public key A = ScalarMult(G, s).

Compute the signing prefix as concat(prefix1, prefix2).

Run the rest of the Sign procedure in [RFC8032], Section 5.1.6

from step (2) onwards using the modified scalar s, public key

A, and string prefix.

5. Ed448ph and Ed448

This section describes implementations of BlindPublicKey,

UnblindPublicKey, and BlindKeySign as modifications of routines in 

[RFC8032], Section 5.2. BlindKeyGen invokes the key generation

routine specified in [RFC8032], Section 5.1.5 and outputs only the

private key. This section assumes a context value ctx has been

configured or otherwise chosen by the application.
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5.1. BlindPublicKey and UnblindPublicKey

BlindPublicKey and UnblindPublicKey for Ed448ph and Ed448 are

implemented just as these routines are for Ed25519ph, Ed25519ctx,

and Ed25519, except that SHAKE256 is used instead of SHA-512 for

hashing the secret blind context, i.e., the concatenation of blind

key bk and context ctx, to a 114-byte buffer (and using the lower

57-bytes for the secret), and the order of the edwards448 group L is

as defined in [RFC8032], Section 5.2.1. Note that this process

explicitly skips the buffer pruning step in 

[RFC8032], Section 5.2.5.

5.2. BlindKeySign

BlindKeySign for Ed448ph and Ed448 is implemented just as this

routine for Ed25519ph, Ed25519ctx, and Ed25519, except in how the

scalars (s1, s2), public keys (A1, A2), and message strings

(prefix1, prefix2) are computed. More specifically,

BlindKeySign(skS, bk, msg) works as follows:

Hash the private key skS, 57 octets, using SHAKE256(skS, 117).

Let h1 denote the resulting digest. Construct the secret scalar

s1 from the first half of h1, and the corresponding public key

A1, as described in [RFC8032], Section 5.2.5. Let prefix1

denote the second half of the hash digest, h1[57],...,h1[113].

Construct the blind_ctx as concat(bk, 0x00, ctx), where bk is a

57-byte octet string, hash the result using SHAKE256(blind_ctx,

117), and store the digest in a 117-octet digest, denoted h2.

Interpret the lower 57 bytes buffer as a little-endian integer,

forming a secret scalar s2. Note that this explicitly skips the

buffer pruning step in [RFC8032], Section 5.2. Let prefix2

denote the second half of the hash digest, h2[57],...,h2[113].

Compute the signing scalar s = s1 * s2 (mod L) and the signing

public key A = ScalarMult(A1, s2).

Compute the signing prefix as concat(prefix1, prefix2).

Run the rest of the Sign procedure in [RFC8032], Section 5.2.6

from step (2) onwards using the modified scalar s, public key

A, and string prefix.

6. ECDSA

[[DISCLAIMER: Multiplicative blinding for ECDSA is known to be NOT

be SUF-CMA-secure in the presence of an adversary that controls the

blinding value. [MSMHI15] describes this in the context of related-

key attacks. This variant may likely be removed in followup versions

of this document based on further analysis.]]
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This section describes implementations of BlindPublicKey,

UnblindPublicKey, and BlindKeySign as functions implemented on top

of an existing [ECDSA] implementation. BlindKeyGen invokes the key

generation routine specified in [ECDSA] and outputs only the private

key. In the descriptions below, let p be the order of the

corresponding elliptic curve group used for ECDSA. For example, for

P-256, p =

11579208921035624876269744694940757352999695522413576034242225906106

8512044369.

This section assumes a context value ctx has been configured or

otherwise chosen by the application.

6.1. BlindPublicKey and UnblindPublicKey

BlindPublicKey multiplies the public key pkS by an augmented private

key bk yielding a new public key pkR. UnblindPublicKey inverts this

process by multiplying the input public key by the multiplicative

inverse of the augmented bk. Augmentation here maps the private key

bk to another scalar using hash_to_field as defined in Section 5 of

[H2C], with DST set to "ECDSA Key Blind", L set to the value

corresponding to the target curve, e.g., 48 for P-256 and 72 for

P-384, expand_message_xmd with a hash function matching that used

for the corresponding digital signature algorithm, and prime modulus

equal to the order p of the corresponding curve. Letting

HashToScalar denote this augmentation process, and blind_ctx =

concat(bk, 0x00, ctx), BlindPublicKey and UnblindPublicKey are then

implemented as follows:

6.2. BlindKeySign

BlindKeySign transforms the signing key skS by the private key bk

along with context ctx into a new signing key, skR, and then invokes

the existing ECDSA signing procedure. More specifically, skR = skS *

HashToScalar(blind_ctx) (mod p), where blind_ctx = concat(bk, 0x00,

ctx).

7. Application Considerations

Choice of the context string ctx is application-specific. For

example, in Tor [TORDIRECTORY], the context string is set to the

concatenation of the long-term signer public key and an integer

epoch. This makes it so that unblinding a blinded public key

requires knowledge of the long-term public key as well as the

blinding key. Similarly, in a rate-limited version of Privacy Pass 

[RATELIMITED], the context is empty, thereby allowing unblinding by

anyone in possession of the blinding key.
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Applications are RECOMMENDED to choose context strings that are

distinct from other protocols as a way of enforcing domain

separation. See Section 2.2.5 of [HASH-TO-CURVE] for additional

discussion around the construction of suitable domain separation

values.

8. Security Considerations

The signature scheme extensions in this document aim to achieve

unforgeability and unlinkability. Informally, unforgeability means

that one cannot produce a valid (message, signature) pair for any

blinding key without access to the private signing key. Similarly,

unlinkability means that one cannot distinguish between two

signatures produced from two independent key signing keys, and two

signatures produced from the same signing key but with different

blinds. Security analysis of the extensions in this document with

respect to these two properties is currently underway.

Preliminary analysis has been done for a variant of these extensions

used for identity key blinding routine used in Tor's Hidden Service

feature [TORBLINDING]. For EdDSA, further analysis is needed to

ensure this is compliant with the signature algorithm described in 

[RFC8032].

The constructions in this document assume that both the signing and

blinding keys are private, and, as such, not controlled by an

attacker. [MSMHI15] demonstrate that ECDSA with attacker-controlled

multiplicative blinding for producing related keys can be abused to

produce forgeries. In particular, if an attacker can control the

private blinding key used in BlindKeySign, they can construct a

forgery over a different message that validates under a different

public key. One mitigation to this problem is to change BlindKeySign

such that the signature is computed over the input message as well

as the blind public key. However, this would require verifiers to

treat both the blind public key and message as input to their

verification interface. The construction in Section 6 does not

require this change. However, further analysis is needed to

determine whether or not this construction is safe.

9. IANA Considerations

This document has no IANA actions.

10. Test Vectors

This section contains test vectors for a subset of the signature

schemes covered in this document.
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10.1. Ed25519 Test Vectors

This section contains test vectors for Ed25519 as described in 

[RFC8032]. Each test vector lists the private key and blind seeds,

denoted skS and bk and encoded as hexadecimal strings, along with

the public key pkS corresponding to skS encoded has hexadecimal

strings according to [RFC8032], Section 5.1.2. Each test vector also

includes the blinded public key pkR computed from skS and bk,

denoted pkR and encoded has a hexadecimal string. Finally, each

vector includes the message and signature values, each encoded as

hexadecimal strings.¶

// Randomly generated private key and blind seed, empty context

skS: 63ac6c411cf72d9006b853db3458940fb1b5d690747abd8b1ccb73f0f5269837

pkS: 963d13e180030cfcf1891c10d3143b5cd3613780b943dfd9100f7d9bb31af2cd

pkR: 4ed06c22a58ef8e65d280f0970fd02f839083026b6116b0d65c2cbf3f519368c

message: 68656c6c6f20776f726c64

context:

signature: 3a2ada316be0e7162ae8cdcc6b35dda7ab4159296fd1b060cc809fdb55e56

23cf0af5550140eaff2bb99516986d270bbb6737e5c8661731e016923e998315e04

¶

// Randomly generated private key seed and zero blind seed, empty context

skS: 056f2668895cda2f89e8ddc3138910979982ab3135ee22d358e80c85cec4cdc7

pkS: e211f518d9361dc1e39ca572a10e45c7372ac990465b17d62fde42247c367fb7

pkR: d73a40d8806f08936ef0c425482d2fdf6424242f008854db74c6230eeb44e19c

message: 68656c6c6f20776f726c64

context:

signature: 89d007f1215595b14612217ace71d3ce28688ebf55e5151e97861eceb5b60

6a32d37c15afc31a9ad7ad7101d15b9228edfe9b9b25ddd42f442475f4317f47405

¶

// Randomly generated private key and blind seed, non-empty context

skS: d9fecb86876468c4c244e567662b4ad061c795ad03cbfdcf95fd67d1cba836d3

pkS: d018ed0a1c47f8d530c58afc30bcf141c0d4766429fd53a1b69287867e169827

pkR: cfd1458e1f81ba8c59446180cea170f5f2ecd721d68d02c625449c8ce4a8ab28

message: 68656c6c6f20776f726c64

context:

2b79c03dd60967c954d3263ac32834692d6938c75fbc9a089ec855ca3a15ad40

signature: 27afdabf12ebc768863df1ee10db0408362132b56fe7a7fa84cc8b191200d

8cd8d8cd39f3698798f1a7e1a89c477699e2450c65edfbf65bf354ae7de45aa6e0e

¶

// Randomly generated private key seed and zero blind seed, non-empty context

skS: d5c4c2f3fc43b8cceb6083b1db97c4dd0b9fca0773b14ed73066ad64d7d276df

pkS: 8552d8d4ffe3c7f94ee0cdc1e52598de3425439ed6161f8037bcce99d84c7953

pkR: aa148c1e6ceb8557aa89d85fb8d71e24cd4d0bc958f6526f3336e357679b77df

message: 68656c6c6f20776f726c64

context:

a9df0f21630248d1753e4a21ee2edcaa78609386134548a22696dd409cf1c2ac

signature: fe138ac61c020db62bfcdf70d181a4c6ee7d8015d4d577e55868bd86676bd

ecccea8db0da501e877ab58ab17fe043979eec7e467c68a1e690932dd5552ae4705

¶

https://rfc-editor.org/rfc/rfc8032#section-5.1.2


[ECDSA]

10.2. ECDSA(P-384, SHA-384) Test Vectors

This section contains test vectors for ECDSA with P-384 and SHA-384,

as described in [ECDSA]. Each test vector lists the signing and

blinding keys, denoted skS and bk, each serialized as a big-endian

integers and encoded as hexadecimal strings. Each test vector also

blinded public key pkR, encoded as compressed elliptic curve points

according to [ECDSA]. Finally, each vector lists message and

signature values, where the message is encoded as a hexadecimal

string, and the signature value is serialized as the concatenation

of scalars (r, s) and encoded as a hexadecimal string.

11. References

11.1. Normative References

American National Standards Institute, "Public Key

Cryptography for the Financial Services Industry - The

¶

// Randomly generated signing and blind private keys, empty context

skS: cc09c66952c416956f78b73c8fd984f8bd69fa894fb08dd197be0a97dae1d781083

d8bcc4cca0aa906450c6b5e1b5cf3

pkS: 02091444dfde7de0623d8b94ba9ef8010756baf982b12db755d130c16fda97c4f95

6dd0f7b346fc3ef7245dfc76e1cacc4

bk: e49afba496c06344afa224480f823457863ac71e5f67c359ca1fbc42411754cc893c

c0bc10ff6d95363ab2e1c4154092

pkR: 03ae6ef617427a15bdc9dcba8a482f5f25aa45af6916edc8b51254304f393ee18b7

2fab54aae380426984ebfb7ef4045c8

message: 68656c6c6f20776f726c64

context:

signature: 6e31a96d811b0a271640e5dead87c8a5a0e9aaece4145464818bfcaa0ee9e

ea09c9178a59a4003800ae0a88cf2d3ae2811303f0acb0f77ce14ed8a2ad82d612af0ebe

b87c23047b7129ffcae4c2dd0f187e671e2e05a85972cd7e53de1529c45

¶

// Randomly generated signing and blind private keys, non-empty context

skS: 90792d09edfc4afcb3a770b1d8582ed4bf3f3b3f751b90e5c8ac8ce1671c60475ee

0d390d0505e4b5bfb678ba9e665c9

pkS: 0275741cc339a46fc7ce24a0553eb3c2f2e83cf50dbb856ff3ae445d3a511f42749

c2f8510b0de9ac1b5deca9161ded522

bk: 9ff66325364badbef3d29bf4c955dbbe2be8cdaa2cc777f8badc066e171fb7b2df53

349278028da700eeabb745c045ef

pkR: 03782eed6bd50a9554989998850f88d91279ee865153d4be922488df39d614588df

94c70ed3494a7fcbd3fc057ea6ccf29

message: 68656c6c6f20776f726c64

context:

ff47734c8ccb40a369fdd2bdc34749e1d06feee27170b6452048594365e1c853

signature: fdc8e03668cbe9ed0146d0e2fbdcc5d494860f8017217c5044a0ff773af72

205eb4a20ffa5bbc9076cd5a43fd99d9b42a79a483a6be3a1b9f85b3180fd0e6c371ef06

6e2557ea5cf752eecc1f2a0ff67777eb01604039a92fe3d48d6991ebdc6

¶
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