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Abstract

This document describes extensions to existing digital signature

schemes for key blinding. The core property of signing with key

blinding is that a blinded public key and all signatures produced

using the blinded key pair are independent of the unblinded key

pair. Moreover, signatures produced using blinded key pairs are

indistinguishable from signatures produced using unblinded key

pairs. This functionality has a variety of applications, including

Tor onion services and privacy-preserving airdrop for bootstrapping

cryptocurrency systems.

About This Document

This note is to be removed before publishing as an RFC.

The latest revision of this draft can be found at https://

cfrg.github.io/draft-irtf-cfrg-signature-key-blinding/draft-irtf-

cfrg-signature-key-blinding.html. Status information for this

document may be found at https://datatracker.ietf.org/doc/draft-

irtf-cfrg-signature-key-blinding/.

Discussion of this document takes place on the CFRG Working Group

mailing list (mailto:cfrg@irtf.org), which is archived at https://

mailarchive.ietf.org/arch/browse/cfrg/. Subscribe at https://

www.ietf.org/mailman/listinfo/cfrg/.

Source for this draft and an issue tracker can be found at https://

github.com/cfrg/draft-irtf-cfrg-signature-key-blinding.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

¶

¶

¶

¶

¶

¶

https://cfrg.github.io/draft-irtf-cfrg-signature-key-blinding/draft-irtf-cfrg-signature-key-blinding.html
https://cfrg.github.io/draft-irtf-cfrg-signature-key-blinding/draft-irtf-cfrg-signature-key-blinding.html
https://cfrg.github.io/draft-irtf-cfrg-signature-key-blinding/draft-irtf-cfrg-signature-key-blinding.html
https://datatracker.ietf.org/doc/draft-irtf-cfrg-signature-key-blinding/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-signature-key-blinding/
mailto:cfrg@irtf.org
https://mailarchive.ietf.org/arch/browse/cfrg/
https://mailarchive.ietf.org/arch/browse/cfrg/
https://www.ietf.org/mailman/listinfo/cfrg/
https://www.ietf.org/mailman/listinfo/cfrg/
https://github.com/cfrg/draft-irtf-cfrg-signature-key-blinding
https://github.com/cfrg/draft-irtf-cfrg-signature-key-blinding


working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 4 August 2023.
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1. Introduction

Digital signature schemes allow a signer to sign a message using a

private signing key and produce a digital signature such that anyone

can verify the digital signature over the message with the public

verification key corresponding to the signing key. Digital signature

schemes typically consist of three functions:

KeyGen: A function for generating a private signing key skS and

the corresponding public verification key pkS.

Sign(skS, msg): A function for signing an input message msg using

a private signing key skS, producing a digital signature sig.

Verify(pkS, msg, sig): A function for verifying the digital

signature sig over input message msg against a public

verification key pkS, yielding true if the signature is valid and

false otherwise.

In some applications, it's useful for a signer to produce digital

signatures using the same long-term private signing key such that a

verifier cannot link any two signatures to the same signer. In other

words, the signature produced is independent of the long-term

private-signing key, and the public verification key for verifying

the signature is independent of the long-term public verification

key. This type of functionality has a number of practical

applications, including, for example, in the Tor onion services

protocol [TORDIRECTORY] and privacy-preserving airdrop for

bootstrapping cryptocurrency systems [AIRDROP]. It is also necessary

for a variant of the Privacy Pass issuance protocol [RATELIMITED].

One way to accomplish this is by signing with a private key which is

a function of the long-term private signing key and a freshly chosen

blinding key, and similarly by producing a public verification key

which is a function of the long-term public verification key and

same blinding key. A signature scheme with this functionality is

referred to as signing with key blinding.

A signature scheme with key blinding aims to achieve unforgeability

and unlinkability. Informally, unforgeability means that one cannot

produce a valid (message, signature) pair for any blinding key

without access to the private signing key. Similarly, unlinkability

means that one cannot distinguish between two signatures produced

from two separate key signing keys, and two signatures produced from

the same signing key but with different blinding keys.
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This document describes extensions to EdDSA [RFC8032] and ECDSA 

[ECDSA] to enable signing with key blinding. Security analysis of

these extensions is currently underway; see Section 8 for more

details.

This functionality is also possible with other signature schemes,

including some post-quantum signature schemes [ESS21], though such

extensions are not specified here.

1.1. DISCLAIMER

This document is a work in progress and is still undergoing security

analysis. As such, it MUST NOT be used for real world applications.

See Section 8 for additional information.

2. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

The following terms are used throughout this document to describe

the blinding modification.

G: The standard base point.

sk: A signature scheme private key. For EdDSA, this is a a

randomly generated private seed of length 32 bytes or 57 bytes

according to [RFC8032], Section 5.1.5 or 

[RFC8032], Section 5.2.5, respectively. For [ECDSA], sk is a

random scalar in the prime-order elliptic curve group.

pk(sk): The public key corresponding to the private key sk.

concat(x0, ..., xN): Concatenation of byte strings. concat(0x01,

0x0203, 0x040506) = 0x010203040506.

ScalarMult(pk, k): Multiply the public key pk by scalar k,

producing a new public key as a result.

ModInverse(x, L): Compute the multiplicative inverse of x modulo

L.

In pseudocode descriptions below, integer multiplication of two

scalar values is denoted by the * operator. For example, the product

of two scalars x and y is denoted as x * y.
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3. Key Blinding

At a high level, a signature scheme with key blinding allows signers

to blind their private signing key such that any signature produced

with a private signing key and blinding key is independent of the

private signing key. Similar to the signing key, the blinding key is

also a private key. For example, the blind is a 32-byte or 57-byte

random seed for Ed25519 or Ed448 variants, respectively, whereas the

blind for ECDSA over P-256 is a random value in the scalar field for

the P-256 elliptic curve group.

In more detail, consider first the basic digital signature syntax,

which is a combination of the following functionalities:

KeyGen: A function for generating a private and public key pair 

(skS, pkS).

Sign(skS, msg): A function for signing a message msg with the

given private key skS, producing a signature sig.

Verify(pkS, msg, sig): A function for verifying a signature sig

over message msg against the public key pkS, which returns 1 upon

success and 0 otherwise.

Key blinding introduces three new functionalities for the signature

scheme syntax:

BlindKeyGen: A function for generating a private blind key.

BlindPublicKey(pkS, bk, ctx): Blind the public verification key 

pkS using the private blinding key bk and context ctx, yielding a

blinded public key pkR.

BlindKeySign(skS, bk, ctx, msg): Sign a message msg using the

private signing key skS with the private blind key bk and context 

ctx.

For a given bk produced from BlindKeyGen, key pair (skS, pkS)

produced from KeyGen, a context value ctx, and message msg,

correctness requires the following equivalence to hold with

overwhelming probability:

Security requires that signatures produced using BlindKeySign are

unlinkable from signatures produced using the standard signature

generation function with the same private key.
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When the context value is known, a signature scheme with key

blinding may also support the ability to unblind public keys. This

is represented with the following function.

UnblindPublicKey(pkR, bk, ctx): Unblind the public verification

key pkR using the private blinding key bk and context ctx.

For a given bk produced from BlindKeyGen, (skS, pkS) produced from

KeyGen, and context value ctx, correctness of this function requires

the following equivalence to hold:

Considerations for choosing context strings are discussed in 

Section 7.

4. Ed25519ph, Ed25519ctx, and Ed25519

This section describes implementations of BlindPublicKey,

UnblindPublicKey, and BlindKeySign as modifications of routines in 

[RFC8032], Section 5.1. BlindKeyGen invokes the key generation

routine specified in [RFC8032], Section 5.1.5 and outputs only the

private key. This section assumes a context value ctx has been

configured or otherwise chosen by the application.

4.1. BlindPublicKey and UnblindPublicKey

BlindPublicKey transforms a private blind bk into a scalar for the

edwards25519 group and then multiplies the target key by this

scalar. UnblindPublicKey performs essentially the same steps except

that it multiplies the target public key by the multiplicative

inverse of the scalar, where the inverse is computed using the order

of the group L, described in [RFC8032], Section 5.1.

More specifically, BlindPublicKey(pk, bk, ctx) works as follows.

Construct the blind_ctx as concat(bk, 0x00, ctx), where bk is a

32-byte octet string, hash the result using SHA-512(blind_ctx),

and store the digest in a 64-octet large buffer, denoted b.

Interpret the lower 32 bytes buffer as a little-endian integer,

forming a secret scalar s. Note that this explicitly skips the

buffer pruning step in [RFC8032], Section 5.1.

Perform a scalar multiplication ScalarMult(pk, s), and output

the encoding of the resulting point as the public key.

UnblindPublicKey(pkR, bk, ctx) works as follows.

Compute the secret scalar s from bk and ctx as in

BlindPublicKey.
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Compute the sInv = ModInverse(s, L), where L is as defined in 

[RFC8032], Section 5.1.

Perform a scalar multiplication ScalarMult(pk, sInv), and

output the encoding of the resulting point as the public key.

4.2. BlindKeySign

BlindKeySign transforms a private key bk into a scalar for the

edwards25519 group and a message prefix to blind both the signing

scalar and the prefix of the message used in the signature

generation routine.

More specifically, BlindKeySign(skS, bk, msg) works as follows:

Hash the private key skS, 32 octets, using SHA-512. Let h

denote the resulting digest. Construct the secret scalar s1

from the first half of the digest, and the corresponding public

key A1, as described in [RFC8032], Section 5.1.5. Let prefix1

denote the second half of the hash digest, h[32],...,h[63].

Construct the blind_ctx as concat(bk, 0x00, ctx), where bk is a

32-byte octet string, hash the result using SHA-512(blind_ctx),

and store the digest in a 64-octet large buffer, denoted b.

Interpret the lower 32 bytes buffer as a little-endian integer,

forming a secret scalar s2. Note that this explicitly skips the

buffer pruning step in [RFC8032], Section 5.1.5. Let prefix2

denote the second half of the hash digest, b[32],...,b[63].

Compute the signing scalar s = s1 * s2 (mod L) and the signing

public key A = ScalarMult(G, s).

Compute the signing prefix as concat(prefix1, prefix2).

Run the rest of the Sign procedure in [RFC8032], Section 5.1.6

from step (2) onwards using the modified scalar s, public key

A, and string prefix.

5. Ed448ph and Ed448

This section describes implementations of BlindPublicKey,

UnblindPublicKey, and BlindKeySign as modifications of routines in 

[RFC8032], Section 5.2. BlindKeyGen invokes the key generation

routine specified in [RFC8032], Section 5.1.5 and outputs only the

private key. This section assumes a context value ctx has been

configured or otherwise chosen by the application.
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5.1. BlindPublicKey and UnblindPublicKey

BlindPublicKey and UnblindPublicKey for Ed448ph and Ed448 are

implemented just as these routines are for Ed25519ph, Ed25519ctx,

and Ed25519, except that SHAKE256 is used instead of SHA-512 for

hashing the secret blind context, i.e., the concatenation of blind

key bk and context ctx, to a 114-byte buffer (and using the lower

57-bytes for the secret), and the order of the edwards448 group L is

as defined in [RFC8032], Section 5.2.1. Note that this process

explicitly skips the buffer pruning step in 

[RFC8032], Section 5.2.5.

5.2. BlindKeySign

BlindKeySign for Ed448ph and Ed448 is implemented just as this

routine for Ed25519ph, Ed25519ctx, and Ed25519, except in how the

scalars (s1, s2), public keys (A1, A2), and message strings

(prefix1, prefix2) are computed. More specifically,

BlindKeySign(skS, bk, msg) works as follows:

Hash the private key skS, 57 octets, using SHAKE256(skS, 117).

Let h1 denote the resulting digest. Construct the secret scalar

s1 from the first half of h1, and the corresponding public key

A1, as described in [RFC8032], Section 5.2.5. Let prefix1

denote the second half of the hash digest, h1[57],...,h1[113].

Construct the blind_ctx as concat(bk, 0x00, ctx), where bk is a

57-byte octet string, hash the result using SHAKE256(blind_ctx,

117), and store the digest in a 117-octet digest, denoted h2.

Interpret the lower 57 bytes buffer as a little-endian integer,

forming a secret scalar s2. Note that this explicitly skips the

buffer pruning step in [RFC8032], Section 5.2. Let prefix2

denote the second half of the hash digest, h2[57],...,h2[113].

Compute the signing scalar s = s1 * s2 (mod L) and the signing

public key A = ScalarMult(A1, s2).

Compute the signing prefix as concat(prefix1, prefix2).

Run the rest of the Sign procedure in [RFC8032], Section 5.2.6

from step (2) onwards using the modified scalar s, public key

A, and string prefix.

6. ECDSA

[[DISCLAIMER: Multiplicative blinding for ECDSA is known to be NOT

be SUF-CMA-secure in the presence of an adversary that controls the

blinding value. [MSMHI15] describes this in the context of related-

key attacks. This variant may likely be removed in followup versions

of this document based on further analysis.]]
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This section describes implementations of BlindPublicKey,

UnblindPublicKey, and BlindKeySign as functions implemented on top

of an existing [ECDSA] implementation. BlindKeyGen invokes the key

generation routine specified in [ECDSA] and outputs only the private

key. In the descriptions below, let p be the order of the

corresponding elliptic curve group used for ECDSA. For example, for

P-256, p =

11579208921035624876269744694940757352999695522413576034242225906106

8512044369.

This section assumes a context value ctx has been configured or

otherwise chosen by the application.

6.1. BlindPublicKey and UnblindPublicKey

BlindPublicKey multiplies the public key pkS by an augmented private

key bk yielding a new public key pkR. UnblindPublicKey inverts this

process by multiplying the input public key by the multiplicative

inverse of the augmented bk. Augmentation here maps the private key

bk to another scalar using hash_to_field as defined in Section 5 of

[H2C], with DST set to "ECDSA Key Blind", L set to the value

corresponding to the target curve, e.g., 48 for P-256 and 72 for

P-384, expand_message_xmd with a hash function matching that used

for the corresponding digital signature algorithm, and prime modulus

equal to the order p of the corresponding curve. Letting

HashToScalar denote this augmentation process, and blind_ctx =

concat(bk, 0x00, ctx), BlindPublicKey and UnblindPublicKey are then

implemented as follows:

6.2. BlindKeySign

BlindKeySign transforms the signing key skS by the private key bk

along with context ctx into a new signing key, skR, and then invokes

the existing ECDSA signing procedure. More specifically, skR = skS *

HashToScalar(blind_ctx) (mod p), where blind_ctx = concat(bk, 0x00,

ctx).

7. Application Considerations

Choice of the context string ctx is application-specific. For

example, in Tor [TORDIRECTORY], the context string is set to the

concatenation of the long-term signer public key and an integer

epoch. This makes it so that unblinding a blinded public key

requires knowledge of the long-term public key as well as the

blinding key. Similarly, in a rate-limited version of Privacy Pass 

[RATELIMITED], the context is empty, thereby allowing unblinding by

anyone in possession of the blinding key.
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Applications are RECOMMENDED to choose context strings that are

distinct from other protocols as a way of enforcing domain

separation. See Section 2.2.5 of [HASH-TO-CURVE] for additional

discussion around the construction of suitable domain separation

values.

8. Security Considerations

The signature scheme extensions in this document aim to achieve

unforgeability and unlinkability. Informally, unforgeability means

that one cannot produce a valid (message, signature) pair for any

blinding key without access to the private signing key. Similarly,

unlinkability means that one cannot distinguish between two

signatures produced from two independent key signing keys, and two

signatures produced from the same signing key but with different

blinds. Security analysis of the extensions in this document with

respect to these two properties is currently underway.

Preliminary analysis has been done for a variant of these extensions

used for identity key blinding routine used in Tor's Hidden Service

feature [TORBLINDING]. For EdDSA, further analysis is needed to

ensure this is compliant with the signature algorithm described in 

[RFC8032].

The constructions in this document assume that both the signing and

blinding keys are private, and, as such, not controlled by an

attacker. [MSMHI15] demonstrate that ECDSA with attacker-controlled

multiplicative blinding for producing related keys can be abused to

produce forgeries. In particular, if an attacker can control the

private blinding key used in BlindKeySign, they can construct a

forgery over a different message that validates under a different

public key. One mitigation to this problem is to change BlindKeySign

such that the signature is computed over the input message as well

as the blind public key. However, this would require verifiers to

treat both the blind public key and message as input to their

verification interface. The construction in Section 6 does not

require this change. However, further analysis is needed to

determine whether or not this construction is safe.

9. IANA Considerations

This document has no IANA actions.

10. Test Vectors

This section contains test vectors for a subset of the signature

schemes covered in this document.
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10.1. Ed25519 Test Vectors

This section contains test vectors for Ed25519 as described in 

[RFC8032]. Each test vector lists the private key and blind seeds,

denoted skS and bk and encoded as hexadecimal strings, along with

the public key pkS corresponding to skS encoded has hexadecimal

strings according to [RFC8032], Section 5.1.2. Each test vector also

includes the blinded public key pkR computed from skS and bk,

denoted pkR and encoded has a hexadecimal string. Finally, each

vector includes the message and signature values, each encoded as

hexadecimal strings.¶

// Randomly generated private key and blind seed, empty context

skS: d142b3b1d532b0a516353a0746a6d43a86cee8efaf6b14ae85c2199072f47d93

pkS: cd875d3f46a8e8742cf4a6a9f9645d4153a394a5a0a8028c9041cd455d093cd5

bk: bb58c768d9b16571f553efd48207e64391e16439b79fe9409e70b38040c81302

pkR: 666443ce8f03fa09240db73a584efad5462ffe346b14fd78fb666b25db29902f

message: 68656c6c6f20776f726c64

context:

signature: 5458111c708ce05cb0a1608b08dc649937dc22cf1da045eb866f2face50be

930e79b44d57e5215a82ac227bdccccca52bfe509b96efe8e723cb42b5f14be5f0e

¶

// Randomly generated private key seed and zero blind seed, empty context

skS: aa69e9cb50abf39b05ebc823242c4fd13ccadd0dadc1b45f6fcbf7be4f30db5d

pkS: 5c9a9e271f204c931646aa079e2e66f0783ab3d29946eff37bd3b569e9c8e009

bk: 0000000000000000000000000000000000000000000000000000000000000000

pkR: 23eb5eccb9448ee8403c36595ccfd5edd7257ae70da69aa22282a0a7cd97e443

message: 68656c6c6f20776f726c64

context:

signature: 4e9f3ad2b14cf2f9bbf4b88a8832358a568bd69368b471dfabac594e8a8b3

3ab54978ecf902560ed754f011186c4c4dda65d158b96c1e6b99a8e150a26e51e03

¶

// Randomly generated private key and blind seed, non-empty context

skS: d1e5a0f806eb3c491566cef6d2d195e6bbf0a54c9de0e291a7ced050c63ea91c

pkS: 8b37c949d39cddf4d2a0fc0da781ea7f85c7bfbdfeb94a3c9ecb5e8a3c24d65f

bk: 05b235297dff87c492835d562c6e03c0f36b9c306f2dcb3b5038c2744d4e8a70

pkR: 019b0a06107e01361facdad39ec16a9647c86c0086bc38825eb664b97d9c514d

message: 68656c6c6f20776f726c64

context:

d6bbaa0646f5617d3cbd1e22ef05e714d1ec7812efff793999667648b2cc54bc

signature: f54214acb3c695c46b1e7aa2da947273cb19ec33d8215dde0f43a8f7250fe

bb508f4a5007e3c96be6402074ec843d40358a281ff969c66c1724016208650dd09

¶
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10.2. ECDSA(P-384, SHA-384) Test Vectors

This section contains test vectors for ECDSA with P-384 and SHA-384,

as described in [ECDSA]. Each test vector lists the signing and

blinding keys, denoted skS and bk, each serialized as a big-endian

integers and encoded as hexadecimal strings. Each test vector also

blinded public key pkR, encoded as compressed elliptic curve points

according to [ECDSA]. Finally, each vector lists message and

signature values, where the message is encoded as a hexadecimal

string, and the signature value is serialized as the concatenation

of scalars (r, s) and encoded as a hexadecimal string.

// Randomly generated private key seed and zero blind seed, non-empty context

skS: 89e3e3acef6a6c2d9b7c062199bf996f9ae96b662c73e2b445636f9f22d5012e

pkS: 3f667a2305a8baf328a1d8e9ed726f278229607d28fb32d9933da7379947ac44

bk: 0000000000000000000000000000000000000000000000000000000000000000

pkR: 90a543dd29c6e6cd08ef85c43618f2d314139db5baed802383cf674310294e40

message: 68656c6c6f20776f726c64

context:

802def4d21c7c7d0fa4b48af5e85f8ebfc4119a04117c14d961567eaef2859f2

signature: ce305a0f40a3270a84d2d9403617cdb89b7b4edf779b4de27f9acaadf1716

84b162e752c95f17b16aaca7c2662e69ba9696bdd230a107ecab973886e8d5bf00e

¶

¶

// Randomly generated signing and blind private keys, empty context

skS: fcc8217ec4c89862d069a6679026c8042a74a513ba5b4a63da58488643132afaf35

9c3645dcc99c11862d9606370b9b7

pkS: 02582e4108018f9657f8bb55192838ff057442c8f7dc265f195dc1e4aa2cff2ec10

e2f2220dbeb300125d46b00dff747f1

bk: 1d3b48eec849b9d0e7376be1eca90369663939d140a8f3418ebc2221159402647a9e

283a78694377915b2894bc38cfe5

pkR: 03031c9914e4aa550605ded5c8b2604a2910c7c4d7e1e8608d81152a2ed3b8eb85a

c8c7896107c91875090b651f43d2f31

message: 68656c6c6f20776f726c64

context:

signature: 0ca279fba24a47ef2dded3f3171f805779d41ff0c3b13af260977d26f9df8

a0993591b34e84f954149a478408abc685cb88ca32e482ffb9ea2f377ac949cb37468f18

4b8f03ce4c7da06c024a38e3d8f2a9eea84493288627a13f317cc6d8457

¶
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