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1. Introduction

This document describes SPAKE2, a means for two parties that share a

password to derive a strong shared key without disclosing the

password. This password-based key exchange protocol is compatible

with any group (requiring only a scheme to map a random input of

fixed length per group to a random group element), is

computationally efficient, and has a security proof. Predetermined

parameters for a selection of commonly used groups are also provided

for use by other protocols.

SPAKE2 was not selected as the result of the CFRG PAKE selection

competition. However, given existing use of variants in Kerberos and

other applications it was felt publication was beneficial. This RFC

represents the individual opinion(s) of one or more members of the

Crypto Forum Research Group of the Internet Research Task Force

(IRTF).

Many of these applications predated methods to hash to elliptic

curves being available or predated the publication of the PAKEs that

were chosen as an outcome of the PAKE selection competition. In

cases where a symmetric PAKE is needed, and hashing onto an elliptic

curve at protocol execution time is not available, SPAKE2 is useful.

2. Requirements Notation

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.
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3. Definition of SPAKE2

3.1. Setup

Let G be a group in which the gap Diffie-Hellman (GDH) problem is

hard. Suppose G has order p*h where p is a large prime; h will be

called the cofactor. Let I be the unit element in G, e.g., the point

at infinity if G is an elliptic curve group. We denote the

operations in the group additively. We assume there is a

representation of elements of G as byte strings: common choices

would be SEC1 [SEC1] uncompressed or compressed for elliptic curve

groups or big endian integers of a fixed (per-group) length for

prime field DH. Applications MUST specify this encoding, typically

by referring to the document defining the group. We fix two elements

M and N in the prime-order subgroup of G as defined in the table in

this document for common groups, as well as a generator P of the

(large) prime-order subgroup of G. In the case of a composite order

group we will work in the quotient group. For common groups used in

this document, P is specified in the document defining the group,

and so we do not repeat it here.

For elliptic curves other than the ones in this document the methods

of [I-D.irtf-cfrg-hash-to-curve] SHOULD be used to generate M and N,

e.g. via M = hash_to_curve("M SPAKE2 seed OID x") and N =

hash_to_curve("N SPAKE2 seed OID x"), where x is an OID for the

curve. Applications MAY include a DST tag in this step, as specified

in [I-D.irtf-cfrg-hash-to-curve], though this is not required.

|| denotes concatenation of byte strings. We also let len(S) denote

the length of a string in bytes, represented as an eight-byte

little- endian number. Finally, let nil represent an empty string,

i.e., len(nil) = 0. Text strings in double quotes are treated as

their ASCII encodings throughout this document.

KDF(ikm, salt, info, L) is a key-derivation function that takes as

input a salt, intermediate keying material (IKM), info string, and

derived key length L to derive a cryptographic key of length L. MAC

is a Message Authentication Code algorithm that takes a secret key

and message as input to produce an output. Let Hash be a hash

function from arbitrary strings to bit strings of a fixed length, at

least 32 bytes long. Common choices for H are SHA256 or SHA512 

[RFC6234]. Let MHF be a memory-hard hash function designed to slow

down brute-force attackers. Scrypt [RFC7914] is a common example of

this function. The output length of MHF matches that of Hash.

Parameter selection for MHF is out of scope for this document. 

Section 6 specifies variants of KDF, MAC, and Hash suitable for use

with the protocols contained herein.
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Let A and B be two parties. A and B may also have digital

representations of the parties' identities such as Media Access

Control addresses or other names (hostnames, usernames, etc). A and

B may share Additional Authenticated Data (AAD) of length at most

2^16 - 128 bits that is separate from their identities which they

may want to include in the protocol execution. One example of AAD is

a list of supported protocol versions if SPAKE2 were used in a

higher-level protocol which negotiates use of a particular PAKE.

Including this list would ensure that both parties agree upon the

same set of supported protocols and therefore prevent downgrade

attacks. We also assume A and B share an integer w; typically w =

MHF(pw) mod p, for a user-supplied password pw. Standards such as

NIST.SP.800-56Ar3 suggest taking mod p of a hash value that is 64

bits longer than that needed to represent p to remove statistical

bias introduced by the modulation. Protocols using this

specification MUST define the method used to compute w. In some

cases, it may be necessary to carry out various forms of

normalization of the password before hashing [RFC8265]. The hashing

algorithm SHOULD be a MHF so as to slow down brute-force attackers.

3.2. Protocol Flow

SPAKE2 is a two round protocol, wherein the first round establishes

a shared secret between A and B, and the second round serves as key

confirmation. Prior to invocation, A and B are provisioned with

information such as the input password needed to run the protocol.

We assume that the roles of A and B are agreed upon by both sides: A

goes first and uses M, and B goes second and uses N. If this

assignment of roles is not possible a symmetric variant described

later MUST be used. For instance A may be the client when using TCP

or TLS as an underlying protocol and B the server. Most protocols

have such a distinction. During the first round, A sends a public

value pA to B, and B responds with its own public value pB. Both A

and B then derive a shared secret used to produce encryption and

authentication keys. The latter are used during the second round for

key confirmation. (Section 4 details the key derivation and

confirmation steps.) In particular, A sends a key confirmation

message cA to B, and B responds with its own key confirmation

message cB. A MUST NOT consider the protocol complete until it

receives and verifies cB. Likewise, B MUST NOT consider the protocol

complete until it receives and verifies cA.

This sample flow is shown below.
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3.3. SPAKE2

To begin, A picks x randomly and uniformly from the integers in

[0,p), and calculates X=x*P and pA=w*M+X, then transmits pA to B.

B selects y randomly and uniformly from the integers in [0,p), and

calculates Y=y*P, pB=w*N+Y, then transmits pB to A.

Both A and B calculate a group element K. A calculates it as

h*x*(pB-w*N), while B calculates it as h*y*(pA-w*M). A knows pB

because it has received it, and likewise B knows pA. The

multiplication by h prevents small subgroup confinement attacks by

computing a unique value in the quotient group.

K is a shared value, though it MUST NOT be used or output as a

shared secret from the protocol. Both A and B must derive two

additional shared secrets from the protocol transcript, which

includes K. This prevents man-in-the-middle attackers from inserting

themselves into the exchange. The transcript TT is encoded as

follows:

Here w is encoded as a big endian number padded to the length of p.

This representation prevents timing attacks that otherwise would

reveal the length of w. len(w) is thus a constant. We include it for

consistency.

                A                  B

                | (setup protocol) |

                |                  |

  (compute pA)  |        pA        |

                |----------------->|

                |        pB        | (compute pB)

                |<-----------------|

                |                  |

                | (derive secrets) |

                |                  |

  (compute cA)  |        cA        |

                |----------------->|

                |        cB        | (compute cB)

                |                  | (check cA)

                |<-----------------|

  (check cB)    |                  |

¶

¶

¶

¶

¶

        TT = len(A)  || A

          || len(B)  || B

          || len(pA) || pA

          || len(pB) || pB

          || len(K)  || K

          || len(w)  || w

¶
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If an identity is absent, it is encoded as a zero-length string.

This MUST only be done for applications in which identities are

implicit. Otherwise, the protocol risks unknown key share attacks,

where both sides of a connection disagree over who is authenticated.

Upon completion of this protocol, A and B compute shared secrets Ke,

KcA, and KcB as specified in Section 4. A MUST send B a key

confirmation message so both parties agree upon these shared

secrets. This confirmation message cA is computed as a MAC over the

protocol transcript TT using KcA, as follows: cA = MAC(KcA, TT).

Similarly, B MUST send A a confirmation message using a MAC computed

equivalently except with the use of KcB. Key confirmation

verification requires computing cB and checking for equality against

that which was received.

4. Key Schedule and Key Confirmation

The protocol transcript TT, as defined in Section 3.3, is unique and

secret to A and B. Both parties use TT to derive shared symmetric

secrets Ke and Ka as Ke || Ka = Hash(TT), with |Ke| = |Ka|. The

length of each key is equal to half of the digest output, e.g., 128

bits for SHA-256. Keys MUST be at least 128 bits in length.

Both endpoints use Ka to derive subsequent MAC keys for key

confirmation messages. Specifically, let KcA and KcB be the MAC keys

used by A and B, respectively. A and B compute them as KcA || KcB =

KDF(Ka, nil, "ConfirmationKeys" || AAD, L), where AAD is the

associated data each given to each endpoint, or nil if none was

provided. The length of each of KcA and KcB is equal to half of the

underlying hash output length, e.g., |KcA| = |KcB| = 128 bits for

HKDF(SHA256), with L=256 bits.

The resulting key schedule for this protocol, given transcript TT

and additional associated data AAD, is as follows.

A and B output Ke as the shared secret from the protocol. Ka and its

derived keys are not used for anything except key confirmation.

5. Per-User M and N and M=N

To avoid concerns that an attacker needs to solve a single ECDH

instance to break the authentication of SPAKE2, it is possible to

vary M and N using [I-D.irtf-cfrg-hash-to-curve] as follows:

¶

¶

¶

¶

¶

    TT  -> Hash(TT) = Ke || Ka

    AAD -> KDF(Ka, nil, "ConfirmationKeys" || AAD) = KcA || KcB

¶

¶

¶

    M = hash_to_curve(Hash("M SPAKE2" || len(A) || A || len(B) || B))

    N = hash_to_curve(Hash("N SPAKE2" || len(A) || A || len(B) || B))

¶



In addition M and N may be equal to have a symmetric variant. For

this variant we set

This variant MUST be used when it is not possible to determine which

of A and B should use M or N, due to asymmetries in the protocol

flows or the desire to use only a single shared secret with nil

identities for authentication. The security of these variants is

examined in [MNVAR]. The variant with per-user M and N may not be

suitable for protocols that require the initial messages to be

generated by each party at the same time and do not know the exact

identity of the parties before the flow begins.

6. Ciphersuites

This section documents SPAKE2 ciphersuite configurations. A

ciphersuite indicates a group, cryptographic hash function, and pair

of KDF and MAC functions, e.g., SPAKE2-P256-SHA256-HKDF-HMAC. This

ciphersuite indicates a SPAKE2 protocol instance over P-256 that

uses SHA256 along with HKDF [RFC5869] and HMAC [RFC2104] for G,

Hash, KDF, and MAC functions, respectively.

G Hash KDF MAC

P-256
SHA256 

[RFC6234]

HKDF 

[RFC5869]
HMAC [RFC2104]

P-256
SHA512 

[RFC6234]

HKDF 

[RFC5869]
HMAC [RFC2104]

P-384
SHA256 

[RFC6234]

HKDF 

[RFC5869]
HMAC [RFC2104]

P-384
SHA512 

[RFC6234]

HKDF 

[RFC5869]
HMAC [RFC2104]

P-512
SHA512 

[RFC6234]

HKDF 

[RFC5869]
HMAC [RFC2104]

edwards25519 

[RFC7748]

SHA256 

[RFC6234]

HKDF 

[RFC5869]
HMAC [RFC2104]

edwards448 [RFC7748]
SHA512 

[RFC6234]

HKDF 

[RFC5869]
HMAC [RFC2104]

P-256
SHA256 

[RFC6234]

HKDF 

[RFC5869]

CMAC-AES-128 

[RFC4493]

P-256
SHA512 

[RFC6234]

HKDF 

[RFC5869]

CMAC-AES-128 

[RFC4493]

Table 1: SPAKE2 Ciphersuites

The following points represent permissible point generation seeds

for the groups listed in the Table Table 1, using the algorithm

presented in Appendix A. These bytestrings are compressed points as

in [SEC1] for curves from [SEC1].

¶

    M = hash_to_curve(Hash("M AND N SPAKE2"))¶

¶

¶

¶



For P256:

For P384:

For P521:

For edwards25519:

For edwards448:

¶

M =

02886e2f97ace46e55ba9dd7242579f2993b64e16ef3dcab95afd497333d8fa12f

seed: 1.2.840.10045.3.1.7 point generation seed (M)

N =

03d8bbd6c639c62937b04d997f38c3770719c629d7014d49a24b4f98baa1292b49

seed: 1.2.840.10045.3.1.7 point generation seed (N)

¶

¶

M =

030ff0895ae5ebf6187080a82d82b42e2765e3b2f8749c7e05eba366434b363d3dc

36f15314739074d2eb8613fceec2853

seed: 1.3.132.0.34 point generation seed (M)

N =

02c72cf2e390853a1c1c4ad816a62fd15824f56078918f43f922ca21518f9c543bb

252c5490214cf9aa3f0baab4b665c10

seed: 1.3.132.0.34 point generation seed (N)

¶

¶

M =

02003f06f38131b2ba2600791e82488e8d20ab889af753a41806c5db18d37d85608

cfae06b82e4a72cd744c719193562a653ea1f119eef9356907edc9b56979962d7aa

seed: 1.3.132.0.35 point generation seed (M)

N =

0200c7924b9ec017f3094562894336a53c50167ba8c5963876880542bc669e494b25

32d76c5b53dfb349fdf69154b9e0048c58a42e8ed04cef052a3bc349d95575cd25

seed: 1.3.132.0.35 point generation seed (N)

¶

¶

M =

d048032c6ea0b6d697ddc2e86bda85a33adac920f1bf18e1b0c6d166a5cecdaf

seed: edwards25519 point generation seed (M)

N =

d3bfb518f44f3430f29d0c92af503865a1ed3281dc69b35dd868ba85f886c4ab

seed: edwards25519 point generation seed (N)

¶

¶



7. Security Considerations

A security proof of SPAKE2 for prime order groups is found in [REF],

reducing the security of SPAKE2 to the gap Diffie-Hellman

assumption. Note that the choice of M and N is critical for the

security proof. The generation methods specified in this document

are designed to eliminate concerns related to knowing discrete logs

of M and N.

Elements received from a peer MUST be checked for group membership:

failure to properly deserialize and validate group elements can lead

to attacks. An endpoint MUST abort the protocol if any received

public value is not a member of G.

The choices of random numbers MUST BE uniform. Randomly generated

values, e.g., x and y, MUST NOT be reused; such reuse may permit

dictionary attacks on the password. It is RECOMMENDED to generate

these uniform numbers using rejection sampling.

Some implementations of elliptic curve multiplication may leak

information about the length of the scalar. These MUST NOT be used.

All operations on elliptic curve points must take time independent

of the inputs. Hashing of the transcript may take time depending

only on the length of the transcript, but not the contents.

SPAKE2 does not support augmentation. As a result, the server has to

store a password equivalent. This is considered a significant

drawback in some use cases. Applications that need augmented PAKEs

should use [I-D.irtf-cfrg-opaque].

The HMAC keys in this document are shorter than recommended in 

[RFC8032]. This is appropriate as the difficulty of the discrete

logarithm problem is comparable with the difficulty of brute forcing

the keys.

8. IANA Considerations

No IANA action is required.

M =

b6221038a775ecd007a4e4dde39fd76ae91d3cf0cc92be8f0c2fa6d6b66f9a12

942f5a92646109152292464f3e63d354701c7848d9fc3b8880

seed: edwards448 point generation seed (M)

N =

6034c65b66e4cd7a49b0edec3e3c9ccc4588afd8cf324e29f0a84a072531c4db

f97ff9af195ed714a689251f08f8e06e2d1f24a0ffc0146600

seed: edwards448 point generation seed (N)

¶

¶

¶

¶

¶

¶

¶
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[I-D.irtf-cfrg-hash-to-curve]

[RFC2104]
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Appendix A. Algorithm used for Point Generation

This section describes the algorithm that was used to generate the

points M and N in the table in Section 6.

For each curve in the table below, we construct a string using the

curve OID from [RFC5480] (as an ASCII string) or its name, combined

with the needed constant, e.g., "1.3.132.0.35 point generation seed

(M)" for P-512. This string is turned into a series of blocks by

hashing with SHA256, and hashing that output again to generate the

next 32 bytes, and so on. This pattern is repeated for each group

and value, with the string modified appropriately.

A byte string of length equal to that of an encoded group element is

constructed by concatenating as many blocks as are required,

starting from the first block, and truncating to the desired length.

The byte string is then formatted as required for the group. In the

case of Weierstrass curves, we take the desired length as the length

for representing a compressed point (section 2.3.4 of [SEC1]), and

use the low-order bit of the first byte as the sign bit. In order to

obtain the correct format, the value of the first byte is set to

0x02 or 0x03 (clearing the first six bits and setting the seventh

bit), leaving the sign bit as it was in the byte string constructed

by concatenating hash blocks. For the [RFC8032] curves a different

procedure is used. For edwards448 the 57-byte input has the least-

significant 7 bits of the last byte set to zero, and for

edwards25519 the 32-byte input is not modified. For both the 

[RFC8032] curves the (modified) input is then interpreted as the

representation of the group element. If this interpretation yields a

valid group element with the correct order (p), the (modified) byte

string is the output. Otherwise, the initial hash block is discarded

and a new byte string constructed from the remaining hash blocks.

The procedure of constructing a byte string of the appropriate

length, formatting it as required for the curve, and checking if it

is a valid point of the correct order, is repeated until a valid

element is found.

The following python snippet generates the above points, assuming an

elliptic curve implementation following the interface of

Edwards25519Point.stdbase() and Edwards448Point.stdbase() in

Appendix A of [RFC8032]:

¶

¶

¶

¶

https://www.ietf.org/archive/id/draft-irtf-cfrg-opaque-06.txt
https://www.ietf.org/archive/id/draft-irtf-cfrg-opaque-06.txt


Appendix B. Test Vectors

This section contains test vectors for SPAKE2 using the P256-SHA256-

HKDF-HMAC ciphersuite. (Choice of MHF is omitted and values for w,

x, and y are provided directly.) All points are encoded using the

uncompressed format, i.e., with a 0x04 octet prefix, specified in 

[SEC1] A and B identity strings are provided in the protocol

invocation.

def iterated_hash(seed, n):

    h = seed

    for i in range(n):

        h = hashlib.sha256(h).digest()

    return h

def bighash(seed, start, sz):

    n = -(-sz // 32)

    hashes = [iterated_hash(seed, i) for i in range(start, start + n)]

    return b''.join(hashes)[:sz]

def canon_pointstr(ecname, s):

    if ecname == 'edwards25519':

        return s

    elif ecname == 'edwards448':

        return s[:-1] + bytes([s[-1] & 0x80])

    else:

        return bytes([(s[0] & 1) | 2]) + s[1:]

def gen_point(seed, ecname, ec):

    for i in range(1, 1000):

        hval = bighash(seed, i, len(ec.encode()))

        pointstr = canon_pointstr(ecname, hval)

        try:

            p = ec.decode(pointstr)

            if p != ec.zero_elem() and p * p.l() == ec.zero_elem():

                return pointstr, i

        except Exception:

            pass

¶

¶



B.1. SPAKE2 Test Vectors



spake2: A='server', B='client'

w = 0x2ee57912099d31560b3a44b1184b9b4866e904c49d12ac5042c97dca461b1a5f

x = 0x43dd0fd7215bdcb482879fca3220c6a968e66d70b1356cac18bb26c84a78d729

pA = 0x04a56fa807caaa53a4d28dbb9853b9815c61a411118a6fe516a8798434751470

f9010153ac33d0d5f2047ffdb1a3e42c9b4e6be662766e1eeb4116988ede5f912c

y = 0xdcb60106f276b02606d8ef0a328c02e4b629f84f89786af5befb0bc75b6e66be

pB = 0x0406557e482bd03097ad0cbaa5df82115460d951e3451962f1eaf4367a420676

d09857ccbc522686c83d1852abfa8ed6e4a1155cf8f1543ceca528afb591a1e0b7

K = 0x0412af7e89717850671913e6b469ace67bd90a4df8ce45c2af19010175e37eed

69f75897996d539356e2fa6a406d528501f907e04d97515fbe83db277b715d3325

TT = 0x06000000000000007365727665720600000000000000636c69656e744100000

00000000004a56fa807caaa53a4d28dbb9853b9815c61a411118a6fe516a8798434751

470f9010153ac33d0d5f2047ffdb1a3e42c9b4e6be662766e1eeb4116988ede5f912c4

1000000000000000406557e482bd03097ad0cbaa5df82115460d951e3451962f1eaf43

67a420676d09857ccbc522686c83d1852abfa8ed6e4a1155cf8f1543ceca528afb591a

1e0b741000000000000000412af7e89717850671913e6b469ace67bd90a4df8ce45c2a

f19010175e37eed69f75897996d539356e2fa6a406d528501f907e04d97515fbe83db2

77b715d332520000000000000002ee57912099d31560b3a44b1184b9b4866e904c49d1

2ac5042c97dca461b1a5f

Hash(TT) = 0x0e0672dc86f8e45565d338b0540abe6915bdf72e2b35b5c9e5663168e960a91b

Ke = 0x0e0672dc86f8e45565d338b0540abe69

Ka = 0x15bdf72e2b35b5c9e5663168e960a91b

KcA = 0x00c12546835755c86d8c0db7851ae86f

KcB = 0xa9fa3406c3b781b93d804485430ca27a

A conf = 0x58ad4aa88e0b60d5061eb6b5dd93e80d9c4f00d127c65b3b35b1b5281fee38f0

B conf = 0xd3e2e547f1ae04f2dbdbf0fc4b79f8ecff2dff314b5d32fe9fcef2fb26dc459b

spake2: A='', B='client'

w = 0x0548d8729f730589e579b0475a582c1608138ddf7054b73b5381c7e883e2efae

x = 0x403abbe3b1b4b9ba17e3032849759d723939a27a27b9d921c500edde18ed654b

pA = 0x04a897b769e681c62ac1c2357319a3d363f610839c4477720d24cbe32f5fd85f

44fb92ba966578c1b712be6962498834078262caa5b441ecfa9d4a9485720e918a

y = 0x903023b6598908936ea7c929bd761af6039577a9c3f9581064187c3049d87065

pB = 0x04e0f816fd1c35e22065d5556215c097e799390d16661c386e0ecc84593974a6

1b881a8c82327687d0501862970c64565560cb5671f696048050ca66ca5f8cc7fc

K = 0x048f83ec9f6e4f87cc6f9dc740bdc2769725f923364f01c84148c049a39a735e

bda82eac03e00112fd6a5710682767cff5361f7e819e53d8d3c3a2922e0d837aa6

TT = 0x00000000000000000600000000000000636c69656e74410000000000000004a

897b769e681c62ac1c2357319a3d363f610839c4477720d24cbe32f5fd85f44fb92ba9

66578c1b712be6962498834078262caa5b441ecfa9d4a9485720e918a4100000000000

00004e0f816fd1c35e22065d5556215c097e799390d16661c386e0ecc84593974a61b8

81a8c82327687d0501862970c64565560cb5671f696048050ca66ca5f8cc7fc4100000

000000000048f83ec9f6e4f87cc6f9dc740bdc2769725f923364f01c84148c049a39a7

35ebda82eac03e00112fd6a5710682767cff5361f7e819e53d8d3c3a2922e0d837aa62

0000000000000000548d8729f730589e579b0475a582c1608138ddf7054b73b5381c7e

883e2efae

Hash(TT) = 0x642f05c473c2cd79909f9a841e2f30a70bf89b18180af97353ba198789c2b963

Ke = 0x642f05c473c2cd79909f9a841e2f30a7



Ka = 0x0bf89b18180af97353ba198789c2b963

KcA = 0xc6be376fc7cd1301fd0a13adf3e7bffd

KcB = 0xb7243f4ae60440a49b3f8cab3c1fba07

A conf = 0x47d29e6666af1b7dd450d571233085d7a9866e4d49d2645e2df975489521232b

B conf = 0x3313c5cefc361d27fb16847a91c2a73b766ffa90a4839122a9b70a2f6bd1d6df

spake2: A='server', B=''

w = 0x626e0cdc7b14c9db3e52a0b1b3a768c98e37852d5db30febe0497b14eae8c254

x = 0x07adb3db6bc623d3399726bfdbfd3d15a58ea776ab8a308b00392621291f9633

pA = 0x04f88fb71c99bfffaea370966b7eb99cd4be0ff1a7d335caac4211c4afd855e2

e15a873b298503ad8ba1d9cbb9a392d2ba309b48bfd7879aefd0f2cea6009763b0

y = 0xb6a4fc8dbb629d4ba51d6f91ed1532cf87adec98f25dd153a75accafafedec16

pB = 0x040c269d6be017dccb15182ac6bfcd9e2a14de019dd587eaf4bdfd353f031101

e7cca177f8eb362a6e83e7d5e729c0732e1b528879c086f39ba0f31a9661bd34db

K = 0x0445ee233b8ecb51ebd6e7da3f307e88a1616bae2166121221fdc0dadb986afa

f3ec8a988dc9c626fa3b99f58a7ca7c9b844bb3e8dd9554aafc5b53813504c1cbe

TT = 0x06000000000000007365727665720000000000000000410000000000000004f

88fb71c99bfffaea370966b7eb99cd4be0ff1a7d335caac4211c4afd855e2e15a873b2

98503ad8ba1d9cbb9a392d2ba309b48bfd7879aefd0f2cea6009763b04100000000000

000040c269d6be017dccb15182ac6bfcd9e2a14de019dd587eaf4bdfd353f031101e7c

ca177f8eb362a6e83e7d5e729c0732e1b528879c086f39ba0f31a9661bd34db4100000

0000000000445ee233b8ecb51ebd6e7da3f307e88a1616bae2166121221fdc0dadb986

afaf3ec8a988dc9c626fa3b99f58a7ca7c9b844bb3e8dd9554aafc5b53813504c1cbe2

000000000000000626e0cdc7b14c9db3e52a0b1b3a768c98e37852d5db30febe0497b1

4eae8c254

Hash(TT) = 0x005184ff460da2ce59062c87733c299c3521297d736598fc0a1127600efa1afb

Ke = 0x005184ff460da2ce59062c87733c299c

Ka = 0x3521297d736598fc0a1127600efa1afb

KcA = 0xf3da53604f0aeecea5a33be7bddf6edf

KcB = 0x9e3f86848736f159bd92b6e107ec6799

A conf = 0xbc9f9bbe99f26d0b2260e6456e05a86196a3307ec6663a18bf6ac825736533b2

B conf = 0xc2370e1bf813b086dff0d834e74425a06e6390f48f5411900276dcccc5a297ec

spake2: A='', B=''

w = 0x7bf46c454b4c1b25799527d896508afd5fc62ef4ec59db1efb49113063d70cca

x = 0x8cef65df64bb2d0f83540c53632de911b5b24b3eab6cc74a97609fd659e95473

pA = 0x04a65b367a3f613cf9f0654b1b28a1e3a8a40387956c8ba6063e8658563890f4

6ca1ef6a676598889fc28de2950ab8120b79a5ef1ea4c9f44bc98f585634b46d66

y = 0xd7a66f64074a84652d8d623a92e20c9675c61cb5b4f6a0063e4648a2fdc02d53

pB = 0x04589f13218822710d98d8b2123a079041052d9941b9cf88c6617ddb2fcc0494

662eea8ba6b64692dc318250030c6af045cb738bc81ba35b043c3dcb46adf6f58d

K = 0x041a3c03d51b452537ca2a1fea6110353c6d5ed483c4f0f86f4492ca3f378d40

a994b4477f93c64d928edbbcd3e85a7c709b7ea73ee97986ce3d1438e135543772

TT = 0x00000000000000000000000000000000410000000000000004a65b367a3f613

cf9f0654b1b28a1e3a8a40387956c8ba6063e8658563890f46ca1ef6a676598889fc28

de2950ab8120b79a5ef1ea4c9f44bc98f585634b46d66410000000000000004589f132

18822710d98d8b2123a079041052d9941b9cf88c6617ddb2fcc0494662eea8ba6b6469

2dc318250030c6af045cb738bc81ba35b043c3dcb46adf6f58d4100000000000000041

a3c03d51b452537ca2a1fea6110353c6d5ed483c4f0f86f4492ca3f378d40a994b4477



f93c64d928edbbcd3e85a7c709b7ea73ee97986ce3d1438e1355437722000000000000

0007bf46c454b4c1b25799527d896508afd5fc62ef4ec59db1efb49113063d70cca

Hash(TT) = 0xfc6374762ba5cf11f4b2caa08b2cd1b9907ae0e26e8d6234318d91583cd74c86

Ke = 0xfc6374762ba5cf11f4b2caa08b2cd1b9

Ka = 0x907ae0e26e8d6234318d91583cd74c86

KcA = 0x5dbd2f477166b7fb6d61febbd77a5563

KcB = 0x7689b4654407a5faeffdc8f18359d8a3

A conf = 0xdfb4db8d48ae5a675963ea5e6c19d98d4ea028d8e898dad96ea19a80ade95dca

B conf = 0xd0f0609d1613138d354f7e95f19fb556bf52d751947241e8c7118df5ef0ae175

¶
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