
Crypto Forum Research Group David A. McGrew
Inernet Draft Cisco Systems, Inc.
Expires June, 2003 October, 2002

The Universal Security Transform
<draft-irtf-cfrg-ust-00.txt>

Status of this Memo

 This document is an Internet Draft and is in full conformance with
 all provisions of Section 10 of RFC-2026. Internet Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and working groups. Note that other groups may also distribute
 working documents as Internet Drafts.

 Internet Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

1. Abstract

 This document describes a cryptographic transform which uses an
 indexed keystream generator (that generates a keystream segment
 given an index value) and a universal hash function to provide
 confidentiality, message authentication, and replay protection.
 This transform is efficient, provably secure, and is appropriate
 for network security.

2. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in
 this document are to be interpreted as described in RFC-2119 [B97].

 Terms that are defined in this specification are capitalized

McGrew [Page 1]

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-ust-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc2119

Internet Draft Universal Security Transform October, 2002

 to distinguish them from generic terminology.

3. Universal Security Transform

 The Universal Security Transform (UST) is a cryptographic transform
 for providing confidentiality, message authentication, and replay
 protection. This transform is sufficient for providing these
 services to network protocols, though it does not specify a
 protocol itself. Conceptually, it is somewhere in between a
 combined cipher mode of operation which provides confidentiality
 and authentication (such as OCB [MW]) and a completely specified
 security protocol (such as IPsec ESP [KA98]).

 A UST input consists of an Index field and a Message field which
 contains the data to be protected. A UST output consists of a
 Ciphertext field and an Authentication Tag field. All of these
 fields are octet strings, and all lengths below are expressed in
 octets.

 The Message field is divided into two parts: a Clear field, which
 contains data which is not altered by the transform, and an Opaque
 field, which is altered by the transform. Confidentiality is
 provided on the Opaque field through encryption, and message
 authentication is provided on both fields.

 The Ciphertext contains the encrypted form of the unprotected
 Opaque field; the length of those fields are equal. The
 Authentication Tag provides message authentication of the
 Ciphertext and the Clear field. The Index is an unsigned integer
 in network byte order that acts as a nonce (that is, its value is
 unique for each distinct Message for each fixed key).

 The UST uses a Keystream Generator (as defined in Section 5) and an
 Authentication Function (as defined in Section 6). The interfaces
 to these components, but not the components themselves, are defined
 in this specification. Any such components can be used.

 The transform procedure is illustrated in Figure 1. The Index is
 fed into the Keystream Generator, which then outputs the keystream
 segment which corresponds to that Index. The keystream segment is
 conceptually divided into a Prefix, whose length is equal to that
 of the Authentication Tag, followed by a Suffix, whose length is
 that of the Opaque field. The Ciphertext is generated by bitwise
 exclusive-oring the Suffix into the Opaque field. The

McGrew [Page 2]

Internet Draft Universal Security Transform October, 2002

 Authentication Tag is computed by the Authentication Function,
 using the concatenation of the Clear field followed by the
 Ciphertext field as the data input and the Prefix as the masking
 input, as described in Section 6. (Some operations may be
 optional, as described in Section 3.1).

 Figure 1. The UST transform. Here and below (+) denotes the
 bitwise exclusive-or operation and [||] denotes concatenation.

 +---------+
 | Index |
 +---------+
 |
 v <----------- Keystream Segment ----------->
 +===========+ +-------------+---------------------------+
 " Keystream "->| Prefix | Suffix |---+
 " Generator " +-------------+---------------------------+ |
 +===========+ | |
 | <-------------- Message ------------> |
 | +-------+---------------------------+ v
 | | Clear | Opaque |->(+)
 | +-------+---------------------------+ |
 | | |
 | +-----------------------------+ |
 | | |
 +--------------------+ | |
 | | |
 v | |
 +-----------+ +================+ v |
 | Auth. Tag |<----" Authentication "<-[||] |
 +-----------+ " Function " ^ |
 +================+ | |
 | |
 +-------------+ |
 | |
 +---------------------------+ |
 | Ciphertext |<--+
 +---------------------------+

 The inverse transform procedure is illustrated in Figure 2. The
 Index is fed into the Keystream Generator, and the Prefix is

McGrew [Page 3]

Internet Draft Universal Security Transform October, 2002

 generated. The authenticity of the message is checked by computing
 the value of the tag as done in the transform, and comparing the
 value computed with that in the Authentication Tag field of the
 message. If those values are equal, the Message and Authentication
 Tag pair is considered valid; otherwise, it is not. In the case of
 an authentication failure, the procedure reports an authentication
 error and halts. Otherwise, the Suffix is computed and is bitwise
 exclusive-ored into the Ciphertext, giving the Plaintext, and the
 procedure reports a successful authentication. (Some operations
 may be optional, see Section 3.1)

 Figure 2. The UST inverse transform. Here "Auth. Tag" denotes the
 tag associated with the message; the authenticity of the message is
 checked by comparing that value with that of a tag computed from the
 other fields.

 +---------+
 | Index |
 +---------+
 |
 v <----------- Keystream Segment ----------->
 +===========+ +-------------+---------------------------+
 " Keystream "->| Prefix | Suffix |---+
 " Generator " +-------------+---------------------------+ |
 +===========+ | |
 | <-------------- Message ------------> |
 | +-------+---------------------------+ v
 | | Clear | Opaque |<-(+)
 | +-------+---------------------------+ ^
 | | |
 | +----------------------------+ |
 | | |
 +--------------------+ | |
 | | |
 v | |
 +-----------+ +================+ | |
 | Auth. Tag |----> Equal? <---" Authentication "<-+ |
 +-----------+ " Function "<-+ |
 +================+ | |
 | |
 +-----------+ |
 | |
 +---------------------------+ |
 | Ciphertext |---+
 +---------------------------+

McGrew [Page 4]

Internet Draft Universal Security Transform October, 2002

 An example application programming interface is provided in
Appendix A.

3.1 Options

 UST can provide confidentiality, message authentication, and replay
 protection, or just the latter two security services. The
 signaling of what services are in effect for any particular use of
 UST are external to the transform.

 When confidentiality is not provided, the Suffix MUST NOT be exored
 into the Plaintext or the Ciphertext.

 Different messages protected with the same UST context MAY have
 different security services applied to them. For example, a
 protocol may use UST to encrypt and authenticate the data that it
 transports, while using the same UST context to provide only
 authentication to its keepalive messages.

3.2 Parameters

 UST has the following parameters:

 Parameter Meaning
 --
 INDEX_LENGTH The number of octets in an Index.

 MAX_KEYSTREAM_LENGTH The maximum number of octets in a keystream
 segment.

 PREFIX_LENGTH The number of octets in the keystream prefix.

 TAG_LENGTH The number of octets in an Authentication Tag.

 MAX_AUTH_LENGTH The maximum number of octets that can be input
 to the Authentication Function.

 AUTH_KEY_LENGTH The number of octets in an Authentication
 Function key.

 All of these parameters MUST remain fixed for any given UST
 context. The parameters INDEX_LENGTH and MAX_KEYSTREAM_LENGTH are
 defined by the Keystream Generator. The parameters TAG_LENGTH,
 MAX_AUTH_LENGTH, and AUTH_KEY_LENGTH are defined by the hash
 function.

McGrew [Page 5]

Internet Draft Universal Security Transform October, 2002

 The length of any Plaintext protected by UST MUST NOT exceed the
 smaller of (MAX_KEYSTREAM_LENGTH - TAG_LENGTH) and MAX_AUTH_LEN.

 The value of AUTH_KEY_LENGTH MUST be no greater than
 MAX_KEYSTREAM_LENGTH. The value of TAG_LENGTH MUST be no greater
 than AUTH_KEY_LENGTH.

3.3 Format

 Unless otherwise specified, the format of the UST output is:

 +---------+---+-----------+
 | Index | Ciphertext | Auth. Tag |
 +---------+---+-----------+

 Here the leftmost octet denotes the first in the address range.

 The octets of the Index field are the radix 256 digits of the Index
 value, with the leftmost octet being the most significant. The
 Index MAY be omitted. This option is useful when the Index can be
 inferred through external information, and this case is called
 implicit index. The other case is called explicit index. A UST
 implementation SHOULD provide an interface that includes both the
 explicit and implicit index cases. For example, a C API can
 provide distinct functions for each of those cases.

 The ordering and encoding of the Ciphertext, Authentication Tag,
 and Index are unimportant for security purposes. Other
 specifications which specialize or adapt this one are encouraged to
 use formats which better suit their needs.

4. Using the UST

 For each fixed UST key, each Index value MUST be distinct. This
 MAY be accomplished by using successive integer values (though
 implementers are free to use non-sequential Index values, e.g. to
 aid in parallelization).

 The inverse transform MUST check that the value that appears in the
 Index has not appeared in any other inverse transform. The inverse
 transform MAY return a false positive (that is, report that an
 index has been used when in fact it has not), but MUST NOT return a
 false negative. The uniqueness check enforces replay protection,
 and false positives are allowed in order to allow implementations
 to reduce the amount of state which they need to maintain.

McGrew [Page 6]

Internet Draft Universal Security Transform October, 2002

 If an implicit index is used, the transform SHOULD check that the
 value that appears in the Index has not appeared in any previous
 transform. This enables a UST implementation to enforce proper
 security practices, rather than relying on other components of a
 system to meet these requirements.

4.1 UST Initialization

 To initialize the context needed to use the UST transform, given a
 secret UST key as input, the following procedure MAY be used:

 1) The Keystream Generator is initialized using the UST key.

 2) The Keystream Generator is used to generate the first
 AUTH_KEY_LENGTH octets of the segment corresponding to the zero
 index. The hash function key is set to this value, and the hash
 function is initialized, if needed, using the hash-dependent key
 initialization procedure.

 If this initialization method is used, then the zero index MUST NOT
 be used in any other invocation of the transform with that
 particular key, and the inverse transform MUST check that the value
 that appears in the Index is not zero.

5. Keystream Generators

 For the purposes of UST, a Keystream Generator is an algorithm that
 maps a secret key and an Index to a pseudorandom keystream segment
 of fixed length. Each Keystream Generator MUST define the
 parameters INDEX_LENGTH and MAX_KEYSTREAM_LENGTH (defined in

Section 3.2).

 MAX_KEYSTREAM_LENGTH SHOULD be at least 65,535. This value ensures
 that any IP version four packet can be encrypted.

 The keystream generator MUST map each possible value of the Index
 to a distinct value of the keystream segment, for each fixed key.

 In the terms of cryptographic theory, the keystream generators used
 in UST are families of length-expanding pseudorandom functions.
 The necessary and sufficient condition on these generators is their
 indistinguishability from a truly random source.

6. Authentication Functions and Universal Hash Functions

McGrew [Page 7]

Internet Draft Universal Security Transform October, 2002

 An Authentication Function takes as input a data field (the
 Message) and a random or pseudorandom masking value (the Prefix).
 UST is designed for use with authentication functions which are
 based on universal hashing, in the Wegman-Carter paradigm [WC81].
 In this method, the message is hashed using the fixed hash key,
 then the resulting hash value is encrypted by combining it with the
 prefix. The combining operation is a simple one, such as bitwise
 exclusive-or, and in UST it is part of the on the Authentication
 Function. Below we call the result of combining two values using
 that operation a delta.

 Each Authentication Function MUST define the parameters
 TAG_LENGTH, PREFIX_LENGTH, AUTH_KEY_LENGTH, and MAX_AUTH_LENGTH
 (defined in Section 3.2).

 For the purposes of UST, a universal hash function is an algorithm
 that maps a fixed-length secret key and a variable-length message
 to a fixed-length hash value, such that the delta of the hash
 values of distinct messages are statistically uniformly
 distributed. The formal mathematical requirement is that the set
 of functions defined by the hash with each member of the set of all
 possible keys is epsilon-Delta Universal [S96].

 The secret key used by the universal hash is an octet string of
 length no greater than MAX_KEYSTREAM_LENGTH. The output of the
 hash function is an octet string of length TAG_LENGTH. The value
 PREFIX_LENGTH denotes the number of octets in the Prefix.

 For use in UST, a hash function MUST be epsilon-Delta Universal
 (epsilon-DU) for some small value of epsilon. The value of epsilon
 SHOULD be close to 1/256 to the power TAG_LENGTH, so that the
 cryptographic strength of the tag is as large as possible. This
 property means that the probability that the delta of the hash of
 any two distinct messages will be any particular fixed value is no
 greater than epsilon.

 The functions UHASH-16 and UHASH-32 [UMAC] meet these requirements.
 The functions MMH and NMH [MMH] meet all of these requirements
 except for the variable-length message requirement.

 Note that it is technically improper to call a keyed hash function
 "universal". Rather, one should say that the key is an index into
 a universal family of hash functions. We abuse this terminology
 for simplicity's sake.

 Authentication Functions which are not based on universal hashing
 MAY be used within UST. These functions can specify that the
 parameter PREFIX_LENGTH has a value of zero.

McGrew [Page 8]

Internet Draft Universal Security Transform October, 2002

7. Rationale

 This transform is computationally efficient, has minimal expansion,
 and reduces key management overhead and local state information by
 eliminating the need for a separate encryption key. The security
 properties of UST's components are well understood; a brief summary
 of these properties is provided in the Security Considerations
 Section.

 The Message is divided into Clear and Opaque fields so that UST can
 provide message authentication but not confidentiality to some
 component of a message. This feature is often desirable, e.g.
 so that protocol headers can be protected from alteration but
 remain unencrypted to facilitate processing.

 The benefits described above are shared with some of the recently
 proposed modes of operation for the Advanced Encryption Standard
 [AES], such as OCB, IACBC, IAPM, XCBC, and XECB modes [MODES].
 However, UST has the following important advantages over those
 modes:

 * UST can identify and reject bogus messages much faster, as it
 can use hash functions that can be an order of magnitude faster
 than AES, and authentication precedes decryption in the inverse
 transform. This property of UST provides it with resilience
 against denial of service attacks.

 * UST can be operated in an authentication-only mode, whereas the
 other modes cannot.

 * UST has minimal packet expansion.

 * UST can be implemented without infringing on any patents (to
 the best knowledge of the authors).

 Note that UST can be used with any block cipher mode that meets
 the requirements of Section 5, such as Counter Mode [MODES].

 The benefits of universal hashing for message authentication are
 well known in the cryptographic literature [CW81]. The recently
 defined UMAC message authentication code [UMAC] uses this
 technique. However, these MACs do not provide confidentiality. In
 contrast, UST provides both security services and amortizes the
 per-index keystream generation cost over both services.

 UST reflects implementation experience from the Secure Real-time
 Transport Protocol [SRTP] and the Stream Cipher ESP, a proposal for
 using indexed keystream generators within ESP, as well as input

McGrew [Page 9]

Internet Draft Universal Security Transform October, 2002

 from other areas.

8. Security Considerations

 The security of UST follows from the indistinguishability of the
 keystream generator from a truly unpredictable source and the
 properties of the hash function. The number of unprovable
 assumptions which underlie the transform are thus reduced to one,
 the minimum number required for any cryptosystem. (Note that the
 converse is also true; the security of UST stands and falls on that
 single assumption).

 Given the indistinguishability of the keystream generator, the
 adversary gains no knowledge about the plaintext from the
 ciphertext.

 The probability with which an adversary can successfully forge an
 Authentication Tag for any given message is at most epsilon, when
 the hash function is epsilon-Delta Universal [S96].

 The expected number N of successful forgeries is T * epsilon, where
 T is the number of forgery attempts, that is, the number of bogus
 index/ciphertext/tag values sent by the adversary to the UST
 receiver. The theoretical maximum value for T is
 (256)^INDEX_LENGTH. This value of T implies that every single
 message processed by the receiver is a forgery attempt. Note that
 if INDEX_LENGTH is greater than TAG_LENGTH, then N can be greater
 than one.

 The resistance of an UST implementation to forgery attacks can be
 improved in some circumstances by limiting the number of
 authentication failures that will be tolerated. This limitation
 could be enforced by the implementation of the UST inverse
 transform, by maintaining a count of the total number of
 authentication failures and causing the inverse transform to
 indicate an authentication failure on all messages after the
 threshold has been exceeded, until a new key is derived. If no
 more than F failures will be tolerated by the UST inverse
 transform, then the expected number N of successful forgeries can
 be no more than F * epsilon. Of course, there is a denial of
 service implication in this approach which can outweigh its
 benefits in some scenarios.

 UST permits arbitrarily small authentication tags. This is because
 the goal of this specification is to provide a mechanism, rather
 than to dictate a policy. It is expected that some applications
 can tolerate a one in a billion likelihood of forgery. In

McGrew [Page 10]

Internet Draft Universal Security Transform October, 2002

 particular, digital representations of analog data such as voice,
 audio, or video may be able to tolerate such a forgery likelihood
 due to the inherently imprecise nature of analog data.

9. History

 This is the first draft of UST within the IRTF Crypto Forum
 Research Group. It is based closely on the draft

draft-mcgrew-saag-ust-00.txt that was submitted to SAAG in
 November, 2001, which in turn was based on the draft

draft-mcgrew-saag-sst-00.txt of June, 2001.

 Changes from draft-mcgrew-saag-ust-00.txt to this one include a
 number of clarifications and corrections to the exposition.

 Changes from draft-mcgrew-saag-sst-00.txt to
draft-mcgrew-saag-ust-00.txt include:

 * The authentication tag was previously defined as the exor of
 the prefix and the hash output. This definition has been
 changed to allow different hashes to be used within this
 specification, by pushing the delta combining operation into
 the message authentication function itself.

 * The original draft did not divide the Message field into a
 Clear and an Opaque component.

 * The UST was originally named SST. The name was changed to
 avoid confusion with the Shiva Smart Tunneling Protocol.
 The original specification was documented in

draft-mcgrew-saag-sst-00.txt.

10. Acknowledgments

 Thanks are due to Jesse Walker, Doug Smith, Scott Fluhrer, David
 Wagner, Mats Naslund, Burt Kaliski, Mark Baugher, and Raif
 S. Naffah for critical review and insights. Their comments
 significantly improved this specification.

11. Contact Information

 Questions and comments on this draft SHOULD be sent to:

 David A. McGrew
 Cisco Systems, Inc.

https://datatracker.ietf.org/doc/html/draft-mcgrew-saag-ust-00.txt
https://datatracker.ietf.org/doc/html/draft-mcgrew-saag-sst-00.txt
https://datatracker.ietf.org/doc/html/draft-mcgrew-saag-ust-00.txt
https://datatracker.ietf.org/doc/html/draft-mcgrew-saag-sst-00.txt
https://datatracker.ietf.org/doc/html/draft-mcgrew-saag-ust-00.txt
https://datatracker.ietf.org/doc/html/draft-mcgrew-saag-sst-00.txt

McGrew [Page 11]

Internet Draft Universal Security Transform October, 2002

 mcgrew@cisco.com

 and MAY be copied to the Crypto Forum Research Group at

 cfrg@ietf.org

12. References

 [B97] S. Bradner, Key words for use in RFCs to Indicate
 Requirement Levels, RFC 2119, March 1997.

 [AES] FIPS 197, The Advanced Encryption Standard, United States
 National Institute for Standards and Technology (NIST),

http://www.nist.gov/aes/.

 [CW81] M. Wegman and L. Carter, New hash functions and their
 use in authentication and set equality, J. of Computer
 and System Sciences, vol. 22, 1981.

 [KA98] S. Kent and R. Atkinson, "IP Encapsulating Security
 Payload (ESP)", RFC 2406, November 1998.

 [MMH] S. Halevi, and H. Krawczyk, MMH: Software Authentication in
 the Gbit/second rates, Fast Software Encryption Workshop,
 1997. Also available online at

http://www.research.ibm.com/people/s/shaih/pubs/.

 [MODES] Proposed Modes of Operation, NIST web page,
http://csrc.nist.gov/encryption/modes/proposedmodes/

 [S96] Stinson, D. R., On the connections between universal
 hashing, combinatorical designs and error-correcting
 codes, Congressus Numerantium, 114, 1996, 7-27.

 [SRTP] The Secure Real-time Transport Protocol, Blohm et. al.,
 Work in Progress, draft-ietf-avt-srtp-02.txt.

 [UMAC] Black, Halevi, Krawczyk, Krovetz, Rogaway. UMAC: Fast and
 Secure Message Authentication. Advances in Cryptology -
 CRYPTO '99. Lecture Notes in Computer Science, vol. 1666,
 Springer-Verlag, 1999, pp. 216-233. Available online at

http://www.cs.ucdavis.edu/~rogaway/umac/.

https://datatracker.ietf.org/doc/html/rfc2119
http://www.nist.gov/aes/
https://datatracker.ietf.org/doc/html/rfc2406
http://www.research.ibm.com/people/s/shaih/pubs/
http://csrc.nist.gov/encryption/modes/proposedmodes/
https://datatracker.ietf.org/doc/html/draft-ietf-avt-srtp-02.txt
http://www.cs.ucdavis.edu/~rogaway/umac/

McGrew [Page 12]

Internet Draft Universal Security Transform October, 2002

Appendix A. A C language API for UST.

 The following C API is provided as an example of an interface to
 UST. This API does not provide every option or possible choice
 of parameters.

/*
 * ust.h
 *
 * C interface for the universal security transform
 *
 */

typedef unsigned char octet_t;

/*
 * a ust_ptr_t points to a structure holding the ust context
 */

typedef ust_ctx_t *ust_ptr_t;

/*
 * ust_init(...) initializes the ust context at ctx
 */

int
ust_init(ust_ptr_t ctx, /* pointer to ust context */
 int index_length, /* number of octets in the index */
 int cipher_id, /* keystream generator identifier */
 octet_t *cipher_key, /* cipher key */
 int cipher_key_len, /* number of octets in cipher key */
 int auth_id, /* auth algorithm identifier */
 octet_t *auth_key, /* auth key */
 int auth_key_len, /* number of octets in the auth key */
 int auth_tag_len, /* number of octets in the auth tag */
 int replay_window_len /* length of replay window (0 == none) */
);

McGrew [Page 13]

Internet Draft Universal Security Transform October, 2002

/*
 * the ust_xfm function (ust transform)
 *
 * ctx is the ust context, which holds the cipher and hash function
 * keys and parameters, as well as anti-replay information
 *
 * idx is the packet index, a 48-bit unsigned integer which
 * should be unique for each invocation of ust_xfm for a
 * given ctx
 *
 * if auth_start != NULL, then authentication is provided to the
 * auth_len octets of data at auth_start by computing the
 * authentication tag and writing it to *tag; otherwise, the
 * authentication tag is not computed
 *
 * if enc_start != NULL, then encryption is provided to the
 * enc_len octets of data at enc_start by exoring keystream
 * into that data; otherwise, no encryption is done
 *
 * tag points to the authentication tag; after ust_xfm returns,
 * it contains the tag corresonding to the data at auth_start
 * (if auth_start != NULL) -- note that there MUST be at least
 * ust_tag_len(ctx) octets of storage at *tag!
 */

int
ust_xfm(ust_ptr_t ctx, /* pointer to ust context */
 xtd_seq_num_t idx, /* index */
 octet_t *enc_start, /* pointer to encryption start */
 int enc_len, /* number of octets to encrypt */
 octet_t *auth_start, /* pointer to authentication start */
 int auth_len, /* number of octets to authenticate */
 octet_t *tag /* authentication tag */
);

McGrew [Page 14]

Internet Draft Universal Security Transform October, 2002

/*
 * the ust_inv_xfm function (ust inverse transform)
 *
 * ctx is the ust context, which holds the cipher and hash function
 * keys and parameters, as well as anti-replay information
 *
 * idx is the packet index, a 48-bit unsigned integer which
 * should be unique for each invocation of ust_xfm for a
 * given ctx
 *
 * if auth_start != NULL, then authentication is expected on the
 * auth_len octets of data at auth_start by computing the
 * authentication tag and comparing it to the value at *tag;
 * otherwise, no authentication check is performed
 *
 * if enc_start != NULL, then decryption is done to the enc_len
 * octets of data at enc_start by exoring keystream into that data;
 * otherwise, no decryption is done
 *
 * tag points to the authentication tag; if auth_start != NULL,
 * then *tag is expected to hold the authentication tag corresponding
 * to the data at *auth_start -- note that there MUST be at least
 * ust_tag_len(ctx) octets of readable data at *tag!
 */

int
ust_inv_xfm(ust_ptr_t ctx, /* ust context */
 xtd_seq_num_t idx, /* index */
 octet_t *enc_start, /* pointer to encryption start */
 int enc_len, /* number of octets to encrypt */
 octet_t *auth_start, /* pointer to authentication start */
 int auth_len, /* number of octets to authenticate */
 octet_t *tag /* authentication tag */
);

/*
 * ust_tag_len(ctx) returns the length (in octets) of the
 * authentication tag for the ust context ctx.
 *
 * this function can be used to determine the storage
 * space required to hold a particular tag, if need be
 */

unsigned int
ust_get_tag_len(ust_ctx_t *ctx);

McGrew [Page 15]

