
Workgroup: CFRG

Internet-Draft: draft-irtf-cfrg-vdaf-00

Published: 27 April 2022

Intended Status: Informational

Expires: 29 October 2022

Authors: R. L. Barnes

Cisco

C. Patton

Cloudflare, Inc.

P. Schoppmann

Google

Verifiable Distributed Aggregation Functions

Abstract

This document describes Verifiable Distributed Aggregation Functions

(VDAFs), a family of multi-party protocols for computing aggregate

statistics over user measurements. These protocols are designed to

ensure that, as long as at least one aggregation server executes the

protocol honestly, individual measurements are never seen by any

server in the clear. At the same time, VDAFs allow the servers to

detect if a malicious or misconfigured client submitted an input

that would result in an incorrect aggregate result.

Discussion Venues

This note is to be removed before publishing as an RFC.

Discussion of this document takes place on the Crypto Forum Research

Group mailing list (cfrg@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/search/?email_list=cfrg.

Source for this draft and an issue tracker can be found at https://

github.com/cjpatton/vdaf.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 29 October 2022.

¶

¶

¶

¶

¶

¶

¶

¶

https://mailarchive.ietf.org/arch/search/?email_list=cfrg
https://mailarchive.ietf.org/arch/search/?email_list=cfrg
https://github.com/cjpatton/vdaf
https://github.com/cjpatton/vdaf
https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Conventions and Definitions

3. Overview

4. Definition of VDAFs

4.1. Setup

4.2. Sharding

4.3. Preparation

4.4. Aggregation

4.5. Unsharding

4.6. Execution of a VDAF

5. Preliminaries

5.1. Finite Fields

5.1.1. Auxiliary Functions

5.1.2. FFT-Friendly Fields

5.1.3. Parameters

5.2. Pseudorandom Generators

5.2.1. PrgAes128

6. Prio3

6.1. Fully Linear Proof (FLP) Systems

6.1.1. Encoding the Input

6.2. Construction

6.2.1. Setup

6.2.2. Sharding

6.2.3. Preparation

6.2.4. Aggregation

6.2.5. Unsharding

6.2.6. Auxiliary Functions

6.3. A General-Purpose FLP

6.3.1. Overview

6.3.2. Validity Circuits

6.3.3. Construction

¶

¶

https://trustee.ietf.org/license-info

6.4. Instantiations

6.4.1. Prio3Aes128Count

6.4.2. Prio3Aes128Sum

6.4.3. Prio3Aes128Histogram

7. Poplar1

7.1. Incremental Distributed Point Functions (IDPFs)

7.2. Construction

7.2.1. Setup

7.2.2. Preparation

7.2.3. Aggregation

7.2.4. Unsharding

7.2.5. Helper Functions

8. Security Considerations

9. IANA Considerations

10. References

10.1. Normative References

10.2. Informative References

Acknowledgments

Test Vectors

Prio3Aes128Count

Prio3Aes128Sum

Prio3Aes128Histogram

Authors' Addresses

1. Introduction

The ubiquity of the Internet makes it an ideal platform for

measurement of large-scale phenomena, whether public health trends

or the behavior of computer systems at scale. There is substantial

overlap, however, between information that is valuable to measure

and information that users consider private.

For example, consider an application that provides health

information to users. The operator of an application might want to

know which parts of their application are used most often, as a way

to guide future development of the application. Specific users'

patterns of usage, though, could reveal sensitive things about them,

such as which users are researching a given health condition.

In many situations, the measurement collector is only interested in

aggregate statistics, e.g., which portions of an application are

most used or what fraction of people have experienced a given

disease. Thus systems that provide aggregate statistics while

protecting individual measurements can deliver the value of the

measurements while protecting users' privacy.

Most prior approaches to this problem fall under the rubric of

"differential privacy (DP)" [Dwo06]. Roughly speaking, a data

aggregation system that is differentially private ensures that the

¶

¶

¶

degree to which any individual measurement influences the value of

the aggregate result can be precisely controlled. For example, in

systems like RAPPOR [EPK14], each user samples noise from a well-

known distribution and adds it to their input before submitting to

the aggregation server. The aggregation server then adds up the

noisy inputs, and because it knows the distribution from whence the

noise was sampled, it can estimate the true sum with reasonable

precision.

Differentially private systems like RAPPOR are easy to deploy and

provide a useful guarantee. On its own, however, DP falls short of

the strongest privacy property one could hope for. Specifically,

depending on the "amount" of noise a client adds to its input, it

may be possible for a curious aggregator to make a reasonable guess

of the input's true value. Indeed, the more noise the clients add,

the less reliable will be the server's estimate of the output. Thus

systems employing DP techniques alone must strike a delicate balance

between privacy and utility.

The ideal goal for a privacy-preserving measurement system is that

of secure multi-party computation: No participant in the protocol

should learn anything about an individual input beyond what it can

deduce from the aggregate. In this document, we describe Verifiable

Distributed Aggregation Functions (VDAFs) as a general class of

protocols that achieve this goal.

VDAF schemes achieve their privacy goal by distributing the

computation of the aggregate among a number of non-colluding

aggregation servers. As long as a subset of the servers executes the

protocol honestly, VDAFs guarantee that no input is ever accessible

to any party besides the client that submitted it. At the same time,

VDAFs are "verifiable" in the sense that malformed inputs that would

otherwise garble the output of the computation can be detected and

removed from the set of inputs.

The cost of achieving these security properties is the need for

multiple servers to participate in the protocol, and the need to

ensure they do not collude to undermine the VDAF's privacy

guarantees. Recent implementation experience has shown that

practical challenges of coordinating multiple servers can be

overcome. The Prio system [CGB17] (essentially a VDAF) has been

deployed in systems supporting hundreds of millions of users: The

Mozilla Origin Telemetry project [OriginTelemetry] and the Exposure

Notification Private Analytics collaboration among the Internet

Security Research Group (ISRG), Google, Apple, and others [ENPA].

The VDAF abstraction laid out in Section 4 represents a class of

multi-party protocols for privacy-preserving measurement proposed in

the literature. These protocols vary in their operational and

¶

¶

¶

¶

¶

security considerations, sometimes in subtle but consequential ways.

This document therefore has two important goals:

Providing applications like [I-D.draft-gpew-priv-ppm] with a

simple, uniform interface for accessing privacy-preserving

measurement schemes, and documenting relevant operational and

security bounds for that interface:

General patterns of communications among the various

actors involved in the system (clients, aggregation

servers, and measurement collectors);

Capabilities of a malicious coalition of servers

attempting to divulge information about client inputs; and

Conditions that are necessary to ensure that malicious

clients cannot corrupt the computation.

Providing cryptographers with design criteria that allow new

constructions to be easily used by applications.

This document also specifies two concrete VDAF schemes, each based

on a protocol from the literature.

The aforementioned Prio system [CGB17] allows for the privacy-

preserving computation of a variety aggregate statistics. The

basic idea underlying Prio is fairly simple:

Each client shards its input into a sequence of additive

shares and distributes the shares among the aggregation

servers.

Next, each server adds up its shares locally, resulting in

an additive share of the aggregate.

Finally, the aggregation servers combine their additive

shares to obtain the final aggregate.

The difficult part of this system is ensuring that the servers

hold shares of a valid input, e.g., the input is an integer in a

specific range. Thus Prio specifies a multi-party protocol for

accomplishing this task.

In Section 6 we describe Prio3, a VDAF that follows the same

overall framework as the original Prio protocol, but incorporates

techniques introduced in [BBCGGI19] that result in significant

performance gains.

More recently, Boneh et al. [BBCGGI21] described a protocol

called Poplar for solving the t-heavy-hitters problem in a

¶

1.

¶

1.

¶

2.

¶

3.

¶

2.

¶

¶

*

¶

1.

¶

2.

¶

3.

¶

¶

¶

*

privacy-preserving manner. Here each client holds a bit-string of

length n, and the goal of the aggregation servers is to compute

the set of inputs that occur at least t times. The core primitive

used in their protocol is a generalization of a Distributed Point

Function (DPF) [GI14] that allows the servers to "query" their

DPF shares on any bit-string of length shorter than or equal to

n. As a result of this query, each of the servers has an additive

share of a bit indicating whether the string is a prefix of the

client's input. The protocol also specifies a multi-party

computation for verifying that at most one string among a set of

candidates is a prefix of the client's input.

In Section 7 we describe a VDAF called Poplar1 that implements

this functionality.

The remainder of this document is organized as follows: Section 3

gives a brief overview of VDAFs; Section 4 defines the syntax for

VDAFs; Section 5 defines various functionalities that are common to

our constructions; Section 6 describes the Prio3 construction;

Section 7 describes the Poplar1 construction; and Section 8

enumerates the security considerations for VDAFs.

2. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

Algorithms in this document are written in Python 3. Type hints are

used to define input and output types. A fatal error in a program

(e.g., failure to parse one of the function parameters) is usually

handled by raising an exception.

Some common functionalities:

zeros(len: Unsigned) -> Bytes returns an array of zero bytes. The

length of output MUST be len.

gen_rand(len: Unsigned) -> Bytes returns an array of random

bytes. The length of output MUST be len.

byte(int: Unsigned) -> Bytes returns the representation of int as

a byte string. The value of int MUST be in [0,256).

xor(left: Bytes, right: Bytes) -> Bytes returns the bitwise XOR

of left and right. An exception is raised if the inputs are not

the same length.

¶

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

I2OSP and OS2IP from [RFC8017], which are used, respectively, to

convert a non-negative integer to a byte string and convert a

byte string to a non-negative integer.

next_power_of_2(n: Unsigned) -> Unsigned returns the smallest

integer greater than or equal to n that is also a power of two.

3. Overview

Figure 1: Overall data flow of a VDAF

In a VDAF-based private measurement system, we distinguish three

types of actors: Clients, Aggregators, and Collectors. The overall

flow of the measurement process is as follows:

Clients are configured with public parameters for a set of

Aggregators.

To submit an individual measurement, the Client shards the

measurement into "input shares" and sends one input share to each

Aggregator.

The Aggregators verify the validity of the input shares,

producing a set of "output shares".

Output shares are in one-to-one correspondence with the input

shares.

*

¶

*

¶

 +--------------+

 +---->| Aggregator 0 |----+

 | +--------------+ |

 | ^ |

 | | |

 | V |

 | +--------------+ |

 | +-->| Aggregator 1 |--+ |

 | | +--------------+ | |

+--------+-+ | ^ | +->+-----------+

| Client |---+ | +--->| Collector |--> Aggregate

+--------+-+ +->+-----------+

 | ... |

 | |

 | | |

 | V |

 | +----------------+ |

 +--->| Aggregator N-1 |---+

 +----------------+

 Input shares Aggregate shares

¶

*

¶

*

¶

*

¶

-

¶

Just as each Aggregator receives one input share of each

input, at the end of the validation process, each aggregator

holds one output share.

In most VDAFs, Aggregators will need to exchange information

among themselves as part of the validation process.

Each Aggregator combines the output shares across inputs in the

batch to compute the "aggregate share" for that batch, i.e., its

share of the desired aggregate result.

The Aggregators submit their aggregate shares to the Collector,

who combines them to obtain the aggregate result over the batch.

Aggregators are a new class of actor relative to traditional

measurement systems where clients submit measurements to a single

server. They are critical for both the privacy properties of the

system and the correctness of the measurements obtained. The privacy

properties of the system are assured by non-collusion among

Aggregators, and Aggregators are the entities that perform

validation of client inputs. Thus clients trust Aggregators not to

collude (typically it is required that at least one Aggregator is

honest), and Collectors trust Aggregators to properly verify Client

inputs.

Within the bounds of the non-collusion requirements of a given VDAF

instance, it is possible for the same entity to play more than one

role. For example, the Collector could also act as an Aggregator,

effectively using the other Aggregators to augment a basic client-

server protocol.

In this document, we describe the computations performed by the

actors in this system. It is up to applications to arrange for the

required information to be delivered to the proper actors in the

proper sequence. In general, we assume that all communications are

confidential and mutually authenticated, with the exception that

Clients submitting measurements may be anonymous.

4. Definition of VDAFs

A concrete VDAF specifies the algorithms involved in evaluating an

aggregation function across a batch of inputs. This section

specifies the interfaces of these algorithms as they would be

exposed to applications.

The overall execution of a VDAF comprises the following steps:

Setup - Generating shared parameters for the Aggregators

Sharding - Computing input shares from an individual measurement

-

¶

-

¶

*

¶

*

¶

¶

¶

¶

¶

¶

* ¶

* ¶

Preparation - Conversion and verification of input shares to

output shares compatible with the aggregation function being

computed

Aggregation - Combining a sequence of output shares into an

aggregate share

Unsharding - Combining a sequence of aggregate shares into an

aggregate result

The setup algorithm is performed once for a given collection of

Aggregators. Sharding and preparation are done once per measurement

input. Aggregation and unsharding are done over a batch of inputs

(more precisely, over the output shares recovered from those

inputs).

Note that the preparation step performs two functions: Verification

and conversion. Conversion translates input shares into output

shares that are compatible with the aggregation function.

Verification ensures that aggregating the recovered output shares

will not lead to a garbled aggregate result.

The remainder of this section defines the VDAF interface in terms of

an abstract base class Vdaf. This class defines the set of methods

and attributes a concrete VDAF must provide. The attributes are

listed in Table 1; the methods are defined in the subsections that

follow.

Parameter Description

ROUNDS
Number of rounds of communication during the preparation

phase (Section 4.3)

SHARES
Number of input shares into which each measurement is

sharded (Section 4.2)

Measurement Type of each measurement

PublicParam
Type of public parameter used by the Client during the

sharding phase (Section 4.2)

VerifyParam
Type of verification parameter used by each Aggregator

during the preparation phase (Section 4.3)

AggParam Type of aggregation parameter

Prep
State of each Aggregator during the preparation phase

(Section 4.3)

OutShare Type of each output share

AggShare Type of each aggregate share

AggResult Type of the aggregate result

Table 1: Constants and types defined by each concrete VDAF.

*

¶

*

¶

*

¶

¶

¶

¶

4.1. Setup

Before execution of the VDAF can begin, it is necessary to

distribute long-lived parameters to the Client and Aggregators. The

long-lived parameters are generated by the following algorithm:

Vdaf.setup() -> (PublicParam, Vec[VerifyParam]) is the randomized

setup algorithm used to generate the public parameter used by the

Clients and the verification parameters used by the Aggregators.

The length of the latter MUST be equal to SHARES. In general, an

Aggregator's verification parameter is considered secret and MUST

NOT be revealed to the Clients, Collector or other Aggregators.

The parameters MAY be reused across multiple VDAF evaluations.

See Section 8 for a discussion of the security implications this

has depending on the threat model.

4.2. Sharding

In order to protect the privacy of its measurements, a VDAF Client

splits its measurements into "input shares". The

measurement_to_input_shares method is used for this purpose.

Vdaf.measurement_to_input_shares(public_param: PublicParam,

input: Measurement) -> Vec[Bytes] is the randomized input-

distribution algorithm run by each Client. It consumes the public

parameter and input measurement and produces a sequence of input

shares, one for each Aggregator. The length of the output MUST be

SHARES.

¶

*

¶

¶

*

¶

 Client

 ======

 measurement

 |

 V

 +--+

 | measurement_to_input_shares |

 +--+

 | | ... |

 V V V

 input_share_0 input_share_1 input_share_[SHARES-1]

 | | ... |

 V V V

 Aggregator 0 Aggregator 1 Aggregator SHARES-1

Figure 2: The Client divides its measurement input into input shares

and distributes them to the Aggregators.

CP The public_param is intended to allow for protocols that

require the Client to use a public key for sharding its

measurement. When rotating the verify_param for such a scheme, it

would be necessary to also update the public_param with which the

clients are configured. For PPM it would be nice if we could

rotate the verify_param without also having to update the

clients. We should consider dropping this at some point. See

https://github.com/cjpatton/vdaf/issues/19.

4.3. Preparation

To recover and verify output shares, the Aggregators interact with

one another over ROUNDS rounds. Prior to each round, each Aggregator

constructs an outbound message. Next, the sequence of outbound

messages is combined into a single message, called a "preparation

message". (Each of the outbound messages are called "preparation-

message shares".) Finally, the preparation message is distributed to

the Aggregators to begin the next round.

An Aggregator begins the first round with its input share and it

begins each subsequent round with the previous preparation message.

Its output in the last round is its output share and its output in

each of the preceding rounds is a preparation-message share.

This process involves a value called the "aggregation parameter"

used to map the input shares to output shares. The Aggregators need

to agree on this parameter before they can begin preparing inputs

for aggregation.

¶

¶

¶

¶

Figure 3: VDAF preparation process on the input shares for a single

measurement. At the end of the computation, each Aggregator holds an

output share or an error.

To facilitate the preparation process, a concrete VDAF implements

the following class methods:

Vdaf.prep_init(verify_param: VerifyParam, agg_param: AggParam,

nonce: Bytes, input_share: Bytes) -> Prep is the deterministic

preparation-state initialization algorithm run by each Aggregator

to begin processing its input share into an output share. Its

inputs are its verification parameter (verify_param), the

aggregation parameter (agg_param), the nonce provided by the

environment (nonce, see Figure 6), and one of the input shares

generated by the client (input_share). Its output is the

Aggregator's initial preparation state.

 Aggregator 0 Aggregator 1 Aggregator SHARES-1

 ============ ============ ===================

 input_share_0 input_share_1 input_share_[SHARES-1]

 | | ... |

 V V V

 +-----------+ +-----------+ +-----------+

 | prep_init | | prep_init | | prep_init |

 +-----------+ +------------+ +-----------+

 | | ... | \

 V V V |

 +-----------+ +-----------+ +-----------+ |

 | prep_next | | prep_next | | prep_next | |

 +-----------+ +-----------+ +-----------+ |

 | | ... | |

 V V V | x ROUNDS

 +--+ |

 | prep_shares_to_prep | |

 +--+ |

 | |

 +--------------+-------------------+ |

 | | ... | |

 V V V /

 | | |

 V V V

 +-----------+ +-----------+ +-----------+

 | prep_next | | prep_next | | prep_next |

 +-----------+ +-----------+ +-----------+

 | | ... |

 V V V

 out_share_0 out_share_1 out_share_[SHARES-1]

¶

*

¶

Vdaf.prep_next(prep: Prep, inbound: Optional[Bytes]) ->

Union[Tuple[Prep, Bytes], OutShare] is the deterministic

preparation-state update algorithm run by each Aggregator. It

updates the Aggregator's preparation state (prep) and returns

either its next preparation state and its message share for the

current round or, if this is the last round, its output share. An

exception is raised if a valid output share could not be

recovered. The input of this algorithm is the inbound preparation

message or, if this is the first round, None.

Vdaf.prep_shares_to_prep(agg_param: AggParam, prep_shares:

Vec[Bytes]) -> Bytes is the deterministic preparation-message

pre-processing algorithm. It combines the preparation-message

shares generated by the Aggregators in the previous round into

the preparation message consumed by each in the next round.

In effect, each Aggregator moves through a linear state machine with

ROUNDS+1 states. The Aggregator enters the first state on using the

initialization algorithm, and the update algorithm advances the

Aggregator to the next state. Thus, in addition to defining the

number of rounds (ROUNDS), a VDAF instance defines the state of the

Aggregator after each round.

TODO Consider how to bake this "linear state machine" condition

into the syntax. Given that Python 3 is used as our pseudocode,

it's easier to specify the preparation state using a class.

The preparation-state update accomplishes two tasks: recovery of

output shares from the input shares and ensuring that the recovered

output shares are valid. The abstraction boundary is drawn so that

an Aggregator only recovers an output share if it is deemed valid

(at least, based on the Aggregator's view of the protocol). Another

way to draw this boundary would be to have the Aggregators recover

output shares first, then verify that they are valid. However, this

would allow the possibility of misusing the API by, say, aggregating

an invalid output share. Moreover, in protocols like Prio+ [AGJOP21]

based on oblivious transfer, it is necessary for the Aggregators to

interact in order to recover aggregatable output shares at all.

Note that it is possible for a VDAF to specify ROUNDS == 0, in which

case each Aggregator runs the preparation-state update algorithm

once and immediately recovers its output share without interacting

with the other Aggregators. However, most, if not all, constructions

will require some amount of interaction in order to ensure validity

of the output shares (while also maintaining privacy).

OPEN ISSUE Depending on what we do for issue#20, we may end up

needing to revise the above paragraph.

*

¶

*

¶

¶

¶

¶

¶

¶

4.4. Aggregation

Once an Aggregator holds output shares for a batch of measurements

(where batches are defined by the application), it combines them

into a share of the desired aggregate result. This algorithm is

performed locally at each Aggregator, without communication with the

other Aggregators.

Vdaf.out_shares_to_agg_share(agg_param: AggParam, output_shares:

Vec[OutShare]) -> agg_share: AggShare is the deterministic

aggregation algorithm. It is run by each Aggregator over the

output shares it has computed over a batch of measurement inputs.

Figure 4: Aggregation of output shares. `B` indicates the number of

measurements in the batch.

For simplicity, we have written this algorithm and the unsharding

algorithm below in "one-shot" form, where all shares for a batch are

provided at the same time. Some VDAFs may also support a "streaming"

form, where shares are processed one at a time.

4.5. Unsharding

After the Aggregators have aggregated a sufficient number of output

shares, each sends its aggregate share to the Collector, who runs

the following algorithm to recover the following output:

Vdaf.agg_shares_to_result(agg_param: AggParam, agg_shares:

Vec[AggShare]) -> AggResult is run by the Collector in order to

compute the aggregate result from the Aggregators' shares. The

length of agg_shares MUST be SHARES. This algorithm is

deterministic.

¶

*

¶

 Aggregator 0 Aggregator 1 Aggregator SHARES-1

 ============ ============ ===================

 out_share_0_0 out_share_1_0 out_share_[SHARES-1]_0

 out_share_0_1 out_share_1_1 out_share_[SHARES-1]_1

 out_share_0_2 out_share_1_2 out_share_[SHARES-1]_2

 out_share_0_B out_share_1_B out_share_[SHARES-1]_B

 | | |

 V V V

 +-----------+ +-----------+ +-----------+

 | out2agg | | out2agg | ... | out2agg |

 +-----------+ +-----------+ +-----------+

 | | |

 V V V

 agg_share_0 agg_share_1 agg_share_[SHARES-1]

¶

¶

*

¶

Figure 5: Computation of the final aggregate result from aggregate

shares.

QUESTION Maybe the aggregation algorithms should be randomized in

order to allow the Aggregators (or the Collector) to add noise

for differential privacy. (See the security considerations of [I-

D.draft-gpew-priv-ppm].) Or is this out-of-scope of this

document?

4.6. Execution of a VDAF

Executing a VDAF involves the concurrent evaluation of the VDAF on

individual inputs and aggregation of the recovered output shares.

This is captured by the following example algorithm:

 Aggregator 0 Aggregator 1 Aggregator SHARES-1

 ============ ============ ===================

 agg_share_0 agg_share_1 agg_share_[SHARES-1]

 | | |

 V V V

 +---+

 | agg_shares_to_result |

 +---+

 |

 V

 agg_result

 Collector

 =========

¶

¶

def run_vdaf(Vdaf,

 agg_param: Vdaf.AggParam,

 nonces: Vec[Bytes],

 measurements: Vec[Vdaf.Measurement]):

 # Distribute long-lived parameters.

 (public_param, verify_params) = Vdaf.setup()

 out_shares = []

 for (nonce, measurement) in zip(nonces, measurements):

 # Each Client shards its input into shares.

 input_shares = Vdaf.measurement_to_input_shares(public_param,

 measurement)

 # Each Aggregator initializes its preparation state.

 prep_states = []

 for j in range(Vdaf.SHARES):

 state = Vdaf.prep_init(verify_params[j],

 agg_param,

 nonce,

 input_shares[j])

 prep_states.append(state)

 # Aggregators recover their output shares.

 inbound = None

 for i in range(Vdaf.ROUNDS+1):

 outbound = []

 for j in range(Vdaf.SHARES):

 out = Vdaf.prep_next(prep_states[j], inbound)

 if i < Vdaf.ROUNDS:

 (prep_states[j], out) = out

 outbound.append(out)

 # This is where we would send messages over the

 # network in a distributed VDAF computation.

 if i < Vdaf.ROUNDS:

 inbound = Vdaf.prep_shares_to_prep(agg_param,

 outbound)

 # The final outputs of prepare phasre are the output shares.

 out_shares.append(outbound)

 # Each Aggregator aggregates its output shares into an

 # aggregate share.

 agg_shares = []

 for j in range(Vdaf.SHARES):

 out_shares_j = [out[j] for out in out_shares]

 agg_share_j = Vdaf.out_shares_to_agg_share(agg_param,

 out_shares_j)

 agg_shares.append(agg_share_j)

 # Collector unshards the aggregate.

 agg_result = Vdaf.agg_shares_to_result(agg_param, agg_shares)

 return agg_result

Figure 6: Execution of a VDAF.

The inputs to this algorithm are the aggregation parameter

agg_param, a list of nonces nonces, and a batch of Client inputs

input_batch. The aggregation parameter is chosen by the Aggregators

prior to executing the VDAF. This document does not specify how the

nonces are chosen, but security requires that the nonces be unique

for each measurement. See Section 8 for details.

Another important question this document leaves out of scope is how

a VDAF is to be executed by Aggregators distributed over a real

network. Algorithm run_vdaf prescribes the protocol's execution in a

"benign" environment in which there is no adversary and messages are

passed among the protocol participants over secure point-to-point

channels. In reality, these channels need to be instantiated by some

"wrapper protocol", such as [I-D.draft-gpew-priv-ppm] that

implements suitable cryptographic functionalities. Moreover, some

fraction of the Aggregators (or Clients) may be malicious and

diverge from their prescribed behaviors. Section 8 describes the

execution of the VDAF in various adversarial environments and what

properties the wrapper protocol needs to provide in each.

5. Preliminaries

This section describes the primitives that are common to the VDAFs

specified in this document.

5.1. Finite Fields

Both Prio3 and Poplar1 use finite fields of prime order. Finite

field elements are represented by a class Field with the following

associated parameters:

MODULUS: Unsigned is the prime modulus that defines the field.

ENCODED_SIZE: Unsigned is the number of bytes used to encode a

field element as a byte string.

A concrete Field also implements the following class methods:

Field.zeros(length: Unsigned) -> output: Vec[Field] returns a

vector of zeros. The length of output MUST be length.

Field.rand_vec(length: Unsigned) -> output: Vec[Field] returns a

vector of random field elements. The length of output MUST be

length.

A field element is an instance of a concrete Field. The concrete

class defines the usual arithmetic operations on field elements. In

¶

¶

¶

¶

* ¶

*

¶

¶

*

¶

*

¶

addition, it defines the following instance method for converting a

field element to an unsigned integer:

elem.as_unsigned() -> Unsigned returns the integer representation

of field element elem.

Likewise, each concrete Field implements a constructor for

converting an unsigned integer into a field element:

Field(integer: Unsigned) returns integer represented as a field

element. If integer >= Field.MODULUS, then integer is first

reduced modulo Field.MODULUS.

Finally, each concrete Field has two derived class methods, one for

encoding a vector of field elements as a byte string and another for

decoding a vector of field elements.

Figure 7: Derived class methods for finite fields.

5.1.1. Auxiliary Functions

The following auxiliary functions on vectors of field elements are

used in the remainder of this document. Note that an exception is

raised by each function if the operands are not the same length.

¶

*

¶

¶

*

¶

¶

def encode_vec(Field, data: Vec[Field]) -> Bytes:

 encoded = Bytes()

 for x in data:

 encoded += I2OSP(x.as_unsigned(), Field.ENCODED_SIZE)

 return encoded

def decode_vec(Field, encoded: Bytes) -> Vec[Field]:

 L = Field.ENCODED_SIZE

 if len(encoded) % L != 0:

 raise ERR_DECODE

 vec = []

 for i in range(0, len(encoded), L):

 encoded_x = encoded[i:i+L]

 x = Field(OS2IP(encoded_x))

 vec.append(x)

 return vec

¶

Figure 8: Common functions for finite fields.

5.1.2. FFT-Friendly Fields

Some VDAFs require fields that are suitable for efficient

computation of the discrete Fourier transform. (One example is Prio3

(Section 6) when instantiated with the generic FLP of Section

6.3.3.) Specifically, a field is said to be "FFT-friendly" if, in

addition to satisfying the interface described in Section 5.1, it

implements the following method:

Field.gen() -> Field returns the generator of a large subgroup of

the multiplicative group.

FFT-friendly fields also define the following parameter:

GEN_ORDER: Unsigned is the order of a multiplicative subgroup

generated by Field.gen(). This value MUST be a power of 2.

5.1.3. Parameters

The tables below define finite fields used in the remainder of this

document.

Parameter Value

MODULUS 2^32 * 4294967295 + 1

ENCODED_SIZE 8

Generator 7^4294967295

GEN_ORDER 2^32

Table 2: Field64, an FFT-friendly

field.

Parameter Value

MODULUS 2^66 * 4611686018427387897 + 1

ENCODED_SIZE 16

Generator 7^4611686018427387897

Compute the inner product of the operands.

def inner_product(left: Vec[Field], right: Vec[Field]) -> Field:

 return sum(map(lambda x: x[0] * x[1], zip(left, right)))

Subtract the right operand from the left and return the result.

def vec_sub(left: Vec[Field], right: Vec[Field]):

 return list(map(lambda x: x[0] - x[1], zip(left, right)))

Add the right operand to the left and return the result.

def vec_add(left: Vec[Field], right: Vec[Field]):

 return list(map(lambda x: x[0] + x[1], zip(left, right)))

¶

*

¶

¶

*

¶

¶

Parameter Value

GEN_ORDER 2^66

Table 3: Field128, an FFT-friendly field.

5.2. Pseudorandom Generators

A pseudorandom generator (PRG) is used to expand a short,

(pseudo)random seed into a long string of pseudorandom bits. A PRG

suitable for this document implements the interface specified in

this section. Concrete constructions are described in the

subsections that folllow.

PRGs are defined by a class Prg with the following associated

parameter:

SEED_SIZE: Unsigned is the size (in bytes) of a seed.

A concrete Prg implements the following class method:

Prg(seed: Bytes, info: Bytes) constructs an instance of Prg from

the given seed and info string. The seed MUST be of length

SEED_SIZE and MUST be generated securely (i.e., it is either the

output of gen_rand or a previous invocation of the PRG). The info

string is used for domain separation.

prg.next(length: Unsigned) returns the next length bytes of

output of PRG. If the seed was securely generated, the output can

be treated as pseudorandom.

Each Prg has two derived class methods. The first is used to derive

a fresh seed from an existing one. The second is used to compute a

sequence of pseudorandom field elements. For each method, the seed

MUST be of length SEED_SIZE and MUST be generated securely (i.e., it

is either the output of gen_rand or a previous invocation of the

PRG).

¶

¶

* ¶

¶

*

¶

*

¶

¶

Figure 9: Derived class methods for PRGs.

5.2.1. PrgAes128

OPEN ISSUE Phillipp points out that a fixed-key mode of AES may

be more performant (https://eprint.iacr.org/2019/074.pdf). See

https://github.com/cjpatton/vdaf/issues/32 for details.

Our first construction, PrgAes128, converts a blockcipher, namely

AES-128, into a PRG. Seed expansion involves two steps. In the first

step, CMAC [RFC4493] is applied to the seed and info string to get a

fresh key. In the second step, the fresh key is used in CTR-mode to

produce a key stream for generating the output. A fixed

initialization vector (IV) is used.

Derive a new seed.

def derive_seed(Prg, seed: Bytes, info: Bytes) -> bytes:

 prg = Prg(seed, info)

 return prg.next(Prg.SEED_SIZE)

Expand a seed into a vector of Field elements.

def expand_into_vec(Prg,

 Field,

 seed: Bytes,

 info: Bytes,

 length: Unsigned):

 m = next_power_of_2(Field.MODULUS) - 1

 prg = Prg(seed, info)

 vec = []

 while len(vec) < length:

 x = OS2IP(prg.next(Field.ENCODED_SIZE))

 x &= m

 if x < Field.MODULUS:

 vec.append(Field(x))

 return vec

¶

¶

Figure 10: Definition of PRG PrgAes128.

6. Prio3

NOTE This construction has not undergone significant security

analysis.

This section describes "Prio3", a VDAF for Prio [CGB17]. Prio is

suitable for a wide variety of aggregation functions, including (but

not limited to) sum, mean, standard deviation, estimation of

quantiles (e.g., median), and linear regression. In fact, the scheme

described in this section is compatible with any aggregation

function that has the following structure:

Each measurement is encoded as a vector over some finite field.

Input validity is determined by an arithmetic circuit evaluated

over the encoded input. (An "arithmetic circuit" is a function

comprised of arithmetic operations in the field.) The circuit's

output is a single field element: if zero, then the input is said

to be "valid"; otherwise, if the output is non-zero, then the

input is said to "invalid".

The aggregate result is obtained by summing up the encoded input

vectors and computing some function of the sum.

At a high level, Prio3 distributes this computation as follows. Each

Client first shards its measurement by first encoding it, then

splitting the vector into secret shares and sending a share to each

Aggregator. Next, in the preparation phase, the Aggregators carry

out a multi-party computation to determine if their shares

correspond to a valid input (as determined by the arithmetic

class PrgAes128:

 SEED_SIZE: Unsigned = 16

 def __init__(self, seed, info):

 self.length_consumed = 0

 # Use CMAC as a pseudorandom function to derive a key.

 self.key = AES128-CMAC(seed, info)

 def next(self, length):

 self.length_consumed += length

 # CTR-mode encryption of the all-zero string of the desired

 # length and using a fixed, all-zero IV.

 stream = AES128-CTR(key, zeros(16), zeros(self.length_consumed))

 return stream[-length:]

¶

¶

* ¶

*

¶

*

¶

circuit). This computation involves a "proof" of validity generated

by the Client. Next, each Aggregator sums up its input shares

locally. Finally, the Collector sums up the aggregate shares and

computes the aggregate result.

This VDAF does not have an aggregation parameter. Instead, the

output share is derived from the input share by applying a fixed

map. See Section 7 for an example of a VDAF that makes meaningful

use of the aggregation parameter.

As the name implies, "Prio3" is a descendant of the original Prio

construction. A second iteration was deployed in the [ENPA] system,

and like the VDAF described here, the ENPA system was built from

techniques introduced in [BBCGGI19] that significantly improve

communication cost. That system was specialized for a particular

aggregation function; the goal of Prio3 is to provide the same level

of generality as the original construction.

The core component of Prio3 is a "Fully Linear Proof (FLP)" system.

Introduced by [BBCGGI19], the FLP encapsulates the functionality

required for encoding and validating inputs. Prio3 can be thought of

as a transformation of a particular class of FLPs into a VDAF.

The remainder of this section is structured as follows. The syntax

for FLPs is described in Section 6.1. The generic transformation of

an FLP into Prio3 is specified in Section 6.2. Next, a concrete FLP

suitable for any validity circuit is specified in Section 6.3.

Finally, instantiations of Prio3 for various types of measurements

are specified in Section 6.4. Test vectors can be found in Appendix

"Test Vectors".

6.1. Fully Linear Proof (FLP) Systems

Conceptually, an FLP is a two-party protocol executed by a prover

and a verifier. In actual use, however, the prover's computation is

carried out by the Client, and the verifier's computation is

distributed among the Aggregators. The Client generates a "proof" of

its input's validity and distributes shares of the proof to the

Aggregators. Each Aggregator then performs some a computation on its

input share and proof share locally and sends the result to the

other Aggregators. Combining the exchanged messages allows each

Aggregator to decide if it holds a share of a valid input. (See

Section 6.2 for details.)

As usual, we will describe the interface implemented by a concrete

FLP in terms of an abstract base class Flp that specifies the set of

methods and parameters a concrete FLP must provide.

The parameters provided by a concrete FLP are listed in Table 4.

¶

¶

¶

¶

¶

¶

¶

¶

Parameter Description

PROVE_RAND_LEN

Length of the prover randomness, the number of random

field elements consumed by the prover when generating

a proof

QUERY_RAND_LEN
Length of the query randomness, the number of random

field elements consumed by the verifier

JOINT_RAND_LEN

Length of the joint randomness, the number of random

field elements consumed by both the prover and

verifier

INPUT_LEN Length of the encoded measurement (Section 6.1.1)

OUTPUT_LEN Length of the aggregatable output (Section 6.1.1)

PROOF_LEN Length of the proof

VERIFIER_LEN
Length of the verifier message generated by querying

the input and proof

Measurement Type of the measurement

Field As defined in (Section 5.1)

Table 4: Constants and types defined by a concrete FLP.

An FLP specifies the following algorithms for generating and

verifying proofs of validity (encoding is described below in Section

6.1.1):

Flp.prove(input: Vec[Field], prove_rand: Vec[Field], joint_rand:

Vec[Field]) -> Vec[Field] is the deterministic proof-generation

algorithm run by the prover. Its inputs are the encoded input,

the "prover randomness" prove_rand, and the "joint randomness"

joint_rand. The proof randomness is used only by the prover, but

the joint randomness is shared by both the prover and verifier.

Flp.query(input: Vec[Field], proof: Vec[Field], query_rand:

Vec[Field], joint_rand: Vec[Field]) -> Vec[Field] is the query-

generation algorithm run by the verifier. This is used to "query"

the input and proof. The result of the query (i.e., the output of

this function) is called the "verifier message". In addition to

the input and proof, this algorithm takes as input the query

randomness query_rand and the joint randomness joint_rand. The

former is used only by the verifier.

Flp.decide(verifier: Vec[Field]) -> Bool is the deterministic

decision algorithm run by the verifier. It takes as input the

verifier message and outputs a boolean indicating if the input

from which it was generated is valid.

Our application requires that the FLP is "fully linear" in the sense

defined in [BBCGGI19] As a practical matter, what this property

implies is that, when run on a share of the input and proof, the

query-generation algorithm outputs a share of the verifier message.

Furthermore, the "zero-knowledge" property of the FLP system ensures

that the verifier message reveals nothing about the input's

¶

*

¶

*

¶

*

¶

validity. Therefore, to decide if an input is valid, the Aggregators

will run the query-generation algorithm locally, exchange verifier

shares, combine them to recover the verifier message, and run the

decision algorithm.

An FLP is executed by the prover and verifier as follows:

Figure 11: Execution of an FLP.

The proof system is constructed so that, if input is a valid input,

then run_flp(Flp, input) always returns True. On the other hand, if

input is invalid, then as long as joint_rand and query_rand are

generated uniform randomly, the output is False with overwhelming

probability.

We remark that [BBCGGI19] defines a much larger class of fully

linear proof systems than we consider here. In particular, what is

called an "FLP" here is called a 1.5-round, public-coin, interactive

oracle proof system in their paper.

6.1.1. Encoding the Input

The type of measurement being aggregated is defined by the FLP.

Hence, the FLP also specifies a method of encoding raw measurements

as a vector of field elements:

Flp.encode(measurement: Measurement) -> Vec[Field] encodes a raw

measurement as a vector of field elements. The return value MUST

be of length INPUT_LEN.

For some FLPs, the encoded input also includes redundant field

elements that are useful for checking the proof, but which are not

needed after the proof has been checked. An example is the "integer

sum" data type from [CGB17] in which an integer in range [0, 2^k) is

encoded as a vector of k field elements (this type is also defined

¶

¶

def run_flp(Flp, inp: Vec[Flp.Field], num_shares: Unsigned):

 joint_rand = Flp.Field.rand_vec(Flp.JOINT_RAND_LEN)

 prove_rand = Flp.Field.rand_vec(Flp.PROVE_RAND_LEN)

 query_rand = Flp.Field.rand_vec(Flp.QUERY_RAND_LEN)

 # Prover generates the proof.

 proof = Flp.prove(inp, prove_rand, joint_rand)

 # Verifier queries the input and proof.

 verifier = Flp.query(inp, proof, query_rand, joint_rand, num_shares)

 # Verifier decides if the input is valid.

 return Flp.decide(verifier)

¶

¶

¶

*

¶

in Section 6.4). After consuming this vector, all that is needed is

the integer it represents. Thus the FLP defines an algorithm for

truncating the input to the length of the aggregated output:

Flp.truncate(input: Vec[Field]) -> Vec[Field] maps an encoded

input to an aggregatable output. The length of the input MUST be

INPUT_LEN and the length of the output MUST be OUTPUT_LEN.

We remark that, taken together, these two functionalities correspond

roughly to the notion of "Affine-aggregatable encodings (AFEs)" from

[CGB17].

6.2. Construction

This section specifies Prio3, an implementation of the Vdaf

interface (Section 4). It has two generic parameters: an Flp

(Section 6.1) and a Prg (Section 5.2). The associated constants and

types required by the Vdaf interface are defined in Table 5. The

methods required for sharding, preparation, aggregation, and

unsharding are described in the remaining subsections.

Parameter Value

ROUNDS 1

SHARES in [2, 255)

Measurement Flp.Measurement

PublicParam None

VerifyParam Tuple[Unsigned, Bytes]

AggParam None

Prep Tuple[Vec[Flp.Field], Optional[Bytes], Bytes]

OutShare Vec[Flp.Field]

AggShare Vec[Flp.Field]

AggResult Vec[Unsigned]

Table 5: Associated parameters for the Prio3 VDAF.

6.2.1. Setup

The setup algorithm generates a symmetric key shared by all of the

Aggregators. The key is used to derive query randomness for the FLP

query-generation algorithm run by the Aggregators during

preparation. An Aggregator's verification parameter also includes

its "ID", a unique integer in [0, SHARES).

¶

*

¶

¶

¶

¶

def setup(Prio3):

 k_query_init = gen_rand(Prio3.Prg.SEED_SIZE)

 verify_param = [(j, k_query_init) for j in range(Prio3.SHARES)]

 return (None, verify_param)

Figure 12: The setup algorithm for Prio3.

6.2.2. Sharding

Recall from Section 6.1 that the FLP syntax calls for "joint

randomness" shared by the prover (i.e., the Client) and the verifier

(i.e., the Aggregators). VDAFs have no such notion. Instead, the

Client derives the joint randomness from its input in a way that

allows the Aggregators to reconstruct it from their input shares.

(This idea is based on the Fiat-Shamir heuristic and is described in

Section 6.2.3 of [BBCGGI19].)

The input-distribution algorithm involves the following steps:

Encode the Client's raw measurement as an input for the FLP

Shard the input into a sequence of input shares

Derive the joint randomness from the input shares

Run the FLP proof-generation algorithm using the derived joint

randomness

Shard the proof into a sequence of proof shares

The algorithm is specified below. Notice that only one set input and

proof shares (called the "leader" shares below) are vectors of field

elements. The other shares (called the "helper" shares) are

represented instead by PRG seeds, which are expanded into vectors of

field elements.

The code refers to a pair of auxiliary functions for encoding the

shares. These are called encode_leader_share and encode_helper_share

respectively and they are described in Section 6.2.6.

¶

¶

1. ¶

2. ¶

3. ¶

4.

¶

5. ¶

¶

¶

def measurement_to_input_shares(Prio3, _public_param, measurement):

 dst = b"vdaf-00 prio3"

 inp = Prio3.Flp.encode(measurement)

 k_joint_rand = zeros(Prio3.Prg.SEED_SIZE)

 # Generate input shares.

 leader_input_share = inp

 k_helper_input_shares = []

 k_helper_blinds = []

 k_helper_hints = []

 for j in range(Prio3.SHARES-1):

 k_blind = gen_rand(Prio3.Prg.SEED_SIZE)

 k_share = gen_rand(Prio3.Prg.SEED_SIZE)

 helper_input_share = Prio3.Prg.expand_into_vec(

 Prio3.Flp.Field,

 k_share,

 dst + byte(j+1),

 Prio3.Flp.INPUT_LEN

)

 leader_input_share = vec_sub(leader_input_share,

 helper_input_share)

 encoded = Prio3.Flp.Field.encode_vec(helper_input_share)

 k_hint = Prio3.Prg.derive_seed(k_blind,

 byte(j+1) + encoded)

 k_joint_rand = xor(k_joint_rand, k_hint)

 k_helper_input_shares.append(k_share)

 k_helper_blinds.append(k_blind)

 k_helper_hints.append(k_hint)

 k_leader_blind = gen_rand(Prio3.Prg.SEED_SIZE)

 encoded = Prio3.Flp.Field.encode_vec(leader_input_share)

 k_leader_hint = Prio3.Prg.derive_seed(k_leader_blind,

 byte(0) + encoded)

 k_joint_rand = xor(k_joint_rand, k_leader_hint)

 # Finish joint randomness hints.

 for j in range(Prio3.SHARES-1):

 k_helper_hints[j] = xor(k_helper_hints[j], k_joint_rand)

 k_leader_hint = xor(k_leader_hint, k_joint_rand)

 # Generate the proof shares.

 prove_rand = Prio3.Prg.expand_into_vec(

 Prio3.Flp.Field,

 gen_rand(Prio3.Prg.SEED_SIZE),

 dst,

 Prio3.Flp.PROVE_RAND_LEN

)

 joint_rand = Prio3.Prg.expand_into_vec(

 Prio3.Flp.Field,

 k_joint_rand,

 dst,

 Prio3.Flp.JOINT_RAND_LEN

)

 proof = Prio3.Flp.prove(inp, prove_rand, joint_rand)

 leader_proof_share = proof

 k_helper_proof_shares = []

 for j in range(Prio3.SHARES-1):

 k_share = gen_rand(Prio3.Prg.SEED_SIZE)

 k_helper_proof_shares.append(k_share)

 helper_proof_share = Prio3.Prg.expand_into_vec(

 Prio3.Flp.Field,

 k_share,

 dst + byte(j+1),

 Prio3.Flp.PROOF_LEN

)

 leader_proof_share = vec_sub(leader_proof_share,

 helper_proof_share)

 input_shares = []

 input_shares.append(Prio3.encode_leader_share(

 leader_input_share,

 leader_proof_share,

 k_leader_blind,

 k_leader_hint,

))

 for j in range(Prio3.SHARES-1):

 input_shares.append(Prio3.encode_helper_share(

 k_helper_input_shares[j],

 k_helper_proof_shares[j],

 k_helper_blinds[j],

 k_helper_hints[j],

))

 return input_shares

Figure 13: Input-distribution algorithm for Prio3.

6.2.3. Preparation

This section describes the process of recovering output shares from

the input shares. The high-level idea is that each Aggregator first

queries its input and proof share locally, then exchanges its

verifier share with the other Aggregators. The verifier shares are

then combined into the verifier message, which is used to decide

whether to accept.

In addition, the Aggregators must ensure that they have all used the

same joint randomness for the query-generation algorithm. The joint

randomness is generated by a PRG seed. Each Aggregator derives an

XOR secret share of this seed from its input share and the "blind"

generated by the client. Thus, before running the query-generation

algorithm, it must first gather the XOR secret shares derived by the

other Aggregators.

In order to avoid extra round of communication, the Client sends

each Aggregator a "hint" equal to the XOR of the other Aggregators'

shares of the joint randomness seed. This leaves open the

possibility that the Client cheated by, say, forcing the Aggregators

to use joint randomness that biases the proof check procedure some

way in its favor. To mitigate this, the Aggregators also check that

they have all computed the same joint randomness seed before

accepting their output shares. To do so, they exchange their XOR

shares of the PRG seed along with their verifier shares.

NOTE This optimization somewhat diverges from Section 6.2.3 of

[BBCGGI19]. Security analysis is needed.

The algorithms required for preparation are defined as follows.

These algorithms make use of encoding and decoding methods defined

in Section 6.2.6.

¶

¶

¶

¶

¶

def prep_init(Prio3, verify_param, _agg_param, nonce, input_share):

 dst = b"vdaf-00 prio3"

 (j, k_query_init) = verify_param

 (input_share, proof_share, k_blind, k_hint) = \

 Prio3.decode_leader_share(input_share) if j == 0 else \

 Prio3.decode_helper_share(dst, j, input_share)

 out_share = Prio3.Flp.truncate(input_share)

 k_query_rand = Prio3.Prg.derive_seed(k_query_init,

 byte(255) + nonce)

 query_rand = Prio3.Prg.expand_into_vec(

 Prio3.Flp.Field,

 k_query_rand,

 dst,

 Prio3.Flp.QUERY_RAND_LEN

)

 joint_rand, k_joint_rand, k_joint_rand_share = [], None, None

 if Prio3.Flp.JOINT_RAND_LEN > 0:

 encoded = Prio3.Flp.Field.encode_vec(input_share)

 k_joint_rand_share = Prio3.Prg.derive_seed(k_blind,

 byte(j) + encoded)

 k_joint_rand = xor(k_hint, k_joint_rand_share)

 joint_rand = Prio3.Prg.expand_into_vec(

 Prio3.Flp.Field,

 k_joint_rand,

 dst,

 Prio3.Flp.JOINT_RAND_LEN

)

 verifier_share = Prio3.Flp.query(input_share,

 proof_share,

 query_rand,

 joint_rand,

 Prio3.SHARES)

 prep_msg = Prio3.encode_prepare_message(verifier_share,

 k_joint_rand_share)

 return (out_share, k_joint_rand, prep_msg)

def prep_next(Prio3, prep, inbound):

 (out_share, k_joint_rand, prep_msg) = prep

 if inbound is None:

 return (prep, prep_msg)

 (verifier, k_joint_rand_check) = \

 Prio3.decode_prepare_message(inbound)

 if k_joint_rand_check != k_joint_rand or \

 not Prio3.Flp.decide(verifier):

 raise ERR_VERIFY

 return out_share

def prep_shares_to_prep(Prio3, _agg_param, prep_shares):

 verifier = Prio3.Flp.Field.zeros(Prio3.Flp.VERIFIER_LEN)

 k_joint_rand_check = zeros(Prio3.Prg.SEED_SIZE)

 for encoded in prep_shares:

 (verifier_share, k_joint_rand_share) = \

 Prio3.decode_prepare_message(encoded)

 verifier = vec_add(verifier, verifier_share)

 if Prio3.Flp.JOINT_RAND_LEN > 0:

 k_joint_rand_check = xor(k_joint_rand_check,

 k_joint_rand_share)

 return Prio3.encode_prepare_message(verifier,

 k_joint_rand_check)

Figure 14: Preparation state for Prio3.

6.2.4. Aggregation

Aggregating a set of output shares is simply a matter of adding up

the vectors element-wise.

Figure 15: Aggregation algorithm for Prio3.

6.2.5. Unsharding

To unshard a set of aggregate shares, the Collector first adds up

the vectors element-wise. It then converts each element of the

vector into an integer.

Figure 16: Computation of the aggregate result for Prio3.

6.2.6. Auxiliary Functions

¶

def out_shares_to_agg_share(Prio3, _agg_param, out_shares):

 agg_share = Prio3.Flp.Field.zeros(Prio3.Flp.OUTPUT_LEN)

 for out_share in out_shares:

 agg_share = vec_add(agg_share, out_share)

 return agg_share

¶

def agg_shares_to_result(Prio3, _agg_param, agg_shares):

 agg = Prio3.Flp.Field.zeros(Prio3.Flp.OUTPUT_LEN)

 for agg_share in agg_shares:

 agg = vec_add(agg, agg_share)

 return list(map(lambda x: x.as_unsigned(), agg))

def encode_leader_share(Prio3,

 input_share,

 proof_share,

 k_blind,

 k_hint):

 encoded = Bytes()

 encoded += Prio3.Flp.Field.encode_vec(input_share)

 encoded += Prio3.Flp.Field.encode_vec(proof_share)

 if Prio3.Flp.JOINT_RAND_LEN > 0:

 encoded += k_blind

 encoded += k_hint

 return encoded

def decode_leader_share(Prio3, encoded):

 l = Prio3.Flp.Field.ENCODED_SIZE * Prio3.Flp.INPUT_LEN

 encoded_input_share, encoded = encoded[:l], encoded[l:]

 input_share = Prio3.Flp.Field.decode_vec(encoded_input_share)

 l = Prio3.Flp.Field.ENCODED_SIZE * Prio3.Flp.PROOF_LEN

 encoded_proof_share, encoded = encoded[:l], encoded[l:]

 proof_share = Prio3.Flp.Field.decode_vec(encoded_proof_share)

 l = Prio3.Prg.SEED_SIZE

 k_blind, k_hint = None, None

 if Prio3.Flp.JOINT_RAND_LEN > 0:

 k_blind, encoded = encoded[:l], encoded[l:]

 k_hint, encoded = encoded[:l], encoded[l:]

 if len(encoded) != 0:

 raise ERR_DECODE

 return (input_share, proof_share, k_blind, k_hint)

def encode_helper_share(Prio3,

 k_input_share,

 k_proof_share,

 k_blind,

 k_hint):

 encoded = Bytes()

 encoded += k_input_share

 encoded += k_proof_share

 if Prio3.Flp.JOINT_RAND_LEN > 0:

 encoded += k_blind

 encoded += k_hint

 return encoded

def decode_helper_share(Prio3, dst, j, encoded):

 l = Prio3.Prg.SEED_SIZE

 k_input_share, encoded = encoded[:l], encoded[l:]

 input_share = Prio3.Prg.expand_into_vec(Prio3.Flp.Field,

 k_input_share,

 dst + byte(j),

 Prio3.Flp.INPUT_LEN)

 k_proof_share, encoded = encoded[:l], encoded[l:]

 proof_share = Prio3.Prg.expand_into_vec(Prio3.Flp.Field,

 k_proof_share,

 dst + byte(j),

 Prio3.Flp.PROOF_LEN)

 k_blind, k_hint = None, None

 if Prio3.Flp.JOINT_RAND_LEN > 0:

 k_blind, encoded = encoded[:l], encoded[l:]

 k_hint, encoded = encoded[:l], encoded[l:]

 if len(encoded) != 0:

 raise ERR_DECODE

 return (input_share, proof_share, k_blind, k_hint)

def encode_prepare_message(Prio3, verifier, k_joint_rand):

 encoded = Bytes()

 encoded += Prio3.Flp.Field.encode_vec(verifier)

 if Prio3.Flp.JOINT_RAND_LEN > 0:

 encoded += k_joint_rand

 return encoded

def decode_prepare_message(Prio3, encoded):

 l = Prio3.Flp.Field.ENCODED_SIZE * Prio3.Flp.VERIFIER_LEN

 encoded_verifier, encoded = encoded[:l], encoded[l:]

 verifier = Prio3.Flp.Field.decode_vec(encoded_verifier)

 k_joint_rand = None

 if Prio3.Flp.JOINT_RAND_LEN > 0:

 l = Prio3.Prg.SEED_SIZE

 k_joint_rand, encoded = encoded[:l], encoded[l:]

 if len(encoded) != 0:

 raise ERR_DECODE

 return (verifier, k_joint_rand)

Figure 17: Helper functions required for Prio3.

6.3. A General-Purpose FLP

This section describes an FLP based on the construction from in

[BBCGGI19], Section 4.2. We begin in Section 6.3.1 with an overview

of their proof system and the extensions to their proof system made

here. The construction is specified in Section 6.3.3.

OPEN ISSUE We're not yet sure if specifying this general-purpose

FLP is desirable. It might be preferable to specify specialized

FLPs for each data type that we want to standardize, for two

reasons. First, clear and concise specifications are likely

easier to write for specialized FLPs rather than the general one.

Second, we may end up tailoring each FLP to the measurement type

in a way that improves performance, but breaks compatibility with

the general-purpose FLP.

In any case, we can't make this decision until we know which data

types to standardize, so for now, we'll stick with the general-

purpose construction. The reference implementation can be found

at https://github.com/cjpatton/vdaf/tree/main/poc.

OPEN ISSUE Chris Wood points out that the this section reads more

like a paper than a standard. Eventually we'll want to work this

into something that is readily consumable by the CFRG.

6.3.1. Overview

In the proof system of [BBCGGI19], validity is defined via an

arithmetic circuit evaluated over the input: If the circuit output

is zero, then the input is deemed valid; otherwise, if the circuit

output is non-zero, then the input is deemed invalid. Thus the goal

of the proof system is merely to allow the verifier to evaluate the

validity circuit over the input. For our application (Section 6),

this computation is distributed among multiple Aggregators, each of

which has only a share of the input.

Suppose for a moment that the validity circuit C is affine, meaning

its only operations are addition and multiplication-by-constant. In

particular, suppose the circuit does not contain a multiplication

gate whose operands are both non-constant. Then to decide if an

input x is valid, each Aggregator could evaluate C on its share of x

locally, broadcast the output share to its peers, then combine the

output shares locally to recover C(x). This is true because for any

SHARES-way secret sharing of x it holds that

¶

¶

¶

¶

¶

¶

C(x_shares[0] + ... + x_shares[SHARES-1]) =

 C(x_shares[0]) + ... + C(x_shares[SHARES-1])

¶

(Note that, for this equality to hold, it may be necessary to scale

any constants in the circuit by SHARES.) However this is not the

case if C is not-affine (i.e., it contains at least one

multiplication gate whose operands are non-constant). In the proof

system of [BBCGGI19], the proof is designed to allow the

(distributed) verifier to compute the non-affine operations using

only linear operations on (its share of) the input and proof.

To make this work, the proof system is restricted to validity

circuits that exhibit a special structure. Specifically, an

arithmetic circuit with "G-gates" (see [BBCGGI19], Definition 5.2)

is composed of affine gates and any number of instances of a

distinguished gate G, which may be non-affine. We will refer to this

class of circuits as "gadget circuits" and to G as the "gadget".

As an illustrative example, consider a validity circuit C that

recognizes the set L = set([0], [1]). That is, C takes as input a

length-1 vector x and returns 0 if x[0] is in [0,2) and outputs

something else otherwise. This circuit can be expressed as the

following degree-2 polynomial:

This polynomial recognizes L because x[0]^2 = x[0] is only true if

x[0] == 0 or x[0] == 1. Notice that the polynomial involves a non-

affine operation, x[0]^2. In order to apply [BBCGGI19], Theorem 4.3,

the circuit needs to be rewritten in terms of a gadget that subsumes

this non-affine operation. For example, the gadget might be

multiplication:

The validity circuit can then be rewritten in terms of Mul like so:

The proof system of [BBCGGI19] allows the verifier to evaluate each

instance of the gadget (i.e., Mul(x[0], x[0]) in our example) using

a linear function of the input and proof. The proof is constructed

roughly as follows. Let C be the validity circuit and suppose the

gadget is arity-L (i.e., it has L input wires.). Let wire[j-1,k-1]

denote the value of the jth wire of the kth call to the gadget

during the evaluation of C(x). Suppose there are M such calls and

fix distinct field elements alpha[0], ..., alpha[M-1]. (We will

require these points to have a special property, as we'll discuss in

Section 6.3.1.1; but for the moment it is only important that they

are distinct.)

The prover constructs from wire and alpha a polynomial that, when

evaluated at alpha[k-1], produces the output of the kth call to the

¶

¶

¶

C(x) = (x[0] - 1) * x[0] = x[0]^2 - x[0]¶

¶

Mul(left, right) = left * right¶

¶

C(x[0]) = Mul(x[0], x[0]) - x[0]¶

¶

gadget. Let us call this the "gadget polynomial". Polynomial

evaluation is linear, which means that, in the distributed setting,

the Client can disseminate additive shares of the gadget polynomial

that the Aggregators then use to compute additive shares of each

gadget output, allowing each Aggregator to compute its share of C(x)

locally.

There is one more wrinkle, however: It is still possible for a

malicious prover to produce a gadget polynomial that would result in

C(x) being computed incorrectly, potentially resulting in an invalid

input being accepted. To prevent this, the verifier performs a

probabilistic test to check that the gadget polynomial is well-

formed. This test, and the procedure for constructing the gadget

polynomial, are described in detail in Section 6.3.3.

6.3.1.1. Extensions

The FLP described in the next section extends the proof system

[BBCGGI19], Section 4.2 in three ways.

First, the validity circuit in our construction includes an

additional, random input (this is the "joint randomness" derived

from the input shares in Prio3; see Section 6.2). This allows for

circuit optimizations that trade a small soundness error for a

shorter proof. For example, consider a circuit that recognizes the

set of length-N vectors for which each element is either one or

zero. A deterministic circuit could be constructed for this

language, but it would involve a large number of multiplications

that would result in a large proof. (See the discussion in

[BBCGGI19], Section 5.2 for details). A much shorter proof can be

constructed for the following randomized circuit:

(Note that this is a special case of [BBCGGI19], Theorem 5.2.) Here

inp is the length-N input and r is a random field element. The

gadget circuit Range2 is the "range-check" polynomial described

above, i.e., Range2(x) = x^2 - x. The idea is that, if inp is valid

(i.e., each inp[j] is in [0,2)), then the circuit will evaluate to 0

regardless of the value of r; but if inp[j] is not in [0,2) for some

j, the output will be non-zero with high probability.

The second extension implemented by our FLP allows the validity

circuit to contain multiple gadget types. (This generalization was

suggested in [BBCGGI19], Remark 4.5.) For example, the following

circuit is allowed, where Mul and Range2 are the gadgets defined

above (the input has length N+1):

¶

¶

¶

¶

C(inp, r) = r * Range2(inp[0]) + ... + r^N * Range2(inp[N-1])¶

¶

¶

Finally, [BBCGGI19], Theorem 4.3 makes no restrictions on the choice

of the fixed points alpha[0], ..., alpha[M-1], other than to require

that the points are distinct. In this document, the fixed points are

chosen so that the gadget polynomial can be constructed efficiently

using the Cooley-Tukey FFT ("Fast Fourier Transform") algorithm.

Note that this requires the field to be "FFT-friendly" as defined in

Section 5.1.2.

6.3.2. Validity Circuits

The FLP described in Section 6.3.3 is defined in terms of a validity

circuit Valid that implements the interface described here.

A concrete Valid defines the following parameters:

Parameter Description

GADGETS A list of gadgets

GADGET_CALLS Number of times each gadget is called

INPUT_LEN Length of the input

OUTPUT_LEN Length of the aggregatable output

JOINT_RAND_LEN Length of the random input

Measurement The type of measurement

Field
An FFT-friendly finite field as defined in Section

5.1.2

Table 6: Validity circuit parameters.

Each gadget G in GADGETS defines a constant DEGREE that specifies

the circuit's "arithmetic degree". This is defined to be the degree

of the polynomial that computes it. For example, the Mul circuit in

Section 6.3.1 is defined by the polynomial Mul(x) = x * x, which has

degree 2. Hence, the arithmetic degree of this gadget is 2.

Each gadget also defines a parameter ARITY that specifies the

circuit's arity (i.e., the number of input wires).

A concrete Valid provides the following methods for encoding a

measurement as an input vector and truncating an input vector to the

length of an aggregatable output:

Valid.encode(measurement: Measurement) -> Vec[Field] returns a

vector of length INPUT_LEN representing a measurement.

Valid.truncate(input: Vec[Field]) -> Vec[Field] returns a vector

of length OUTPUT_LEN representing an aggregatable output.

C(inp, r) = r * Range2(inp[0]) + ... + r^N * Range2(inp[N-1]) + \

 2^0 * inp[0] + ... + 2^(N-1) * inp[N-1] - \

 Mul(inp[N], inp[N])

¶

¶

¶

¶

¶

¶

¶

*

¶

*

¶

Finally, the following class methods are derived for each concrete

Valid:

Figure 18: Derived methods for validity circuits.

6.3.3. Construction

This section specifies FlpGeneric, an implementation of the Flp

interface (Section 6.1). It has as a generic parameter a validity

circuit Valid implementing the interface defined in Section 6.3.2.

NOTE A reference implementation can be found in https://

github.com/cjpatton/vdaf/blob/main/poc/flp_generic.sage.

The FLP parameters for FlpGeneric are defined in Table 7. The

required methods for generating the proof, generating the verifier,

and deciding validity are specified in the remaining subsections.

In the remainder, we let [n] denote the set {1, ..., n} for positive

integer n. We also define the following constants:

Let H = len(Valid.GADGETS)

For each i in [H]:

Let G_i = Valid.GADGETS[i]

¶

Length of the prover randomness.

def prove_rand_len(Valid):

 return sum(map(lambda g: g.ARITY, Valid.GADGETS))

Length of the query randomness.

def query_rand_len(Valid):

 return len(Valid.GADGETS)

Length of the proof.

def proof_len(Valid):

 length = 0

 for (g, g_calls) in zip(Valid.GADGETS, Valid.GADGET_CALLS):

 P = next_power_of_2(1 + g_calls)

 length += g.ARITY + g.DEGREE * (P - 1) + 1

 return length

Length of the verifier message.

def verifier_len(Valid):

 length = 1

 for g in Valid.GADGETS:

 length += g.ARITY + 1

 return length

¶

¶

¶

¶

* ¶

* ¶

- ¶

Let L_i = Valid.GADGETS[i].ARITY

Let M_i = Valid.GADGET_CALLS[i]

Let P_i = next_power_of_2(M_i+1)

Let alpha_i = Field.gen()^(Field.GEN_ORDER / P_i)

Parameter Value

PROVE_RAND_LEN Valid.prove_rand_len() (see Section 6.3.2)

QUERY_RAND_LEN Valid.query_rand_len() (see Section 6.3.2)

JOINT_RAND_LEN Valid.JOINT_RAND_LEN

INPUT_LEN Valid.INPUT_LEN

OUTPUT_LEN Valid.OUTPUT_LEN

PROOF_LEN Valid.proof_len() (see Section 6.3.2)

VERIFIER_LEN Valid.verifier_len() (see Section 6.3.2)

Measurement Valid.Measurement

Field Valid.Field

Table 7: FLP Parameters of FlpGeneric.

6.3.3.1. Proof Generation

On input inp, prove_rand, and joint_rand, the proof is computed as

follows:

For each i in [H] create an empty table wire_i.

Partition the prover randomness prove_rand into subvectors

seed_1, ..., seed_H where len(seed_i) == L_i for all i in [H].

Let us call these the "wire seeds" of each gadget.

Evaluate Valid on input of inp and joint_rand, recording the

inputs of each gadget in the corresponding table. Specifically,

for every i in [H], set wire_i[j-1,k-1] to the value on the jth

wire into the kth call to gadget G_i.

Compute the "wire polynomials". That is, for every i in [H] and

j in [L_i], construct poly_wire_i[j-1], the jth wire polynomial

for the ith gadget, as follows:

Let w = [seed_i[j-1], wire_i[j-1,0], ...,

wire_i[j-1,M_i-1]].

Let padded_w = w + Field.zeros(P_i - len(w)).

NOTE We pad w to the nearest power of 2 so that we can use

FFT for interpolating the wire polynomials. Perhaps there is

- ¶

- ¶

- ¶

- ¶

¶

1. ¶

2.

¶

3.

¶

4.

¶

*

¶

* ¶

some clever math for picking wire_inp in a way that avoids

having to pad.

Let poly_wire_i[j-1] be the lowest degree polynomial for

which poly_wire_i[j-1](alpha_i^k) == padded_w[k] for all k

in [P_i].

Compute the "gadget polynomials". That is, for every i in [H]:

Let poly_gadget_i = G_i(poly_wire_i[0], ...,

poly_wire_i[L_i-1]). That is, evaluate the circuit G_i on

the wire polynomials for the ith gadget. (Arithmetic is in

the ring of polynomials over Field.)

The proof is the vector proof = seed_1 + coeff_1 + ... + seed_H +

coeff_H, where coeff_i is the vector of coefficients of

poly_gadget_i for each i in [H].

6.3.3.2. Query Generation

On input of inp, proof, query_rand, and joint_rand, the verifier

message is generated as follows:

For every i in [H] create an empty table wire_i.

Partition proof into the subvectors seed_1, coeff_1, ...,

seed_H, coeff_H defined in Section 6.3.3.1.

Evaluate Valid on input of inp and joint_rand, recording the

inputs of each gadget in the corresponding table. This step is

similar to the prover's step (3.) except the verifier does not

evaluate the gadgets. Instead, it computes the output of the

kth call to G_i by evaluating poly_gadget_i(alpha_i^k). Let v

denote the output of the circuit evaluation.

Compute the wire polynomials just as in the prover's step (4.).

Compute the tests for well-formedness of the gadget

polynomials. That is, for every i in [H]:

Let t = query_rand[i]. Check if t^(P_i) == 1: If so, then

raise ERR_ABORT and halt. (This prevents the verifier from

inadvertently leaking a gadget output in the verifier

message.)

Let y_i = poly_gadget_i(t).

For each j in [0,L_i) let x_i[j-1] = poly_wire_i[j-1](t).

¶

*

¶

5. ¶

*

¶

¶

¶

1. ¶

2.

¶

3.

¶

4. ¶

5.

¶

*

¶

* ¶

* ¶

The verifier message is the vector verifier = [v] + x_1 + [y_1] +

... + x_H + [y_H].

6.3.3.3. Decision

On input of vector verifier, the verifier decides if the input is

valid as follows:

Parse verifier into v, x_1, y_1, ..., x_H, y_H as defined in

Section 6.3.3.2.

Check for well-formedness of the gadget polynomials. For every

i in [H]:

Let z = G_i(x_i). That is, evaluate the circuit G_i on x_i

and set z to the output.

If z != y_i, then return False and halt.

Return True if v == 0 and False otherwise.

6.3.3.4. Encoding

The FLP encoding and truncation methods invoke Valid.encode and

Valid.truncate in the natural way.

6.4. Instantiations

This section specifies instantiations of Prio3 for various

measurement types. Each uses FlpGeneric as the FLP (Section 6.3) and

is determined by a validity circuit (Section 6.3.2) and a PRG

(Section 5.2). Test vectors for each can be found in Appendix "Test

Vectors".

NOTE Reference implementations of each of these VDAFs can be

found in https://github.com/cjpatton/vdaf/blob/main/poc/

vdaf_prio3.sage.

6.4.1. Prio3Aes128Count

Our first instance of Prio3 is for a simple counter: Each

measurement is either one or zero and the aggregate result is the

sum of the measurements.

This instance uses PrgAes128 (Section 5.2.1) as its PRG. Its

validity circuit, denoted Count, uses Field64 (Table 2) as its

finite field. Its gadget, denoted Mul, is the degree-2, arity-2

gadget defined as

¶

¶

1.

¶

2.

¶

*

¶

* ¶

3. ¶

¶

¶

¶

¶

¶

The validity circuit is defined as

The measurement is encoded as a singleton vector in the natural way.

The parameters for this circuit are summarized below.

Parameter Value

GADGETS [Mul]

GADGET_CALLS [1]

INPUT_LEN 1

OUTPUT_LEN 1

JOINT_RAND_LEN 0

Measurement Unsigned, in range [0,2)

Field Field64 (Table 2)

Table 8: Parameters of validity circuit

Count.

6.4.2. Prio3Aes128Sum

The next instance of Prio3 supports summing of integers in a pre-

determined range. Each measurement is an integer in range [0,

2^bits), where bits is an associated parameter.

This instance of Prio3 uses PrgAes128 (Section 5.2.1) as its PRG.

Its validity circuit, denoted Sum, uses Field128 (Table 3) as its

finite field. The measurement is encoded as a length-bits vector of

field elements, where the lth element of the vector represents the

lth bit of the summand:

def Mul(x, y):

 return x * y

¶

¶

def Count(inp: Vec[Field64]):

 return Mul(inp[0], inp[0]) - inp[0]

¶

¶

¶

¶

The validity circuit checks that the input comprised of ones and

zeros. Its gadget, denoted Range2, is the degree-2, arity-1 gadget

defined as

The validity circuit is defined as

Parameter Value

GADGETS [Range2]

GADGET_CALLS [bits]

INPUT_LEN bits

OUTPUT_LEN 1

JOINT_RAND_LEN 1

Measurement Unsigned, in range [0, 2^bits)

Field Field128 (Table 3)

Table 9: Parameters of validity circuit Sum.

def encode(Sum, measurement: Integer):

 if 0 > measurement or measurement >= 2^Sum.INPUT_LEN:

 raise ERR_INPUT

 encoded = []

 for l in range(Sum.INPUT_LEN):

 encoded.append(Sum.Field((measurement >> l) & 1))

 return encoded

def truncate(Sum, inp):

 decoded = Sum.Field(0)

 for (l, b) in enumerate(inp):

 w = Sum.Field(1 << l)

 decoded += w * b

 return [decoded]

¶

¶

def Range2(x):

 return x^2 - x

¶

¶

def Sum(inp: Vec[Field128], joint_rand: Vec[Field128]):

 out = Field128(0)

 r = joint_rand[0]

 for x in inp:

 out += r * Range2(x)

 r *= joint_rand[0]

 return out

¶

6.4.3. Prio3Aes128Histogram

This instance of Prio3 allows for estimating the distribution of the

measurements by computing a simple histogram. Each measurement is an

arbitrary integer and the aggregate result counts the number of

measurements that fall in a set of fixed buckets.

This instance of Prio3 uses PrgAes128 (Section 5.2.1) as its PRG.

Its validity circuit, denoted Histogram, uses Field128 (Table 3) as

its finite field. The measurement is encoded as a one-hot vector

representing the bucket into which the measurement falls (let bucket

denote a sequence of monotonically increasing integers):

The validity circuit uses Range2 (see Section 6.4.2) as its single

gadget. It checks for one-hotness in two steps, as follows:

Note that this circuit depends on the number of shares into which

the input is sharded. This is provided to the FLP by Prio3.

¶

¶

def encode(Histogram, measurement: Integer):

 boundaries = buckets + [Infinity]

 encoded = [Field128(0) for _ in range(len(boundaries))]

 for i in range(len(boundaries)):

 if measurement <= boundaries[i]:

 encoded[i] = Field128(1)

 return encoded

def truncate(Histogram, inp: Vec[Field128]):

 return inp

¶

¶

def Histogram(inp: Vec[Field128],

 joint_rand: Vec[Field128],

 num_shares: Unsigned):

 # Check that each bucket is one or zero.

 range_check = Field128(0)

 r = joint_rand[0]

 for x in inp:

 range_check += r * Range2(x)

 r *= joint_rand[0]

 # Check that the buckets sum to 1.

 sum_check = -Field128(1) * Field128(num_shares).inv()

 for b in inp:

 sum_check += b

 out = joint_rand[1] * range_check + \

 joint_rand[1]^2 * sum_check

 return out

¶

¶

Parameter Value

GADGETS [Range2]

GADGET_CALLS [buckets + 1]

INPUT_LEN buckets + 1

OUTPUT_LEN buckets + 1

JOINT_RAND_LEN 2

Measurement Integer

Field Field128 (Table 3)

Table 10: Parameters of validity

circuit Histogram.

7. Poplar1

NOTE The spec for Poplar1 is still a work-in-progress. A partial

implementation can be found at https://github.com/

abetterinternet/libprio-rs/blob/main/src/vdaf/poplar1.rs. The

verification logic is nearly complete, however as of this draft

the code is missing the IDPF. An implementation of the IDPF can

be found at https://github.com/google/

distributed_point_functions/.

This section specifies Poplar1, a VDAF for the following task. Each

Client holds a BITS-bit string and the Aggregators hold a set of l-

bit strings, where l <= BITS. We will refer to the latter as the set

of "candidate prefixes". The Aggregators' goal is to count how many

inputs are prefixed by each candidate prefix.

This functionality is the core component of Poplar [BBCGGI21]. At a

high level, the protocol works as follows.

Each Clients runs the input-distribution algorithm on its n-bit

string and sends an input share to each Aggregator.

The Aggregators agree on an initial set of candidate prefixes,

say 0 and 1.

The Aggregators evaluate the VDAF on each set of input shares

and aggregate the recovered output shares. The aggregation

parameter is the set of candidate prefixes.

The Aggregators send their aggregate shares to the Collector,

who combines them to recover the counts of each candidate

prefix.

Let H denote the set of prefixes that occurred at least t

times. If the prefixes all have length BITS, then H is the set

of t-heavy-hitters. Otherwise compute the next set of candidate

prefixes as follows. For each p in H, add add p || 0 and p || 1

¶

¶

¶

1.

¶

2.

¶

3.

¶

4.

¶

5.

to the set. Repeat step 3 with the new set of candidate

prefixes.

Poplar1 is constructed from an "Incremental Distributed Point

Function (IDPF)", a primitive described by [BBCGGI21] that

generalizes the notion of a Distributed Point Function (DPF) [GI14].

Briefly, a DPF is used to distribute the computation of a "point

function", a function that evaluates to zero on every input except

at a programmable "point". The computation is distributed in such a

way that no one party knows either the point or what it evaluates

to.

An IDPF generalizes this "point" to a path on a full binary tree

from the root to one of the leaves. It is evaluated on an "index"

representing a unique node of the tree. If the node is on the path,

then function evaluates to to a non-zero value; otherwise it

evaluates to zero. This structure allows an IDPF to provide the

functionality required for the above protocol, while at the same

time ensuring the same degree of privacy as a DPF.

Our VDAF composes an IDPF with the "secure sketching" protocol of

[BBCGGI21]. This protocol ensures that evaluating a set of input

shares on a unique set of candidate prefixes results in shares of a

"one-hot" vector, i.e., a vector that is zero everywhere except for

one element, which is equal to one.

7.1. Incremental Distributed Point Functions (IDPFs)

An IDPF is defined over a domain of size 2^BITS, where BITS is

constant defined by the IDPF. The Client specifies an index alpha

and a pair of values beta, one for each "level" 1 <= l <= BITS. The

key generation generates two IDPF keys, one for each Aggregator.

When evaluated at index 0 <= x < 2^l, each IDPF share returns an

additive share of beta[l] if x is the l-bit prefix of alpha and

shares of zero otherwise.

CP What does it mean for x to be the l-bit prefix of alpha? We

need to be a bit more precise here.

CP Why isn't the domain size actually 2^(BITS+1), i.e., the

number of nodes in a binary tree of height BITS (excluding the

root)?

Each beta[l] is a pair of elements of a finite field. Each level MAY

have different field parameters. Thus a concrete IDPF specifies

associated types Field[1], Field[2], ..., and Field[BITS] defining,

respectively, the field parameters at level 1, level 2, ..., and

level BITS.

¶

¶

¶

¶

¶

¶

¶

¶

An IDPF is comprised of the following algorithms (let type Value[l]

denote (Field[l], Field[l]) for each level l):

idpf_gen(alpha: Unsigned, beta: (Value[1], ..., Value[BITS])) ->

key: (IDPFKey, IDPFKey) is the randomized key-generation

algorithm run by the client. Its inputs are the index alpha and

the values beta. The value of alpha MUST be in range [0, 2^BITS).

IDPFKey.eval(l: Unsigned, x: Unsigned) -> value: Value[l]) is

deterministic, stateless key-evaluation algorithm run by each

Aggregator. It returns the value corresponding to index x. The

value of l MUST be in [1, BITS] and the value of x MUST be in

range [2^(l-1), 2^l).

A concrete IDPF specifies a single associated constant:

BITS: Unsigned is the length of each Client input.

A concrete IDPF also specifies the following associated types:

Field[l] for each level 1 <= l <= BITS. Each defines the same

methods and associated constants as Field in Section 6.

Note that IDPF construction of [BBCGGI21] uses one field for the

inner nodes of the tree and a different, larger field for the leaf

nodes. See [BBCGGI21], Section 4.3.

Finally, an implementation note. The interface for IDPFs specified

here is stateless, in the sense that there is no state carried

between IDPF evaluations. This is to align the IDPF syntax with the

VDAF abstraction boundary, which does not include shared state

across across VDAF evaluations. In practice, of course, it will

often be beneficial to expose a stateful API for IDPFs and carry the

state across evaluations.

7.2. Construction

The VDAF involves two rounds of communication (ROUNDS == 2) and is

defined for two Aggregators (SHARES == 2).

7.2.1. Setup

The verification parameter is a symmetric key shared by both

Aggregators. This VDAF has no public parameter.

¶

*

¶

*

¶

¶

* ¶

¶

*

¶

¶

¶

¶

¶

def vdaf_setup():

 k_verify_init = gen_rand(SEED_SIZE)

 return (None, [(0, k_verify_init), (1, k_verify_init)])

Figure 19: The setup algorithm for poplar1.

7.2.1.1. Client

The client's input is an IDPF index, denoted alpha. The values are

pairs of field elements (1, k) where each k is chosen at random.

This random value is used as part of the secure sketching protocol

of [BBCGGI21]. After evaluating their IDPF key shares on the set of

candidate prefixes, the sketching protocol is used by the

Aggregators to verify that they hold shares of a one-hot vector. In

addition, for each level of the tree, the prover generates random

elements a, b, and c and computes

and sends additive shares of a, b, c, A and B to the Aggregators.

Putting everything together, the input-distribution algorithm is

defined as follows. Function encode_input_share is defined in

Section 7.2.5.

¶

 A = -2*a + k

 B = a*a + b - k*a + c

¶

¶

Figure 20: The input-distribution algorithm for poplar1.

TODO It would be more efficient to represent the shares of a, b,

and c using PRG seeds as suggested in [BBCGGI21].

7.2.2. Preparation

The aggregation parameter encodes a sequence of candidate prefixes.

When an Aggregator receives an input share from the Client, it

begins by evaluating its IDPF share on each candidate prefix,

recovering a pair of vectors of field elements data_share and

auth_share, The Aggregators use auth_share and the correlation

shares provided by the Client to verify that their data_share

vectors are additive shares of a one-hot vector.

CP Consider adding aggregation parameter as input to

k_verify_rand derivation.

def measurement_to_input_shares(_, alpha):

 if alpha < 2**BITS: raise ERR_INVALID_INPUT

 # Prepare IDPF values.

 beta = []

 correlation_shares_0, correlation_shares_1 = [], []

 for l in range(1,BITS+1):

 (k, a, b, c) = Field[l].rand_vec(4)

 # Construct values of the form (1, k), where k

 # is a random field element.

 beta += [(1, k)]

 # Create secret shares of correlations to aid

 # the Aggregators' computation.

 A = -2*a+k

 B = a*a + b - a * k + c

 correlation_share = Field[l].rand_vec(5)

 correlation_shares_1.append(correlation_share)

 correlation_shares_0.append(

 [a, b, c, A, B] - correlation_share)

 # Generate IDPF shares.

 (key_0, key_1) = idpf_gen(alpha, beta)

 input_shares = [

 encode_input_share(key_0, correlation_shares_0),

 encode_input_share(key_1, correlation_shares_1),

]

 return input_shares

¶

¶

¶

class PrepState:

 def __init__(verify_param, agg_param, nonce, input_share):

 (self.l, self.candidate_prefixes) = decode_indexes(agg_param)

 (self.idpf_key,

 self.correlation_shares) = decode_input_share(input_share)

 (self.party_id, k_verify_init) = verify_param

 self.k_verify_rand = get_key(k_verify_init, nonce)

 self.step = "ready"

 def next(self, inbound: Optional[Bytes]):

 l = self.l

 (a_share, b_share, c_share,

 A_share, B_share) = correlation_shares[l-1]

 if self.step == "ready" and inbound == None:

 # Evaluate IDPF on candidate prefixes.

 data_share, auth_share = [], []

 for x in self.candidate_prefixes:

 value = self.idpf_key.eval(l, x)

 data_share.append(value[0])

 auth_share.append(value[1])

 # Prepare first sketch verification message.

 r = Prg.expand_into_vec(Field[l], self.k_verify_rand, len(data_share))

 verifier_share_1 = [

 a_share + inner_product(data_share, r),

 b_share + inner_product(data_share, r * r),

 c_share + inner_product(auth_share, r),

]

 self.output_share = data_share

 self.step = "sketch round 1"

 return verifier_share_1

 elif self.step == "sketch round 1" and inbound != None:

 verifier_1 = Field[l].decode_vec(inbound)

 verifier_share_2 = [

 (verifier_1[0] * verifier_1[0] \

 - verifier_1[1] \

 - verifier_1[2]) * self.party_id \

 + A_share * verifier_1[0] \

 + B_share

]

 self.step = "sketch round 2"

 return Field[l].encode_vec(verifier_share_2)

 elif self.step == "sketch round 2" and inbound != None:

 verifier_2 = Field[l].decode_vec(inbound)

 if verifier_2 != 0: raise ERR_INVALID

 return Field[l].encode_vec(self.output_share)

 else: raise ERR_INVALID_STATE

def prep_shares_to_prep(agg_param, inbound: Vec[Bytes]):

 if len(inbound) != 2:

 raise ERR_INVALID_INPUT

 (l, _) = decode_indexes(agg_param)

 verifier = Field[l].decode_vec(inbound[0]) + \

 Field[l].decode_vec(inbound[1])

 return Field[l].encode_vec(verifier)

Figure 21: Preparation state for poplar1.

7.2.3. Aggregation

Figure 22: Aggregation algorithm for poplar1.

7.2.4. Unsharding

Figure 23: Computation of the aggregate result for poplar1.

7.2.5. Helper Functions

TODO Specify the following functionalities:

encode_input_share is used to encode an input share, consisting

of an IDPF key share and correlation shares.

decode_input_share is used to decode an input share.

decode_indexes(encoded: Bytes) -> (l: Unsigned, indexes:

Vec[Unsigned]) decodes a sequence of indexes, i.e., candidate

indexes for IDPF evaluation. The value of l MUST be in range [1,

BITS] and indexes[i] MUST be in range [2^(l-1), 2^l) for all i.

An error is raised if encoded cannot be decoded.

def out_shares_to_agg_share(agg_param, output_shares: Vec[Bytes]):

 (l, candidate_prefixes) = decode_indexes(agg_param)

 if len(output_shares) != len(candidate_prefixes):

 raise ERR_INVALID_INPUT

 agg_share = Field[l].zeros(len(candidate_prefixes))

 for output_share in output_shares:

 agg_share += Field[l].decode_vec(output_share)

 return Field[l].encode_vec(agg_share)

def agg_shares_to_result(agg_param, agg_shares: Vec[Bytes]):

 (l, _) = decode_indexes(agg_param)

 if len(agg_shares) != 2:

 raise ERR_INVALID_INPUT

 agg = Field[l].decode_vec(agg_shares[0]) + \

 Field[l].decode_vec(agg_shares[1]J)

 return Field[l].encode_vec(agg)

¶

*

¶

* ¶

*

¶

8. Security Considerations

NOTE: This is a brief outline of the security considerations.

This section will be filled out more as the draft matures and

security analyses are completed.

VDAFs have two essential security goals:

Privacy: An attacker that controls the network, the Collector,

and a subset of Clients and Aggregators learns nothing about

the measurements of honest Clients beyond what it can deduce

from the aggregate result.

Robustness: An attacker that controls the network and a subset

of Clients cannot cause the Collector to compute anything other

than the aggregate of the measurements of honest Clients.

Note that, to achieve robustness, it is important to ensure that the

verification parameters distributed to the Aggregators

(verify_params, see Section 6.2.1) is never revealed to the Clients.

It is also possible to consider a stronger form of robustness, where

the attacker also controls a subset of Aggregators (see [BBCGGI19],

Section 6.3). To satisfy this stronger notion of robustness, it is

necessary to prevent the attacker from sharing the verification

parameters with the Clients. It is therefore RECOMMENDED that the

Aggregators generate verify_params only after a set of Client inputs

has been collected for verification, and re-generate them for each

such set of inputs.

In order to achieve robustness, the Aggregators MUST ensure that the

nonces used to process the measurements in a batch are all unique.

A VDAF is the core cryptographic primitive of a protocol that

achieves the above privacy and robustness goals. It is not

sufficient on its own, however. The application will need to assure

a few security properties, for example:

Securely distributing the long-lived parameters.

Establishing secure channels:

Confidential and authentic channels among Aggregators, and

between the Aggregators and the Collector; and

Confidential and Aggregator-authenticated channels between

Clients and Aggregators.

Enforcing the non-collusion properties required of the specific

VDAF in use.

¶

¶

1.

¶

2.

¶

¶

¶

¶

¶

* ¶

* ¶

-

¶

-

¶

*

¶

[RFC2119]

[RFC4493]

[RFC8017]

[RFC8174]

In such an environment, a VDAF provides the high-level privacy

property described above: The Collector learns only the aggregate

measurement, and nothing about individual measurements aside from

what can be inferred from the aggregate result. The Aggregators

learn neither individual measurements nor the aggregate result. The

Collector is assured that the aggregate statistic accurately

reflects the inputs as long as the Aggregators correctly executed

their role in the VDAF.

On their own, VDAFs do not mitigate Sybil attacks [Dou02]. In this

attack, the adversary observes a subset of input shares transmitted

by a Client it is interested in. It allows the input shares to be

processed, but corrupts and picks bogus inputs for the remaining

Clients. Applications can guard against these risks by adding

additional controls on measurement submission, such as client

authentication and rate limits.

VDAFs do not inherently provide differential privacy [Dwo06]. The

VDAF approach to private measurement can be viewed as complementary

to differential privacy, relying on non-collusion instead of

statistical noise to protect the privacy of the inputs. It is

possible that a future VDAF could incorporate differential privacy

features, e.g., by injecting noise before the sharding stage and

removing it after unsharding.

9. IANA Considerations

This document makes no request of IANA.

10. References

10.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Song, JH., Poovendran, R., Lee, J., and T. Iwata, "The

AES-CMAC Algorithm", RFC 4493, DOI 10.17487/RFC4493, June

2006, <https://www.rfc-editor.org/rfc/rfc4493>.

Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A.

Rusch, "PKCS #1: RSA Cryptography Specifications Version

2.2", RFC 8017, DOI 10.17487/RFC8017, November 2016,

<https://www.rfc-editor.org/rfc/rfc8017>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc4493
https://www.rfc-editor.org/rfc/rfc8017
https://www.rfc-editor.org/rfc/rfc8174

[AGJOP21]

[BBCGGI19]

[BBCGGI21]

[CGB17]

[Dou02]

[Dwo06]

[ENPA]

[EPK14]

[GI14]

[I-D.draft-gpew-priv-ppm]

[OriginTelemetry]

10.2. Informative References

Addanki, S., Garbe, K., Jaffe, E., Ostrovsky, R., and A.

Polychroniadou, "Prio+: Privacy Preserving Aggregate

Statistics via Boolean Shares", 2021, <https://ia.cr/

2021/576>.

Boneh, D., Boyle, E., Corrigan-Gibbs, H., Gilboa, N.,

and Y. Ishai, "Zero-Knowledge Proofs on Secret-Shared

Data via Fully Linear PCPs", CRYPTO 2019 , 2019,

<https://ia.cr/2019/188>.

Boneh, D., Boyle, E., Corrigan-Gibbs, H., Gilboa, N.,

and Y. Ishai, "Lightweight Techniques for Private Heavy

Hitters", IEEE S&P 2021 , 2021, <https://ia.cr/2021/017>.

Corrigan-Gibbs, H. and D. Boneh, "Prio: Private, Robust,

and Scalable Computation of Aggregate Statistics", NSDI

2017 , 2017, <https://dl.acm.org/doi/

10.5555/3154630.3154652>.

Douceur, J., "The Sybil Attack", IPTPS 2002 , 2002,

<https://doi.org/10.1007/3-540-45748-8_24>.

Dwork, C., "Differential Privacy", ICALP 2006 , 2006,

<https://link.springer.com/chapter/10.1007/11787006_1>.

"Exposure Notification Privacy-preserving Analytics

(ENPA) White Paper", 2021, <https://covid19-static.cdn-

apple.com/applications/covid19/current/static/contact-

tracing/pdf/ENPA_White_Paper.pdf>.

Erlingsson, Ú., Pihur, V., and A. Korolova, "RAPPOR:

Randomized Aggregatable Privacy-Preserving Ordinal

Response", CCS 2014 , 2014, <https://dl.acm.org/doi/

10.1145/2660267.2660348>.

Gilboa, N. and Y. Ishai, "Distributed Point Functions and

Their Applications", EUROCRYPT 2014 , 2014, <https://

link.springer.com/chapter/10.1007/978-3-642-55220-5_35>.

Geoghegan, T., Patton, C., Rescorla, E.,

and C. A. Wood, "Privacy Preserving Measurement", Work in

Progress, Internet-Draft, draft-gpew-priv-ppm-01, 7 March

2022, <https://datatracker.ietf.org/doc/html/draft-gpew-

priv-ppm-01>.

"Origin Telemetry", 2020, <https://firefox-source-

docs.mozilla.org/toolkit/components/telemetry/collection/

origin.html>.

https://ia.cr/2021/576
https://ia.cr/2021/576
https://ia.cr/2019/188
https://ia.cr/2021/017
https://dl.acm.org/doi/10.5555/3154630.3154652
https://dl.acm.org/doi/10.5555/3154630.3154652
https://doi.org/10.1007/3-540-45748-8_24
https://link.springer.com/chapter/10.1007/11787006_1
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://dl.acm.org/doi/10.1145/2660267.2660348
https://dl.acm.org/doi/10.1145/2660267.2660348
https://link.springer.com/chapter/10.1007/978-3-642-55220-5_35
https://link.springer.com/chapter/10.1007/978-3-642-55220-5_35
https://datatracker.ietf.org/doc/html/draft-gpew-priv-ppm-01
https://datatracker.ietf.org/doc/html/draft-gpew-priv-ppm-01
https://firefox-source-docs.mozilla.org/toolkit/components/telemetry/collection/origin.html
https://firefox-source-docs.mozilla.org/toolkit/components/telemetry/collection/origin.html
https://firefox-source-docs.mozilla.org/toolkit/components/telemetry/collection/origin.html

[Vad16]
Vadhan, S., "The Complexity of Differential Privacy",

2016, <https://link.springer.com/chapter/

10.1007/978-3-319-57048-8_7>.

Acknowledgments

Thanks to David Cook, Henry Corrigan-Gibbs, Armando Faz-Hernandez,

Mariana Raykova, and Christopher Wood for useful feedback on and

contributions to the spec.

Test Vectors

Test vectors cover the generation of input shares and the conversion

of input shares into output shares. Vectors specify the public and

verification parameters, the measurement, the aggregation parameter,

the expected input shares, the prepare messages, and the expected

output shares.

Test vectors are encoded in JSON. Input shares and prepare messages

are represented as hexadecimal streams. To make the tests

deterministic, gen_rand() was replaced with a function that returns

the requested number of 0x01 octets.

Prio3Aes128Count

For this test, the value of SHARES is 2.

¶

¶

¶

¶

https://link.springer.com/chapter/10.1007/978-3-319-57048-8_7
https://link.springer.com/chapter/10.1007/978-3-319-57048-8_7

Prio3Aes128Sum

For this test:

The value of SHARES is 2.

The value of bits is 8.

{

 "public_param": null,

 "verify_params": [

 [

 0,

 "01010101010101010101010101010101"

],

 [

 1,

 "01010101010101010101010101010101"

]

],

 "agg_param": null,

 "prep": [

 {

 "measurement": 1,

 "nonce": "01010101010101010101010101010101",

 "input_shares": [

 "05ac22db75e9b262e9642de9ec1ec37990625f92bf426c52e12c88d7c6e53ed673a3a8a3c7944170e09a52b96573259d",

 "01"

],

 "prep_shares": [

 [

 "48771012eeda70a056cf2fd53022cf7b2edf45090eaa765c2b6cefb7a4abc524",

 "b788efec11258f61fa53dd238a164da076bfd3f2e4bd966634b24bb64c2fa160"

]

],

 "out_shares": [

 [

 408739992155304546

],

 [

 18038004077259279776

]

]

 }

]

}

¶

¶

* ¶

* ¶

Prio3Aes128Histogram

For this test:

The value of SHARES is 2.

The value of buckets is [1, 10, 100].

{

 "public_param": null,

 "verify_params": [

 [

 0,

 "01010101010101010101010101010101"

],

 [

 1,

 "01010101010101010101010101010101"

]

],

 "agg_param": null,

 "prep": [

 {

 "measurement": 100,

 "nonce": "01010101010101010101010101010101",

 "input_shares": [

 "05ac22dc75e9b243140aab68977b81a3958c5e79d27edaa00c6b33842dc57724c50207f8c00abf4aaa8ac6a09b5c684d0e59db99532526f582b7524f30d800486ec480e493439573ec2eff20748556c94d7e446de9717ff49ddcfa6fd0ad0a1a9d6de6270bd7ea53092a7e8205b312344bae6f4b6b9456d87695dba9c28514a4e9642deaec1ec35b90625f93bf426c52069601a28cc673c1f0dc7109dee4ca90e0ff309abc86571f3509a1bb33b9e896edd08f984ca3e301e945a8fa1665e19311ae9976f0e8ec34714740fc23cd88500902c8557088fa5acbde164aa52a6e118dff362e6b0b5f784a9c7260312d3b2a1f1a54d8233e4c56bcf5c2f5484fa1460af85fc46fdcdba9bbad76589159c4d6c49c786a160d9dbbd18100c52fe81ba838a57b45d13c764ff9efa7b451235a51384935e831635714ee447bbc02473cb26d536e274c701416619abb2c743ced75c9928483c926ae3ab0f0e3328c79338dd2a496c9468fe9e470aee30b94150f7356e7b19c668175df4f978736e7d3a7c710aa38a446ed62022bcb5ff783d05b428d5a16cdeae0b98268e9ded44a1f7fc734a9baafae0f029dfe79a7c176d58baf68cef928b502b5e59e4fb1925c690745ea06264fa20fa47217120d4343b9a360cad2b5424760e6df18c1214937928e1ef17005cb32815a105f471dff2bbced99f2708ddd70e28bcab86e71dde3d891ea9156b271ab9d025fabcceba3b24c673774e4f474e869c32e818f80c387c1e2197f6612c627287cd9e0a193e70a64ad4546dc0573de3c8b99a0002e67707f58974b8c40bb09f974938b96e14f901084b455f1f4ee3ec4f3b7ce02d42fe0cac452e35b4ff8e5d38e5e99c132b88d122e8ae2b6b97a62206e6f39ba74de00cbb69501010101010101010101010101010101dfed32c071cc6899645ab72c36bd3670",

 "010b9e7430cc7a71a356d6bd09d36d1fdb"

],

 "prep_shares": [

 [

 "2bcc0144c56fcf120a7aab22d57cde99fd2ee2301be4c59983d5e68e79f04cd8978b2c4598eafab7b1e8b0af8ba4bda20b9e7430cc7a71a356d6bd09d36d1fdb",

 "d433febb3a9030d1f58554dd2a8321682eff019a7a26e88471ed622fbd956e5e0af1c04b5573400ed13ae90b325aed4edfed32c071cc6899645ab72c36bd3670"

]

],

 "out_shares": [

 [

 178602842237398423407215704739732627917

],

 [

 161679524683540039539650068628168138392

]

]

 }

]

}

¶

¶

* ¶

* ¶

Authors' Addresses

Richard L. Barnes

Cisco

{

 "public_param": null,

 "verify_params": [

 [

 0,

 "01010101010101010101010101010101"

],

 [

 1,

 "01010101010101010101010101010101"

]

],

 "agg_param": null,

 "prep": [

 {

 "measurement": 50,

 "nonce": "01010101010101010101010101010101",

 "input_shares": [

 "05ac22dc75e9b243140aab68977b81a3958c5e79d27edaa00c6b33842dc57724c50207f8c00abf4aaa8ac6a09b5c684d0e59db99532526f582b7524f30d80048e9642deaec1ec35b90625f93bf426c52f7ee6bcda3008ff165f5a4dda4bf3382726b89e1455450fb07187cc5b1f4e5b8076d88ca6a52fc73893f179286ed2293f2ba224171991de5cad6ec008bfb16d0990681811a5d149cad81d5177733e8dbabf41f2912442107c7600326e510c0d4a17daddb4577dda42dc84334e51821bb48542744f26726abec63e901571c2841a53f4e93c9bac99d39f87c3773f8173d93465cd2d31f7513516566b9d3aa7a4088d9fb35185b7d6233a9306f40f834c5c3dea78561a999332ab95825a559a131bad2b5cd6a32ed918564d534513aac896d2da35f81b74c226d75f832957209f6df24dc1c9ddf93d4e28a0b30df4a873401010101010101010101010101010101688dfdc50bd6d3a9ecf1613c58b7ced1",

 "014a3951bdbf7a4564e422499e59351ba7"

],

 "prep_shares": [

 [

 "03faf09f79624d05e3a1e17bf1e5117ea6eec816dbd047641506a0c1b1e817fa1ebb27507cea09b00b47e0615ba82ff64a3951bdbf7a4564e422499e59351ba7",

 "fc050f60869db2de1c5e1e840e1aee830a99091f9a820099b6b9591984046f48b6b6d58ddb1675ef43101aa8773f3025688dfdc50bd6d3a9ecf1613c58b7ced1"

]

],

 "out_shares": [

 [

 7539922107207114695252505926366364067,

 198783809130402957557687312006462666532,

 261868461448231140209796284667530078285,

 19075760356742656327154126012204712008

],

 [

 332742444813731348251613267441534402142,

 141498557790535505389178461361438099677,

 78413905472707322737069488700370687925,

 321206606564195806619711647355696054201

]

]

 }

]

}

¶

Email: rlb@ipv.sx

Christopher Patton

Cloudflare, Inc.

Email: chrispatton+ietf@gmail.com

Phillipp Schoppmann

Google

Email: schoppmann@google.com

mailto:rlb@ipv.sx
mailto:chrispatton+ietf@gmail.com
mailto:schoppmann@google.com

	Verifiable Distributed Aggregation Functions
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions and Definitions
	3. Overview
	4. Definition of VDAFs
	4.1. Setup
	4.2. Sharding
	4.3. Preparation
	4.4. Aggregation
	4.5. Unsharding
	4.6. Execution of a VDAF

	5. Preliminaries
	5.1. Finite Fields
	5.1.1. Auxiliary Functions
	5.1.2. FFT-Friendly Fields
	5.1.3. Parameters

	5.2. Pseudorandom Generators
	5.2.1. PrgAes128

	6. Prio3
	6.1. Fully Linear Proof (FLP) Systems
	6.1.1. Encoding the Input

	6.2. Construction
	6.2.1. Setup
	6.2.2. Sharding
	6.2.3. Preparation
	6.2.4. Aggregation
	6.2.5. Unsharding
	6.2.6. Auxiliary Functions

	6.3. A General-Purpose FLP
	6.3.1. Overview
	6.3.1.1. Extensions

	6.3.2. Validity Circuits
	6.3.3. Construction
	6.3.3.1. Proof Generation
	6.3.3.2. Query Generation
	6.3.3.3. Decision
	6.3.3.4. Encoding

	6.4. Instantiations
	6.4.1. Prio3Aes128Count
	6.4.2. Prio3Aes128Sum
	6.4.3. Prio3Aes128Histogram

	7. Poplar1
	7.1. Incremental Distributed Point Functions (IDPFs)
	7.2. Construction
	7.2.1. Setup
	7.2.1.1. Client

	7.2.2. Preparation
	7.2.3. Aggregation
	7.2.4. Unsharding
	7.2.5. Helper Functions

	8. Security Considerations
	9. IANA Considerations
	10. References
	10.1. Normative References
	10.2. Informative References

	Acknowledgments
	Test Vectors
	Prio3Aes128Count
	Prio3Aes128Sum
	Prio3Aes128Histogram

	Authors' Addresses

