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Abstract

   An Oblivious Pseudorandom Function (OPRF) is a two-party protocol for
   computing the output of a PRF.  One party (the server) holds the PRF
   secret key, and the other (the client) holds the PRF input.  The
   'obliviousness' property ensures that the server does not learn
   anything about the client's input during the evaluation.  The client
   should also not learn anything about the server's secret PRF key.
   Optionally, OPRFs can also satisfy a notion 'verifiability' (VOPRF).
   In this setting, the client can verify that the server's output is
   indeed the result of evaluating the underlying PRF with just a public
   key.  This document specifies OPRF and VOPRF constructions
   instantiated within prime-order groups, including elliptic curves.
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1.  Introduction

   A pseudorandom function (PRF) F(k, x) is an efficiently computable
   function with secret key k on input x.  Roughly, F is pseudorandom if
   the output y = F(k, x) is indistinguishable from uniformly sampling
   any element in F's range for random choice of k.  An oblivious PRF
   (OPRF) is a two-party protocol between a prover P and verifier V
   where P holds a PRF key k and V holds some input x.  The protocol
   allows both parties to cooperate in computing F(k, x) with P's secret
   key k and V's input x such that: V learns F(k, x) without learning
   anything about k; and P does not learn anything about x.  A
   Verifiable OPRF (VOPRF) is an OPRF wherein P can prove to V that F(k,
   x) was computed using key k, which is bound to a trusted public key Y
   = kG.  Informally, this is done by presenting a non-interactive zero-
   knowledge (NIZK) proof of equality between (G, Y) and (Z, M), where Z
   = kM for some point M.

   OPRFs have been shown to be useful for constructing: password-
   protected secret sharing schemes [JKK14]; privacy-preserving password
   stores [SJKS17]; and password-authenticated key exchange or PAKE
   [OPAQUE].  VOPRFs are useful for producing tokens that are verifiable
   by V.  This may be needed, for example, if V wants assurance that P
   did not use a unique key in its computation, i.e., if V wants key
   consistency from P.  This property is necessary in some applications,
   e.g., the Privacy Pass protocol [PrivacyPass], wherein this VOPRF is
   used to generate one-time authentication tokens to bypass CAPTCHA
   challenges.  VOPRFs have also been used for password-protected secret
   sharing schemes e.g.  [JKKX16].

   This document introduces an OPRF protocol built in prime-order
   groups, applying to finite fields of prime-order and also elliptic
   curve (EC) settings.  The protocol has the option of being extended
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   to a VOPRF with the addition of a NIZK proof for proving discrete log
   equality relations.  This proof demonstrates correctness of the
   computation using a known public key that serves as a commitment to
   the server's secret key.  In the EC setting, we will refer to the
   protocol as ECOPRF (or ECVOPRF if verifiability is concerned).  The
   document describes the protocol, its security properties, and
   provides preliminary test vectors for experimentation.  The rest of
   the document is structured as follows:

   o  Section 2: Describe background, related work, and use cases of
      OPRF/VOPRF protocols.

   o  Section 3: Discuss security properties of OPRFs/VOPRFs.

   o  Section 4: Specify an authentication protocol from OPRF
      functionality, based in prime-order groups (with an optional
      verifiable mode).  Algorithms are stated formally for OPRFs in

Section 4.3 and for VOPRFs in Section 4.4.

   o  Section 5: Specify the NIZK discrete logarithm equality (DLEQ)
      construction used for constructing the VOPRF protocol.

   o  Section 6: Specifies how the DLEQ proof mechanism can be batched
      for multiple VOPRF invocations, and how this changes the protocol
      execution.

   o  Section 7: Considers explicit instantiations of the protocol in
      the elliptic curve setting.

   o  Section 8: Discusses the security considerations for the OPRF and
      VOPRF protocol.

   o  Section 9: Discusses some existing applications of OPRF and VOPRF
      protocols.

   o  Appendix A: Specifies test vectors for implementations in the
      elliptic curve setting.

1.1.  Terminology

   The following terms are used throughout this document.

   o  PRF: Pseudorandom Function.

   o  OPRF: Oblivious PRF.

   o  VOPRF: Verifiable Oblivious Pseudorandom Function.
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   o  ECVOPRF: A VOPRF built on Elliptic Curves.

   o  Verifier (V): Protocol initiator when computing F(k, x).

   o  Prover (P): Holder of secret key k.

   o  NIZK: Non-interactive zero knowledge.

   o  DLEQ: Discrete Logarithm Equality.

1.2.  Requirements

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

2.  Background

   OPRFs are functionally related to blind signature schemes.  In such a
   scheme, a client can receive signatures on private data, under the
   signing key of some server.  The security properties of such a scheme
   dictate that the client learns nothing about the signing key, and
   that the server learns nothing about the data that is signed.  One of
   the more popular blind signature schemes is based on the RSA
   cryptosystem and is known as Blind RSA [ChaumBlindSignature].

   OPRF protocols can thought of as symmetric alternatives to blind
   signatures.  Essentially the client learns y = PRF(k,x) for some
   input x of their choice, from a server that holds k.  Since the
   security of an OPRF means that x is hidden in the interaction, then
   the client can later reveal x to the server along with y.

   The server can verify that y is computed correctly by recomputing the
   PRF on x using k.  In doing so, the client provides knowledge of a
   'signature' y for their value x.  The verification procedure is thus
   symmetric as it requires knowledge of the key k.  This is discussed
   more in the following section.

3.  Security Properties

   The security properties of an OPRF protocol with functionality y =
   F(k, x) include those of a standard PRF.  Specifically:

   o  Pseudorandomness: F is pseudorandom if the output y = F(k,x) on
      any input x is indistinguishable from uniformly sampling any
      element in F's range, for a random sampling of k.

https://datatracker.ietf.org/doc/html/rfc2119
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   In other words, for an adversary that can pick inputs x from the
   domain of F and can evaluate F on (k,x) (without knowledge of
   randomly sampled k), then the output distribution F(k,x) is
   indistinguishable from the uniform distribution in the range of F.

   A consequence of showing that a function is pseudorandom, is that it
   is necessarily non-malleable (i.e. we cannot compute a new evaluation
   of F from an existing evaluation).  A genuinely random function will
   be non-malleable with high probability, and so a pseudorandom
   function must be non-malleable to maintain indistinguishability.

   An OPRF protocol must also satisfy the following property:

   o  Oblivious: P must learn nothing about V's input or the output of
      the function.  In addition, V must learn nothing about P's private
      key.

   Essentially, obliviousness tells us that, even if P learns V's input
   x at some point in the future, then P will not be able to link any
   particular OPRF evaluation to x.  This property is also known as
   unlinkability [DGSTV18].

   Optionally, for any protocol that satisfies the above properties,
   there is an additional security property:

   o  Verifiable: V must only complete execution of the protocol if it
      can successfully assert that the OPRF output computed by V is
      correct, with respect to the OPRF key held by P.

   Any OPRF that satisfies the 'verifiable' security property is known
   as a verifiable OPRF, or VOPRF for short.  In practice, the notion of
   verifiability requires that P commits to the key k before the actual
   protocol execution takes place.  Then V verifies that P has used k in
   the protocol using this commitment.  In the following, we may also
   refer to this commitment as a public key.

4.  OPRF Protocol

   In this section we describe the OPRF protocol.  Let GG be an additive
   group of prime-order p, let GF(p) be the Galois field defined by the
   integers modulo p.  Define distinct hash functions H_1 and H_2, where
   H_1 maps arbitrary input onto GG and H_2 maps arbitrary input to a
   fixed-length output, e.g., SHA256.  All hash functions in the
   protocol are modelled as random oracles.  Let L be the security
   parameter.  Let k be the prover's (P) secret key, and Y = kG be its
   corresponding 'public key' for some fixed generator G taken from the
   description of the group GG.  This public key Y is also referred to
   as a commitment to the OPRF key k, and the pair (G,Y) as a commitment
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   pair.  Let x be the verifier's (V) input to the OPRF protocol.
   (Commonly, it is a random L-bit string, though this is not required.)

   The OPRF protocol begins with V blinding its input for the OPRF
   evaluator such that it appears uniformly distributed GG.  The latter
   then applies its secret key to the blinded value and returns the
   result.  To finish the computation, V then removes its blind and
   hashes the result using H_2 to yield an output.  This flow is
   illustrated below.

        Verifier                       Prover
     ----------------------------------------------------------
        r <-$ GF(p)
        M = rH_1(x) mod p
                             M
                           ------->
                                     Z = kM mod p
                                     [D = DLEQ_Generate(k,G,Y,M,Z)]
                             Z[,D]
                           <-------
       [b = DLEQ_Verify(G,Y,M,Z,D)]
       N = Zr^(-1) mod p
       Output H_2(x, N) mod p [if b=1, else "error"]

   Steps that are enclosed in square brackets (DLEQ_Generate and
   DLEQ_Verify) are optional for achieving verifiability.  These are
   described in Section 5.  In the verifiable mode, we assume that P has
   previously committed to their choice of key k with some values
   (G,Y=kG) and these are publicly known by V.  Notice that revealing
   (G,Y) does not reveal k by the well-known hardness of the discrete
   log problem.

   Strictly speaking, the actual PRF function that is computed is:

   F(k, x) = N = kH_1(x)

   It is clear that this is a PRF H_1(x) maps x to a random element in
   GG, and GG is cyclic.  This output is computed when the client
   computes Zr^(-1) by the commutativity of the multiplication.  The
   client finishes the computation by outputting H_2(x,N).  Note that
   the output from P is not the PRF value because the actual input x is
   blinded by r.

   This protocol may be decomposed into a series of steps, as described
   below:

   o  OPRF_Setup(l): Generate am integer k of sufficient bit-length l
      and output k.
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   o  OPRF_Blind(x): Compute and return a blind, r, and blinded
      representation of x in GG, denoted M.

   o  OPRF_Eval(k,M,h?): Evaluates on input M using secret key k to
      produce Z, the input h is optional and equal to the cofactor of an
      elliptic curve.  If h is not provided then it defaults to 1.

   o  OPRF_Unblind(r,Z): Unblind blinded OPRF evaluation Z with blind r,
      yielding N and output N.

   o  OPRF_Finalize(x,N): Finalize N to produce the output H_2(x, N).

   For verifiability we modify the algorithms of VOPRF_Setup, VOPRF_Eval
   and VOPRF_Unblind to be the following:

   o  VOPRF_Setup(l): Generate an integer k of sufficient bit-length l
      and output (k, (G,Y)) where Y = kG for the fixed generator G of
      GG.

   o  VOPRF_Eval(k,(G,Y),M,h?): Evaluates on input M using secret key k
      to produce Z.  Generate a NIZK proof D = DLEQ_Generate(k,G,Y,M,Z),
      and output (Z, D).  The optional cofactor h can also be provided,
      as in OPRF_Eval.

   o  VOPRF_Unblind(r,G,Y,M,(Z,D)): Unblind blinded OPRF evaluation Z
      with blind r, yielding N.  Output N if 1 = DLEQ_Verify(G,Y,M,Z,D).
      Otherwise, output "error".

   We leave the rest of the OPRF algorithms unmodified.  When referring
   explicitly to VOPRF execution, we replace 'OPRF' in all method names
   with 'VOPRF'.

4.1.  Protocol correctness

   Protocol correctness requires that, for any key k, input x, and (r,
   M) = OPRF_Blind(x), it must be true that:

   OPRF_Finalize(x, OPRF_Unblind(r,M,OPRF_Eval(k,M))) = H_2(x, F(k,x))

   with overwhelming probability.  Likewise, in the verifiable setting,
   we require that:

VOPRF_Finalize(x, VOPRF_Unblind(r,(G,Y),M,(VOPRF_Eval(k,(G,Y),M)))) = H_2(x, 
F(k,x))

   with overwhelming probability, where (r, M) = VOPRF_Blind(x).
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4.2.  Instantiations of GG

   As we remarked above, GG is a subgroup with associated prime-order p.
   While we choose to write operations in the setting where GG comes
   equipped with an additive operation, we could also define the
   operations in the multiplicative setting.  In the multiplicative
   setting we can choose GG to be a prime-order subgroup of a finite
   field FF_p.  For example, let p be some large prime (e.g. > 2048
   bits) where p = 2q+1 for some other prime q.  Then the subgroup of
   squares of FF_p (elements u^2 where u is an element of FF_p) is
   cyclic, and we can pick a generator of this subgroup by picking G
   from FF_p (ignoring the identity element).

   For practicality of the protocol, it is preferable to focus on the
   cases where GG is an additive subgroup so that we can instantiate the
   OPRF in the elliptic curve setting.  This amounts to choosing GG to
   be a prime-order subgroup of an elliptic curve over base field GF(p)
   for prime p.  There are also other settings where GG is a prime-order
   subgroup of an elliptic curve over a base field of non-prime order,
   these include the work of Ristretto [RISTRETTO] and Decaf [DECAF].

   We will use p > 0 generally for constructing the base field GF(p),
   not just those where p is prime.  To reiterate, we focus only on the
   additive case, and so we focus only on the cases where GF(p) is
   indeed the base field.

   Unless otherwise stated, we will always assume that the generator G
   that we use for the group GG is a fixed generator.  This generator
   should be provided in the description of the group GG.

4.3.  OPRF algorithms

   This section provides algorithms for each step in the OPRF protocol.
   We describe the VOPRF analogues in Section 4.4.  We provide generic
   utility algorithms in Section 4.5.

   1.  P samples a uniformly random key k <- {0,1}^l for sufficient
       length l, and interprets it as an integer.

   2.  V computes X = H_1(x) and a random element r (blinding factor)
       from GF(p), and computes M = rX.

   3.  V sends M to P.

   4.  P computes Z = kM = rkX.

   5.  In the elliptic curve setting, P multiplies Z by the cofactor
       (denoted h) of the elliptic curve.
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   6.  P sends Z to V.

   7.  V unblinds Z to compute N = r^(-1)Z = kX.

   8.  V outputs the pair H_2(x, N).

   We note here that the blinding mechanism that we use can be modified
   slightly with the opportunity for making performance gains in some
   scenarios.  We detail these modifications in Section Section 4.6.

4.3.1.  OPRF_Setup

   Input:

    l: Some suitable choice of key-length (e.g. as described in [NIST]).

   Output:

    k: A key chosen from {0,1}^l and interpreted as an integer value.

   Steps:

    1. Sample k_bin <-$ {0,1}^l
    2. Output k <- bin2scalar(k_bin, l)

4.3.2.  OPRF_Blind

   Input:

    x: V's PRF input.

   Output:

    r: Random scalar in [1, p - 1].
    M: Blinded representation of x using blind r, an element in GG.

   Steps:

    1.  r <-$ GF(p)
    2.  M := rH_1(x)
    3.  Output (r, M)

4.3.3.  OPRF_Eval
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   Input:

    k: Evaluator secret key.
    M: An element in GG.
    h: optional cofactor (defaults to 1).

   Output:

    Z: Scalar multiplication of the point M by k, element in GG.

   Steps:

    1. Z := kM
    2. Z <- hZ
    3. Output Z

4.3.4.  OPRF_Unblind

   Input:

    r: Random scalar in [1, p - 1].
    Z: An element in GG.

   Output:

    N: Unblinded OPRF evaluation, element in GG.

   Steps:

    1. N := (r^(-1))Z
    2. Output N

4.3.5.  OPRF_Finalize

   Input:

    x: PRF input string.
    N: An element in GG.

   Output:

    y: Random element in {0,1}^L.

   Steps:

    1. y := H_2(x, N)
    2. Output y
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4.4.  VOPRF algorithms

   The steps in the VOPRF setting are written as:

   1.  P samples a uniformly random key k <- {0,1}^l for sufficient
       length l, and interprets it as an integer.

   2.  P commits to k by computing (G,Y) for Y=kG, where G is the fixed
       generator of GG.  P makes the pair (G,Y) publicly available.

   3.  V computes X = H_1(x) and a random element r (blinding factor)
       from GF(p), and computes M = rX.

   4.  V sends M to P.

   5.  P computes Z = kM = rkX, and D = DLEQ_Generate(k,G,Y,M,Z).

   6.  P sends (Z, D) to V.

   7.  V ensures that 1 = DLEQ_Verify(G,Y,M,Z,D).  If not, V outputs an
       error.

   8.  V unblinds Z to compute N = r^(-1)Z = kX.

   9.  V outputs the pair H_2(x, N).

4.4.1.  VOPRF_Setup

   Input:

    G: Public fixed generator of GG.
    l: Some suitable choice of key-length (e.g. as described in [NIST]).

   Output:

    k: A key chosen from {0,1}^l and interpreted as an integer value.
    (G,Y): A pair of curve points, where Y=kG.

   Steps:

     1. k <- OPRF_Setup(l)
     2. Y := kG
     3. Output (k, (G,Y))
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4.4.2.  VOPRF_Blind

   Input:

    x: V's PRF input.

   Output:

    r: Random scalar in [1, p - 1].
    M: Blinded representation of x using blind r, an element in GG.

   Steps:

    1.  r <-$ GF(p)
    2.  M := rH_1(x)
    3.  Output (r, M)

4.4.3.  VOPRF_Eval

   Input:

    k: Evaluator secret key.
    G: Public fixed generator of group GG.
    Y: Evaluator public key (= kG).
    M: An element in GG.
    h: optional cofactor (defaults to 1).

   Output:

    Z: Scalar multiplication of the point M by k, element in GG.
    D: DLEQ proof that log_G(Y) == log_M(Z).

   Steps:

    1. Z := kM
    2. Z <- hZ
    3. D = DLEQ_Generate(k,G,Y,M,Z)
    4. Output (Z, D)

4.4.4.  VOPRF_Unblind



Davidson, et al.         Expires January 9, 2020               [Page 13]



Internet-Draft                    OPRFs                        July 2019

   Input:

    r: Random scalar in [1, p - 1].
    G: Public fixed generator of group GG.
    Y: Evaluator public key.
    M: Blinded representation of x using blind r, an element in GG.
    Z: An element in GG.
    D: D = DLEQ_Generate(k,G,Y,M,Z).

   Output:

    N: Unblinded OPRF evaluation, element in GG.

   Steps:

    1. N := (r^(-1))Z
    2. If 1 = DLEQ_Verify(G,Y,M,Z,D), output N
    3. Output "error"

4.4.5.  VOPRF_Finalize

   Input:

    x: PRF input string.
    N: An element in GG, or "error".

   Output:

    y: Random element in {0,1}^L, or "error"

   Steps:

    1. If N == "error", output "error".
    2. y := H_2(x, N)
    3. Output y

4.5.  Utility algorithms

4.5.1.  bin2scalar

   This algorithm converts a binary string to an integer modulo p.
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   Input:

    s: binary string (little-endian)
    l: length of binary string
    p: modulus

   Output:

    z: An integer modulo p

   Steps:

    1. sVec <- vec(s) (converts s to a column vector of dimension l)
    2. p2Vec <- (2^0, 2^1, ..., 2^{l-1}) (row vector of dimension l)
    3. z <- p2Vec * sVec (mod p)
    4. Output z

4.6.  Efficiency gains with pre-processing and fixed-base blinding

   In Section Section 4.3 we assume that the client-side blinding is
   carried out directly on the output of H_1(x), i.e. computing rH_1(x)
   for some r <-$ GF(p).  In the [OPAQUE] draft, it is noted that it may
   be more efficient to use additive blinding rather than multiplicative
   if the client can preprocess some values.  For example, a valid way
   of computing additive blinding would be to instead compute H_1(x)+rG,
   where G is the fixed generator for the group GG.

   We refer to the 'multiplicative' blinding as variable-base blinding
   (VBB), since the base of the blinding (H_1(x)) varies with each
   instantiation.  We refer to the additive blinding case as fixed-base
   blinding (FBB) since the blinding is applied to the same generator
   each time (when computing rG).

   By pre-processing tables of blinded scalar multiplications for the
   specific choice of G it is possible to gain a computational
   advantage.  Choosing one of these values rG (where r is the scalar
   value that is used), then computing H_1(x)+rG is more efficient than
   computing rH_1(x) (one addition against log_2(r)).  Therefore, it may
   be advantageous to define the OPRF and VOPRF protocols using additive
   blinding rather than multiplicative blinding.  In fact, the only
   algorithms that need to change are OPRF_Blind and OPRF_Unblind (and
   similarly for the VOPRF variants).

   We define the FBB variants of the algorithms in Section 4.3 below
   along with a new algorithm OPRF_Preprocess that defines how
   preprocessing is carried out.  The equivalent algorithms for VOPRF
   are almost identical and so we do not redefine them here.  Notice
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   that the only computation that changes is for V, the necessary
   computation of P does not change.

4.6.1.  OPRF_Preprocess

   Input:

    G: Public fixed generator of GG

   Output:

    r: Random scalar in [1, p-1]
    rG: An element in GG.
    rY: An element in GG.

   Steps:

    1.  r <-$ GF(p)
    2.  Output (r, rG, rY)

4.6.2.  OPRF_Blind

   Input:

    x: V's PRF input.
    rG: Preprocessed element of GG.

   Output:

    M: Blinded representation of x using blind r, an element in GG.

   Steps:

    1.  M := H_1(x)+rG
    2.  Output M

4.6.3.  OPRF_Unblind
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   Input:

    rY: Preprocessed element of GG.
    M: Blinded representation of x using rG, an element in GG.
    Z: An element in GG.

   Output:

    N: Unblinded OPRF evaluation, element in GG.

   Steps:

    1. N := Z-rY
    2. Output N

   Notice that OPRF_Unblind computes (Z-rY) = k(H_1(x)+rG) - rkG =
   kH_1(x) by the commutativity of scalar multiplication in GG.  This is
   the same output as in the original OPRF_Unblind algorithm.

5.  NIZK Discrete Logarithm Equality Proof

   For the VOPRF protocol we require that V is able to verify that P has
   used its private key k to evaluate the PRF.  We can do this by
   showing that the original commitment (G,Y) output by VOPRF_Setup(l)
   satisfies log_G(Y) == log_M(Z) where Z is the output of
   VOPRF_Eval(k,(G,Y),M).

   This may be used, for example, to ensure that P uses the same private
   key for computing the VOPRF output and does not attempt to "tag"
   individual verifiers with select keys.  This proof must not reveal
   the P's long-term private key to V.

   Consequently, this allows extending the OPRF protocol with a (non-
   interactive) discrete logarithm equality (DLEQ) algorithm built on a
   Chaum-Pedersen [ChaumPedersen] proof.  This proof is divided into two
   procedures: DLEQ_Generate and DLEQ_Verify.  These are specified
   below.

5.1.  DLEQ_Generate
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  Input:

   k: Evaluator secret key.
   G: Public fixed generator of GG.
   Y: Evaluator public key (= kG).
   M: An element in GG.
   Z: An element in GG.
   H_3: A hash function from GG to {0,1}^L, modelled as a random oracle.

  Output:

   D: DLEQ proof (c, s).

  Steps:

   1. r <-$ GF(p)
   2. A := rG and B := rM.
   3. c <- H_3(G,Y,M,Z,A,B)
   4. s := (r - ck) (mod p)
   5. Output D := (c, s)

   We note here that it is essential that a different r value is used
   for every invocation.  If this is not done, then this may leak the
   key k in a similar fashion as is possible in Schnorr or (EC)DSA
   scenarios where fresh randomness is not used.

5.2.  DLEQ_Verify

   Input:

    G: Public fixed generator of GG.
    Y: Evaluator public key.
    M: An element in GG.
    Z: An element in GG.
    D: DLEQ proof (c, s).

   Output:

    True if log_G(Y) == log_M(Z), False otherwise.

   Steps:

    1. A' := (sG + cY)
    2. B' := (sM + cZ)
    3. c' <- H_3(G,Y,M,Z,A',B')
    4. Output c == c'
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6.  Batched VOPRF evaluation

   Common applications (e.g.  [PrivacyPass]) require V to obtain
   multiple PRF evaluations from P.  In the VOPRF case, this would also
   require generation and verification of a DLEQ proof for each Zi
   received by V.  This is costly, both in terms of computation and
   communication.  To get around this, applications use a 'batching'
   procedure for generating and verifying DLEQ proofs for a finite
   number of PRF evaluation pairs (Mi,Zi).  For n PRF evaluations:

   o  Proof generation is slightly more expensive from 2n modular
      exponentiations to 2n+2.

   o  Proof verification is much more efficient, from 4n modular
      exponentiations to 2n+4.

   o  Communications falls from 2n to 2 group elements.

   Therefore, since P is usually a powerful server, we can tolerate a
   slight increase in proof generation complexity for much more
   efficient communication and proof verification.

   In this section, we describe algorithms for batching the DLEQ
   generation and verification procedure.  For these algorithms we
   require an additional random oracle H_5: {0,1}^a x ZZ^3 -> {0,1}^b
   that takes an inputs of a binary string of length a and three integer
   values, and outputs an element in {0,1}^b.

6.1.  Batched DLEQ algorithms

6.1.1.  Batched_DLEQ_Generate
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Input:

 k: Evaluator secret key.
 G: Public fixed generator of group GG.
 Y: Evaluator public key (= kG).
 n: Number of PRF evaluations.
 [ Mi ]: An array of points in GG of length n.
 [ Zi ]: An array of points in GG of length n.
 H_4: A hash function from GG^(2n+2) to {0,1}^a, modelled as a random oracle.
 H_5: A hash function from {0,1}^a x ZZ^2 to {0,1}^b, modelled as a random 
oracle.
 label: An integer label value for the splitting the domain of H_5

Output:

 D: DLEQ proof (c, s).

Steps:

 1. seed <- H_4(G,Y,[Mi,Zi]))
 2. for i in [n]: di <- H_5(seed,i,label)
 3. c1,...,cn := (int)d1,...,(int)dn
 4. M := c1M1 + ... + cnMn
 5. Z := c1Z1 + ... + cnZn
 6. Output D <- DLEQ_Generate(k,G,Y,M,Z)

6.1.2.  Batched_DLEQ_Verify

 Input:

  G: Public fixed generator of group GG.
  Y: Evaluator public key.
  [ Mi ]: An array of points in GG of length n.
  [ Zi ]: An array of points in GG of length n.
  D: DLEQ proof (c, s).

 Output:

  True if log_G(Y) == log_(Mi)(Zi) for each i in 1...n, False otherwise.

 Steps:

  1. seed <- H_4(G,Y,[Mi,Zi]))
  2. for i in [n]: di <- H_5(seed,i,info)
  3. c1,...,cn := (int)d1,...,(int)dn
  4. M := c1M1 + ... + cnMn
  5. Z := c1Z1 + ... + cnZn
  6. Output DLEQ_Verify(G,Y,M,Z,D)
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6.2.  Modified protocol execution

   The VOPRF protocol from Section Section 4 changes to allow specifying
   multiple blinded PRF inputs [ Mi ] for i in 1...n.  P computes the
   array [ Zi ] and replaces DLEQ_Generate with Batched_DLEQ_Generate
   over these arrays.  The same applies to the algorithm VOPRF_Eval.
   The same applies for replacing DLEQ_Verify with Batched_DLEQ_Verify
   when V verifies the response from P and during the algorithm
   VOPRF_Verify.

6.3.  Random oracle instantiations for proofs

   We can instantiate the random oracle function H_4 using the same hash
   function that is used for H_1,H_2,H_3.  For H_5, we can also use a
   similar instantiation, or we can use a variable-length output
   generator.  For example, for groups with an order of 256-bit, valid
   instantiations include functions such as SHAKE-256 [SHAKE] or HKDF-
   Expand-SHA256 [RFC5869].

   In addition if a function with larger output than the order of the
   base field is used, we note that the outputs of H_5 (d1,...,dn) must
   be smaller than this order.  If any di that is sampled is larger than
   then order, then we should resample until a di' is sampled that is
   valid.

   In these cases, the iterating integer i is increased monotonically to
   i' until such di' is sampled.  When sampling the next value d(i+1),
   the counter i+1 is started at i'+1.

   TODO: Give a more detailed specification of this construction.

7.  Supported ciphersuites

   This section specifies supported ECVOPRF group and hash function
   instantiations.  We only provide ciphersuites in the EC setting as
   these provide the most efficient way of instantiating the OPRF.  Our
   instantiation includes considerations for providing the DLEQ proofs
   that make the instantiation a VOPRF.  Supporting OPRF operations
   (ECOPRF) alone can be allowed by simply dropping the relevant
   components.  In addition, we currently only support ciphersuites
   demonstrating 128 bits of security.

7.1.  ECVOPRF-P256-HKDF-SHA256-SSWU:

   o  GG: SECP256K1 curve [SEC2]

   o  H_1: H2C-P256-SHA256-SSWU- [I-D.irtf-cfrg-hash-to-curve]

https://datatracker.ietf.org/doc/html/rfc5869
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      *  label: voprf_h2c

   o  H_2: SHA256

   o  H_3: SHA256

   o  H_4: SHA256

   o  H_5: HKDF-Expand-SHA256

7.2.  ECVOPRF-RISTRETTO-HKDF-SHA512-Elligator2:

   o  GG: Ristretto [RISTRETTO]

   o  H_1: H2C-Curve25519-SHA512-Elligator2-Clear
      [I-D.irtf-cfrg-hash-to-curve]

      *  label: voprf_h2c

   o  H_2: SHA512

   o  H_3: SHA512

   o  H_4: SHA512

   o  H_5: HKDF-Expand-SHA512

   In the case of Ristretto, internal point representations are
   represented by Ed25519 [RFC7748] points.  As a result, we can use the
   same hash-to-curve encoding as we would use for Ed25519
   [I-D.irtf-cfrg-hash-to-curve].  We remark that the 'label' field is
   necessary for domain separation of the hash-to-curve functionality.

8.  Security Considerations

   Security of the protocol depends on P's secrecy of k.  Best practices
   recommend P regularly rotate k so as to keep its window of compromise
   small.  Moreover, if each key should be generated from a source of
   safe, cryptographic randomness.

   A critical aspect of this protocol is reliance on
   [I-D.irtf-cfrg-hash-to-curve] for mapping arbitrary inputs x to
   points on a curve.  Security requires this mapping be pre-image and
   collision resistant.

https://datatracker.ietf.org/doc/html/rfc7748
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8.1.  Timing Leaks

   To ensure no information is leaked during protocol execution, all
   operations that use secret data MUST be constant time.  Operations
   that SHOULD be constant time include: H_1() (hashing arbitrary
   strings to curves) and DLEQ_Generate().
   [I-D.irtf-cfrg-hash-to-curve] describes various algorithms for
   constant-time implementations of H_1.

8.2.  Hashing to curves

   We choose different encodings in relation to the elliptic curve that
   is used, all methods are illuminated precisely in
   [I-D.irtf-cfrg-hash-to-curve].  In summary, we use the simplified
   Shallue-Woestijne-Ulas algorithm for hashing binary strings to the
   P-256 curve; the Icart algorithm for hashing binary strings to P384;
   the Elligator2 algorithm for hashing binary strings to CURVE25519 and
   CURVE448.

8.3.  Verifiability (key consistency)

   DLEQ proofs are essential to the protocol to allow V to check that
   P's designated private key was used in the computation.  A side
   effect of this property is that it prevents P from using a unique key
   for select verifiers as a way of "tagging" them.  If all verifiers
   expect use of a certain private key, e.g., by locating P's public key
   published from a trusted registry, then P cannot present unique keys
   to an individual verifier.

   For this side effect to hold, P must also be prevented from using
   other techniques to manipulate their public key within the trusted
   registry to reduce client anonymity.  For example, if P's public key
   is rotated too frequently then this may stratify the user base into
   small anonymity groups (those with VOPRF_Eval outputs taken from a
   given key epoch).  In this case, it may become practical to link
   VOPRF sessions for a given user and thus compromise their privacy.

   Similarly, if P can publish N public keys to a trusted registry then
   P may be able to control presentation of these keys in such a way
   that V is retroactively identified by V's key choice across multiple
   requests.

9.  Applications

   This section describes various applications of the VOPRF protocol.
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9.1.  Privacy Pass

   This VOPRF protocol is used by the Privacy Pass system [PrivacyPass]
   to help Tor users bypass CAPTCHA challenges.  Their system works as
   follows.  Client C connects - through Tor - to an edge server E
   serving content.  Upon receipt, E serves a CAPTCHA to C, who then
   solves the CAPTCHA and supplies, in response, n blinded points.  E
   verifies the CAPTCHA response and, if valid, signs (at most) n
   blinded points, which are then returned to C along with a batched
   DLEQ proof.  C stores the tokens if the batched proof verifies
   correctly.  When C attempts to connect to E again and is prompted
   with a CAPTCHA, C uses one of the unblinded and signed points, or
   tokens, to derive a shared symmetric key sk used to MAC the CAPTCHA
   challenge.  C sends the CAPTCHA, MAC, and token input x to E, who can
   use x to derive sk and verify the CAPTCHA MAC.  Thus, each token is
   used at most once by the system.

   The Privacy Pass implementation uses the P-256 instantiation of the
   VOPRF protocol.  For more details, see [DGSTV18].

9.2.  Private Password Checker

   In this application, let D be a collection of plaintext passwords
   obtained by prover P.  For each password p in D, P computes
   VOPRF_Eval on H_1(p), where H_1 is as described above, and stores the
   result in a separate collection D'.  P then publishes D' with Y, its
   public key.  If a client C wishes to query D' for a password p', it
   runs the VOPRF protocol using p as input x to obtain output y.  By
   construction, y will be the OPRF evaluation of p hashed onto the
   curve.  C can then search D' for y to determine if there is a match.

   Concrete examples of important applications in the password domain
   include:

   o  password-protected storage [JKK14], [JKKX16];

   o  perfectly-hiding password management [SJKS17];

   o  password-protected secret-sharing [JKKX17].

9.2.1.  Parameter Commitments

   For some applications, it may be desirable for P to bind tokens to
   certain parameters, e.g., protocol versions, ciphersuites, etc.  To
   accomplish this, P should use a distinct scalar for each parameter
   combination.  Upon redemption of a token T from V, P can later verify
   that T was generated using the scalar associated with the
   corresponding parameters.
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Appendix A.  Test Vectors

   This section includes test vectors for the ECVOPRF-P256-HKDF-SHA256
   VOPRF ciphersuite, including batched DLEQ output.

P-256
X: 04b14b08f954f5b6ab1d014b1398f03881d70842acdf06194eb96a6d08186f8cb985c1c5521 
\
    f4ee19e290745331f7eb89a4053de0673dc8ef14cfe9bf8226c6b31
r: b72265c85b1ba42cfed7caaf00d2ccac0b1a99259ba0dbb5a1fc2941526a6849
M: 046025a41f81a160c648cfe8fdcaa42e5f7da7a71055f8e23f1dc7e4204ab84b705043ba5c7 
\
    000123e1fd058150a4d3797008f57a8b2537766d9419c7396ba5279
k: f84e197c8b712cdf452d2cff52dec1bd96220ed7b9a6f66ed28c67503ae62133
Z: 043ab5ccb690d844dcb780b2d9e59126d62bc853ba01b2c339ba1c1b78c03e4b6adc5402f77 
\
    9fc29f639edc138012f0e61960e1784973b37f864e4dc8abbc68e0b
N: 04e8aa6792d859075821e2fba28500d6974ba776fe230ba47ef7e42be1d967654ce776f889e 
\
    e1f374ffa0bce904408aaa4ed8a19c6cc7801022b7848031f4e442a
D: { s: faddfaf6b5d6b4b6357adf856fc1e0044614ebf9dafdb4c6541c1c9e61243c5b,
     c: 8b403e170b56c915cc18864b3ab3c2502bd8f5ca25301bc03ab5138343040c7b }

P-256
X: 047e8d567e854e6bdc95727d48b40cbb5569299e0a4e339b6d707b2da3508eb6c238d3d4cb4 
\
    68afc6ffc82fccbda8051478d1d2c9b21ffdfd628506c873ebb1249
r: f222dfe530fdbfcb02eb851867bfa8a6da1664dfc7cee4a51eb6ff83c901e15e
M: 04e2efdc73747e15e38b7a1bb90fe5e4ef964b3b8dccfda428f85a431420c84efca02f0f09c 
\
    83a8241b44572a059ab49c080a39d0bce2d5d0b44ff5d012b5184e7
k: fb164de0a87e601fd4435c0d7441ff822b5fa5975d0c68035beac05a82c41118
Z: 049d01e1c555bd3324e8ce93a13946b98bdcc765298e6d60808f93c00bdfba2ebf48eef8f28 
\
    d8c91c903ad6bea3d840f3b9631424a6cc543a0a0e1f2d487192d5b
N: 04723880e480b60b4415ca627585d1715ab5965570d30c94391a8b023f8854ac26f76c1d6ab 
\
    bb38688a5affbcadad50ecbf7c93ef33ddfd735003b5a4b1a21ba14
D: { s: dfdf6ae40d141b61d5b2d72cf39c4a6c88db6ac5b12044a70c212e2bf80255b4,
     c: 271979a6b51d5f71719127102621fe250e3235867cfcf8dea749c3e253b81997 }

Batched DLEQ (P256)
M_0: 
046025a41f81a160c648cfe8fdcaa42e5f7da7a71055f8e23f1dc7e4204ab84b705043ba5c\
    7000123e1fd058150a4d3797008f57a8b2537766d9419c7396ba5279
M_1: 
04e2efdc73747e15e38b7a1bb90fe5e4ef964b3b8dccfda428f85a431420c84efca02f0f09\
    c83a8241b44572a059ab49c080a39d0bce2d5d0b44ff5d012b5184e7



Z_0: 
043ab5ccb690d844dcb780b2d9e59126d62bc853ba01b2c339ba1c1b78c03e4b6adc5402f7\
    79fc29f639edc138012f0e61960e1784973b37f864e4dc8abbc68e0b
Z_1: 
04647e1ab7946b10c1c1c92dd333e2fc9e93e85fdef5939bf2f376ae859248513e0cd91115\
    e48c6852d8dd173956aec7a81401c3f63a133934898d177f2a237eeb
k: f84e197c8b712cdf452d2cff52dec1bd96220ed7b9a6f66ed28c67503ae62133
H_5: HKDF-Expand-SHA256
label: "DLEQ_PROOF"
D: { s: b2123044e633d4721894d573decebc9366869fe3c6b4b79a00311ecfa46c9e34,
     c: 3506df9008e60130fcddf86fdb02cbfe4ceb88ff73f66953b1606f6603309862 }
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