
Network Working Group A. Davidson
Internet-Draft N. Sullivan
Intended status: Informational Cloudflare
Expires: January 9, 2020 C. Wood
 Apple Inc.
 July 08, 2019

Oblivious Pseudorandom Functions (OPRFs) using Prime-Order Groups
draft-irtf-cfrg-voprf-00

Abstract

 An Oblivious Pseudorandom Function (OPRF) is a two-party protocol for
 computing the output of a PRF. One party (the server) holds the PRF
 secret key, and the other (the client) holds the PRF input. The
 'obliviousness' property ensures that the server does not learn
 anything about the client's input during the evaluation. The client
 should also not learn anything about the server's secret PRF key.
 Optionally, OPRFs can also satisfy a notion 'verifiability' (VOPRF).
 In this setting, the client can verify that the server's output is
 indeed the result of evaluating the underlying PRF with just a public
 key. This document specifies OPRF and VOPRF constructions
 instantiated within prime-order groups, including elliptic curves.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 9, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Davidson, et al. Expires January 9, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft OPRFs July 2019

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Terminology . 4
1.2. Requirements . 5

2. Background . 5
3. Security Properties . 5
4. OPRF Protocol . 6
4.1. Protocol correctness 8
4.2. Instantiations of GG 9
4.3. OPRF algorithms . 9
4.3.1. OPRF_Setup . 10
4.3.2. OPRF_Blind . 10
4.3.3. OPRF_Eval . 10
4.3.4. OPRF_Unblind . 11
4.3.5. OPRF_Finalize . 11

4.4. VOPRF algorithms . 12
4.4.1. VOPRF_Setup . 12
4.4.2. VOPRF_Blind . 13
4.4.3. VOPRF_Eval . 13
4.4.4. VOPRF_Unblind . 13
4.4.5. VOPRF_Finalize 14

4.5. Utility algorithms 14
4.5.1. bin2scalar . 14

 4.6. Efficiency gains with pre-processing and fixed-base
 blinding . 15

4.6.1. OPRF_Preprocess 16
4.6.2. OPRF_Blind . 16
4.6.3. OPRF_Unblind . 16

5. NIZK Discrete Logarithm Equality Proof 17
5.1. DLEQ_Generate . 17
5.2. DLEQ_Verify . 18

6. Batched VOPRF evaluation 19
6.1. Batched DLEQ algorithms 19
6.1.1. Batched_DLEQ_Generate 19
6.1.2. Batched_DLEQ_Verify 20

6.2. Modified protocol execution 21
6.3. Random oracle instantiations for proofs 21

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Davidson, et al. Expires January 9, 2020 [Page 2]

Internet-Draft OPRFs July 2019

7. Supported ciphersuites 21
7.1. ECVOPRF-P256-HKDF-SHA256-SSWU: 21
7.2. ECVOPRF-RISTRETTO-HKDF-SHA512-Elligator2: 22

8. Security Considerations 22
8.1. Timing Leaks . 23
8.2. Hashing to curves . 23
8.3. Verifiability (key consistency) 23

9. Applications . 23
9.1. Privacy Pass . 24
9.2. Private Password Checker 24
9.2.1. Parameter Commitments 24

10. Acknowledgements . 25
11. Normative References . 25
Appendix A. Test Vectors . 27

 Authors' Addresses . 28

1. Introduction

 A pseudorandom function (PRF) F(k, x) is an efficiently computable
 function with secret key k on input x. Roughly, F is pseudorandom if
 the output y = F(k, x) is indistinguishable from uniformly sampling
 any element in F's range for random choice of k. An oblivious PRF
 (OPRF) is a two-party protocol between a prover P and verifier V
 where P holds a PRF key k and V holds some input x. The protocol
 allows both parties to cooperate in computing F(k, x) with P's secret
 key k and V's input x such that: V learns F(k, x) without learning
 anything about k; and P does not learn anything about x. A
 Verifiable OPRF (VOPRF) is an OPRF wherein P can prove to V that F(k,
 x) was computed using key k, which is bound to a trusted public key Y
 = kG. Informally, this is done by presenting a non-interactive zero-
 knowledge (NIZK) proof of equality between (G, Y) and (Z, M), where Z
 = kM for some point M.

 OPRFs have been shown to be useful for constructing: password-
 protected secret sharing schemes [JKK14]; privacy-preserving password
 stores [SJKS17]; and password-authenticated key exchange or PAKE
 [OPAQUE]. VOPRFs are useful for producing tokens that are verifiable
 by V. This may be needed, for example, if V wants assurance that P
 did not use a unique key in its computation, i.e., if V wants key
 consistency from P. This property is necessary in some applications,
 e.g., the Privacy Pass protocol [PrivacyPass], wherein this VOPRF is
 used to generate one-time authentication tokens to bypass CAPTCHA
 challenges. VOPRFs have also been used for password-protected secret
 sharing schemes e.g. [JKKX16].

 This document introduces an OPRF protocol built in prime-order
 groups, applying to finite fields of prime-order and also elliptic
 curve (EC) settings. The protocol has the option of being extended

Davidson, et al. Expires January 9, 2020 [Page 3]

Internet-Draft OPRFs July 2019

 to a VOPRF with the addition of a NIZK proof for proving discrete log
 equality relations. This proof demonstrates correctness of the
 computation using a known public key that serves as a commitment to
 the server's secret key. In the EC setting, we will refer to the
 protocol as ECOPRF (or ECVOPRF if verifiability is concerned). The
 document describes the protocol, its security properties, and
 provides preliminary test vectors for experimentation. The rest of
 the document is structured as follows:

 o Section 2: Describe background, related work, and use cases of
 OPRF/VOPRF protocols.

 o Section 3: Discuss security properties of OPRFs/VOPRFs.

 o Section 4: Specify an authentication protocol from OPRF
 functionality, based in prime-order groups (with an optional
 verifiable mode). Algorithms are stated formally for OPRFs in

Section 4.3 and for VOPRFs in Section 4.4.

 o Section 5: Specify the NIZK discrete logarithm equality (DLEQ)
 construction used for constructing the VOPRF protocol.

 o Section 6: Specifies how the DLEQ proof mechanism can be batched
 for multiple VOPRF invocations, and how this changes the protocol
 execution.

 o Section 7: Considers explicit instantiations of the protocol in
 the elliptic curve setting.

 o Section 8: Discusses the security considerations for the OPRF and
 VOPRF protocol.

 o Section 9: Discusses some existing applications of OPRF and VOPRF
 protocols.

 o Appendix A: Specifies test vectors for implementations in the
 elliptic curve setting.

1.1. Terminology

 The following terms are used throughout this document.

 o PRF: Pseudorandom Function.

 o OPRF: Oblivious PRF.

 o VOPRF: Verifiable Oblivious Pseudorandom Function.

Davidson, et al. Expires January 9, 2020 [Page 4]

Internet-Draft OPRFs July 2019

 o ECVOPRF: A VOPRF built on Elliptic Curves.

 o Verifier (V): Protocol initiator when computing F(k, x).

 o Prover (P): Holder of secret key k.

 o NIZK: Non-interactive zero knowledge.

 o DLEQ: Discrete Logarithm Equality.

1.2. Requirements

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Background

 OPRFs are functionally related to blind signature schemes. In such a
 scheme, a client can receive signatures on private data, under the
 signing key of some server. The security properties of such a scheme
 dictate that the client learns nothing about the signing key, and
 that the server learns nothing about the data that is signed. One of
 the more popular blind signature schemes is based on the RSA
 cryptosystem and is known as Blind RSA [ChaumBlindSignature].

 OPRF protocols can thought of as symmetric alternatives to blind
 signatures. Essentially the client learns y = PRF(k,x) for some
 input x of their choice, from a server that holds k. Since the
 security of an OPRF means that x is hidden in the interaction, then
 the client can later reveal x to the server along with y.

 The server can verify that y is computed correctly by recomputing the
 PRF on x using k. In doing so, the client provides knowledge of a
 'signature' y for their value x. The verification procedure is thus
 symmetric as it requires knowledge of the key k. This is discussed
 more in the following section.

3. Security Properties

 The security properties of an OPRF protocol with functionality y =
 F(k, x) include those of a standard PRF. Specifically:

 o Pseudorandomness: F is pseudorandom if the output y = F(k,x) on
 any input x is indistinguishable from uniformly sampling any
 element in F's range, for a random sampling of k.

https://datatracker.ietf.org/doc/html/rfc2119

Davidson, et al. Expires January 9, 2020 [Page 5]

Internet-Draft OPRFs July 2019

 In other words, for an adversary that can pick inputs x from the
 domain of F and can evaluate F on (k,x) (without knowledge of
 randomly sampled k), then the output distribution F(k,x) is
 indistinguishable from the uniform distribution in the range of F.

 A consequence of showing that a function is pseudorandom, is that it
 is necessarily non-malleable (i.e. we cannot compute a new evaluation
 of F from an existing evaluation). A genuinely random function will
 be non-malleable with high probability, and so a pseudorandom
 function must be non-malleable to maintain indistinguishability.

 An OPRF protocol must also satisfy the following property:

 o Oblivious: P must learn nothing about V's input or the output of
 the function. In addition, V must learn nothing about P's private
 key.

 Essentially, obliviousness tells us that, even if P learns V's input
 x at some point in the future, then P will not be able to link any
 particular OPRF evaluation to x. This property is also known as
 unlinkability [DGSTV18].

 Optionally, for any protocol that satisfies the above properties,
 there is an additional security property:

 o Verifiable: V must only complete execution of the protocol if it
 can successfully assert that the OPRF output computed by V is
 correct, with respect to the OPRF key held by P.

 Any OPRF that satisfies the 'verifiable' security property is known
 as a verifiable OPRF, or VOPRF for short. In practice, the notion of
 verifiability requires that P commits to the key k before the actual
 protocol execution takes place. Then V verifies that P has used k in
 the protocol using this commitment. In the following, we may also
 refer to this commitment as a public key.

4. OPRF Protocol

 In this section we describe the OPRF protocol. Let GG be an additive
 group of prime-order p, let GF(p) be the Galois field defined by the
 integers modulo p. Define distinct hash functions H_1 and H_2, where
 H_1 maps arbitrary input onto GG and H_2 maps arbitrary input to a
 fixed-length output, e.g., SHA256. All hash functions in the
 protocol are modelled as random oracles. Let L be the security
 parameter. Let k be the prover's (P) secret key, and Y = kG be its
 corresponding 'public key' for some fixed generator G taken from the
 description of the group GG. This public key Y is also referred to
 as a commitment to the OPRF key k, and the pair (G,Y) as a commitment

Davidson, et al. Expires January 9, 2020 [Page 6]

Internet-Draft OPRFs July 2019

 pair. Let x be the verifier's (V) input to the OPRF protocol.
 (Commonly, it is a random L-bit string, though this is not required.)

 The OPRF protocol begins with V blinding its input for the OPRF
 evaluator such that it appears uniformly distributed GG. The latter
 then applies its secret key to the blinded value and returns the
 result. To finish the computation, V then removes its blind and
 hashes the result using H_2 to yield an output. This flow is
 illustrated below.

 Verifier Prover
 --
 r <-$ GF(p)
 M = rH_1(x) mod p
 M
 ------->
 Z = kM mod p
 [D = DLEQ_Generate(k,G,Y,M,Z)]
 Z[,D]
 <-------
 [b = DLEQ_Verify(G,Y,M,Z,D)]
 N = Zr^(-1) mod p
 Output H_2(x, N) mod p [if b=1, else "error"]

 Steps that are enclosed in square brackets (DLEQ_Generate and
 DLEQ_Verify) are optional for achieving verifiability. These are
 described in Section 5. In the verifiable mode, we assume that P has
 previously committed to their choice of key k with some values
 (G,Y=kG) and these are publicly known by V. Notice that revealing
 (G,Y) does not reveal k by the well-known hardness of the discrete
 log problem.

 Strictly speaking, the actual PRF function that is computed is:

 F(k, x) = N = kH_1(x)

 It is clear that this is a PRF H_1(x) maps x to a random element in
 GG, and GG is cyclic. This output is computed when the client
 computes Zr^(-1) by the commutativity of the multiplication. The
 client finishes the computation by outputting H_2(x,N). Note that
 the output from P is not the PRF value because the actual input x is
 blinded by r.

 This protocol may be decomposed into a series of steps, as described
 below:

 o OPRF_Setup(l): Generate am integer k of sufficient bit-length l
 and output k.

Davidson, et al. Expires January 9, 2020 [Page 7]

Internet-Draft OPRFs July 2019

 o OPRF_Blind(x): Compute and return a blind, r, and blinded
 representation of x in GG, denoted M.

 o OPRF_Eval(k,M,h?): Evaluates on input M using secret key k to
 produce Z, the input h is optional and equal to the cofactor of an
 elliptic curve. If h is not provided then it defaults to 1.

 o OPRF_Unblind(r,Z): Unblind blinded OPRF evaluation Z with blind r,
 yielding N and output N.

 o OPRF_Finalize(x,N): Finalize N to produce the output H_2(x, N).

 For verifiability we modify the algorithms of VOPRF_Setup, VOPRF_Eval
 and VOPRF_Unblind to be the following:

 o VOPRF_Setup(l): Generate an integer k of sufficient bit-length l
 and output (k, (G,Y)) where Y = kG for the fixed generator G of
 GG.

 o VOPRF_Eval(k,(G,Y),M,h?): Evaluates on input M using secret key k
 to produce Z. Generate a NIZK proof D = DLEQ_Generate(k,G,Y,M,Z),
 and output (Z, D). The optional cofactor h can also be provided,
 as in OPRF_Eval.

 o VOPRF_Unblind(r,G,Y,M,(Z,D)): Unblind blinded OPRF evaluation Z
 with blind r, yielding N. Output N if 1 = DLEQ_Verify(G,Y,M,Z,D).
 Otherwise, output "error".

 We leave the rest of the OPRF algorithms unmodified. When referring
 explicitly to VOPRF execution, we replace 'OPRF' in all method names
 with 'VOPRF'.

4.1. Protocol correctness

 Protocol correctness requires that, for any key k, input x, and (r,
 M) = OPRF_Blind(x), it must be true that:

 OPRF_Finalize(x, OPRF_Unblind(r,M,OPRF_Eval(k,M))) = H_2(x, F(k,x))

 with overwhelming probability. Likewise, in the verifiable setting,
 we require that:

VOPRF_Finalize(x, VOPRF_Unblind(r,(G,Y),M,(VOPRF_Eval(k,(G,Y),M)))) = H_2(x,
F(k,x))

 with overwhelming probability, where (r, M) = VOPRF_Blind(x).

Davidson, et al. Expires January 9, 2020 [Page 8]

Internet-Draft OPRFs July 2019

4.2. Instantiations of GG

 As we remarked above, GG is a subgroup with associated prime-order p.
 While we choose to write operations in the setting where GG comes
 equipped with an additive operation, we could also define the
 operations in the multiplicative setting. In the multiplicative
 setting we can choose GG to be a prime-order subgroup of a finite
 field FF_p. For example, let p be some large prime (e.g. > 2048
 bits) where p = 2q+1 for some other prime q. Then the subgroup of
 squares of FF_p (elements u^2 where u is an element of FF_p) is
 cyclic, and we can pick a generator of this subgroup by picking G
 from FF_p (ignoring the identity element).

 For practicality of the protocol, it is preferable to focus on the
 cases where GG is an additive subgroup so that we can instantiate the
 OPRF in the elliptic curve setting. This amounts to choosing GG to
 be a prime-order subgroup of an elliptic curve over base field GF(p)
 for prime p. There are also other settings where GG is a prime-order
 subgroup of an elliptic curve over a base field of non-prime order,
 these include the work of Ristretto [RISTRETTO] and Decaf [DECAF].

 We will use p > 0 generally for constructing the base field GF(p),
 not just those where p is prime. To reiterate, we focus only on the
 additive case, and so we focus only on the cases where GF(p) is
 indeed the base field.

 Unless otherwise stated, we will always assume that the generator G
 that we use for the group GG is a fixed generator. This generator
 should be provided in the description of the group GG.

4.3. OPRF algorithms

 This section provides algorithms for each step in the OPRF protocol.
 We describe the VOPRF analogues in Section 4.4. We provide generic
 utility algorithms in Section 4.5.

 1. P samples a uniformly random key k <- {0,1}^l for sufficient
 length l, and interprets it as an integer.

 2. V computes X = H_1(x) and a random element r (blinding factor)
 from GF(p), and computes M = rX.

 3. V sends M to P.

 4. P computes Z = kM = rkX.

 5. In the elliptic curve setting, P multiplies Z by the cofactor
 (denoted h) of the elliptic curve.

Davidson, et al. Expires January 9, 2020 [Page 9]

Internet-Draft OPRFs July 2019

 6. P sends Z to V.

 7. V unblinds Z to compute N = r^(-1)Z = kX.

 8. V outputs the pair H_2(x, N).

 We note here that the blinding mechanism that we use can be modified
 slightly with the opportunity for making performance gains in some
 scenarios. We detail these modifications in Section Section 4.6.

4.3.1. OPRF_Setup

 Input:

 l: Some suitable choice of key-length (e.g. as described in [NIST]).

 Output:

 k: A key chosen from {0,1}^l and interpreted as an integer value.

 Steps:

 1. Sample k_bin <-$ {0,1}^l
 2. Output k <- bin2scalar(k_bin, l)

4.3.2. OPRF_Blind

 Input:

 x: V's PRF input.

 Output:

 r: Random scalar in [1, p - 1].
 M: Blinded representation of x using blind r, an element in GG.

 Steps:

 1. r <-$ GF(p)
 2. M := rH_1(x)
 3. Output (r, M)

4.3.3. OPRF_Eval

Davidson, et al. Expires January 9, 2020 [Page 10]

Internet-Draft OPRFs July 2019

 Input:

 k: Evaluator secret key.
 M: An element in GG.
 h: optional cofactor (defaults to 1).

 Output:

 Z: Scalar multiplication of the point M by k, element in GG.

 Steps:

 1. Z := kM
 2. Z <- hZ
 3. Output Z

4.3.4. OPRF_Unblind

 Input:

 r: Random scalar in [1, p - 1].
 Z: An element in GG.

 Output:

 N: Unblinded OPRF evaluation, element in GG.

 Steps:

 1. N := (r^(-1))Z
 2. Output N

4.3.5. OPRF_Finalize

 Input:

 x: PRF input string.
 N: An element in GG.

 Output:

 y: Random element in {0,1}^L.

 Steps:

 1. y := H_2(x, N)
 2. Output y

Davidson, et al. Expires January 9, 2020 [Page 11]

Internet-Draft OPRFs July 2019

4.4. VOPRF algorithms

 The steps in the VOPRF setting are written as:

 1. P samples a uniformly random key k <- {0,1}^l for sufficient
 length l, and interprets it as an integer.

 2. P commits to k by computing (G,Y) for Y=kG, where G is the fixed
 generator of GG. P makes the pair (G,Y) publicly available.

 3. V computes X = H_1(x) and a random element r (blinding factor)
 from GF(p), and computes M = rX.

 4. V sends M to P.

 5. P computes Z = kM = rkX, and D = DLEQ_Generate(k,G,Y,M,Z).

 6. P sends (Z, D) to V.

 7. V ensures that 1 = DLEQ_Verify(G,Y,M,Z,D). If not, V outputs an
 error.

 8. V unblinds Z to compute N = r^(-1)Z = kX.

 9. V outputs the pair H_2(x, N).

4.4.1. VOPRF_Setup

 Input:

 G: Public fixed generator of GG.
 l: Some suitable choice of key-length (e.g. as described in [NIST]).

 Output:

 k: A key chosen from {0,1}^l and interpreted as an integer value.
 (G,Y): A pair of curve points, where Y=kG.

 Steps:

 1. k <- OPRF_Setup(l)
 2. Y := kG
 3. Output (k, (G,Y))

Davidson, et al. Expires January 9, 2020 [Page 12]

Internet-Draft OPRFs July 2019

4.4.2. VOPRF_Blind

 Input:

 x: V's PRF input.

 Output:

 r: Random scalar in [1, p - 1].
 M: Blinded representation of x using blind r, an element in GG.

 Steps:

 1. r <-$ GF(p)
 2. M := rH_1(x)
 3. Output (r, M)

4.4.3. VOPRF_Eval

 Input:

 k: Evaluator secret key.
 G: Public fixed generator of group GG.
 Y: Evaluator public key (= kG).
 M: An element in GG.
 h: optional cofactor (defaults to 1).

 Output:

 Z: Scalar multiplication of the point M by k, element in GG.
 D: DLEQ proof that log_G(Y) == log_M(Z).

 Steps:

 1. Z := kM
 2. Z <- hZ
 3. D = DLEQ_Generate(k,G,Y,M,Z)
 4. Output (Z, D)

4.4.4. VOPRF_Unblind

Davidson, et al. Expires January 9, 2020 [Page 13]

Internet-Draft OPRFs July 2019

 Input:

 r: Random scalar in [1, p - 1].
 G: Public fixed generator of group GG.
 Y: Evaluator public key.
 M: Blinded representation of x using blind r, an element in GG.
 Z: An element in GG.
 D: D = DLEQ_Generate(k,G,Y,M,Z).

 Output:

 N: Unblinded OPRF evaluation, element in GG.

 Steps:

 1. N := (r^(-1))Z
 2. If 1 = DLEQ_Verify(G,Y,M,Z,D), output N
 3. Output "error"

4.4.5. VOPRF_Finalize

 Input:

 x: PRF input string.
 N: An element in GG, or "error".

 Output:

 y: Random element in {0,1}^L, or "error"

 Steps:

 1. If N == "error", output "error".
 2. y := H_2(x, N)
 3. Output y

4.5. Utility algorithms

4.5.1. bin2scalar

 This algorithm converts a binary string to an integer modulo p.

Davidson, et al. Expires January 9, 2020 [Page 14]

Internet-Draft OPRFs July 2019

 Input:

 s: binary string (little-endian)
 l: length of binary string
 p: modulus

 Output:

 z: An integer modulo p

 Steps:

 1. sVec <- vec(s) (converts s to a column vector of dimension l)
 2. p2Vec <- (2^0, 2^1, ..., 2^{l-1}) (row vector of dimension l)
 3. z <- p2Vec * sVec (mod p)
 4. Output z

4.6. Efficiency gains with pre-processing and fixed-base blinding

 In Section Section 4.3 we assume that the client-side blinding is
 carried out directly on the output of H_1(x), i.e. computing rH_1(x)
 for some r <-$ GF(p). In the [OPAQUE] draft, it is noted that it may
 be more efficient to use additive blinding rather than multiplicative
 if the client can preprocess some values. For example, a valid way
 of computing additive blinding would be to instead compute H_1(x)+rG,
 where G is the fixed generator for the group GG.

 We refer to the 'multiplicative' blinding as variable-base blinding
 (VBB), since the base of the blinding (H_1(x)) varies with each
 instantiation. We refer to the additive blinding case as fixed-base
 blinding (FBB) since the blinding is applied to the same generator
 each time (when computing rG).

 By pre-processing tables of blinded scalar multiplications for the
 specific choice of G it is possible to gain a computational
 advantage. Choosing one of these values rG (where r is the scalar
 value that is used), then computing H_1(x)+rG is more efficient than
 computing rH_1(x) (one addition against log_2(r)). Therefore, it may
 be advantageous to define the OPRF and VOPRF protocols using additive
 blinding rather than multiplicative blinding. In fact, the only
 algorithms that need to change are OPRF_Blind and OPRF_Unblind (and
 similarly for the VOPRF variants).

 We define the FBB variants of the algorithms in Section 4.3 below
 along with a new algorithm OPRF_Preprocess that defines how
 preprocessing is carried out. The equivalent algorithms for VOPRF
 are almost identical and so we do not redefine them here. Notice

Davidson, et al. Expires January 9, 2020 [Page 15]

Internet-Draft OPRFs July 2019

 that the only computation that changes is for V, the necessary
 computation of P does not change.

4.6.1. OPRF_Preprocess

 Input:

 G: Public fixed generator of GG

 Output:

 r: Random scalar in [1, p-1]
 rG: An element in GG.
 rY: An element in GG.

 Steps:

 1. r <-$ GF(p)
 2. Output (r, rG, rY)

4.6.2. OPRF_Blind

 Input:

 x: V's PRF input.
 rG: Preprocessed element of GG.

 Output:

 M: Blinded representation of x using blind r, an element in GG.

 Steps:

 1. M := H_1(x)+rG
 2. Output M

4.6.3. OPRF_Unblind

Davidson, et al. Expires January 9, 2020 [Page 16]

Internet-Draft OPRFs July 2019

 Input:

 rY: Preprocessed element of GG.
 M: Blinded representation of x using rG, an element in GG.
 Z: An element in GG.

 Output:

 N: Unblinded OPRF evaluation, element in GG.

 Steps:

 1. N := Z-rY
 2. Output N

 Notice that OPRF_Unblind computes (Z-rY) = k(H_1(x)+rG) - rkG =
 kH_1(x) by the commutativity of scalar multiplication in GG. This is
 the same output as in the original OPRF_Unblind algorithm.

5. NIZK Discrete Logarithm Equality Proof

 For the VOPRF protocol we require that V is able to verify that P has
 used its private key k to evaluate the PRF. We can do this by
 showing that the original commitment (G,Y) output by VOPRF_Setup(l)
 satisfies log_G(Y) == log_M(Z) where Z is the output of
 VOPRF_Eval(k,(G,Y),M).

 This may be used, for example, to ensure that P uses the same private
 key for computing the VOPRF output and does not attempt to "tag"
 individual verifiers with select keys. This proof must not reveal
 the P's long-term private key to V.

 Consequently, this allows extending the OPRF protocol with a (non-
 interactive) discrete logarithm equality (DLEQ) algorithm built on a
 Chaum-Pedersen [ChaumPedersen] proof. This proof is divided into two
 procedures: DLEQ_Generate and DLEQ_Verify. These are specified
 below.

5.1. DLEQ_Generate

Davidson, et al. Expires January 9, 2020 [Page 17]

Internet-Draft OPRFs July 2019

 Input:

 k: Evaluator secret key.
 G: Public fixed generator of GG.
 Y: Evaluator public key (= kG).
 M: An element in GG.
 Z: An element in GG.
 H_3: A hash function from GG to {0,1}^L, modelled as a random oracle.

 Output:

 D: DLEQ proof (c, s).

 Steps:

 1. r <-$ GF(p)
 2. A := rG and B := rM.
 3. c <- H_3(G,Y,M,Z,A,B)
 4. s := (r - ck) (mod p)
 5. Output D := (c, s)

 We note here that it is essential that a different r value is used
 for every invocation. If this is not done, then this may leak the
 key k in a similar fashion as is possible in Schnorr or (EC)DSA
 scenarios where fresh randomness is not used.

5.2. DLEQ_Verify

 Input:

 G: Public fixed generator of GG.
 Y: Evaluator public key.
 M: An element in GG.
 Z: An element in GG.
 D: DLEQ proof (c, s).

 Output:

 True if log_G(Y) == log_M(Z), False otherwise.

 Steps:

 1. A' := (sG + cY)
 2. B' := (sM + cZ)
 3. c' <- H_3(G,Y,M,Z,A',B')
 4. Output c == c'

Davidson, et al. Expires January 9, 2020 [Page 18]

Internet-Draft OPRFs July 2019

6. Batched VOPRF evaluation

 Common applications (e.g. [PrivacyPass]) require V to obtain
 multiple PRF evaluations from P. In the VOPRF case, this would also
 require generation and verification of a DLEQ proof for each Zi
 received by V. This is costly, both in terms of computation and
 communication. To get around this, applications use a 'batching'
 procedure for generating and verifying DLEQ proofs for a finite
 number of PRF evaluation pairs (Mi,Zi). For n PRF evaluations:

 o Proof generation is slightly more expensive from 2n modular
 exponentiations to 2n+2.

 o Proof verification is much more efficient, from 4n modular
 exponentiations to 2n+4.

 o Communications falls from 2n to 2 group elements.

 Therefore, since P is usually a powerful server, we can tolerate a
 slight increase in proof generation complexity for much more
 efficient communication and proof verification.

 In this section, we describe algorithms for batching the DLEQ
 generation and verification procedure. For these algorithms we
 require an additional random oracle H_5: {0,1}^a x ZZ^3 -> {0,1}^b
 that takes an inputs of a binary string of length a and three integer
 values, and outputs an element in {0,1}^b.

6.1. Batched DLEQ algorithms

6.1.1. Batched_DLEQ_Generate

Davidson, et al. Expires January 9, 2020 [Page 19]

Internet-Draft OPRFs July 2019

Input:

 k: Evaluator secret key.
 G: Public fixed generator of group GG.
 Y: Evaluator public key (= kG).
 n: Number of PRF evaluations.
 [Mi]: An array of points in GG of length n.
 [Zi]: An array of points in GG of length n.
 H_4: A hash function from GG^(2n+2) to {0,1}^a, modelled as a random oracle.
 H_5: A hash function from {0,1}^a x ZZ^2 to {0,1}^b, modelled as a random
oracle.
 label: An integer label value for the splitting the domain of H_5

Output:

 D: DLEQ proof (c, s).

Steps:

 1. seed <- H_4(G,Y,[Mi,Zi]))
 2. for i in [n]: di <- H_5(seed,i,label)
 3. c1,...,cn := (int)d1,...,(int)dn
 4. M := c1M1 + ... + cnMn
 5. Z := c1Z1 + ... + cnZn
 6. Output D <- DLEQ_Generate(k,G,Y,M,Z)

6.1.2. Batched_DLEQ_Verify

 Input:

 G: Public fixed generator of group GG.
 Y: Evaluator public key.
 [Mi]: An array of points in GG of length n.
 [Zi]: An array of points in GG of length n.
 D: DLEQ proof (c, s).

 Output:

 True if log_G(Y) == log_(Mi)(Zi) for each i in 1...n, False otherwise.

 Steps:

 1. seed <- H_4(G,Y,[Mi,Zi]))
 2. for i in [n]: di <- H_5(seed,i,info)
 3. c1,...,cn := (int)d1,...,(int)dn
 4. M := c1M1 + ... + cnMn
 5. Z := c1Z1 + ... + cnZn
 6. Output DLEQ_Verify(G,Y,M,Z,D)

Davidson, et al. Expires January 9, 2020 [Page 20]

Internet-Draft OPRFs July 2019

6.2. Modified protocol execution

 The VOPRF protocol from Section Section 4 changes to allow specifying
 multiple blinded PRF inputs [Mi] for i in 1...n. P computes the
 array [Zi] and replaces DLEQ_Generate with Batched_DLEQ_Generate
 over these arrays. The same applies to the algorithm VOPRF_Eval.
 The same applies for replacing DLEQ_Verify with Batched_DLEQ_Verify
 when V verifies the response from P and during the algorithm
 VOPRF_Verify.

6.3. Random oracle instantiations for proofs

 We can instantiate the random oracle function H_4 using the same hash
 function that is used for H_1,H_2,H_3. For H_5, we can also use a
 similar instantiation, or we can use a variable-length output
 generator. For example, for groups with an order of 256-bit, valid
 instantiations include functions such as SHAKE-256 [SHAKE] or HKDF-
 Expand-SHA256 [RFC5869].

 In addition if a function with larger output than the order of the
 base field is used, we note that the outputs of H_5 (d1,...,dn) must
 be smaller than this order. If any di that is sampled is larger than
 then order, then we should resample until a di' is sampled that is
 valid.

 In these cases, the iterating integer i is increased monotonically to
 i' until such di' is sampled. When sampling the next value d(i+1),
 the counter i+1 is started at i'+1.

 TODO: Give a more detailed specification of this construction.

7. Supported ciphersuites

 This section specifies supported ECVOPRF group and hash function
 instantiations. We only provide ciphersuites in the EC setting as
 these provide the most efficient way of instantiating the OPRF. Our
 instantiation includes considerations for providing the DLEQ proofs
 that make the instantiation a VOPRF. Supporting OPRF operations
 (ECOPRF) alone can be allowed by simply dropping the relevant
 components. In addition, we currently only support ciphersuites
 demonstrating 128 bits of security.

7.1. ECVOPRF-P256-HKDF-SHA256-SSWU:

 o GG: SECP256K1 curve [SEC2]

 o H_1: H2C-P256-SHA256-SSWU- [I-D.irtf-cfrg-hash-to-curve]

https://datatracker.ietf.org/doc/html/rfc5869

Davidson, et al. Expires January 9, 2020 [Page 21]

Internet-Draft OPRFs July 2019

 * label: voprf_h2c

 o H_2: SHA256

 o H_3: SHA256

 o H_4: SHA256

 o H_5: HKDF-Expand-SHA256

7.2. ECVOPRF-RISTRETTO-HKDF-SHA512-Elligator2:

 o GG: Ristretto [RISTRETTO]

 o H_1: H2C-Curve25519-SHA512-Elligator2-Clear
 [I-D.irtf-cfrg-hash-to-curve]

 * label: voprf_h2c

 o H_2: SHA512

 o H_3: SHA512

 o H_4: SHA512

 o H_5: HKDF-Expand-SHA512

 In the case of Ristretto, internal point representations are
 represented by Ed25519 [RFC7748] points. As a result, we can use the
 same hash-to-curve encoding as we would use for Ed25519
 [I-D.irtf-cfrg-hash-to-curve]. We remark that the 'label' field is
 necessary for domain separation of the hash-to-curve functionality.

8. Security Considerations

 Security of the protocol depends on P's secrecy of k. Best practices
 recommend P regularly rotate k so as to keep its window of compromise
 small. Moreover, if each key should be generated from a source of
 safe, cryptographic randomness.

 A critical aspect of this protocol is reliance on
 [I-D.irtf-cfrg-hash-to-curve] for mapping arbitrary inputs x to
 points on a curve. Security requires this mapping be pre-image and
 collision resistant.

https://datatracker.ietf.org/doc/html/rfc7748

Davidson, et al. Expires January 9, 2020 [Page 22]

Internet-Draft OPRFs July 2019

8.1. Timing Leaks

 To ensure no information is leaked during protocol execution, all
 operations that use secret data MUST be constant time. Operations
 that SHOULD be constant time include: H_1() (hashing arbitrary
 strings to curves) and DLEQ_Generate().
 [I-D.irtf-cfrg-hash-to-curve] describes various algorithms for
 constant-time implementations of H_1.

8.2. Hashing to curves

 We choose different encodings in relation to the elliptic curve that
 is used, all methods are illuminated precisely in
 [I-D.irtf-cfrg-hash-to-curve]. In summary, we use the simplified
 Shallue-Woestijne-Ulas algorithm for hashing binary strings to the
 P-256 curve; the Icart algorithm for hashing binary strings to P384;
 the Elligator2 algorithm for hashing binary strings to CURVE25519 and
 CURVE448.

8.3. Verifiability (key consistency)

 DLEQ proofs are essential to the protocol to allow V to check that
 P's designated private key was used in the computation. A side
 effect of this property is that it prevents P from using a unique key
 for select verifiers as a way of "tagging" them. If all verifiers
 expect use of a certain private key, e.g., by locating P's public key
 published from a trusted registry, then P cannot present unique keys
 to an individual verifier.

 For this side effect to hold, P must also be prevented from using
 other techniques to manipulate their public key within the trusted
 registry to reduce client anonymity. For example, if P's public key
 is rotated too frequently then this may stratify the user base into
 small anonymity groups (those with VOPRF_Eval outputs taken from a
 given key epoch). In this case, it may become practical to link
 VOPRF sessions for a given user and thus compromise their privacy.

 Similarly, if P can publish N public keys to a trusted registry then
 P may be able to control presentation of these keys in such a way
 that V is retroactively identified by V's key choice across multiple
 requests.

9. Applications

 This section describes various applications of the VOPRF protocol.

Davidson, et al. Expires January 9, 2020 [Page 23]

Internet-Draft OPRFs July 2019

9.1. Privacy Pass

 This VOPRF protocol is used by the Privacy Pass system [PrivacyPass]
 to help Tor users bypass CAPTCHA challenges. Their system works as
 follows. Client C connects - through Tor - to an edge server E
 serving content. Upon receipt, E serves a CAPTCHA to C, who then
 solves the CAPTCHA and supplies, in response, n blinded points. E
 verifies the CAPTCHA response and, if valid, signs (at most) n
 blinded points, which are then returned to C along with a batched
 DLEQ proof. C stores the tokens if the batched proof verifies
 correctly. When C attempts to connect to E again and is prompted
 with a CAPTCHA, C uses one of the unblinded and signed points, or
 tokens, to derive a shared symmetric key sk used to MAC the CAPTCHA
 challenge. C sends the CAPTCHA, MAC, and token input x to E, who can
 use x to derive sk and verify the CAPTCHA MAC. Thus, each token is
 used at most once by the system.

 The Privacy Pass implementation uses the P-256 instantiation of the
 VOPRF protocol. For more details, see [DGSTV18].

9.2. Private Password Checker

 In this application, let D be a collection of plaintext passwords
 obtained by prover P. For each password p in D, P computes
 VOPRF_Eval on H_1(p), where H_1 is as described above, and stores the
 result in a separate collection D'. P then publishes D' with Y, its
 public key. If a client C wishes to query D' for a password p', it
 runs the VOPRF protocol using p as input x to obtain output y. By
 construction, y will be the OPRF evaluation of p hashed onto the
 curve. C can then search D' for y to determine if there is a match.

 Concrete examples of important applications in the password domain
 include:

 o password-protected storage [JKK14], [JKKX16];

 o perfectly-hiding password management [SJKS17];

 o password-protected secret-sharing [JKKX17].

9.2.1. Parameter Commitments

 For some applications, it may be desirable for P to bind tokens to
 certain parameters, e.g., protocol versions, ciphersuites, etc. To
 accomplish this, P should use a distinct scalar for each parameter
 combination. Upon redemption of a token T from V, P can later verify
 that T was generated using the scalar associated with the
 corresponding parameters.

Davidson, et al. Expires January 9, 2020 [Page 24]

Internet-Draft OPRFs July 2019

10. Acknowledgements

 This document resulted from the work of the Privacy Pass team
 [PrivacyPass]. The authors would also like to acknowledge the
 helpful conversations with Hugo Krawczyk. Eli-Shaoul Khedouri
 provided additional review and comments on key consistency.

11. Normative References

 [ChaumBlindSignature]
 "Blind Signatures for Untraceable Payments", n.d.,
 <http://sceweb.sce.uhcl.edu/yang/teaching/

csci5234WebSecurityFall2011/Chaum-blind-signatures.PDF>.

 [ChaumPedersen]
 "Wallet Databases with Observers", n.d.,
 <https://chaum.com/publications/Wallet_Databases.pdf>.

 [DECAF] "Decaf, Eliminating cofactors through point compression",
 n.d., <https://www.shiftleft.org/papers/decaf/decaf.pdf>.

 [DGSTV18] "Privacy Pass, Bypassing Internet Challenges Anonymously",
 n.d., <https://www.degruyter.com/view/j/

popets.2018.2018.issue-3/popets-2018-0026/
popets-2018-0026.xml>.

 [I-D.irtf-cfrg-hash-to-curve]
 Scott, S., Sullivan, N., and C. Wood, "Hashing to Elliptic
 Curves", draft-irtf-cfrg-hash-to-curve-03 (work in
 progress), March 2019.

 [JKK14] "Round-Optimal Password-Protected Secret Sharing and
 T-PAKE in the Password-Only model", n.d.,
 <https://eprint.iacr.org/2014/650>.

 [JKKX16] "Highly-Efficient and Composable Password-Protected Secret
 Sharing (Or, How to Protect Your Bitcoin Wallet Online)",
 n.d., <https://eprint.iacr.org/2016/144>.

 [JKKX17] "TOPPSS: Cost-minimal Password-Protected Secret Sharing
 based on Threshold OPRF", n.d.,
 <https://eprint.iacr.org/2017/363>.

 [NIST] "Keylength - NIST Report on Cryptographic Key Length and
 Cryptoperiod (2016)", n.d.,
 <https://www.keylength.com/en/4/>.

http://sceweb.sce.uhcl.edu/yang/teaching/csci5234WebSecurityFall2011/Chaum-blind-signatures.PDF
http://sceweb.sce.uhcl.edu/yang/teaching/csci5234WebSecurityFall2011/Chaum-blind-signatures.PDF
https://chaum.com/publications/Wallet_Databases.pdf
https://www.shiftleft.org/papers/decaf/decaf.pdf
https://www.degruyter.com/view/j/popets.2018.2018.issue-3/popets-2018-0026/popets-2018-0026.xml
https://www.degruyter.com/view/j/popets.2018.2018.issue-3/popets-2018-0026/popets-2018-0026.xml
https://www.degruyter.com/view/j/popets.2018.2018.issue-3/popets-2018-0026/popets-2018-0026.xml
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-03
https://eprint.iacr.org/2014/650
https://eprint.iacr.org/2016/144
https://eprint.iacr.org/2017/363
https://www.keylength.com/en/4/

Davidson, et al. Expires January 9, 2020 [Page 25]

Internet-Draft OPRFs July 2019

 [OPAQUE] "The OPAQUE Asymmetric PAKE Protocol", n.d.,
 <https://tools.ietf.org/html/

draft-krawczyk-cfrg-opaque-01>.

 [PrivacyPass]
 "Privacy Pass", n.d.,
 <https://github.com/privacypass/challenge-bypass-server>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869,
 DOI 10.17487/RFC5869, May 2010,
 <https://www.rfc-editor.org/info/rfc5869>.

 [RFC7748] Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
 for Security", RFC 7748, DOI 10.17487/RFC7748, January
 2016, <https://www.rfc-editor.org/info/rfc7748>.

 [RFC8032] Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital
 Signature Algorithm (EdDSA)", RFC 8032,
 DOI 10.17487/RFC8032, January 2017,
 <https://www.rfc-editor.org/info/rfc8032>.

 [RISTRETTO]
 "The ristretto255 Group", n.d.,
 <https://tools.ietf.org/html/

draft-hdevalence-cfrg-ristretto-00>.

 [SEC2] Standards for Efficient Cryptography Group (SECG), ., "SEC
 2: Recommended Elliptic Curve Domain Parameters", n.d.,
 <http://www.secg.org/sec2-v2.pdf>.

 [SHAKE] "SHA-3 Standard, Permutation-Based Hash and Extendable-
 Output Functions", n.d.,
 <https://www.nist.gov/publications/sha-3-standard-

permutation-based-hash-and-extendable-output-
functions?pub_id=919061>.

 [SJKS17] "SPHINX, A Password Store that Perfectly Hides from
 Itself", n.d., <https://eprint.iacr.org/2018/695>.

https://tools.ietf.org/html/draft-krawczyk-cfrg-opaque-01
https://tools.ietf.org/html/draft-krawczyk-cfrg-opaque-01
https://github.com/privacypass/challenge-bypass-server
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc5869
https://www.rfc-editor.org/info/rfc5869
https://datatracker.ietf.org/doc/html/rfc7748
https://www.rfc-editor.org/info/rfc7748
https://datatracker.ietf.org/doc/html/rfc8032
https://www.rfc-editor.org/info/rfc8032
https://tools.ietf.org/html/draft-hdevalence-cfrg-ristretto-00
https://tools.ietf.org/html/draft-hdevalence-cfrg-ristretto-00
http://www.secg.org/sec2-v2.pdf
https://www.nist.gov/publications/sha-3-standard-permutation-based-hash-and-extendable-output-functions?pub_id=919061
https://www.nist.gov/publications/sha-3-standard-permutation-based-hash-and-extendable-output-functions?pub_id=919061
https://www.nist.gov/publications/sha-3-standard-permutation-based-hash-and-extendable-output-functions?pub_id=919061
https://eprint.iacr.org/2018/695

Davidson, et al. Expires January 9, 2020 [Page 26]

Internet-Draft OPRFs July 2019

Appendix A. Test Vectors

 This section includes test vectors for the ECVOPRF-P256-HKDF-SHA256
 VOPRF ciphersuite, including batched DLEQ output.

P-256
X: 04b14b08f954f5b6ab1d014b1398f03881d70842acdf06194eb96a6d08186f8cb985c1c5521
\
 f4ee19e290745331f7eb89a4053de0673dc8ef14cfe9bf8226c6b31
r: b72265c85b1ba42cfed7caaf00d2ccac0b1a99259ba0dbb5a1fc2941526a6849
M: 046025a41f81a160c648cfe8fdcaa42e5f7da7a71055f8e23f1dc7e4204ab84b705043ba5c7
\
 000123e1fd058150a4d3797008f57a8b2537766d9419c7396ba5279
k: f84e197c8b712cdf452d2cff52dec1bd96220ed7b9a6f66ed28c67503ae62133
Z: 043ab5ccb690d844dcb780b2d9e59126d62bc853ba01b2c339ba1c1b78c03e4b6adc5402f77
\
 9fc29f639edc138012f0e61960e1784973b37f864e4dc8abbc68e0b
N: 04e8aa6792d859075821e2fba28500d6974ba776fe230ba47ef7e42be1d967654ce776f889e
\
 e1f374ffa0bce904408aaa4ed8a19c6cc7801022b7848031f4e442a
D: { s: faddfaf6b5d6b4b6357adf856fc1e0044614ebf9dafdb4c6541c1c9e61243c5b,
 c: 8b403e170b56c915cc18864b3ab3c2502bd8f5ca25301bc03ab5138343040c7b }

P-256
X: 047e8d567e854e6bdc95727d48b40cbb5569299e0a4e339b6d707b2da3508eb6c238d3d4cb4
\
 68afc6ffc82fccbda8051478d1d2c9b21ffdfd628506c873ebb1249
r: f222dfe530fdbfcb02eb851867bfa8a6da1664dfc7cee4a51eb6ff83c901e15e
M: 04e2efdc73747e15e38b7a1bb90fe5e4ef964b3b8dccfda428f85a431420c84efca02f0f09c
\
 83a8241b44572a059ab49c080a39d0bce2d5d0b44ff5d012b5184e7
k: fb164de0a87e601fd4435c0d7441ff822b5fa5975d0c68035beac05a82c41118
Z: 049d01e1c555bd3324e8ce93a13946b98bdcc765298e6d60808f93c00bdfba2ebf48eef8f28
\
 d8c91c903ad6bea3d840f3b9631424a6cc543a0a0e1f2d487192d5b
N: 04723880e480b60b4415ca627585d1715ab5965570d30c94391a8b023f8854ac26f76c1d6ab
\
 bb38688a5affbcadad50ecbf7c93ef33ddfd735003b5a4b1a21ba14
D: { s: dfdf6ae40d141b61d5b2d72cf39c4a6c88db6ac5b12044a70c212e2bf80255b4,
 c: 271979a6b51d5f71719127102621fe250e3235867cfcf8dea749c3e253b81997 }

Batched DLEQ (P256)
M_0:
046025a41f81a160c648cfe8fdcaa42e5f7da7a71055f8e23f1dc7e4204ab84b705043ba5c\
 7000123e1fd058150a4d3797008f57a8b2537766d9419c7396ba5279
M_1:
04e2efdc73747e15e38b7a1bb90fe5e4ef964b3b8dccfda428f85a431420c84efca02f0f09\
 c83a8241b44572a059ab49c080a39d0bce2d5d0b44ff5d012b5184e7

Z_0:
043ab5ccb690d844dcb780b2d9e59126d62bc853ba01b2c339ba1c1b78c03e4b6adc5402f7\
 79fc29f639edc138012f0e61960e1784973b37f864e4dc8abbc68e0b
Z_1:
04647e1ab7946b10c1c1c92dd333e2fc9e93e85fdef5939bf2f376ae859248513e0cd91115\
 e48c6852d8dd173956aec7a81401c3f63a133934898d177f2a237eeb
k: f84e197c8b712cdf452d2cff52dec1bd96220ed7b9a6f66ed28c67503ae62133
H_5: HKDF-Expand-SHA256
label: "DLEQ_PROOF"
D: { s: b2123044e633d4721894d573decebc9366869fe3c6b4b79a00311ecfa46c9e34,
 c: 3506df9008e60130fcddf86fdb02cbfe4ceb88ff73f66953b1606f6603309862 }

Davidson, et al. Expires January 9, 2020 [Page 27]

Internet-Draft OPRFs July 2019

Authors' Addresses

 Alex Davidson
 Cloudflare
 County Hall
 London, SE1 7GP
 United Kingdom

 Email: adavidson@cloudflare.com

 Nick Sullivan
 Cloudflare
 101 Townsend St
 San Francisco
 United States of America

 Email: nick@cloudflare.com

 Christopher A. Wood
 Apple Inc.
 One Apple Park Way
 Cupertino, California 95014
 United States of America

 Email: cawood@apple.com

Davidson, et al. Expires January 9, 2020 [Page 28]

