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Abstract

   An Oblivious Pseudorandom Function (OPRF) is a two-party protocol for
   computing the output of a PRF.  One party (the server) holds the PRF
   secret key, and the other (the client) holds the PRF input.  The
   'obliviousness' property ensures that the server does not learn
   anything about the client's input during the evaluation.  The client
   should also not learn anything about the server's secret PRF key.
   Optionally, OPRFs can also satisfy a notion 'verifiability' (VOPRF).
   In this setting, the client can verify that the server's output is
   indeed the result of evaluating the underlying PRF with just a public
   key.  This document specifies OPRF and VOPRF constructions
   instantiated within prime-order groups, including elliptic curves.
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   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
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1.  Introduction

   A pseudorandom function (PRF) F(k, x) is an efficiently computable
   function with secret key k on input x.  Roughly, F is pseudorandom if
   the output y = F(k, x) is indistinguishable from uniformly sampling
   any element in F's range for random choice of k.  An oblivious PRF
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   (OPRF) is a two-party protocol between a prover P and verifier V
   where P holds a PRF key k and V holds some input x.  The protocol
   allows both parties to cooperate in computing F(k, x) with P's secret
   key k and V's input x such that: V learns F(k, x) without learning
   anything about k; and P does not learn anything about x.  A
   Verifiable OPRF (VOPRF) is an OPRF wherein P can prove to V that F(k,
   x) was computed using key k, which is bound to a trusted public key Y
   = kG.  Informally, this is done by presenting a non-interactive zero-
   knowledge (NIZK) proof of equality between (G, Y) and (Z, M), where Z
   = kM for some point M.

   OPRFs have been shown to be useful for constructing: password-
   protected secret sharing schemes [JKK14]; privacy-preserving password
   stores [SJKS17]; and password-authenticated key exchange or PAKE
   [OPAQUE].  VOPRFs are useful for producing tokens that are verifiable
   by V.  This may be needed, for example, if V wants assurance that P
   did not use a unique key in its computation, i.e., if V wants key
   consistency from P.  This property is necessary in some applications,
   e.g., the Privacy Pass protocol [PrivacyPass], wherein this VOPRF is
   used to generate one-time authentication tokens to bypass CAPTCHA
   challenges.  VOPRFs have also been used for password-protected secret
   sharing schemes e.g.  [JKKX16].

   This document introduces an OPRF protocol built in prime-order
   groups, applying to finite fields of prime-order and also elliptic
   curve (EC) settings.  The protocol has the option of being extended
   to a VOPRF with the addition of a NIZK proof for proving discrete log
   equality relations.  This proof demonstrates correctness of the
   computation using a known public key that serves as a commitment to
   the server's secret key.  The document describes the protocol, its
   security properties, and provides preliminary test vectors for
   experimentation.  The rest of the document is structured as follows:

   o  Section 2: Describe background, related work, and use cases of
      OPRF/VOPRF protocols.

   o  Section 3: Describe conventions and assumptions made relating to
      security of (V)OPRFs and prime-order group instantiations.

   o  Section 4: Specify an authentication protocol from OPRF
      functionality, based in prime-order groups (with an optional
      verifiable mode).  Algorithms are stated formally for OPRFs in

Section 4.6 and for VOPRFs in Section 4.7.

   o  Section 5: Specify the NIZK discrete logarithm equality (DLEQ)
      construction used for constructing the VOPRF protocol.
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   o  Section 6: Specifies how the DLEQ proof mechanism can be batched
      for multiple VOPRF invocations, and how this changes the protocol
      execution.

   o  Section 7: Considers explicit instantiations of the protocol in
      the elliptic curve setting.

   o  Section 8: Discusses the security considerations for the OPRF and
      VOPRF protocol.

   o  Section 9: Discusses some existing applications of OPRF and VOPRF
      protocols.

1.1.  Change log

draft-03 [1]:

   o  Certify public key during VerifiableFinalize

   o  Remove protocol integration advice

   o  Add text discussing how to perform domain separation

   o  Drop OPRF_/VOPRF_ prefix from algorithm names

   o  Make prime-order group assumption explicit

   o  Changes to algorithms accepting batched inputs

   o  Changes to construction of batched DLEQ proofs

   o  Updated ciphersuites to be consistent with hash-to-curve and added
      OPRF specific ciphersuites

draft-02 [2]:

   o  Added section discussing cryptographic security and static DH
      oracles

   o  Updated batched proof algorithms

draft-01 [3]:

   o  Updated ciphersuites to be in line with
https://tools.ietf.org/html/draft-irtf-cfrg-hash-to-curve-04

   o  Made some necessary modular reductions more explicit

https://datatracker.ietf.org/doc/html/draft-03
https://datatracker.ietf.org/doc/html/draft-02
https://datatracker.ietf.org/doc/html/draft-01
https://tools.ietf.org/html/draft-irtf-cfrg-hash-to-curve-04
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1.2.  Terminology

   The following terms are used throughout this document.

   o  PRF: Pseudorandom Function.

   o  OPRF: Oblivious PRF.

   o  VOPRF: Verifiable Oblivious Pseudorandom Function.

   o  Verifier (V): Protocol initiator when computing F(k, x), also
      known as client.

   o  Prover (P): Holder of secret key k, also known as server.

   o  NIZK: Non-interactive zero knowledge.

   o  DLEQ: Discrete Logarithm Equality.

1.3.  Requirements

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

2.  Background

   OPRFs are functionally related to blind signature schemes.  In such a
   scheme, a client can receive signatures on private data, under the
   signing key of some server.  The security properties of such a scheme
   dictate that the client learns nothing about the signing key, and
   that the server learns nothing about the data that is signed.  One of
   the more popular blind signature schemes is based on the RSA
   cryptosystem and is known as Blind RSA [ChaumBlindSignature].

   OPRF protocols can thought of as symmetric alternatives to blind
   signatures.  Essentially the client learns y = PRF(k,x) for some
   input x of their choice, from a server that holds k.  Since the
   security of an OPRF means that x is hidden in the interaction, then
   the client can later reveal x to the server along with y.

   The server can verify that y is computed correctly by recomputing the
   PRF on x using k.  In doing so, the client provides knowledge of a
   'signature' y for their value x.  The verification procedure is thus
   symmetric as it requires knowledge of the key k.  This is discussed
   more in the following section.

https://datatracker.ietf.org/doc/html/rfc2119
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3.  Preliminaries

   We start by detailing some necessary cryptographic definitions.

3.1.  Security Properties

   The security properties of an OPRF protocol with functionality y =
   F(k, x) include those of a standard PRF.  Specifically:

   o  Pseudorandomness: F is pseudorandom if the output y = F(k,x) on
      any input x is indistinguishable from uniformly sampling any
      element in F's range, for a random sampling of k.

   In other words, for an adversary that can pick inputs x from the
   domain of F and can evaluate F on (k,x) (without knowledge of
   randomly sampled k), then the output distribution F(k,x) is
   indistinguishable from the uniform distribution in the range of F.

   A consequence of showing that a function is pseudorandom, is that it
   is necessarily non-malleable (i.e. we cannot compute a new evaluation
   of F from an existing evaluation).  A genuinely random function will
   be non-malleable with high probability, and so a pseudorandom
   function must be non-malleable to maintain indistinguishability.

   An OPRF protocol must also satisfy the following property:

   o  Oblivious: P must learn nothing about V's input or the output of
      the function.  In addition, V must learn nothing about P's private
      key.

   Essentially, obliviousness tells us that, even if P learns V's input
   x at some point in the future, then P will not be able to link any
   particular OPRF evaluation to x.  This property is also known as
   unlinkability [DGSTV18].

   Optionally, for any protocol that satisfies the above properties,
   there is an additional security property:

   o  Verifiable: V must only complete execution of the protocol if it
      can successfully assert that the OPRF output computed by V is
      correct, with respect to the OPRF key held by P.

   Any OPRF that satisfies the 'verifiable' security property is known
   as a verifiable OPRF, or VOPRF for short.  In practice, the notion of
   verifiability requires that P commits to the key k before the actual
   protocol execution takes place.  Then V verifies that P has used k in
   the protocol using this commitment.  In the following, we may also
   refer to this commitment as a public key.
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3.2.  Prime-order group instantiation

   In this document, we assume the construction of a prime-order group
   GG for performing all mathematical operations.  Such a group MUST
   provide the interface provided by cyclic group under the addition
   operation (for example, well-defined addition of group elements).  We
   also assume the presence of a fixed generator G that can be detailed
   as a fixed parameter in the description of the group.  We write p =
   order(GG) to represent the order of the group throughout this
   document.

   It is common in cryptographic applications to instantiate such prime-
   order groups using elliptic curves, such as those detailed in [SEC2].
   For some choices of elliptic curves (e.g. those detailed in [RFC7748]
   require accounting for cofactors) there are some implementation
   issues that introduce inherent discrepancies between standard prime-
   order groups and the elliptic curve instantiation.  In this document,
   all algorithms that we detail assume that the group is a prime-order
   group, and this MUST be upheld by any implementer.  That is, any
   curve instantiation should be written such that any discrepancies
   with a prime-order group instantiation are removed.  In the case of
   cofactors, for example, this can be done by building cofactor
   multiplication into all elliptic curve operations.

3.3.  Conventions

   We detail a list of conventions that we use throughout this document.

3.3.1.  Binary strings

   o  We use the notation x <-$ Q to denote sampling x from the uniform
      distribution over the set Q.

   o  We use x <- {0,1}^u to denote sampling x uniformly from the set of
      binary strings of length u.  We may interpret x afterwards as a
      byte array.

   o  We say that x is a binary string of arbitrary-length (or
      alternatively sampled from {0,1}^*) if there is no fixed-size
      requirement on x.

   o  For two byte arrays x & y, write x .. y to denote their
      concatenation.

https://datatracker.ietf.org/doc/html/rfc7748
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3.3.2.  Group notation

   o  We use the letter p to denote the order of a group GG throughout,
      where the instantiation of the specific group is defined by
      context.

   o  For elements A & B of GG, we write A + B to denote the addition of
      thr group elements.

   o  We use GF(p) to denote the Galois Field of scalar values
      associated with the group GG.

   o  For a scalar r in GF(p), and a group element A, we write rA to
      denote the scalar multiplication of A.

   o  For two scalars r, s in GF(p), we use r+s to denote the resulting
      scalar in GF(p) (we may optionally write r+s mod p to make the
      modular reduction explicit).

4.  OPRF Protocol

   In this section we describe the OPRF and VOPRF protocols.  Recall
   that such a protocol takes place between a verifier (V) and a prover
   (P).  Commonly, V is a client and P is a server, and so we use these
   names interchangeably throughout.  We always operate under the
   assumption that the verifier is a client, and the prover is a server
   in the interaction (and so we will use these names interchangeably
   throughout).  The server holds a secret key k for a PRF.  The
   protocol allows the client to learn PRF evaluations on chosen inputs
   x in such a way that the server learns nothing of x.

   Our OPRF construction is based on the VOPRF construction known as
   2HashDH-NIZK given by [JKK14]; essentially without providing zero-
   knowledge proofs that verify that the output is correct.  Our VOPRF
   construction (including the NIZK DLEQ proofs from Section 5) is
   identical to the [JKK14] construction.  With batched proofs
   (Section 6) our construction differs slightly in that we can perform
   multiple VOPRF evaluations in one go, whilst only constructing one
   NIZK proof object.

   In this section we describe the OPRF and VOPRF protocols.  Recall
   that such a protocol takes place between a verifier (V) and a prover
   (P).  We may commonly think of the verifier as the client, and the
   prover as the server in the interaction (we will use these names
   interchangeably throughout).  The server holds a key k for a PRF.
   The protocol allows the client to learn PRF evaluations on chosen
   inputs x without revealing x to the server.
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   Our OPRF construction is based on the VOPRF construction known as
   2HashDH-NIZK given by [JKK14]; essentially without providing zero-
   knowledge proofs that verify that the output is correct.  Our VOPRF
   construction (including the NIZK DLEQ proofs from Section 5) is
   identical to the [JKK14] construction.  With batched proofs
   (Section 6) our construction differs slightly in that we can perform
   multiple VOPRF evaluations in one go, whilst only constructing one
   NIZK proof object.

4.1.  Design

   Let GG be an additive group of prime-order p, let GF(p) be the Galois
   field defined by the integers modulo p.  Define distinct hash
   functions H_1 and H_2, where H_1 maps arbitrary input onto GG (H_1:
   {0,1}^* -> GG) and H_2 maps two arbitrary inputs to a fixed-length
   (w) output (H_2: {0,1}^u x {0,1}^v -> {0,1}^w), e.g., HMAC_SHA256.
   All hash functions in the protocol are modeled as random oracles.
   Let L be the security parameter.  Let k be the prover's secret key,
   and Y = kG be its corresponding 'public key' for some fixed generator
   G taken from the description of the group GG.  This public key Y is
   also referred to as a commitment to the OPRF key k, and the pair
   (G,Y) as a commitment pair.  Let x be the binary string that is the
   verifier's input to the OPRF protocol (this can be of arbitrary
   length).

   The OPRF protocol begins with V blinding its input for the OPRF
   evaluator such that it appears uniformly distributed GG.  The latter
   then applies its secret key to the blinded value and returns the
   result.  To finish the computation, V then removes its blind and
   hashes the result (along with a domain separating label DST) using
   H_2 to yield an output.  This flow is illustrated below.

        Verifier(x)                   Prover(k)
     ----------------------------------------------------------
        r <-$ GF(p)
        M = rH_1(x) mod p
                              M
                           ------->
                                     Z = kM mod p
                                     [D = DLEQ_Generate(k,G,Y,M,Z)]
                             Z[,D]
                           <-------
       [b = DLEQ_Verify(G,Y,M,Z,D)]
       N = Zr^(-1) mod p
       Output H_2(DST, x .. N) mod p [if b=1, else "error"]

   Steps that are enclosed in square brackets (DLEQ_Generate and
   DLEQ_Verify) are optional for achieving verifiability.  These are
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   described in Section 5.  In the verifiable mode, we assume that P has
   previously committed to their choice of key k with some values
   (G,Y=kG) and these are publicly known by V.  Notice that revealing
   (G,Y) does not reveal k by the well-known hardness of the discrete
   log problem.

   Strictly speaking, the actual PRF function that is computed is:

   F(k, x) = N = kH_1(x)

   It is clear that this is a PRF H_1(x) maps x to a random element in
   GG, and GG is cyclic.  This output is computed when the client
   computes Zr^(-1) by the commutativity of the multiplication.  The
   client finishes the computation by outputting H_2(DST, x .. N).  Note
   that the output from P is not the PRF value because the actual input
   x is blinded by r.

   The security of our construction is discussed in more detail in
Section 8.1.2.

4.2.  Protocol functionality

   This protocol may be decomposed into a series of steps, as described
   below:

   o  Setup(l): Let GG=GG(l) be a group with a prime-order p=p(l) (e.g.,
      p is l-bits long).  Randomly sample an integer k in GF(p) and
      output (k,GG)

   o  Blind(x): Compute and return a blind, r, and blinded
      representation of x in GG, denoted M.

   o  Evaluate(k,M,h?): Evaluates on input M using secret key k to
      produce Z, the input h is optional and equal to the cofactor of an
      elliptic curve.  If h is not provided then it defaults to 1.

   o  Unblind(r,Z): Unblind blinded OPRF evaluation Z with blind r,
      yielding N and output N.

   o  Finalize(x,N,aux?): Finalize N by first computing dk := H_2(DST, x
      ..  N).  Subsequently output y := H_2(dk, aux), where aux is some
      auxiliary data encoded as a byte string.  If aux is not specified,
      it defaults to the empty byte string.

   For verifiability (VOPRF) we modify the algorithms of
   VerifiableSetup, VerifiableEvaluate and VerifiableUnblind to be the
   following:
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   o  VerifiableSetup(l): Run (k,GG) = Setup(l), compute Y = kG, where G
      is a generator of the group GG.  Output (k,GG,Y).

   o  VerifiableEvaluate(k,G,Y,M,h?): Evaluates on input M using secret
      key k to produce Z.  Generate a NIZK proof D =
      DLEQ_Generate(k,G,Y,M,Z), and output (Z, D).  The optional
      cofactor h can also be provided, as in Evaluate.

   o  VerifiableUnblind(r,G,Y,M,Z,D): Unblind blinded OPRF evaluation Z
      with blind r, yielding N.  Output N if 1 = DLEQ_Verify(G,Y,M,Z,D).
      Otherwise, output "error".

   o  VerifiableFinalize(x,Y,N,aux?): Same as Finalize, except we now
      compute dk := H_2(DST, x .. Y .. N), i.e. we also certify the
      public key in the finalization process.

   We leave the rest of the OPRF algorithms unmodified.  When referring
   explicitly to VOPRF execution, we replace 'OPRF' in all method names
   with 'VOPRF'.  We describe explicit instantiations of these functions
   in Section 4.6 and Section 4.7.

4.2.1.  Generalized OPRF

   Using the API provided by the functions above, we can restate the
   OPRF protocol using the following descriptions.  The first protocol
   refers to the OPRF setup phase that is run by the server.  This
   generates the secret input used by the server and the public
   information that is given to the client.

   OPRF setup phase:

        Verifier()                   Prover(l)
     ----------------------------------------------------------
                                     (k,GG) = Setup(l)
                              GG
                           <-------

   OPRF evaluation phase:
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        Verifier(x,aux)                   Prover(k)
     ----------------------------------------------------------
        (r, M) = Blind(x)
                               M
                           ------->
                                     Z = Evaluate(k,M)
                               Z
                           <-------
       N = Unblind(r,Z)
       Output Finalize(x,N,aux)

   Note that in the final output, the client computes Finalize over some
   auxiliary input data aux.

4.2.2.  Generalized VOPRF

   The generalized VOPRF functionality differs slightly from the OPRF
   protocol above.  Firstly, the server sends over an extra commitment
   value Y = kG, where G is a common generator known to both
   participants.  Secondly, the server sends over both outputs from
   VerifiableEvaluate in the evaluation phase, and the client also
   verifies the server's output.

   VOPRF setup phase:

        Verifier()                   Prover(l)
     ----------------------------------------------------------
                                     (k,GG,Y) = VerifiableSetup(l)
                            (GG,Y)
                           <-------

   VOPRF evaluation phase:

        Verifier(x,Y,aux)            Prover(k)
     ----------------------------------------------------------
        (r, M) = VerifiableBlind(x)
                               M
                           ------->
                                     (Z,D) = VerifiableEvaluate(k,G,Y,M)
                             (Z,D)
                           <-------
       N = VerifiableUnblind(r,G,Y,M,Z,D)
       Output VerifiableFinalize(x,Y,N,aux)
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4.3.  Protocol correctness

   Protocol correctness requires that, for any key k, input x, and (r,
   M) = Blind(x), it must be true that:

     Finalize(x, Unblind(r,M,Evaluate(k,M)), aux)
         == H_2(H_2(DST, x .. F(k,x)), aux)

   with overwhelming probability.  Likewise, in the verifiable setting,
   we require that:

     Z = VerifiableEvaluate(k,G,Y,M)
     VerifiableFinalize(x, Y, VerifiableUnblind(r,G,Y,M,Z), aux)
         == H_2(H_2(DST, x .. F(k,x)), aux)

   with overwhelming probability, where (r, M) = VerifiableBlind(x).  In
   other words, the inner H_2 invocation effectively derives a key, dk,
   from the input data DST, x, N.  The outer invocation derives the
   output y by evaluating H_2 over dk and auxiliary data aux.

4.4.  Domain separation

   The Finalize procedure accepts optional auxiliary byte string input
   (aux) as a means of modifying the PRF output.  This parameter SHOULD
   be used for domain separation in (V)OPRF the protocol.  Specifically,
   any system which has multiple (V)OPRF applications should use
   separate aux values to to ensure finalized outputs are separate.
   Guidance for constructing aux can be found in
   [I-D.irtf-cfrg-hash-to-curve]; Section 3.1.

4.5.  Instantiations of GG

   As we remarked above, GG is a group with associated prime-order p.
   While we choose to write operations in the setting where GG comes
   equipped with an additive operation, we could also define the
   operations in the multiplicative setting.  In the multiplicative
   setting we can choose GG to be a prime-order subgroup of a finite
   field FF_p.  For example, let p be some large prime (e.g. > 2048
   bits) where p = 2q+1 for some other prime q.  Then the subgroup of
   squares of FF_p (elements u^2 where u is an element of FF_p) is
   cyclic, and we can pick a generator of this subgroup by picking G
   from FF_p (ignoring the identity element).

   For practicality of the protocol, it is preferable to focus on the
   cases where GG is an additive subgroup so that we can instantiate the
   OPRF in the elliptic curve setting.  This amounts to choosing GG to
   be a prime-order subgroup of an elliptic curve over base field GF(p)
   for prime p.  There are also other settings where GG is a prime-order
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   subgroup of an elliptic curve over a base field of non-prime order,
   these include the work of Ristretto [RISTRETTO] and Decaf [DECAF].

   We will use p > 0 generally for constructing the base field GF(p),
   not just those where p is prime.  To reiterate, we focus only on the
   additive case, and so we focus only on the cases where GF(p) is
   indeed the base field.

   Unless otherwise stated, we will always assume that the generator G
   that we use for the group GG is a fixed generator.  This generator
   should be available to both the client and the server ahead of the
   protocol, or derived for each different group instantiation using a
   fixed method.  In the elliptic curve setting, we recommend using the
   fixed generators that are given as part of the curve description.

4.6.  OPRF algorithms

   This section provides descriptions of the algorithms used in the
   generalized protocols from Section 4.2.1.  We describe the VOPRF
   analogues for the protocols in Section 4.2.2 later in Section 4.7.

   We note here that the blinding mechanism that we use can be modified
   slightly with the opportunity for making performance gains in some
   scenarios.  We detail these modifications in Section Section 4.8.

4.6.1.  Setup

  Input:

   l: Some suitable choice of prime length for instantiating a group
      structure (e.g. as described in [NIST]).

  Output:

   k:  A key chosen from {0,1}^l and interpreted as a scalar in [1,p-1].
   GG: A cyclic group with prime-order p of length l bits.

  Steps:

   1. Construct a group GG = GG(l) with prime-order p of length l bits
   2. k <-$ GF(p)
   3. Output (k,GG)

4.6.2.  Blind
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   Input:

    x: Binary string taken from {0,1}^*.

   Output:

    r: Random scalar in [1, p - 1].
    M: An element in GG.

   Steps:

    1.  r <-$ GF(p)
    2.  M := rH_1(x)
    3.  Output (r, M)

4.6.3.  Evaluate

   Input:

    k: A scalar value taken from [1,p-1].
    M: An element in GG.

   Output:

    Z: An element in GG.

   Steps:

    1. Z := kM
    2. Output Z

4.6.4.  Unblind

   Input:

    r: Random scalar in [1, p - 1].
    Z: An element in GG.

   Output:

    N: An element in GG.

   Steps:

    1. N := (r^(-1))Z
    2. Output N
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4.6.5.  Finalize

   Input:

    x: Binary string taken from {0,1}^*.
    N: An element in GG.
    aux: Arbitrary auxiliary data (as bytes).

   Output:

    y: Random element in {0,1}^L.

   Steps:

    1. DST := "oprf_derive_output"
    2. dk := H_2(DST, x .. N)
    3. y := H_2(dk, aux)
    4. Output y

4.7.  VOPRF algorithms

   We make modifications to the aforementioned algorithms in the VOPRF
   setting.

4.7.1.  VerifiableSetup

  Input:

   G: Public fixed generator of GG.
   l: Some suitable choice of key-length (e.g. as described in [NIST]).

  Output:

   k:  A key chosen from {0,1}^l and interpreted as a scalar in [1,p-1].
   GG: A cyclic group with prime-order p of length l bits.
   Y:  A group element in GG.

  Steps:

    1. (k,GG) <- Setup(l)
    2. Y := kG
    3. Output (k,GG,Y)

4.7.2.  VerifiableBlind
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   Input:

    x: V's PRF input.

   Output:

    r: Random scalar in [1, p - 1].
    M: An element in GG.

   Steps:

    1.  r <-$ GF(p)
    2.  M := rH_1(x)
    3.  Output (r,M)

4.7.3.  VerifiableEvaluate

   Input:

    k: A random scalar in [1,p-1].
    G: Public fixed generator of group GG.
    Y: An element in GG.
    M: An element in GG.

   Output:

    Z: An element in GG.
    D: DLEQ proof that log_G(Y) == log_M(Z).

   Steps:

    1. Z := kM
    2. Z <- hZ
    3. D = DLEQ_Generate(k,G,Y,M,Z)
    4. Output (Z, D)

4.7.4.  VerifiableUnblind
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   Input:

    r: Random scalar in [1, p - 1].
    G: Public fixed generator of group GG.
    Y: An element in GG.
    M: An element in GG.
    Z: An element in GG.
    D: DLEQ proof object.

   Output:

    N: An element in GG.

   Steps:

    1. if DLEQ_Verify(G,Y,M,Z,D) == false: output "error"
    2. N := (r^(-1))Z
    3. Output N

4.7.5.  VerifiableFinalize

   Input:

    x:   Binary string in {0,1}^*.
    Y:   An element in GG.
    N:   An element in GG, or "error".
    aux: Arbitrary auxiliary data in {0,1}^*.

   Output:

    y:   Random element in {0,1}^L, or "error"

   Steps:

    1. If N == "error", output "error".
    2. DST := "voprf_derive_output"
    3. dk := H_2(DST, x .. Y .. N)
    4. y := H_2(dk, aux)
    5. Output y

4.8.  Efficiency gains with pre-processing and fixed-base blinding

   In Section Section 4.6 we assume that the client-side blinding is
   carried out directly on the output of H_1(x), i.e. computing rH_1(x)
   for some r <-$ GF(p).  In the [OPAQUE] draft, it is noted that it may
   be more efficient to use additive blinding rather than multiplicative
   if the client can preprocess some values.  For example, a valid way
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   of computing additive blinding would be to instead compute H_1(x)+rG,
   where G is the fixed generator for the group GG.

   We refer to the 'multiplicative' blinding as variable-base blinding
   (VBB), since the base of the blinding (H_1(x)) varies with each
   instantiation.  We refer to the additive blinding case as fixed-base
   blinding (FBB) since the blinding is applied to the same generator
   each time (when computing rG).

   By pre-processing tables of blinded scalar multiplications for the
   specific choice of G it is possible to gain a computational
   advantage.  Choosing one of these values rG (where r is the scalar
   value that is used), then computing H_1(x)+rG is more efficient than
   computing rH_1(x) (one addition against log_2(r)).  Therefore, it may
   be advantageous to define the OPRF and VOPRF protocols using additive
   blinding rather than multiplicative blinding.  In fact, the only
   algorithms that need to change are Blind and Unblind (and similarly
   for the VOPRF variants).

   We define the FBB variants of the algorithms in Section 4.6 below
   along with a new algorithm Preprocess that defines how preprocessing
   is carried out.  The equivalent algorithms for VOPRF are almost
   identical and so we do not redefine them here.  Notice that the only
   computation that changes is for V, the necessary computation of P
   does not change.

4.8.1.  Preprocess

   Input:

    G:  Public fixed generator of GG

   Output:

    r:  Random scalar in [1, p-1]
    rG: An element in GG.
    rY: An element in GG.

   Steps:

    1.  r <-$ GF(p)
    2.  Output (r, rG, rY)

4.8.2.  Blind
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   Input:

    x:  Binary string in {0,1}^*.
    rG: An element in GG.

   Output:

    M: An element in GG.

   Steps:

    1.  M := H_1(x)+rG
    2.  Output M

4.8.3.  Unblind

   Input:

    rY: An element in GG.
    M:  An element in GG.
    Z:  An element in GG.

   Output:

    N: An element in GG.

   Steps:

    1. N := Z-rY
    2. Output N

   Notice that Unblind computes (Z-rY) = k(H_1(x)+rG) - rkG = kH_1(x) by
   the commutativity of scalar multiplication in GG.  This is the same
   output as in the original Unblind algorithm.

5.  NIZK Discrete Logarithm Equality Proof

   For the VOPRF protocol we require that V is able to verify that P has
   used its private key k to evaluate the PRF.  We can do this by
   showing that the original commitment (G,Y) output by
   VerifiableSetup(l) satisfies log_G(Y) == log_M(Z) where Z is the
   output of VerifiableEvaluate(k,G,Y,M).

   This may be used, for example, to ensure that P uses the same private
   key for computing the VOPRF output and does not attempt to "tag"
   individual verifiers with select keys.  This proof must not reveal
   the P's long-term private key to V.
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   Consequently, this allows extending the OPRF protocol with a (non-
   interactive) discrete logarithm equality (DLEQ) algorithm built on a
   Chaum-Pedersen [ChaumPedersen] proof.  This proof is divided into two
   procedures: DLEQ_Generate and DLEQ_Verify.  These are specified
   below.

5.1.  DLEQ_Generate

   Input:

    k: Evaluator secret key.
    G: Public fixed generator of GG.
    Y: Evaluator public key (= kG).
    M: An element in GG.
    Z: An element in GG.
    H_3: A hash function from GG to {0,1}^L, modeled as a random oracle.

   Output:

    D: DLEQ proof (c, s).

   Steps:

    1. r <-$ GF(p)
    2. A := rG
    3. B := rM
    4. c <- H_3(G,Y,M,Z,A,B) (mod p)
    5. s := (r - ck) (mod p)
    6. Output D := (c, s)

   We note here that it is essential that a different r value is used
   for every invocation.  If this is not done, then this may leak the
   key k in a similar fashion as is possible in Schnorr or (EC)DSA
   scenarios where fresh randomness is not used.

5.2.  DLEQ_Verify
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   Input:

    G: Public fixed generator of GG.
    Y: Evaluator public key.
    M: An element in GG.
    Z: An element in GG.
    D: DLEQ proof (c, s).

   Output:

    True if log_G(Y) == log_M(Z), False otherwise.

   Steps:

    1. A' := (sG + cY)
    2. B' := (sM + cZ)
    3. c' <- H_3(G,Y,M,Z,A',B') (mod p)
    4. Output c == c' (mod p)

6.  Batched VOPRF evaluation

   Common applications (e.g.  [PrivacyPass]) require V to obtain
   multiple PRF evaluations from P.  In the VOPRF case, this would
   naively require running multiple protocol invocations.  This is
   costly, both in terms of computation and communication.  To get
   around this, applications can use a 'batching' procedure for
   generating and verifying DLEQ proofs for a finite number of PRF
   evaluation pairs (Mi,Zi).  For n PRF evaluations:

   o  Proof generation is slightly more expensive from 2n modular
      exponentiations to 2n+2.

   o  Proof verification is much more efficient, from 4n modular
      exponentiations to 2n+4.

   o  Communications falls from 2n to 2 group elements.

   Since P is the VOPRF server, it may be able to tolerate a slight
   increase in proof generation complexity for much more efficient
   communication and proof verification.

   In this section, we describe algorithms for batching the DLEQ
   generation and verification procedure.  For these algorithms we
   require two additional hash functions H_4: GG^(2n+2) -> {0,1}^a, and
   H_5: {0,1}^a x ZZ^3 -> {0,1}^b (both modeled as random oracles).

   We can instantiate the random oracle function H_4 using the same hash
   function that is used for H_3 previously.  For H_5, we can also use a
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   similar instantiation, or we can use a variable-length output
   generator.  For example, for groups with an order of 256-bit, valid
   instantiations include functions such as SHAKE-256 [SHAKE] or HKDF-
   Expand-SHA256 [RFC5869].  This is preferable in situations where we
   may require outputs that are larger than 512 bits in length, for
   example.

6.1.  Batched_DLEQ_Generate

   Input:

    k: Evaluator secret key.
    G: Public fixed generator of group GG (with order p).
    Y: Evaluator public key (= kG).
    n: Number of PRF evaluations.
    [ Mi ]: An array of points in GG of length n.
    [ Zi ]: An array of points in GG of length n.
    H_4: A random oracle hash function from GG^(2n+2) to {0,1}^a.
    H_5: A random oracle hash function from {0,1}^a x ZZ^2 to {0,1}^b.
    label: An integer label value for the splitting the domain of H_5

   Output:

    D: DLEQ proof (c, s).

   Steps:

    1. seed <- H_4(G,Y,[Mi,Zi]))
    2. i' := i
    3. for i in [m]:
       1. di <- H_5(seed,i',info)
       2. if di > p:
          1. i' = i'+1
          2. i = i-1 // decrement and try again
          3. continue
    4. c1,...,cn := (int)d1,...,(int)dn
    5. M := c1M1 + ... + cnMn
    6. Z := c1Z1 + ... + cnZn
    7. Output DLEQ_Generate(k,G,Y,M,Z)

6.2.  DLEQ_Batched_Verify

https://datatracker.ietf.org/doc/html/rfc5869
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 Input:

  G: Public fixed generator of group GG (with order p).
  Y: Evaluator public key.
  [ Mi ]: An array of points in GG of length n.
  [ Zi ]: An array of points in GG of length n.
  D: DLEQ proof (c, s).

 Output:

  True if log_G(Y) == log_(Mi)(Zi) for each i in 1...n, False otherwise.

 Steps:

  1. seed <- H_4(G,Y,[Mi,Zi]))
  2. i' := i
  3. for i in [m]:
     1. di <- H_5(seed,i',info)
     2. if di > p:
        1. i' = i'+1
        2. i = i-1 // decrement and try again
        3. continue
  4. c1,...,cn := (int)d1,...,(int)dn
  5. M := c1M1 + ... + cnMn
  6. Z := c1Z1 + ... + cnZn
  7. Output DLEQ_Verify(G,Y,M,Z,D)

6.3.  Modified algorithms

   The VOPRF protocol from Section Section 4 changes to allow specifying
   multiple blinded PRF inputs "[ Mi ]" for i in 1...n.  P computes the
   array "[ Zi]" and replaces DLEQ_Generate with DLEQ_Batched_Generate
   over these arrays.  Concretely, we modify the following algorithms:

6.3.1.  VerifiableBlind
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   Input:

    [ xi ]: An array of m binary strings taken from {0,1}^*.

   Output:

    [ ri ]: An array of m random scalars in [1, p - 1].
    [ Mi ]: An array of elements in GG.

   Steps:

    1.  groupElems = []
    2.  blinds = []
    3.  for i in [m]:
        1.  ri <-$ GF(p)
        2.  Mi := rH_1(xi)
        3.  blinds.push(ri)
        4.  groupElems.push(Mi)
    4.  Output (blinds, groupElems)

6.3.2.  VerifiableEvaluate

   Input:

    k:      Evaluator secret key.
    G:      Public fixed generator of group GG.
    Y:      Evaluator public key (= kG).
    [ Mi ]: An array of m elements in GG.

   Output:

    [ Zi ]: An array of m elements in GG.
    D:      Batched DLEQ proof object.

   Steps:

    1.  outputElems = []
    2.  for i in [m]:
        1. Zi := kMi
        2. outputElems.push(Zi)
    3. D = Batched_DLEQ_Generate(k,G,Y,[ Mi ],outputElems)
    4. Output (outputElems, D)

6.3.3.  VerifiableUnblind
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   Input:

    G:      Public fixed generator of group GG.
    Y:      Evaluator public key (= kG).
    [ Mi ]: An array of m elements in GG.
    [ Zi ]: An array of m elements in GG.
    [ ri ]: An array of m random scalars in [1, p - 1].
    D:      Batched DLEQ proof object.

   Output:

    [ Ni ]: An array of n elements in GG.

   Steps:

    1. if !Batch_DLEQ_Verify(G,Y,[ Mi ],[ Zi ],D): Output "error"
    2. N = []
    3.  for i in [m]:
        1. Ni := (ri^(-1))Zi
        2. N.push(Ni)
    4. Output N

6.3.4.  VerifiableFinalize

   The description of this algorithm does not change in the batched
   case.  Instead, the protocol description in Section 4.2.2 changes so
   that "VerifiableFinalize" runs once for each of the outputs of
   "VerifiableUnblind".

6.4.  Random oracle instantiations for proofs

   We can instantiate the random oracle function H_4 using the same hash
   function that is used for H_1,H_2,H_3.  For H_5, we can also use a
   similar instantiation, or we can use a variable-length output
   generator.  For example, for groups with an order of 256-bit, valid
   instantiations include functions such as SHAKE-256 [SHAKE] or HKDF-
   Expand-SHA256 [RFC5869].

https://datatracker.ietf.org/doc/html/rfc5869
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   Input:

    [ ri ]: Random scalars in [1, p - 1].
    G: Public fixed generator of group GG.
    Y: Evaluator public key.
    [ Mi ]: Blinded elements of GG.
    [ Zi ]: Server-generated elements in GG.
    D: A batched DLEQ proof object.

   Output:

    N: element in GG, or "error".

   Steps:

    1. N := (r^(-1))Z
    2. If 1 = DLEQ_Batched_Verify(G,Y,[ Mi ],[ Zi ],D), output N
    3. Output "error"

7.  Supported ciphersuites

   This section specifies supported VOPRF group and hash function
   instantiations.  We only provide ciphersuites in the EC setting as
   these provide the most efficient way of instantiating the OPRF.  Our
   instantiation includes considerations for providing the DLEQ proofs
   that make the instantiation a VOPRF.  Supporting OPRF operations
   alone can be allowed by simply dropping the relevant components.  For
   reasons that are detailed in Section 8.1, we only consider
   ciphersuites that provide strictly greater than 128 bits of security
   [NIST].

7.1.  OPRF-curve448-HKDF-SHA512-ELL2-RO:

   o  GG: curve448 [RFC7748]

   o  H_1: curve448-SHA512-ELL2-RO [I-D.irtf-cfrg-hash-to-curve]

      *  hash-to-curve DST: "RFCXXXX-OPRF-curve448-SHA512-ELL2-RO-"

   o  H_2: HMAC_SHA512 [RFC2104]

   o  H_3: SHA512

7.2.  OPRF-P384-HKDF-SHA512-SSWU-RO:

   o  GG: secp384r1 [SEC2]

   o  H_1: P384-SHA512-SSWU-RO [I-D.irtf-cfrg-hash-to-curve]

https://datatracker.ietf.org/doc/html/rfc7748
https://datatracker.ietf.org/doc/html/rfc2104
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      *  hash-to-curve DST: "RFCXXXX-OPRF-P384-SHA512-SSWU-RO-"

   o  H_2: HMAC_SHA512 [RFC2104]

   o  H_3: SHA512

7.3.  OPRF-P521-HKDF-SHA512-SSWU-RO:

   o  GG: secp521r1 [SEC2]

   o  H_1: P521-SHA512-SSWU-RO [I-D.irtf-cfrg-hash-to-curve]

      *  hash-to-curve DST: "RFCXXXX-OPRF-P521-SHA512-SSWU-RO-"

   o  H_2: HMAC_SHA512 [RFC2104]

   o  H_3: SHA512

7.4.  VOPRF-curve448-HKDF-SHA512-ELL2-RO:

   o  GG: curve448 [RFC7748]

   o  H_1: curve448-SHA512-ELL2-RO [I-D.irtf-cfrg-hash-to-curve]

      *  hash-to-curve DST: "RFCXXXX-VOPRF-curve448-SHA512-ELL2-RO-"

   o  H_2: HMAC_SHA512 [RFC2104]

   o  H_3: SHA512

   o  H_4: SHA512

   o  H_5: HKDF-Expand-SHA512

7.5.  VOPRF-P384-HKDF-SHA512-SSWU-RO:

   o  GG: secp384r1 [SEC2]

   o  H_1: P384-SHA512-SSWU-RO [I-D.irtf-cfrg-hash-to-curve]

      *  hash-to-curve DST: "RFCXXXX-VOPRF-P384-SHA512-SSWU-RO-"

   o  H_2: HMAC_SHA512 [RFC2104]

   o  H_3: SHA512

   o  H_4: SHA512

https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc7748
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc2104


Davidson, et al.       Expires September 10, 2020              [Page 29]



Internet-Draft                    OPRFs                       March 2020

   o  H_5: HKDF-Expand-SHA512

7.6.  VOPRF-P521-HKDF-SHA512-SSWU-RO:

   o  GG: secp521r1 [SEC2]

   o  H_1: P521-SHA512-SSWU-RO [I-D.irtf-cfrg-hash-to-curve]

      *  hash-to-curve DST: "RFCXXXX-VOPRF-P521-SHA512-SSWU-RO-"

   o  H_2: HMAC_SHA512 [RFC2104]

   o  H_3: SHA512

   o  H_4: SHA512

   o  H_5: HKDF-Expand-SHA512

   We remark that the 'hash-to-curve DST' field is necessary for domain
   separation of the hash-to-curve functionality.

8.  Security Considerations

   This section discusses the cryptographic security of our protocol,
   along with some suggestions and trade-offs that arise from the
   implementation of the implementation of an OPRF.

8.1.  Cryptographic security

   We discuss the cryptographic security of the OPRF protocol from
Section 4, relative to the necessary cryptographic assumptions that

   need to be made.

8.1.1.  Computational hardness assumptions

   Each assumption states that the problems specified below are
   computationally difficult to solve in relation to sp (the security
   parameter).  In other words, the probability that an adversary has in
   solving the problem is bounded by a function negl(sp), where negl(sp)
   < 1/f(sp) for all polynomial functions f().

   Let GG = GG(sp) be a group with prime-order p, and let FFp be the
   finite field of order p.

https://datatracker.ietf.org/doc/html/rfc2104
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8.1.1.1.  Discrete-log (DL) problem

   Given G, a generator of GG, and H = hG for some h in FFp; output h.

8.1.1.2.  Decisional Diffie-Hellman (DDH) problem

   Sample a uniformly random bit d in {0,1}. Given (G, aG, bG, C),
   where:

   o  G is a generator of GG;

   o  a,b are elements of FFp;

   o  if d == 0: C = abG; else: C is sampled uniformly GG(sp).

   Output d' == d.

8.1.2.  Protocol security

   As aforementioned, our OPRF and VOPRF constructions are based heavily
   on the 2HashDH-NIZK construction given in [JKK14], except for
   considerations on how we instantiate the NIZK DLEQ proof system.
   This means that the cryptographic security of our construction is
   also based on the assumption that the One-More Gap DH is
   computationally difficult to solve.

   The (N,Q)-One-More Gap DH (OMDH) problem asks the following.

       Given:
       - G, kG, G_1, ... , G_N where G, G1, ... GN are elements od GG;
       - oracle access to an OPRF functionality using the key k;
       - oracle access to DDH solvers.

       Find Q+1 pairs of the form below:

       (G_{j_s}, kG_{j_s})

       where the following conditions hold:
         - s is a number between 1 and Q+1;
         - j_s is a number between 1 and N for each s;
         - Q is the number of allowed queries.

   The original paper [JKK14] gives a security proof that the 2HashDH-
   NIZK construction satisfies the security guarantees of a VOPRF
   protocol Section 3.1 under the OMDH assumption in the universal
   composability (UC) security model.  Without the NIZK proof system,
   the protocol instantiates an OPRF protocol only.  See the paper for
   further details.
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8.1.3.  Q-strong-DH oracle

   A side-effect of our OPRF design is that it allows instantiation of a
   oracle for constructing Q-strong-DH (Q-sDH) samples.  The Q-Strong-DH
   problem asks the following.

       Given G1, G2, h*G2, (h^2)*G2, ..., (h^Q)*G2; for G1 and G2
       generators of GG.

       Output ( (1/(k+c))*G1, c ) where c is an element of FFp

   The assumption that this problem is hard was first introduced in
   [BB04].  Since then, there have been a number of cryptanalytic
   studies that have reduced the security of the assumption below that
   implied by the group instantiation (for example, [BG04] and
   [Cheon06]).  In summary, the attacks reduce the security of the group
   instantiation by log_2(Q) bits.

   As an example, suppose that a group instantiation is used that
   provides 128 bits of security.  Then an adversary with access to a
   Q-sDH oracle and makes Q=2^20 queries can reduce the security of the
   instantiation by log_2(2^20) = 20 bits.

   Notice that it is easy to instantiate a Q-sDH oracle using the OPRF
   functionality that we provide.  A client can just submit sequential
   queries of the form (G, kG, (k^2)G, ..., (k^(Q-1))G), where each
   query is the output of the previous interaction.  This means that any
   client that submit Q queries to the OPRF can use the aforementioned
   attacks to reduce security of the group instantiation by log_2(Q)
   bits.

   Recall that from a malicious client's perspective, the adversary wins
   if they can distinguish the OPRF interaction from a protocol that
   computes the ideal functionality provided by the PRF.

8.1.4.  Implications for ciphersuite choices

   The OPRF instantiations that we recommend in this document are
   informed by the cryptanalytic discussion above.  In particular,
   choosing elliptic curves configurations that describe 128-bit group
   instantiations would appear to in fact instantiate an OPRF with
   128-log_2(Q) bits of security.

   While it would require an informed and persistent attacker to launch
   a highly expensive attack to reduce security to anything much below
   100 bits of security, we see this possibility as something that may
   result in problems in the future.  Therefore, all of our ciphersuites
   in Section 7 come with a minimum group instantiation corresponding to
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   196 bits of security.  This would require an adversary to launch a
   minimum of Q = 2^(68) queries to reduce security to 128 bits using
   the Q-sDH attacks.  As a result, it appears prohibitively expensive
   to launch credible attacks on these parameters with our current
   understanding of the attack surface.

8.2.  Hashing to curve

   A critical aspect of implementing this protocol using elliptic curve
   group instantiations is a method of instantiating the function H1,
   that maps inputs to group elements.  In the elliptic curve setting,
   this must be a deterministic function that maps arbitrary inputs x
   (as bytes) to uniformly chosen points in the curve.

   In the security proof of the construction H1 is modeled as a random
   oracle.  This implies that any instantiation of H1 must be pre-image
   and collision resistant.  In Section 7 we give instantiations of this
   functionality based on the functions described in
   [I-D.irtf-cfrg-hash-to-curve].  Consequently, any OPRF implementation
   must adhere to the implementation and security considerations
   discussed in [I-D.irtf-cfrg-hash-to-curve] when instantiating the
   function H1.

8.3.  Timing Leaks

   To ensure no information is leaked during protocol execution, all
   operations that use secret data MUST be constant time.  Operations
   that SHOULD be constant time include: H_1() (hashing arbitrary
   strings to curves) and DLEQ_Generate().  As mentioned previously,
   [I-D.irtf-cfrg-hash-to-curve] describes various algorithms for
   constant-time implementations of H_1.

8.4.  User segregation

   The aim of the OPRF functionality is to allow clients receive
   pseudorandom function evaluations on their own inputs, without
   compromising their own privacy with respect to the server.  In many
   applications (for example, [PrivacyPass]) the client may choose to
   reveal their original input, after an invocation of the OPRF
   protocol, along with their OPRF output.  This can prove to the server
   that it has received a valid OPRF output in the past.  Since the
   server does not reveal learn anything about the OPRF output, it
   should not be able to link the client to any previous protocol
   instantiation.

   Consider a malicious server that manages to segregate the user base
   into different sets.  Then this reduces the effective privacy of all
   of the clients involved, since the client above belongs to a smaller
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   set of users than previously hoped.  In general, if the user-base of
   the OPRF functionality is quite small, then the obliviousness of
   clients is limited.  That is, smaller user-bases mean that the server
   is able to identify client's with higher certainty.

   In summary, an OPRF instantiation effectively comes with an
   additional privacy parameter pp.  If all clients of the OPRF make one
   query and then subsequently reveal their OPRF input afterwards, then
   the server should be link the revealed input to a protocol
   instantiation with probability 1/pp.

   Below, we provide a few techniques that could be used to abuse
   client-privacy in the OPRF construction by segregating the user-base,
   along with some mitigations.

8.4.1.  Linkage patterns

   If the server is able to ascertain patterns of usage for some clients
   - such as timings associated with usage - then the effective privacy
   of the clients is reduced to the number of users that fit each usage
   pattern.  Along with early registration patterns, where early
   adopters initially have less privacy due to a low number of
   registered users, such problems are inherent to any anonymity-
   preserving system.

8.4.2.  Evaluation on multiple keys

   Such an attack consists of the server evaluating the OPRF on multiple
   different keys related to the number of clients that use the
   functionality.  As an extreme, the server could evaluate the OPRF
   with a different key for each client.  If the client then revealed
   their hidden information at a later date then the server would
   immediately know which initial request they launched.

   The VOPRF variant helps mitigate this attack since each server
   evaluation can be bound to a known public key.  However, there are
   still ways that the VOPRF construction can be abused.  In particular:

   o  If the server successfully provisions a large number of keys that
      are trusted by clients, then the server can divide the user-base
      by the number of keys that are currently in use.  As such, clients
      should only trust a small number (2 or 3 ideally) of server keys
      at any one time.  Additionally, a tamper-proof audit log system
      akin to existing work on Key Transparency [keytrans] could be used
      to ensure that a server is abiding by the key policy.  This would
      force the server to be held accountable for their key updates, and
      thus higher key update frequencies can be better managed on the
      client-side.
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   o  If the server rotates their key frequently, then this may result
      in client's holding out-of-date information from a past
      interaction.  Such information can also be used to segregate the
      user-base based on the last time that they accessed the OPRF
      protocol.  Similarly to the above, server key rotations must be
      kept to relatively infrequent intervals (such as once per month).
      This will prevent too many clients from being segregated into
      different groups related to the time that they accessed the
      functionality.  There are viable reasons for rotating the server
      key (for protecting against malicious clients) that we address
      more closely in Section 8.5.

   Since key provisioning requires careful handling, all public keys
   should be accessible from a client-trusted registry with a way of
   auditing the history of key updates.  We also recommend that public
   keys have a corresponding expiry date that clients can use to prevent
   the server from using keys that have been provisioned for a long
   period of time.

8.5.  Key rotation

   Since the server's key is critical to security, the longer it is
   exposed by performing (V)OPRF operations on client inputs, the longer
   it is possible that the key can be compromised.  For instance, if the
   key is kept in production for a long period of time, then this may
   grant the client the ability to hoard large numbers of tokens.  This
   has negative impacts for some of the applications that we consider in

Section 9.  As another example, if the key is kept in circulation for
   a long period of time, then it also allows the clients to make enough
   queries to launch more powerful variants of the Q-sDH attacks from

Section 8.1.3.

   To combat attacks of this nature, regular key rotation should be
   employed on the server-side.  A suitable key-cycle for a key used to
   compute (V)OPRF evaluations would be between one week and six months.

   As we discussed in Section 8.4.2, key rotation cycles that are too
   frequent (in the order of days) can lead to large segregation of the
   wider user base.  As such, the length of the key cycles represent a
   trade-off between greater server key security (for shorter cycles),
   and better client privacy (for longer cycles).  In situations where
   client privacy is paramount, longer key cycles should be employed.
   Otherwise, shorter key cycles can be managed if the server uses a Key
   Transparency-type system [keytrans]; this allows clients to publicly
   audit their rotations.
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9.  Applications

   This section describes various applications of the (V)OPRF protocol.

9.1.  Privacy Pass

   This VOPRF protocol is used by the Privacy Pass system [PrivacyPass]
   to help Tor users bypass CAPTCHA challenges.  Their system works as
   follows.  Client C connects - through Tor - to an edge server E
   serving content.  Upon receipt, E serves a CAPTCHA to C, who then
   solves the CAPTCHA and supplies, in response, n blinded points.  E
   verifies the CAPTCHA response and, if valid, signs (at most) n
   blinded points, which are then returned to C along with a batched
   DLEQ proof.  C stores the tokens if the batched proof verifies
   correctly.  When C attempts to connect to E again and is prompted
   with a CAPTCHA, C uses one of the unblinded and signed points, or
   tokens, to derive a shared symmetric key sk used to MAC the CAPTCHA
   challenge.  C sends the CAPTCHA, MAC, and token input x to E, who can
   use x to derive sk and verify the CAPTCHA MAC.  Thus, each token is
   used at most once by the system.

   The Privacy Pass implementation uses the P-256 instantiation of the
   VOPRF protocol.  For more details, see [DGSTV18].

9.2.  Private Password Checker

   In this application, let D be a collection of plaintext passwords
   obtained by prover P.  For each password p in D, P computes
   VerifiableEvaluate on H_1(p), where H_1 is as described above, and
   stores the result in a separate collection D'.  P then publishes D'
   with Y, its public key.  If a client C wishes to query D' for a
   password p', it runs the VOPRF protocol using p as input x to obtain
   output y.  By construction, y will be the OPRF evaluation of p hashed
   onto the curve.  C can then search D' for y to determine if there is
   a match.

   Concrete examples of important applications in the password domain
   include:

   o  password-protected storage [JKK14], [JKKX16];

   o  perfectly-hiding password management [SJKS17];

   o  password-protected secret-sharing [JKKX17].
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9.2.1.  Parameter Commitments

   For some applications, it may be desirable for P to bind tokens to
   certain parameters, e.g., protocol versions, ciphersuites, etc.  To
   accomplish this, P should use a distinct scalar for each parameter
   combination.  Upon redemption of a token T from V, P can later verify
   that T was generated using the scalar associated with the
   corresponding parameters.
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