
Network Working Group A. Davidson
Internet-Draft N. Sullivan
Intended status: Informational Cloudflare
Expires: September 10, 2020 C. Wood
 Apple Inc.
 March 09, 2020

Oblivious Pseudorandom Functions (OPRFs) using Prime-Order Groups
draft-irtf-cfrg-voprf-03

Abstract

 An Oblivious Pseudorandom Function (OPRF) is a two-party protocol for
 computing the output of a PRF. One party (the server) holds the PRF
 secret key, and the other (the client) holds the PRF input. The
 'obliviousness' property ensures that the server does not learn
 anything about the client's input during the evaluation. The client
 should also not learn anything about the server's secret PRF key.
 Optionally, OPRFs can also satisfy a notion 'verifiability' (VOPRF).
 In this setting, the client can verify that the server's output is
 indeed the result of evaluating the underlying PRF with just a public
 key. This document specifies OPRF and VOPRF constructions
 instantiated within prime-order groups, including elliptic curves.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 10, 2020.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Davidson, et al. Expires September 10, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft OPRFs March 2020

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Change log . 5
1.2. Terminology . 6
1.3. Requirements . 6

2. Background . 6
3. Preliminaries . 7
3.1. Security Properties 7
3.2. Prime-order group instantiation 8
3.3. Conventions . 8
3.3.1. Binary strings 8
3.3.2. Group notation 9

4. OPRF Protocol . 9
4.1. Design . 10
4.2. Protocol functionality 11
4.2.1. Generalized OPRF 12
4.2.2. Generalized VOPRF 13

4.3. Protocol correctness 14
4.4. Domain separation . 14
4.5. Instantiations of GG 14
4.6. OPRF algorithms . 15
4.6.1. Setup . 15
4.6.2. Blind . 15
4.6.3. Evaluate . 16
4.6.4. Unblind . 16
4.6.5. Finalize . 17

4.7. VOPRF algorithms . 17
4.7.1. VerifiableSetup 17
4.7.2. VerifiableBlind 17
4.7.3. VerifiableEvaluate 18
4.7.4. VerifiableUnblind 18
4.7.5. VerifiableFinalize 19

 4.8. Efficiency gains with pre-processing and fixed-base
 blinding . 19

4.8.1. Preprocess . 20
4.8.2. Blind . 20
4.8.3. Unblind . 21

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Davidson, et al. Expires September 10, 2020 [Page 2]

Internet-Draft OPRFs March 2020

5. NIZK Discrete Logarithm Equality Proof 21
5.1. DLEQ_Generate . 22
5.2. DLEQ_Verify . 22

6. Batched VOPRF evaluation 23
6.1. Batched_DLEQ_Generate 24
6.2. DLEQ_Batched_Verify 24
6.3. Modified algorithms 25
6.3.1. VerifiableBlind 25
6.3.2. VerifiableEvaluate 26
6.3.3. VerifiableUnblind 26
6.3.4. VerifiableFinalize 27

6.4. Random oracle instantiations for proofs 27
7. Supported ciphersuites 28
7.1. OPRF-curve448-HKDF-SHA512-ELL2-RO: 28
7.2. OPRF-P384-HKDF-SHA512-SSWU-RO: 28
7.3. OPRF-P521-HKDF-SHA512-SSWU-RO: 29
7.4. VOPRF-curve448-HKDF-SHA512-ELL2-RO: 29
7.5. VOPRF-P384-HKDF-SHA512-SSWU-RO: 29
7.6. VOPRF-P521-HKDF-SHA512-SSWU-RO: 30

8. Security Considerations 30
8.1. Cryptographic security 30
8.1.1. Computational hardness assumptions 30
8.1.2. Protocol security 31
8.1.3. Q-strong-DH oracle 32
8.1.4. Implications for ciphersuite choices 32

8.2. Hashing to curve . 33
8.3. Timing Leaks . 33
8.4. User segregation . 33
8.4.1. Linkage patterns 34
8.4.2. Evaluation on multiple keys 34

8.5. Key rotation . 35
9. Applications . 36
9.1. Privacy Pass . 36
9.2. Private Password Checker 36
9.2.1. Parameter Commitments 37

10. Contributors . 37
11. Acknowledgements . 37
12. References . 37
12.1. Normative References 37
12.2. URIs . 39

 Authors' Addresses . 39

1. Introduction

 A pseudorandom function (PRF) F(k, x) is an efficiently computable
 function with secret key k on input x. Roughly, F is pseudorandom if
 the output y = F(k, x) is indistinguishable from uniformly sampling
 any element in F's range for random choice of k. An oblivious PRF

Davidson, et al. Expires September 10, 2020 [Page 3]

Internet-Draft OPRFs March 2020

 (OPRF) is a two-party protocol between a prover P and verifier V
 where P holds a PRF key k and V holds some input x. The protocol
 allows both parties to cooperate in computing F(k, x) with P's secret
 key k and V's input x such that: V learns F(k, x) without learning
 anything about k; and P does not learn anything about x. A
 Verifiable OPRF (VOPRF) is an OPRF wherein P can prove to V that F(k,
 x) was computed using key k, which is bound to a trusted public key Y
 = kG. Informally, this is done by presenting a non-interactive zero-
 knowledge (NIZK) proof of equality between (G, Y) and (Z, M), where Z
 = kM for some point M.

 OPRFs have been shown to be useful for constructing: password-
 protected secret sharing schemes [JKK14]; privacy-preserving password
 stores [SJKS17]; and password-authenticated key exchange or PAKE
 [OPAQUE]. VOPRFs are useful for producing tokens that are verifiable
 by V. This may be needed, for example, if V wants assurance that P
 did not use a unique key in its computation, i.e., if V wants key
 consistency from P. This property is necessary in some applications,
 e.g., the Privacy Pass protocol [PrivacyPass], wherein this VOPRF is
 used to generate one-time authentication tokens to bypass CAPTCHA
 challenges. VOPRFs have also been used for password-protected secret
 sharing schemes e.g. [JKKX16].

 This document introduces an OPRF protocol built in prime-order
 groups, applying to finite fields of prime-order and also elliptic
 curve (EC) settings. The protocol has the option of being extended
 to a VOPRF with the addition of a NIZK proof for proving discrete log
 equality relations. This proof demonstrates correctness of the
 computation using a known public key that serves as a commitment to
 the server's secret key. The document describes the protocol, its
 security properties, and provides preliminary test vectors for
 experimentation. The rest of the document is structured as follows:

 o Section 2: Describe background, related work, and use cases of
 OPRF/VOPRF protocols.

 o Section 3: Describe conventions and assumptions made relating to
 security of (V)OPRFs and prime-order group instantiations.

 o Section 4: Specify an authentication protocol from OPRF
 functionality, based in prime-order groups (with an optional
 verifiable mode). Algorithms are stated formally for OPRFs in

Section 4.6 and for VOPRFs in Section 4.7.

 o Section 5: Specify the NIZK discrete logarithm equality (DLEQ)
 construction used for constructing the VOPRF protocol.

Davidson, et al. Expires September 10, 2020 [Page 4]

Internet-Draft OPRFs March 2020

 o Section 6: Specifies how the DLEQ proof mechanism can be batched
 for multiple VOPRF invocations, and how this changes the protocol
 execution.

 o Section 7: Considers explicit instantiations of the protocol in
 the elliptic curve setting.

 o Section 8: Discusses the security considerations for the OPRF and
 VOPRF protocol.

 o Section 9: Discusses some existing applications of OPRF and VOPRF
 protocols.

1.1. Change log

draft-03 [1]:

 o Certify public key during VerifiableFinalize

 o Remove protocol integration advice

 o Add text discussing how to perform domain separation

 o Drop OPRF_/VOPRF_ prefix from algorithm names

 o Make prime-order group assumption explicit

 o Changes to algorithms accepting batched inputs

 o Changes to construction of batched DLEQ proofs

 o Updated ciphersuites to be consistent with hash-to-curve and added
 OPRF specific ciphersuites

draft-02 [2]:

 o Added section discussing cryptographic security and static DH
 oracles

 o Updated batched proof algorithms

draft-01 [3]:

 o Updated ciphersuites to be in line with
https://tools.ietf.org/html/draft-irtf-cfrg-hash-to-curve-04

 o Made some necessary modular reductions more explicit

https://datatracker.ietf.org/doc/html/draft-03
https://datatracker.ietf.org/doc/html/draft-02
https://datatracker.ietf.org/doc/html/draft-01
https://tools.ietf.org/html/draft-irtf-cfrg-hash-to-curve-04

Davidson, et al. Expires September 10, 2020 [Page 5]

Internet-Draft OPRFs March 2020

1.2. Terminology

 The following terms are used throughout this document.

 o PRF: Pseudorandom Function.

 o OPRF: Oblivious PRF.

 o VOPRF: Verifiable Oblivious Pseudorandom Function.

 o Verifier (V): Protocol initiator when computing F(k, x), also
 known as client.

 o Prover (P): Holder of secret key k, also known as server.

 o NIZK: Non-interactive zero knowledge.

 o DLEQ: Discrete Logarithm Equality.

1.3. Requirements

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Background

 OPRFs are functionally related to blind signature schemes. In such a
 scheme, a client can receive signatures on private data, under the
 signing key of some server. The security properties of such a scheme
 dictate that the client learns nothing about the signing key, and
 that the server learns nothing about the data that is signed. One of
 the more popular blind signature schemes is based on the RSA
 cryptosystem and is known as Blind RSA [ChaumBlindSignature].

 OPRF protocols can thought of as symmetric alternatives to blind
 signatures. Essentially the client learns y = PRF(k,x) for some
 input x of their choice, from a server that holds k. Since the
 security of an OPRF means that x is hidden in the interaction, then
 the client can later reveal x to the server along with y.

 The server can verify that y is computed correctly by recomputing the
 PRF on x using k. In doing so, the client provides knowledge of a
 'signature' y for their value x. The verification procedure is thus
 symmetric as it requires knowledge of the key k. This is discussed
 more in the following section.

https://datatracker.ietf.org/doc/html/rfc2119

Davidson, et al. Expires September 10, 2020 [Page 6]

Internet-Draft OPRFs March 2020

3. Preliminaries

 We start by detailing some necessary cryptographic definitions.

3.1. Security Properties

 The security properties of an OPRF protocol with functionality y =
 F(k, x) include those of a standard PRF. Specifically:

 o Pseudorandomness: F is pseudorandom if the output y = F(k,x) on
 any input x is indistinguishable from uniformly sampling any
 element in F's range, for a random sampling of k.

 In other words, for an adversary that can pick inputs x from the
 domain of F and can evaluate F on (k,x) (without knowledge of
 randomly sampled k), then the output distribution F(k,x) is
 indistinguishable from the uniform distribution in the range of F.

 A consequence of showing that a function is pseudorandom, is that it
 is necessarily non-malleable (i.e. we cannot compute a new evaluation
 of F from an existing evaluation). A genuinely random function will
 be non-malleable with high probability, and so a pseudorandom
 function must be non-malleable to maintain indistinguishability.

 An OPRF protocol must also satisfy the following property:

 o Oblivious: P must learn nothing about V's input or the output of
 the function. In addition, V must learn nothing about P's private
 key.

 Essentially, obliviousness tells us that, even if P learns V's input
 x at some point in the future, then P will not be able to link any
 particular OPRF evaluation to x. This property is also known as
 unlinkability [DGSTV18].

 Optionally, for any protocol that satisfies the above properties,
 there is an additional security property:

 o Verifiable: V must only complete execution of the protocol if it
 can successfully assert that the OPRF output computed by V is
 correct, with respect to the OPRF key held by P.

 Any OPRF that satisfies the 'verifiable' security property is known
 as a verifiable OPRF, or VOPRF for short. In practice, the notion of
 verifiability requires that P commits to the key k before the actual
 protocol execution takes place. Then V verifies that P has used k in
 the protocol using this commitment. In the following, we may also
 refer to this commitment as a public key.

Davidson, et al. Expires September 10, 2020 [Page 7]

Internet-Draft OPRFs March 2020

3.2. Prime-order group instantiation

 In this document, we assume the construction of a prime-order group
 GG for performing all mathematical operations. Such a group MUST
 provide the interface provided by cyclic group under the addition
 operation (for example, well-defined addition of group elements). We
 also assume the presence of a fixed generator G that can be detailed
 as a fixed parameter in the description of the group. We write p =
 order(GG) to represent the order of the group throughout this
 document.

 It is common in cryptographic applications to instantiate such prime-
 order groups using elliptic curves, such as those detailed in [SEC2].
 For some choices of elliptic curves (e.g. those detailed in [RFC7748]
 require accounting for cofactors) there are some implementation
 issues that introduce inherent discrepancies between standard prime-
 order groups and the elliptic curve instantiation. In this document,
 all algorithms that we detail assume that the group is a prime-order
 group, and this MUST be upheld by any implementer. That is, any
 curve instantiation should be written such that any discrepancies
 with a prime-order group instantiation are removed. In the case of
 cofactors, for example, this can be done by building cofactor
 multiplication into all elliptic curve operations.

3.3. Conventions

 We detail a list of conventions that we use throughout this document.

3.3.1. Binary strings

 o We use the notation x <-$ Q to denote sampling x from the uniform
 distribution over the set Q.

 o We use x <- {0,1}^u to denote sampling x uniformly from the set of
 binary strings of length u. We may interpret x afterwards as a
 byte array.

 o We say that x is a binary string of arbitrary-length (or
 alternatively sampled from {0,1}^*) if there is no fixed-size
 requirement on x.

 o For two byte arrays x & y, write x .. y to denote their
 concatenation.

https://datatracker.ietf.org/doc/html/rfc7748

Davidson, et al. Expires September 10, 2020 [Page 8]

Internet-Draft OPRFs March 2020

3.3.2. Group notation

 o We use the letter p to denote the order of a group GG throughout,
 where the instantiation of the specific group is defined by
 context.

 o For elements A & B of GG, we write A + B to denote the addition of
 thr group elements.

 o We use GF(p) to denote the Galois Field of scalar values
 associated with the group GG.

 o For a scalar r in GF(p), and a group element A, we write rA to
 denote the scalar multiplication of A.

 o For two scalars r, s in GF(p), we use r+s to denote the resulting
 scalar in GF(p) (we may optionally write r+s mod p to make the
 modular reduction explicit).

4. OPRF Protocol

 In this section we describe the OPRF and VOPRF protocols. Recall
 that such a protocol takes place between a verifier (V) and a prover
 (P). Commonly, V is a client and P is a server, and so we use these
 names interchangeably throughout. We always operate under the
 assumption that the verifier is a client, and the prover is a server
 in the interaction (and so we will use these names interchangeably
 throughout). The server holds a secret key k for a PRF. The
 protocol allows the client to learn PRF evaluations on chosen inputs
 x in such a way that the server learns nothing of x.

 Our OPRF construction is based on the VOPRF construction known as
 2HashDH-NIZK given by [JKK14]; essentially without providing zero-
 knowledge proofs that verify that the output is correct. Our VOPRF
 construction (including the NIZK DLEQ proofs from Section 5) is
 identical to the [JKK14] construction. With batched proofs
 (Section 6) our construction differs slightly in that we can perform
 multiple VOPRF evaluations in one go, whilst only constructing one
 NIZK proof object.

 In this section we describe the OPRF and VOPRF protocols. Recall
 that such a protocol takes place between a verifier (V) and a prover
 (P). We may commonly think of the verifier as the client, and the
 prover as the server in the interaction (we will use these names
 interchangeably throughout). The server holds a key k for a PRF.
 The protocol allows the client to learn PRF evaluations on chosen
 inputs x without revealing x to the server.

Davidson, et al. Expires September 10, 2020 [Page 9]

Internet-Draft OPRFs March 2020

 Our OPRF construction is based on the VOPRF construction known as
 2HashDH-NIZK given by [JKK14]; essentially without providing zero-
 knowledge proofs that verify that the output is correct. Our VOPRF
 construction (including the NIZK DLEQ proofs from Section 5) is
 identical to the [JKK14] construction. With batched proofs
 (Section 6) our construction differs slightly in that we can perform
 multiple VOPRF evaluations in one go, whilst only constructing one
 NIZK proof object.

4.1. Design

 Let GG be an additive group of prime-order p, let GF(p) be the Galois
 field defined by the integers modulo p. Define distinct hash
 functions H_1 and H_2, where H_1 maps arbitrary input onto GG (H_1:
 {0,1}^* -> GG) and H_2 maps two arbitrary inputs to a fixed-length
 (w) output (H_2: {0,1}^u x {0,1}^v -> {0,1}^w), e.g., HMAC_SHA256.
 All hash functions in the protocol are modeled as random oracles.
 Let L be the security parameter. Let k be the prover's secret key,
 and Y = kG be its corresponding 'public key' for some fixed generator
 G taken from the description of the group GG. This public key Y is
 also referred to as a commitment to the OPRF key k, and the pair
 (G,Y) as a commitment pair. Let x be the binary string that is the
 verifier's input to the OPRF protocol (this can be of arbitrary
 length).

 The OPRF protocol begins with V blinding its input for the OPRF
 evaluator such that it appears uniformly distributed GG. The latter
 then applies its secret key to the blinded value and returns the
 result. To finish the computation, V then removes its blind and
 hashes the result (along with a domain separating label DST) using
 H_2 to yield an output. This flow is illustrated below.

 Verifier(x) Prover(k)
 --
 r <-$ GF(p)
 M = rH_1(x) mod p
 M
 ------->
 Z = kM mod p
 [D = DLEQ_Generate(k,G,Y,M,Z)]
 Z[,D]
 <-------
 [b = DLEQ_Verify(G,Y,M,Z,D)]
 N = Zr^(-1) mod p
 Output H_2(DST, x .. N) mod p [if b=1, else "error"]

 Steps that are enclosed in square brackets (DLEQ_Generate and
 DLEQ_Verify) are optional for achieving verifiability. These are

Davidson, et al. Expires September 10, 2020 [Page 10]

Internet-Draft OPRFs March 2020

 described in Section 5. In the verifiable mode, we assume that P has
 previously committed to their choice of key k with some values
 (G,Y=kG) and these are publicly known by V. Notice that revealing
 (G,Y) does not reveal k by the well-known hardness of the discrete
 log problem.

 Strictly speaking, the actual PRF function that is computed is:

 F(k, x) = N = kH_1(x)

 It is clear that this is a PRF H_1(x) maps x to a random element in
 GG, and GG is cyclic. This output is computed when the client
 computes Zr^(-1) by the commutativity of the multiplication. The
 client finishes the computation by outputting H_2(DST, x .. N). Note
 that the output from P is not the PRF value because the actual input
 x is blinded by r.

 The security of our construction is discussed in more detail in
Section 8.1.2.

4.2. Protocol functionality

 This protocol may be decomposed into a series of steps, as described
 below:

 o Setup(l): Let GG=GG(l) be a group with a prime-order p=p(l) (e.g.,
 p is l-bits long). Randomly sample an integer k in GF(p) and
 output (k,GG)

 o Blind(x): Compute and return a blind, r, and blinded
 representation of x in GG, denoted M.

 o Evaluate(k,M,h?): Evaluates on input M using secret key k to
 produce Z, the input h is optional and equal to the cofactor of an
 elliptic curve. If h is not provided then it defaults to 1.

 o Unblind(r,Z): Unblind blinded OPRF evaluation Z with blind r,
 yielding N and output N.

 o Finalize(x,N,aux?): Finalize N by first computing dk := H_2(DST, x
 .. N). Subsequently output y := H_2(dk, aux), where aux is some
 auxiliary data encoded as a byte string. If aux is not specified,
 it defaults to the empty byte string.

 For verifiability (VOPRF) we modify the algorithms of
 VerifiableSetup, VerifiableEvaluate and VerifiableUnblind to be the
 following:

Davidson, et al. Expires September 10, 2020 [Page 11]

Internet-Draft OPRFs March 2020

 o VerifiableSetup(l): Run (k,GG) = Setup(l), compute Y = kG, where G
 is a generator of the group GG. Output (k,GG,Y).

 o VerifiableEvaluate(k,G,Y,M,h?): Evaluates on input M using secret
 key k to produce Z. Generate a NIZK proof D =
 DLEQ_Generate(k,G,Y,M,Z), and output (Z, D). The optional
 cofactor h can also be provided, as in Evaluate.

 o VerifiableUnblind(r,G,Y,M,Z,D): Unblind blinded OPRF evaluation Z
 with blind r, yielding N. Output N if 1 = DLEQ_Verify(G,Y,M,Z,D).
 Otherwise, output "error".

 o VerifiableFinalize(x,Y,N,aux?): Same as Finalize, except we now
 compute dk := H_2(DST, x .. Y .. N), i.e. we also certify the
 public key in the finalization process.

 We leave the rest of the OPRF algorithms unmodified. When referring
 explicitly to VOPRF execution, we replace 'OPRF' in all method names
 with 'VOPRF'. We describe explicit instantiations of these functions
 in Section 4.6 and Section 4.7.

4.2.1. Generalized OPRF

 Using the API provided by the functions above, we can restate the
 OPRF protocol using the following descriptions. The first protocol
 refers to the OPRF setup phase that is run by the server. This
 generates the secret input used by the server and the public
 information that is given to the client.

 OPRF setup phase:

 Verifier() Prover(l)
 --
 (k,GG) = Setup(l)
 GG
 <-------

 OPRF evaluation phase:

Davidson, et al. Expires September 10, 2020 [Page 12]

Internet-Draft OPRFs March 2020

 Verifier(x,aux) Prover(k)
 --
 (r, M) = Blind(x)
 M
 ------->
 Z = Evaluate(k,M)
 Z
 <-------
 N = Unblind(r,Z)
 Output Finalize(x,N,aux)

 Note that in the final output, the client computes Finalize over some
 auxiliary input data aux.

4.2.2. Generalized VOPRF

 The generalized VOPRF functionality differs slightly from the OPRF
 protocol above. Firstly, the server sends over an extra commitment
 value Y = kG, where G is a common generator known to both
 participants. Secondly, the server sends over both outputs from
 VerifiableEvaluate in the evaluation phase, and the client also
 verifies the server's output.

 VOPRF setup phase:

 Verifier() Prover(l)
 --
 (k,GG,Y) = VerifiableSetup(l)
 (GG,Y)
 <-------

 VOPRF evaluation phase:

 Verifier(x,Y,aux) Prover(k)
 --
 (r, M) = VerifiableBlind(x)
 M
 ------->
 (Z,D) = VerifiableEvaluate(k,G,Y,M)
 (Z,D)
 <-------
 N = VerifiableUnblind(r,G,Y,M,Z,D)
 Output VerifiableFinalize(x,Y,N,aux)

Davidson, et al. Expires September 10, 2020 [Page 13]

Internet-Draft OPRFs March 2020

4.3. Protocol correctness

 Protocol correctness requires that, for any key k, input x, and (r,
 M) = Blind(x), it must be true that:

 Finalize(x, Unblind(r,M,Evaluate(k,M)), aux)
 == H_2(H_2(DST, x .. F(k,x)), aux)

 with overwhelming probability. Likewise, in the verifiable setting,
 we require that:

 Z = VerifiableEvaluate(k,G,Y,M)
 VerifiableFinalize(x, Y, VerifiableUnblind(r,G,Y,M,Z), aux)
 == H_2(H_2(DST, x .. F(k,x)), aux)

 with overwhelming probability, where (r, M) = VerifiableBlind(x). In
 other words, the inner H_2 invocation effectively derives a key, dk,
 from the input data DST, x, N. The outer invocation derives the
 output y by evaluating H_2 over dk and auxiliary data aux.

4.4. Domain separation

 The Finalize procedure accepts optional auxiliary byte string input
 (aux) as a means of modifying the PRF output. This parameter SHOULD
 be used for domain separation in (V)OPRF the protocol. Specifically,
 any system which has multiple (V)OPRF applications should use
 separate aux values to to ensure finalized outputs are separate.
 Guidance for constructing aux can be found in
 [I-D.irtf-cfrg-hash-to-curve]; Section 3.1.

4.5. Instantiations of GG

 As we remarked above, GG is a group with associated prime-order p.
 While we choose to write operations in the setting where GG comes
 equipped with an additive operation, we could also define the
 operations in the multiplicative setting. In the multiplicative
 setting we can choose GG to be a prime-order subgroup of a finite
 field FF_p. For example, let p be some large prime (e.g. > 2048
 bits) where p = 2q+1 for some other prime q. Then the subgroup of
 squares of FF_p (elements u^2 where u is an element of FF_p) is
 cyclic, and we can pick a generator of this subgroup by picking G
 from FF_p (ignoring the identity element).

 For practicality of the protocol, it is preferable to focus on the
 cases where GG is an additive subgroup so that we can instantiate the
 OPRF in the elliptic curve setting. This amounts to choosing GG to
 be a prime-order subgroup of an elliptic curve over base field GF(p)
 for prime p. There are also other settings where GG is a prime-order

Davidson, et al. Expires September 10, 2020 [Page 14]

Internet-Draft OPRFs March 2020

 subgroup of an elliptic curve over a base field of non-prime order,
 these include the work of Ristretto [RISTRETTO] and Decaf [DECAF].

 We will use p > 0 generally for constructing the base field GF(p),
 not just those where p is prime. To reiterate, we focus only on the
 additive case, and so we focus only on the cases where GF(p) is
 indeed the base field.

 Unless otherwise stated, we will always assume that the generator G
 that we use for the group GG is a fixed generator. This generator
 should be available to both the client and the server ahead of the
 protocol, or derived for each different group instantiation using a
 fixed method. In the elliptic curve setting, we recommend using the
 fixed generators that are given as part of the curve description.

4.6. OPRF algorithms

 This section provides descriptions of the algorithms used in the
 generalized protocols from Section 4.2.1. We describe the VOPRF
 analogues for the protocols in Section 4.2.2 later in Section 4.7.

 We note here that the blinding mechanism that we use can be modified
 slightly with the opportunity for making performance gains in some
 scenarios. We detail these modifications in Section Section 4.8.

4.6.1. Setup

 Input:

 l: Some suitable choice of prime length for instantiating a group
 structure (e.g. as described in [NIST]).

 Output:

 k: A key chosen from {0,1}^l and interpreted as a scalar in [1,p-1].
 GG: A cyclic group with prime-order p of length l bits.

 Steps:

 1. Construct a group GG = GG(l) with prime-order p of length l bits
 2. k <-$ GF(p)
 3. Output (k,GG)

4.6.2. Blind

Davidson, et al. Expires September 10, 2020 [Page 15]

Internet-Draft OPRFs March 2020

 Input:

 x: Binary string taken from {0,1}^*.

 Output:

 r: Random scalar in [1, p - 1].
 M: An element in GG.

 Steps:

 1. r <-$ GF(p)
 2. M := rH_1(x)
 3. Output (r, M)

4.6.3. Evaluate

 Input:

 k: A scalar value taken from [1,p-1].
 M: An element in GG.

 Output:

 Z: An element in GG.

 Steps:

 1. Z := kM
 2. Output Z

4.6.4. Unblind

 Input:

 r: Random scalar in [1, p - 1].
 Z: An element in GG.

 Output:

 N: An element in GG.

 Steps:

 1. N := (r^(-1))Z
 2. Output N

Davidson, et al. Expires September 10, 2020 [Page 16]

Internet-Draft OPRFs March 2020

4.6.5. Finalize

 Input:

 x: Binary string taken from {0,1}^*.
 N: An element in GG.
 aux: Arbitrary auxiliary data (as bytes).

 Output:

 y: Random element in {0,1}^L.

 Steps:

 1. DST := "oprf_derive_output"
 2. dk := H_2(DST, x .. N)
 3. y := H_2(dk, aux)
 4. Output y

4.7. VOPRF algorithms

 We make modifications to the aforementioned algorithms in the VOPRF
 setting.

4.7.1. VerifiableSetup

 Input:

 G: Public fixed generator of GG.
 l: Some suitable choice of key-length (e.g. as described in [NIST]).

 Output:

 k: A key chosen from {0,1}^l and interpreted as a scalar in [1,p-1].
 GG: A cyclic group with prime-order p of length l bits.
 Y: A group element in GG.

 Steps:

 1. (k,GG) <- Setup(l)
 2. Y := kG
 3. Output (k,GG,Y)

4.7.2. VerifiableBlind

Davidson, et al. Expires September 10, 2020 [Page 17]

Internet-Draft OPRFs March 2020

 Input:

 x: V's PRF input.

 Output:

 r: Random scalar in [1, p - 1].
 M: An element in GG.

 Steps:

 1. r <-$ GF(p)
 2. M := rH_1(x)
 3. Output (r,M)

4.7.3. VerifiableEvaluate

 Input:

 k: A random scalar in [1,p-1].
 G: Public fixed generator of group GG.
 Y: An element in GG.
 M: An element in GG.

 Output:

 Z: An element in GG.
 D: DLEQ proof that log_G(Y) == log_M(Z).

 Steps:

 1. Z := kM
 2. Z <- hZ
 3. D = DLEQ_Generate(k,G,Y,M,Z)
 4. Output (Z, D)

4.7.4. VerifiableUnblind

Davidson, et al. Expires September 10, 2020 [Page 18]

Internet-Draft OPRFs March 2020

 Input:

 r: Random scalar in [1, p - 1].
 G: Public fixed generator of group GG.
 Y: An element in GG.
 M: An element in GG.
 Z: An element in GG.
 D: DLEQ proof object.

 Output:

 N: An element in GG.

 Steps:

 1. if DLEQ_Verify(G,Y,M,Z,D) == false: output "error"
 2. N := (r^(-1))Z
 3. Output N

4.7.5. VerifiableFinalize

 Input:

 x: Binary string in {0,1}^*.
 Y: An element in GG.
 N: An element in GG, or "error".
 aux: Arbitrary auxiliary data in {0,1}^*.

 Output:

 y: Random element in {0,1}^L, or "error"

 Steps:

 1. If N == "error", output "error".
 2. DST := "voprf_derive_output"
 3. dk := H_2(DST, x .. Y .. N)
 4. y := H_2(dk, aux)
 5. Output y

4.8. Efficiency gains with pre-processing and fixed-base blinding

 In Section Section 4.6 we assume that the client-side blinding is
 carried out directly on the output of H_1(x), i.e. computing rH_1(x)
 for some r <-$ GF(p). In the [OPAQUE] draft, it is noted that it may
 be more efficient to use additive blinding rather than multiplicative
 if the client can preprocess some values. For example, a valid way

Davidson, et al. Expires September 10, 2020 [Page 19]

Internet-Draft OPRFs March 2020

 of computing additive blinding would be to instead compute H_1(x)+rG,
 where G is the fixed generator for the group GG.

 We refer to the 'multiplicative' blinding as variable-base blinding
 (VBB), since the base of the blinding (H_1(x)) varies with each
 instantiation. We refer to the additive blinding case as fixed-base
 blinding (FBB) since the blinding is applied to the same generator
 each time (when computing rG).

 By pre-processing tables of blinded scalar multiplications for the
 specific choice of G it is possible to gain a computational
 advantage. Choosing one of these values rG (where r is the scalar
 value that is used), then computing H_1(x)+rG is more efficient than
 computing rH_1(x) (one addition against log_2(r)). Therefore, it may
 be advantageous to define the OPRF and VOPRF protocols using additive
 blinding rather than multiplicative blinding. In fact, the only
 algorithms that need to change are Blind and Unblind (and similarly
 for the VOPRF variants).

 We define the FBB variants of the algorithms in Section 4.6 below
 along with a new algorithm Preprocess that defines how preprocessing
 is carried out. The equivalent algorithms for VOPRF are almost
 identical and so we do not redefine them here. Notice that the only
 computation that changes is for V, the necessary computation of P
 does not change.

4.8.1. Preprocess

 Input:

 G: Public fixed generator of GG

 Output:

 r: Random scalar in [1, p-1]
 rG: An element in GG.
 rY: An element in GG.

 Steps:

 1. r <-$ GF(p)
 2. Output (r, rG, rY)

4.8.2. Blind

Davidson, et al. Expires September 10, 2020 [Page 20]

Internet-Draft OPRFs March 2020

 Input:

 x: Binary string in {0,1}^*.
 rG: An element in GG.

 Output:

 M: An element in GG.

 Steps:

 1. M := H_1(x)+rG
 2. Output M

4.8.3. Unblind

 Input:

 rY: An element in GG.
 M: An element in GG.
 Z: An element in GG.

 Output:

 N: An element in GG.

 Steps:

 1. N := Z-rY
 2. Output N

 Notice that Unblind computes (Z-rY) = k(H_1(x)+rG) - rkG = kH_1(x) by
 the commutativity of scalar multiplication in GG. This is the same
 output as in the original Unblind algorithm.

5. NIZK Discrete Logarithm Equality Proof

 For the VOPRF protocol we require that V is able to verify that P has
 used its private key k to evaluate the PRF. We can do this by
 showing that the original commitment (G,Y) output by
 VerifiableSetup(l) satisfies log_G(Y) == log_M(Z) where Z is the
 output of VerifiableEvaluate(k,G,Y,M).

 This may be used, for example, to ensure that P uses the same private
 key for computing the VOPRF output and does not attempt to "tag"
 individual verifiers with select keys. This proof must not reveal
 the P's long-term private key to V.

Davidson, et al. Expires September 10, 2020 [Page 21]

Internet-Draft OPRFs March 2020

 Consequently, this allows extending the OPRF protocol with a (non-
 interactive) discrete logarithm equality (DLEQ) algorithm built on a
 Chaum-Pedersen [ChaumPedersen] proof. This proof is divided into two
 procedures: DLEQ_Generate and DLEQ_Verify. These are specified
 below.

5.1. DLEQ_Generate

 Input:

 k: Evaluator secret key.
 G: Public fixed generator of GG.
 Y: Evaluator public key (= kG).
 M: An element in GG.
 Z: An element in GG.
 H_3: A hash function from GG to {0,1}^L, modeled as a random oracle.

 Output:

 D: DLEQ proof (c, s).

 Steps:

 1. r <-$ GF(p)
 2. A := rG
 3. B := rM
 4. c <- H_3(G,Y,M,Z,A,B) (mod p)
 5. s := (r - ck) (mod p)
 6. Output D := (c, s)

 We note here that it is essential that a different r value is used
 for every invocation. If this is not done, then this may leak the
 key k in a similar fashion as is possible in Schnorr or (EC)DSA
 scenarios where fresh randomness is not used.

5.2. DLEQ_Verify

Davidson, et al. Expires September 10, 2020 [Page 22]

Internet-Draft OPRFs March 2020

 Input:

 G: Public fixed generator of GG.
 Y: Evaluator public key.
 M: An element in GG.
 Z: An element in GG.
 D: DLEQ proof (c, s).

 Output:

 True if log_G(Y) == log_M(Z), False otherwise.

 Steps:

 1. A' := (sG + cY)
 2. B' := (sM + cZ)
 3. c' <- H_3(G,Y,M,Z,A',B') (mod p)
 4. Output c == c' (mod p)

6. Batched VOPRF evaluation

 Common applications (e.g. [PrivacyPass]) require V to obtain
 multiple PRF evaluations from P. In the VOPRF case, this would
 naively require running multiple protocol invocations. This is
 costly, both in terms of computation and communication. To get
 around this, applications can use a 'batching' procedure for
 generating and verifying DLEQ proofs for a finite number of PRF
 evaluation pairs (Mi,Zi). For n PRF evaluations:

 o Proof generation is slightly more expensive from 2n modular
 exponentiations to 2n+2.

 o Proof verification is much more efficient, from 4n modular
 exponentiations to 2n+4.

 o Communications falls from 2n to 2 group elements.

 Since P is the VOPRF server, it may be able to tolerate a slight
 increase in proof generation complexity for much more efficient
 communication and proof verification.

 In this section, we describe algorithms for batching the DLEQ
 generation and verification procedure. For these algorithms we
 require two additional hash functions H_4: GG^(2n+2) -> {0,1}^a, and
 H_5: {0,1}^a x ZZ^3 -> {0,1}^b (both modeled as random oracles).

 We can instantiate the random oracle function H_4 using the same hash
 function that is used for H_3 previously. For H_5, we can also use a

Davidson, et al. Expires September 10, 2020 [Page 23]

Internet-Draft OPRFs March 2020

 similar instantiation, or we can use a variable-length output
 generator. For example, for groups with an order of 256-bit, valid
 instantiations include functions such as SHAKE-256 [SHAKE] or HKDF-
 Expand-SHA256 [RFC5869]. This is preferable in situations where we
 may require outputs that are larger than 512 bits in length, for
 example.

6.1. Batched_DLEQ_Generate

 Input:

 k: Evaluator secret key.
 G: Public fixed generator of group GG (with order p).
 Y: Evaluator public key (= kG).
 n: Number of PRF evaluations.
 [Mi]: An array of points in GG of length n.
 [Zi]: An array of points in GG of length n.
 H_4: A random oracle hash function from GG^(2n+2) to {0,1}^a.
 H_5: A random oracle hash function from {0,1}^a x ZZ^2 to {0,1}^b.
 label: An integer label value for the splitting the domain of H_5

 Output:

 D: DLEQ proof (c, s).

 Steps:

 1. seed <- H_4(G,Y,[Mi,Zi]))
 2. i' := i
 3. for i in [m]:
 1. di <- H_5(seed,i',info)
 2. if di > p:
 1. i' = i'+1
 2. i = i-1 // decrement and try again
 3. continue
 4. c1,...,cn := (int)d1,...,(int)dn
 5. M := c1M1 + ... + cnMn
 6. Z := c1Z1 + ... + cnZn
 7. Output DLEQ_Generate(k,G,Y,M,Z)

6.2. DLEQ_Batched_Verify

https://datatracker.ietf.org/doc/html/rfc5869

Davidson, et al. Expires September 10, 2020 [Page 24]

Internet-Draft OPRFs March 2020

 Input:

 G: Public fixed generator of group GG (with order p).
 Y: Evaluator public key.
 [Mi]: An array of points in GG of length n.
 [Zi]: An array of points in GG of length n.
 D: DLEQ proof (c, s).

 Output:

 True if log_G(Y) == log_(Mi)(Zi) for each i in 1...n, False otherwise.

 Steps:

 1. seed <- H_4(G,Y,[Mi,Zi]))
 2. i' := i
 3. for i in [m]:
 1. di <- H_5(seed,i',info)
 2. if di > p:
 1. i' = i'+1
 2. i = i-1 // decrement and try again
 3. continue
 4. c1,...,cn := (int)d1,...,(int)dn
 5. M := c1M1 + ... + cnMn
 6. Z := c1Z1 + ... + cnZn
 7. Output DLEQ_Verify(G,Y,M,Z,D)

6.3. Modified algorithms

 The VOPRF protocol from Section Section 4 changes to allow specifying
 multiple blinded PRF inputs "[Mi]" for i in 1...n. P computes the
 array "[Zi]" and replaces DLEQ_Generate with DLEQ_Batched_Generate
 over these arrays. Concretely, we modify the following algorithms:

6.3.1. VerifiableBlind

Davidson, et al. Expires September 10, 2020 [Page 25]

Internet-Draft OPRFs March 2020

 Input:

 [xi]: An array of m binary strings taken from {0,1}^*.

 Output:

 [ri]: An array of m random scalars in [1, p - 1].
 [Mi]: An array of elements in GG.

 Steps:

 1. groupElems = []
 2. blinds = []
 3. for i in [m]:
 1. ri <-$ GF(p)
 2. Mi := rH_1(xi)
 3. blinds.push(ri)
 4. groupElems.push(Mi)
 4. Output (blinds, groupElems)

6.3.2. VerifiableEvaluate

 Input:

 k: Evaluator secret key.
 G: Public fixed generator of group GG.
 Y: Evaluator public key (= kG).
 [Mi]: An array of m elements in GG.

 Output:

 [Zi]: An array of m elements in GG.
 D: Batched DLEQ proof object.

 Steps:

 1. outputElems = []
 2. for i in [m]:
 1. Zi := kMi
 2. outputElems.push(Zi)
 3. D = Batched_DLEQ_Generate(k,G,Y,[Mi],outputElems)
 4. Output (outputElems, D)

6.3.3. VerifiableUnblind

Davidson, et al. Expires September 10, 2020 [Page 26]

Internet-Draft OPRFs March 2020

 Input:

 G: Public fixed generator of group GG.
 Y: Evaluator public key (= kG).
 [Mi]: An array of m elements in GG.
 [Zi]: An array of m elements in GG.
 [ri]: An array of m random scalars in [1, p - 1].
 D: Batched DLEQ proof object.

 Output:

 [Ni]: An array of n elements in GG.

 Steps:

 1. if !Batch_DLEQ_Verify(G,Y,[Mi],[Zi],D): Output "error"
 2. N = []
 3. for i in [m]:
 1. Ni := (ri^(-1))Zi
 2. N.push(Ni)
 4. Output N

6.3.4. VerifiableFinalize

 The description of this algorithm does not change in the batched
 case. Instead, the protocol description in Section 4.2.2 changes so
 that "VerifiableFinalize" runs once for each of the outputs of
 "VerifiableUnblind".

6.4. Random oracle instantiations for proofs

 We can instantiate the random oracle function H_4 using the same hash
 function that is used for H_1,H_2,H_3. For H_5, we can also use a
 similar instantiation, or we can use a variable-length output
 generator. For example, for groups with an order of 256-bit, valid
 instantiations include functions such as SHAKE-256 [SHAKE] or HKDF-
 Expand-SHA256 [RFC5869].

https://datatracker.ietf.org/doc/html/rfc5869

Davidson, et al. Expires September 10, 2020 [Page 27]

Internet-Draft OPRFs March 2020

 Input:

 [ri]: Random scalars in [1, p - 1].
 G: Public fixed generator of group GG.
 Y: Evaluator public key.
 [Mi]: Blinded elements of GG.
 [Zi]: Server-generated elements in GG.
 D: A batched DLEQ proof object.

 Output:

 N: element in GG, or "error".

 Steps:

 1. N := (r^(-1))Z
 2. If 1 = DLEQ_Batched_Verify(G,Y,[Mi],[Zi],D), output N
 3. Output "error"

7. Supported ciphersuites

 This section specifies supported VOPRF group and hash function
 instantiations. We only provide ciphersuites in the EC setting as
 these provide the most efficient way of instantiating the OPRF. Our
 instantiation includes considerations for providing the DLEQ proofs
 that make the instantiation a VOPRF. Supporting OPRF operations
 alone can be allowed by simply dropping the relevant components. For
 reasons that are detailed in Section 8.1, we only consider
 ciphersuites that provide strictly greater than 128 bits of security
 [NIST].

7.1. OPRF-curve448-HKDF-SHA512-ELL2-RO:

 o GG: curve448 [RFC7748]

 o H_1: curve448-SHA512-ELL2-RO [I-D.irtf-cfrg-hash-to-curve]

 * hash-to-curve DST: "RFCXXXX-OPRF-curve448-SHA512-ELL2-RO-"

 o H_2: HMAC_SHA512 [RFC2104]

 o H_3: SHA512

7.2. OPRF-P384-HKDF-SHA512-SSWU-RO:

 o GG: secp384r1 [SEC2]

 o H_1: P384-SHA512-SSWU-RO [I-D.irtf-cfrg-hash-to-curve]

https://datatracker.ietf.org/doc/html/rfc7748
https://datatracker.ietf.org/doc/html/rfc2104

Davidson, et al. Expires September 10, 2020 [Page 28]

Internet-Draft OPRFs March 2020

 * hash-to-curve DST: "RFCXXXX-OPRF-P384-SHA512-SSWU-RO-"

 o H_2: HMAC_SHA512 [RFC2104]

 o H_3: SHA512

7.3. OPRF-P521-HKDF-SHA512-SSWU-RO:

 o GG: secp521r1 [SEC2]

 o H_1: P521-SHA512-SSWU-RO [I-D.irtf-cfrg-hash-to-curve]

 * hash-to-curve DST: "RFCXXXX-OPRF-P521-SHA512-SSWU-RO-"

 o H_2: HMAC_SHA512 [RFC2104]

 o H_3: SHA512

7.4. VOPRF-curve448-HKDF-SHA512-ELL2-RO:

 o GG: curve448 [RFC7748]

 o H_1: curve448-SHA512-ELL2-RO [I-D.irtf-cfrg-hash-to-curve]

 * hash-to-curve DST: "RFCXXXX-VOPRF-curve448-SHA512-ELL2-RO-"

 o H_2: HMAC_SHA512 [RFC2104]

 o H_3: SHA512

 o H_4: SHA512

 o H_5: HKDF-Expand-SHA512

7.5. VOPRF-P384-HKDF-SHA512-SSWU-RO:

 o GG: secp384r1 [SEC2]

 o H_1: P384-SHA512-SSWU-RO [I-D.irtf-cfrg-hash-to-curve]

 * hash-to-curve DST: "RFCXXXX-VOPRF-P384-SHA512-SSWU-RO-"

 o H_2: HMAC_SHA512 [RFC2104]

 o H_3: SHA512

 o H_4: SHA512

https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc7748
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc2104

Davidson, et al. Expires September 10, 2020 [Page 29]

Internet-Draft OPRFs March 2020

 o H_5: HKDF-Expand-SHA512

7.6. VOPRF-P521-HKDF-SHA512-SSWU-RO:

 o GG: secp521r1 [SEC2]

 o H_1: P521-SHA512-SSWU-RO [I-D.irtf-cfrg-hash-to-curve]

 * hash-to-curve DST: "RFCXXXX-VOPRF-P521-SHA512-SSWU-RO-"

 o H_2: HMAC_SHA512 [RFC2104]

 o H_3: SHA512

 o H_4: SHA512

 o H_5: HKDF-Expand-SHA512

 We remark that the 'hash-to-curve DST' field is necessary for domain
 separation of the hash-to-curve functionality.

8. Security Considerations

 This section discusses the cryptographic security of our protocol,
 along with some suggestions and trade-offs that arise from the
 implementation of the implementation of an OPRF.

8.1. Cryptographic security

 We discuss the cryptographic security of the OPRF protocol from
Section 4, relative to the necessary cryptographic assumptions that

 need to be made.

8.1.1. Computational hardness assumptions

 Each assumption states that the problems specified below are
 computationally difficult to solve in relation to sp (the security
 parameter). In other words, the probability that an adversary has in
 solving the problem is bounded by a function negl(sp), where negl(sp)
 < 1/f(sp) for all polynomial functions f().

 Let GG = GG(sp) be a group with prime-order p, and let FFp be the
 finite field of order p.

https://datatracker.ietf.org/doc/html/rfc2104

Davidson, et al. Expires September 10, 2020 [Page 30]

Internet-Draft OPRFs March 2020

8.1.1.1. Discrete-log (DL) problem

 Given G, a generator of GG, and H = hG for some h in FFp; output h.

8.1.1.2. Decisional Diffie-Hellman (DDH) problem

 Sample a uniformly random bit d in {0,1}. Given (G, aG, bG, C),
 where:

 o G is a generator of GG;

 o a,b are elements of FFp;

 o if d == 0: C = abG; else: C is sampled uniformly GG(sp).

 Output d' == d.

8.1.2. Protocol security

 As aforementioned, our OPRF and VOPRF constructions are based heavily
 on the 2HashDH-NIZK construction given in [JKK14], except for
 considerations on how we instantiate the NIZK DLEQ proof system.
 This means that the cryptographic security of our construction is
 also based on the assumption that the One-More Gap DH is
 computationally difficult to solve.

 The (N,Q)-One-More Gap DH (OMDH) problem asks the following.

 Given:
 - G, kG, G_1, ... , G_N where G, G1, ... GN are elements od GG;
 - oracle access to an OPRF functionality using the key k;
 - oracle access to DDH solvers.

 Find Q+1 pairs of the form below:

 (G_{j_s}, kG_{j_s})

 where the following conditions hold:
 - s is a number between 1 and Q+1;
 - j_s is a number between 1 and N for each s;
 - Q is the number of allowed queries.

 The original paper [JKK14] gives a security proof that the 2HashDH-
 NIZK construction satisfies the security guarantees of a VOPRF
 protocol Section 3.1 under the OMDH assumption in the universal
 composability (UC) security model. Without the NIZK proof system,
 the protocol instantiates an OPRF protocol only. See the paper for
 further details.

Davidson, et al. Expires September 10, 2020 [Page 31]

Internet-Draft OPRFs March 2020

8.1.3. Q-strong-DH oracle

 A side-effect of our OPRF design is that it allows instantiation of a
 oracle for constructing Q-strong-DH (Q-sDH) samples. The Q-Strong-DH
 problem asks the following.

 Given G1, G2, h*G2, (h^2)*G2, ..., (h^Q)*G2; for G1 and G2
 generators of GG.

 Output ((1/(k+c))*G1, c) where c is an element of FFp

 The assumption that this problem is hard was first introduced in
 [BB04]. Since then, there have been a number of cryptanalytic
 studies that have reduced the security of the assumption below that
 implied by the group instantiation (for example, [BG04] and
 [Cheon06]). In summary, the attacks reduce the security of the group
 instantiation by log_2(Q) bits.

 As an example, suppose that a group instantiation is used that
 provides 128 bits of security. Then an adversary with access to a
 Q-sDH oracle and makes Q=2^20 queries can reduce the security of the
 instantiation by log_2(2^20) = 20 bits.

 Notice that it is easy to instantiate a Q-sDH oracle using the OPRF
 functionality that we provide. A client can just submit sequential
 queries of the form (G, kG, (k^2)G, ..., (k^(Q-1))G), where each
 query is the output of the previous interaction. This means that any
 client that submit Q queries to the OPRF can use the aforementioned
 attacks to reduce security of the group instantiation by log_2(Q)
 bits.

 Recall that from a malicious client's perspective, the adversary wins
 if they can distinguish the OPRF interaction from a protocol that
 computes the ideal functionality provided by the PRF.

8.1.4. Implications for ciphersuite choices

 The OPRF instantiations that we recommend in this document are
 informed by the cryptanalytic discussion above. In particular,
 choosing elliptic curves configurations that describe 128-bit group
 instantiations would appear to in fact instantiate an OPRF with
 128-log_2(Q) bits of security.

 While it would require an informed and persistent attacker to launch
 a highly expensive attack to reduce security to anything much below
 100 bits of security, we see this possibility as something that may
 result in problems in the future. Therefore, all of our ciphersuites
 in Section 7 come with a minimum group instantiation corresponding to

Davidson, et al. Expires September 10, 2020 [Page 32]

Internet-Draft OPRFs March 2020

 196 bits of security. This would require an adversary to launch a
 minimum of Q = 2^(68) queries to reduce security to 128 bits using
 the Q-sDH attacks. As a result, it appears prohibitively expensive
 to launch credible attacks on these parameters with our current
 understanding of the attack surface.

8.2. Hashing to curve

 A critical aspect of implementing this protocol using elliptic curve
 group instantiations is a method of instantiating the function H1,
 that maps inputs to group elements. In the elliptic curve setting,
 this must be a deterministic function that maps arbitrary inputs x
 (as bytes) to uniformly chosen points in the curve.

 In the security proof of the construction H1 is modeled as a random
 oracle. This implies that any instantiation of H1 must be pre-image
 and collision resistant. In Section 7 we give instantiations of this
 functionality based on the functions described in
 [I-D.irtf-cfrg-hash-to-curve]. Consequently, any OPRF implementation
 must adhere to the implementation and security considerations
 discussed in [I-D.irtf-cfrg-hash-to-curve] when instantiating the
 function H1.

8.3. Timing Leaks

 To ensure no information is leaked during protocol execution, all
 operations that use secret data MUST be constant time. Operations
 that SHOULD be constant time include: H_1() (hashing arbitrary
 strings to curves) and DLEQ_Generate(). As mentioned previously,
 [I-D.irtf-cfrg-hash-to-curve] describes various algorithms for
 constant-time implementations of H_1.

8.4. User segregation

 The aim of the OPRF functionality is to allow clients receive
 pseudorandom function evaluations on their own inputs, without
 compromising their own privacy with respect to the server. In many
 applications (for example, [PrivacyPass]) the client may choose to
 reveal their original input, after an invocation of the OPRF
 protocol, along with their OPRF output. This can prove to the server
 that it has received a valid OPRF output in the past. Since the
 server does not reveal learn anything about the OPRF output, it
 should not be able to link the client to any previous protocol
 instantiation.

 Consider a malicious server that manages to segregate the user base
 into different sets. Then this reduces the effective privacy of all
 of the clients involved, since the client above belongs to a smaller

Davidson, et al. Expires September 10, 2020 [Page 33]

Internet-Draft OPRFs March 2020

 set of users than previously hoped. In general, if the user-base of
 the OPRF functionality is quite small, then the obliviousness of
 clients is limited. That is, smaller user-bases mean that the server
 is able to identify client's with higher certainty.

 In summary, an OPRF instantiation effectively comes with an
 additional privacy parameter pp. If all clients of the OPRF make one
 query and then subsequently reveal their OPRF input afterwards, then
 the server should be link the revealed input to a protocol
 instantiation with probability 1/pp.

 Below, we provide a few techniques that could be used to abuse
 client-privacy in the OPRF construction by segregating the user-base,
 along with some mitigations.

8.4.1. Linkage patterns

 If the server is able to ascertain patterns of usage for some clients
 - such as timings associated with usage - then the effective privacy
 of the clients is reduced to the number of users that fit each usage
 pattern. Along with early registration patterns, where early
 adopters initially have less privacy due to a low number of
 registered users, such problems are inherent to any anonymity-
 preserving system.

8.4.2. Evaluation on multiple keys

 Such an attack consists of the server evaluating the OPRF on multiple
 different keys related to the number of clients that use the
 functionality. As an extreme, the server could evaluate the OPRF
 with a different key for each client. If the client then revealed
 their hidden information at a later date then the server would
 immediately know which initial request they launched.

 The VOPRF variant helps mitigate this attack since each server
 evaluation can be bound to a known public key. However, there are
 still ways that the VOPRF construction can be abused. In particular:

 o If the server successfully provisions a large number of keys that
 are trusted by clients, then the server can divide the user-base
 by the number of keys that are currently in use. As such, clients
 should only trust a small number (2 or 3 ideally) of server keys
 at any one time. Additionally, a tamper-proof audit log system
 akin to existing work on Key Transparency [keytrans] could be used
 to ensure that a server is abiding by the key policy. This would
 force the server to be held accountable for their key updates, and
 thus higher key update frequencies can be better managed on the
 client-side.

Davidson, et al. Expires September 10, 2020 [Page 34]

Internet-Draft OPRFs March 2020

 o If the server rotates their key frequently, then this may result
 in client's holding out-of-date information from a past
 interaction. Such information can also be used to segregate the
 user-base based on the last time that they accessed the OPRF
 protocol. Similarly to the above, server key rotations must be
 kept to relatively infrequent intervals (such as once per month).
 This will prevent too many clients from being segregated into
 different groups related to the time that they accessed the
 functionality. There are viable reasons for rotating the server
 key (for protecting against malicious clients) that we address
 more closely in Section 8.5.

 Since key provisioning requires careful handling, all public keys
 should be accessible from a client-trusted registry with a way of
 auditing the history of key updates. We also recommend that public
 keys have a corresponding expiry date that clients can use to prevent
 the server from using keys that have been provisioned for a long
 period of time.

8.5. Key rotation

 Since the server's key is critical to security, the longer it is
 exposed by performing (V)OPRF operations on client inputs, the longer
 it is possible that the key can be compromised. For instance, if the
 key is kept in production for a long period of time, then this may
 grant the client the ability to hoard large numbers of tokens. This
 has negative impacts for some of the applications that we consider in

Section 9. As another example, if the key is kept in circulation for
 a long period of time, then it also allows the clients to make enough
 queries to launch more powerful variants of the Q-sDH attacks from

Section 8.1.3.

 To combat attacks of this nature, regular key rotation should be
 employed on the server-side. A suitable key-cycle for a key used to
 compute (V)OPRF evaluations would be between one week and six months.

 As we discussed in Section 8.4.2, key rotation cycles that are too
 frequent (in the order of days) can lead to large segregation of the
 wider user base. As such, the length of the key cycles represent a
 trade-off between greater server key security (for shorter cycles),
 and better client privacy (for longer cycles). In situations where
 client privacy is paramount, longer key cycles should be employed.
 Otherwise, shorter key cycles can be managed if the server uses a Key
 Transparency-type system [keytrans]; this allows clients to publicly
 audit their rotations.

Davidson, et al. Expires September 10, 2020 [Page 35]

Internet-Draft OPRFs March 2020

9. Applications

 This section describes various applications of the (V)OPRF protocol.

9.1. Privacy Pass

 This VOPRF protocol is used by the Privacy Pass system [PrivacyPass]
 to help Tor users bypass CAPTCHA challenges. Their system works as
 follows. Client C connects - through Tor - to an edge server E
 serving content. Upon receipt, E serves a CAPTCHA to C, who then
 solves the CAPTCHA and supplies, in response, n blinded points. E
 verifies the CAPTCHA response and, if valid, signs (at most) n
 blinded points, which are then returned to C along with a batched
 DLEQ proof. C stores the tokens if the batched proof verifies
 correctly. When C attempts to connect to E again and is prompted
 with a CAPTCHA, C uses one of the unblinded and signed points, or
 tokens, to derive a shared symmetric key sk used to MAC the CAPTCHA
 challenge. C sends the CAPTCHA, MAC, and token input x to E, who can
 use x to derive sk and verify the CAPTCHA MAC. Thus, each token is
 used at most once by the system.

 The Privacy Pass implementation uses the P-256 instantiation of the
 VOPRF protocol. For more details, see [DGSTV18].

9.2. Private Password Checker

 In this application, let D be a collection of plaintext passwords
 obtained by prover P. For each password p in D, P computes
 VerifiableEvaluate on H_1(p), where H_1 is as described above, and
 stores the result in a separate collection D'. P then publishes D'
 with Y, its public key. If a client C wishes to query D' for a
 password p', it runs the VOPRF protocol using p as input x to obtain
 output y. By construction, y will be the OPRF evaluation of p hashed
 onto the curve. C can then search D' for y to determine if there is
 a match.

 Concrete examples of important applications in the password domain
 include:

 o password-protected storage [JKK14], [JKKX16];

 o perfectly-hiding password management [SJKS17];

 o password-protected secret-sharing [JKKX17].

Davidson, et al. Expires September 10, 2020 [Page 36]

Internet-Draft OPRFs March 2020

9.2.1. Parameter Commitments

 For some applications, it may be desirable for P to bind tokens to
 certain parameters, e.g., protocol versions, ciphersuites, etc. To
 accomplish this, P should use a distinct scalar for each parameter
 combination. Upon redemption of a token T from V, P can later verify
 that T was generated using the scalar associated with the
 corresponding parameters.

10. Contributors

 o Alex Davidson (alex.davidson92@gmail.com)

 o Nick Sullivan (nick@cloudflare.com)

 o Chris Wood (cawood@apple.com)

 o Eli-Shaoul Khedouri (eli@intuitionmachines.com)

11. Acknowledgements

 This document resulted from the work of the Privacy Pass team
 [PrivacyPass]. The authors would also like to acknowledge the
 helpful conversations with Hugo Krawczyk. Eli-Shaoul Khedouri
 provided additional review and comments on key consistency.

12. References

12.1. Normative References

 [BB04] "Short Signatures Without Random Oracles",
 <http://ai.stanford.edu/~xb/eurocrypt04a/bbsigs.pdf>.

 [BG04] "The Static Diffie-Hellman Problem",
 <https://eprint.iacr.org/2004/306>.

 [ChaumBlindSignature]
 "Blind Signatures for Untraceable Payments",
 <http://sceweb.sce.uhcl.edu/yang/teaching/

csci5234WebSecurityFall2011/Chaum-blind-signatures.PDF>.

 [ChaumPedersen]
 "Wallet Databases with Observers",
 <https://chaum.com/publications/Wallet_Databases.pdf>.

 [Cheon06] "Security Analysis of the Strong Diffie-Hellman Problem",
 <https://www.iacr.org/archive/

eurocrypt2006/40040001/40040001.pdf>.

http://ai.stanford.edu/~xb/eurocrypt04a/bbsigs.pdf
https://eprint.iacr.org/2004/306
http://sceweb.sce.uhcl.edu/yang/teaching/csci5234WebSecurityFall2011/Chaum-blind-signatures.PDF
http://sceweb.sce.uhcl.edu/yang/teaching/csci5234WebSecurityFall2011/Chaum-blind-signatures.PDF
https://chaum.com/publications/Wallet_Databases.pdf
https://www.iacr.org/archive/eurocrypt2006/40040001/40040001.pdf
https://www.iacr.org/archive/eurocrypt2006/40040001/40040001.pdf

Davidson, et al. Expires September 10, 2020 [Page 37]

Internet-Draft OPRFs March 2020

 [DECAF] "Decaf, Eliminating cofactors through point compression",
 <https://www.shiftleft.org/papers/decaf/decaf.pdf>.

 [DGSTV18] "Privacy Pass, Bypassing Internet Challenges Anonymously",
 <https://www.degruyter.com/view/j/popets.2018.2018.issue-

3/popets-2018-0026/popets-2018-0026.xml>.

 [I-D.irtf-cfrg-hash-to-curve]
 Faz-Hernandez, A., Scott, S., Sullivan, N., Wahby, R., and
 C. Wood, "Hashing to Elliptic Curves", draft-irtf-cfrg-

hash-to-curve-05 (work in progress), November 2019.

 [JKK14] "Round-Optimal Password-Protected Secret Sharing and
 T-PAKE in the Password-Only model",
 <https://eprint.iacr.org/2014/650>.

 [JKKX16] "Highly-Efficient and Composable Password-Protected Secret
 Sharing (Or, How to Protect Your Bitcoin Wallet Online)",
 <https://eprint.iacr.org/2016/144>.

 [JKKX17] "TOPPSS: Cost-minimal Password-Protected Secret Sharing
 based on Threshold OPRF",
 <https://eprint.iacr.org/2017/363>.

 [keytrans]
 "Security Through Transparency",
 <https://security.googleblog.com/2017/01/security-through-

transparency.html>.

 [NIST] "Keylength - NIST Report on Cryptographic Key Length and
 Cryptoperiod (2016)", <https://www.keylength.com/en/4/>.

 [OPAQUE] "The OPAQUE Asymmetric PAKE Protocol",
 <https://tools.ietf.org/html/draft-krawczyk-cfrg-opaque-

02>.

 [PrivacyPass]
 "Privacy Pass",
 <https://github.com/privacypass/challenge-bypass-server>.

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 DOI 10.17487/RFC2104, February 1997,
 <https://www.rfc-editor.org/info/rfc2104>.

https://www.shiftleft.org/papers/decaf/decaf.pdf
https://www.degruyter.com/view/j/popets.2018.2018.issue-3/popets-2018-0026/popets-2018-0026.xml
https://www.degruyter.com/view/j/popets.2018.2018.issue-3/popets-2018-0026/popets-2018-0026.xml
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-05
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-05
https://eprint.iacr.org/2014/650
https://eprint.iacr.org/2016/144
https://eprint.iacr.org/2017/363
https://security.googleblog.com/2017/01/security-through-transparency.html
https://security.googleblog.com/2017/01/security-through-transparency.html
https://www.keylength.com/en/4/
https://tools.ietf.org/html/draft-krawczyk-cfrg-opaque-02
https://tools.ietf.org/html/draft-krawczyk-cfrg-opaque-02
https://github.com/privacypass/challenge-bypass-server
https://datatracker.ietf.org/doc/html/rfc2104
https://www.rfc-editor.org/info/rfc2104

Davidson, et al. Expires September 10, 2020 [Page 38]

Internet-Draft OPRFs March 2020

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869,
 DOI 10.17487/RFC5869, May 2010,
 <https://www.rfc-editor.org/info/rfc5869>.

 [RFC7748] Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
 for Security", RFC 7748, DOI 10.17487/RFC7748, January
 2016, <https://www.rfc-editor.org/info/rfc7748>.

 [RISTRETTO]
 "The ristretto255 Group", <https://tools.ietf.org/html/

draft-hdevalence-cfrg-ristretto-01>.

 [SEC2] Standards for Efficient Cryptography Group (SECG), ., "SEC
 2: Recommended Elliptic Curve Domain Parameters",
 <http://www.secg.org/sec2-v2.pdf>.

 [SHAKE] "SHA-3 Standard, Permutation-Based Hash and Extendable-
 Output Functions", <https://www.nist.gov/publications/sha-

3-standard-permutation-based-hash-and-extendable-output-
functions?pub_id=919061>.

 [SJKS17] "SPHINX, A Password Store that Perfectly Hides from
 Itself", <https://eprint.iacr.org/2018/695>.

12.2. URIs

 [1] https://tools.ietf.org/html/draft-irtf-cfrg-voprf-03

 [2] https://tools.ietf.org/html/draft-irtf-cfrg-voprf-02

 [3] https://tools.ietf.org/html/draft-irtf-cfrg-voprf-01

Authors' Addresses

 Alex Davidson
 Cloudflare
 County Hall
 London, SE1 7GP
 United Kingdom

 Email: adavidson@cloudflare.com

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc5869
https://www.rfc-editor.org/info/rfc5869
https://datatracker.ietf.org/doc/html/rfc7748
https://www.rfc-editor.org/info/rfc7748
https://tools.ietf.org/html/draft-hdevalence-cfrg-ristretto-01
https://tools.ietf.org/html/draft-hdevalence-cfrg-ristretto-01
http://www.secg.org/sec2-v2.pdf
https://www.nist.gov/publications/sha-3-standard-permutation-based-hash-and-extendable-output-functions?pub_id=919061
https://www.nist.gov/publications/sha-3-standard-permutation-based-hash-and-extendable-output-functions?pub_id=919061
https://www.nist.gov/publications/sha-3-standard-permutation-based-hash-and-extendable-output-functions?pub_id=919061
https://eprint.iacr.org/2018/695
https://tools.ietf.org/html/draft-irtf-cfrg-voprf-03
https://tools.ietf.org/html/draft-irtf-cfrg-voprf-02
https://tools.ietf.org/html/draft-irtf-cfrg-voprf-01

Davidson, et al. Expires September 10, 2020 [Page 39]

Internet-Draft OPRFs March 2020

 Nick Sullivan
 Cloudflare
 101 Townsend St
 San Francisco
 United States of America

 Email: nick@cloudflare.com

 Christopher A. Wood
 Apple Inc.
 One Apple Park Way
 Cupertino, California 95014
 United States of America

 Email: cawood@apple.com

Davidson, et al. Expires September 10, 2020 [Page 40]

