
CFRG S. Goldberg
Internet-Draft L. Reyzin
Intended status: Standards Track Boston University
Expires: September 6, 2018 D. Papadopoulos
 Hong Kong University of Science and Techology
 J. Vcelak
 NS1
 March 5, 2018

Verifiable Random Functions (VRFs)
draft-irtf-cfrg-vrf-01

Abstract

 A Verifiable Random Function (VRF) is the public-key version of a
 keyed cryptographic hash. Only the holder of the private key can
 compute the hash, but anyone with public key can verify the
 correctness of the hash. VRFs are useful for preventing enumeration
 of hash-based data structures. This document specifies several VRF
 constructions that are secure in the cryptographic random oracle
 model. One VRF uses RSA and the other VRF uses Eliptic Curves (EC).

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 6, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of

Goldberg, et al. Expires September 6, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft VRF March 2018

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Rationale . 3
1.2. Requirements . 3
1.3. Terminology . 3

2. VRF Algorithms . 4
3. VRF Security Properties 4
3.1. Full Uniqueness or Trusted Uniqueness 4

 3.2. Full Collison Resistance or Trusted Collision Resistance 5
3.3. Full Pseudorandomness or Selective Pseudorandomness . . . 5
3.4. An additional pseudorandomness property 6

4. RSA Full Domain Hash VRF (RSA-FDH-VRF) 7
4.1. RSA-FDH-VRF Proving 8
4.2. RSA-FDH-VRF Proof To Hash 8
4.3. RSA-FDH-VRF Verifying 9

5. Elliptic Curve VRF (EC-VRF) 9
5.1. EC-VRF Proving . 11
5.2. EC-VRF Proof To Hash 11
5.3. EC-VRF Verifying . 12
5.4. EC-VRF Auxiliary Functions 13
5.4.1. EC-VRF Hash To Curve 13
5.4.2. EC-VRF Hash Points 14
5.4.3. EC-VRF Decode Proof 15

5.5. EC-VRF Ciphersuites 15
5.6. When the EC-VRF Keys are Untrusted 17
5.6.1. EC-VRF Validate Key 17

6. Implementation Status . 18
7. Security Considerations 18
7.1. Key Generation . 18

 7.1.1. Uniqueness and collision resistance with untrusted
 keys . 18

7.1.2. Pseudorandomness with untrusted keys 19
7.2. Selective vs Full Pseudorandomness 19
7.3. Proper randomness for EC-VRF 20
7.4. Timing attacks . 20

8. Change Log . 20
9. Contributors . 20
10. References . 21
10.1. Normative References 21
10.2. Informative References 21

Goldberg, et al. Expires September 6, 2018 [Page 2]

Internet-Draft VRF March 2018

 Authors' Addresses . 22

1. Introduction

1.1. Rationale

 A Verifiable Random Function (VRF) [MRV99] is the public-key version
 of a keyed cryptographic hash. Only the holder of the private VRF
 key can compute the hash, but anyone with corresponding public key
 can verify the correctness of the hash.

 A key application of the VRF is to provide privacy against offline
 enumeration (e.g. dictionary attacks) on data stored in a hash-based
 data structure. In this application, a Prover holds the VRF secret
 key and uses the VRF hashing to construct a hash-based data structure
 on the input data. Due to the nature of the VRF, only the Prover can
 answer queries about whether or not some data is stored in the data
 structure. Anyone who knows the public VRF key can verify that the
 Prover has answered the queries correctly. However no offline
 inferences (i.e. inferences without querying the Prover) can be made
 about the data stored in the data strucuture.

1.2. Requirements

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

1.3. Terminology

 The following terminology is used through this document:

 SK: The private key for the VRF.

 PK: The public key for the VRF.

 alpha: The input to be hashed by the VRF.

 beta: The VRF hash output.

 pi: The VRF proof.

 Prover: The Prover holds the private VRF key SK and public VRF key
 PK.

 Verifier: The Verifier holds the public VRF key PK.

https://datatracker.ietf.org/doc/html/rfc2119

Goldberg, et al. Expires September 6, 2018 [Page 3]

Internet-Draft VRF March 2018

2. VRF Algorithms

 A VRF comes with a key generation algorithm that generates a public
 VRF key PK and private VRF key SK.

 A VRF hashes an input alpha using the private VRF key SK to obtain a
 VRF hash output beta

 beta = VRF_hash(SK, alpha)

 The VRF_hash algorithm is deterministic, in the sense that it always
 produces the same output beta given a pair of inputs (SK, alpha).
 The private key SK is also used to construct a proof pi that beta is
 the correct hash output

 pi = VRF_prove(SK, alpha)

 The VRFs defined in this document allow anyone to deterministically
 obtain the VRF hash output beta directly from the proof value pi as

 beta = VRF_proof2hash(pi)

 Notice that this means that

 VRF_hash(SK, alpha) = VRF_proof2hash(VRF_prove(SK, alpha))

 The proof pi allows a Verifier holding the public key PK to verify
 that beta is the correct VRF hash of input alpha under key PK. Thus,
 the VRF also comes with an algorithm

 VRF_verify(PK, alpha, pi)

 that outputs VALID if beta=VRF_proof2hash(pi) is correct VRF hash of
 alpha under key PK, and outputs INVALID otherwise.

3. VRF Security Properties

 VRFs are designed to ensure the following security properties.

3.1. Full Uniqueness or Trusted Uniqueness

 Uniqueness means that, for any fixed public VRF key and for any input
 alpha, there is a unique VRF output beta that can be proved to be
 valid. Uniqueness must hold even for an adversarial Prover that
 knows the VRF secret key SK.

 "Full uniqueness" states that a computationally-bounded adversary
 cannot choose a VRF public key PK, a VRF input alpha, two different

Goldberg, et al. Expires September 6, 2018 [Page 4]

Internet-Draft VRF March 2018

 VRF hash outputs beta1 and beta2, and two proofs pi1 and pi2 such
 that VRF_verify(PK, alpha, pi1) and VRF_verify(PK, alpha, pi2) both
 output VALID.

 A slightly weaker security property called "trusted uniquness"
 sufficies for many applications. Trusted uniqueness is the same as
 full uniqueness, but it must hold only if the VRF keys PK and SK were
 generated in a trustworthy manner. In otherwords, uniqueness might
 not hold if keys were generated in an invalid manner or with bad
 randomness.

3.2. Full Collison Resistance or Trusted Collision Resistance

 Like any cryprographic hash function, VRFs need to be collision
 resistant. Collison resistance must hold even for an adversarial
 Prover that knows the VRF secret key SK.

 More percisely, "full collision resistance" states that it should be
 computationally infeasible for an adversary to find two distinct VRF
 inputs alpha1 and alpha2 that have the same VRF hash beta, even if
 that adversary knows the secret VRF key SK.

 For most applications, a slightly weaker security property called
 "trusted collision resistance" suffices. Trusted collision
 resistance is the same as collision resistance, but it holds only if
 PK and SK were generated in a trustworthy manner.

3.3. Full Pseudorandomness or Selective Pseudorandomness

 Pseudorandomness ensures that when an adversarial Verifier sees a VRF
 hash output beta without its corresponding VRF proof pi, then beta is
 indistinguishable from a random value.

 More percisely, suppose the public and private VRF keys (PK, SK) were
 generated in a trustworthy manner. Pseudorandomness ensures that the
 VRF hash output beta (without its corresponding VRF proof pi) on any
 adversarially-chosen "target" VRF input alpha looks indistinguishable
 from random for any computationally bounded adversary who does not
 know the private VRF key SK. This holds even if the adversary also
 gets to choose other VRF inputs alpha' and observe their
 corresponding VRF hash outputs beta' and proofs pi'.

 With "full pseudorandomness", the adversary is allowed to choose the
 "target" VRF input alpha at any time, even after it observes VRF
 outputs beta' and proofs pi' on a variety of chosen inputs alpha'.

 "Selective pseudorandomness" is a weaker security property which
 suffices in many applications. Here, the adversary must choose the

Goldberg, et al. Expires September 6, 2018 [Page 5]

Internet-Draft VRF March 2018

 target VRF input alpha independently of the public VRF key PK, and
 before it observes VRF outputs beta' and proofs pi' on inputs alpha'
 of its choice.

 It is important to remember that the VRF output beta does not look
 random to the Prover, or to any other party that knows the private
 VRF key SK! Such a party can easily distinguish beta from a random
 value by comparing beta to the result of VRF_hash(SK, alpha).

 Also, the VRF output beta does not look random to any party that
 knows valid VRF proof pi corresponding to the VRF input alpha, even
 if this party does not know the private VRF key SK. Such a party can
 easily distinguish beta from a random value by checking whether
 VRF_verify(PK, alpha, pi) returns "VALID" and beta =
 VRF_proof2hash(pi).

 Also, the VRF output beta may not look random if VRF key generation
 was not done in a trustworthy fashion. (For example, if VRF keys
 were generated with bad randomness.)

3.4. An additional pseudorandomness property

 [TODO: The following property is not needed for applications that use
 VRFs to prevent enumeration of hash-based data structures. However,
 we noticed that some other applications of VRF rely on this property.
 As we have not yet found a formal definition of this property in the
 literature, we write it down here.]

 Pseudorandomness, as defined in Section 3.3, does not hold if the VRF
 keys were generated adversarially.

 There is, however, a different type of pseudorandomness that could
 hold even if the VRF keys are generated adversarially, as long as the
 VRF input alpha is unpredictable. Suppose the VRF keys are generated
 by an adversary. Then, a VRF hash output beta should look
 pseudorandom to the adversary as long as (1) its corresponding VRF
 hash alpha is chosen randomly and independently of the VRF key, (2)
 alpha is unknown to the adversary, (3) the corresponding proof pi is
 unknown to the adversary, and (4) the VRF public key chosen by the
 adversary is valid.

 [TODO: It should be possible to get the EC-VRF to satisfy this
 property, as long as verifiers run an VRF_validate_key() key function
 upon receipt of VRF public keys. However, we need to work out
 exactly what properties are needed from the VRF public keys in order
 for this property to hold. Some additional checks might need to be
 added to the ECVRF_validate_key() function. Need to work out what
 are these checks.]

Goldberg, et al. Expires September 6, 2018 [Page 6]

Internet-Draft VRF March 2018

4. RSA Full Domain Hash VRF (RSA-FDH-VRF)

 The RSA Full Domain Hash VRF (RSA-FDH-VRF) is a VRF that satisfies
 the "trusted uniqueness", "trusted collision resistance", and "full
 pseudorandomness" properties defined in Section 3. Its security
 follows from the standard RSA assumption in the random oracle model.
 Formal security proofs are in [nsec5ecc].

 The VRF computes the proof pi as a deterministic RSA signature on
 input alpha using the RSA Full Domain Hash Algorithm [RFC8017]
 parametrized with the selected hash algorithm. RSA signature
 verification is used to verify the correctness of the proof. The VRF
 hash output beta is simply obtained by hashing the proof pi with the
 selected hash algorithm.

 The key pair for RSA-FDH-VRF MUST be generated in a way that it
 satisfies the conditions specified in Section 3 of [RFC8017].

 In this document, the notation from [RFC8017] is used.

 Parameters used:

 (n, e) - RSA public key

 K - RSA private key

 k - length in octets of the RSA modulus n

 Fixed options:

 Hash - cryptographic hash function

 hLen - output length in octets of hash function Hash

 Constraints on options:

 Cryptographic security of Hash is at least as high as the
 cryptographic security level of the RSA key

 Primitives used:

 I2OSP - Coversion of a nonnegative integer to an octet string as
 defined in Section 4.1 of [RFC8017]

 OS2IP - Coversion of an octet string to a nonnegative integer as
 defined in Section 4.2 of [RFC8017]

https://datatracker.ietf.org/doc/html/rfc8017
https://datatracker.ietf.org/doc/html/rfc8017#section-3
https://datatracker.ietf.org/doc/html/rfc8017
https://datatracker.ietf.org/doc/html/rfc8017#section-4.1
https://datatracker.ietf.org/doc/html/rfc8017#section-4.2

Goldberg, et al. Expires September 6, 2018 [Page 7]

Internet-Draft VRF March 2018

 RSASP1 - RSA signature primitive as defined in Section 5.2.1 of
 [RFC8017]

 RSAVP1 - RSA verification primitive as defined in Section 5.2.2 of
 [RFC8017]

 MGF1 - Mask Generation Function based on a hash function as
 defined in Section B.2.1 of [RFC8017]

4.1. RSA-FDH-VRF Proving

 RSAFDHVRF_prove(K, alpha)

 Input:

 K - RSA private key

 alpha - VRF hash input, an octet string

 Output:

 pi - proof, an octet string of length k

 Steps:

 1. EM = MGF1(alpha, k - 1)

 2. m = OS2IP(EM)

 3. s = RSASP1(K, m)

 4. pi = I2OSP(s, k)

 5. Output pi

4.2. RSA-FDH-VRF Proof To Hash

 RSAFDHVRF_proof2hash(pi)

 Input:

 pi - proof, an octet string of length k

 Output:

 beta - VRF hash output, an octet string of length hLen

 Steps:

https://datatracker.ietf.org/doc/html/rfc8017#section-5.2.1
https://datatracker.ietf.org/doc/html/rfc8017#section-5.2.1
https://datatracker.ietf.org/doc/html/rfc8017#section-5.2.2
https://datatracker.ietf.org/doc/html/rfc8017#section-5.2.2
https://datatracker.ietf.org/doc/html/rfc8017

Goldberg, et al. Expires September 6, 2018 [Page 8]

Internet-Draft VRF March 2018

 1. beta = Hash(pi)

 2. Output beta

4.3. RSA-FDH-VRF Verifying

 RSAFDHVRF_verify((n, e), alpha, pi)

 Input:

 (n, e) - RSA public key

 alpha - VRF hash input, an octet string

 pi - proof to be verified, an octet string of length n

 Output:

 "VALID" or "INVALID"

 Steps:

 1. s = OS2IP(pi)

 2. m = RSAVP1((n, e), s)

 3. EM = I2OSP(m, k - 1)

 4. EM' = MGF1(alpha, k - 1)

 5. If EM and EM' are equal, output "VALID"; else output "INVALID".

5. Elliptic Curve VRF (EC-VRF)

 The Elliptic Curve Verifiable Random Function (EC-VRF) is a VRF that
 satisfies the trusted uniqueness, trusted collision resistance, and
 full pseudorandomness properties defined in Section 3. The security
 of this VRF follows from the decisional Diffie-Hellman (DDH)
 assumption in the random oracle model. Formal security proofs are in
 [nsec5ecc].

 Fixed options:

 F - finite field

 2n - length, in octets, of a field element in F

 E - elliptic curve (EC) defined over F

Goldberg, et al. Expires September 6, 2018 [Page 9]

Internet-Draft VRF March 2018

 m - length, in octets, of an EC point encoded as an octet string

 G - subgroup of E of large prime order

 q - prime order of group G

 cofactor - number of points on E divided by q

 g - generator of group G

 Hash - cryptographic hash function

 hLen - output length in octets of Hash

 Constraints on options:

 Field elements in F have bit lengths divisible by 16

 hLen is equal to 2n

 Parameters used:

 y = g^x - VRF public key, an EC point

 x - VRF private key, an integer where 0 < x < q

 Notation and primitives used:

 p^k - when p is an EC point: point multiplication, i.e. k
 repetitions of group operation on EC point p. when p is an
 integer: exponentiation

 || - octet string concatenation

 I2OSP - nonnegative integer conversion to octet string as defined
 in Section 4.1 of [RFC8017]

 OS2IP - Coversion of an octet string to a nonnegative integer as
 defined in Section 4.2 of [RFC8017]

 EC2OSP - conversion of EC point to an m-octet string as specified
 in Section 5.5

 OS2ECP - conversion of an m-octet string to EC point as specified
 in Section 5.5. OS2ECP returns INVALID if the octet string does
 not convert to a valid EC point.

https://datatracker.ietf.org/doc/html/rfc8017#section-4.1
https://datatracker.ietf.org/doc/html/rfc8017#section-4.2

Goldberg, et al. Expires September 6, 2018 [Page 10]

Internet-Draft VRF March 2018

 RS2ECP - conversion of a random 2n-octet string to an EC point as
 specified in Section 5.5

5.1. EC-VRF Proving

 Note: this function is made more efficient by taking in the public
 VRF key y, as well as the private VRF key x.

 ECVRF_prove(y, x, alpha)

 Input:

 y - public key, an EC point

 x - private key, an integer

 alpha - VRF input, an octet string

 Output:

 pi - VRF proof, octet string of length m+3n

 Steps:

 1. h = ECVRF_hash_to_curve(y, alpha)

 2. gamma = h^x

 3. choose a random integer nonce k from [0, q-1]

 4. c = ECVRF_hash_points(g, h, y, gamma, g^k, h^k)

 5. s = k - c*x mod q (where * denotes integer multiplication)

 6. pi = EC2OSP(gamma) || I2OSP(c, n) || I2OSP(s, 2n)

 7. Output pi

5.2. EC-VRF Proof To Hash

 ECVRF_proof2hash(pi)

 Input:

 pi - VRF proof, octet string of length m+3n

 Output:

Goldberg, et al. Expires September 6, 2018 [Page 11]

Internet-Draft VRF March 2018

 "INVALID", or

 beta - VRF hash output, octet string of length 2n

 Steps:

 1. D = ECVRF_decode_proof(pi)

 2. If D is "INVALID", output "INVALID" and stop

 3. (gamma, c, s) = D

 4. beta = Hash(EC2OSP(gamma^cofactor))

 5. Output beta

5.3. EC-VRF Verifying

 ECVRF_verify(y, pi, alpha)

 Input:

 y - public key, an EC point

 pi - VRF proof, octet string of length 5n+1

 alpha - VRF input, octet string

 Output:

 "VALID" or "INVALID"

 Steps:

 1. D = ECVRF_decode_proof(pi)

 2. If D is "INVALID", output "INVALID" and stop

 3. (gamma, c, s) = D

 4. u = y^c * g^s (where * denotes EC point addition, i.e. a group
 operation on two EC points)

 5. h = ECVRF_hash_to_curve(y, alpha)

 6. v = gamma^c * h^s (where * denotes EC point addition)

 7. c' = ECVRF_hash_points(g, h, y, gamma, u, v)

Goldberg, et al. Expires September 6, 2018 [Page 12]

Internet-Draft VRF March 2018

 8. If c and c' are equal, output "VALID"; else output "INVALID"

 [TODO: We could hash alpha instead of gamma. Doing so costs more
 because alpha is longer, but may help salvage some security if
 ECVRF_hash_to_curve is broken and not collision-resistant. Need to
 analyze exact security preserved and decide if the tradeoff is worth
 it.]

5.4. EC-VRF Auxiliary Functions

 [TODO: analyze whether domain separation for hash functions used here
 matters and if so how to ensure we have it.]

5.4.1. EC-VRF Hash To Curve

 The ECVRF_hash_to_curve algorithm takes in an octet string alpha and
 converts it to h, an EC point in G.

5.4.1.1. ECVRF_hash_to_curve1

 The following ECVRF_hash_to_curve1(y, alpha) algorithm implements
 ECVRF_hash_to_curve in a simple and generic way that works for any
 elliptic curve.

 The running time of this algorithm depends on alpha. For the
 ciphersuites specified in Section 5.5, this algorithm is expected to
 find a valid curve point after approximately two attempts (i.e., when
 ctr=1) on average. See also [Icart09].

 However, because the running time of algorithm depends on alpha, this
 algorithm SHOULD be avoided in applications where it is important
 that the VRF input alpha remain secret.

 ECVRF_hash_to_curve1(y, alpha)

 Input:

 alpha - value to be hashed, an octet string

 y - public key, an EC point

 Output:

 h - hashed value, a finite EC point in G

 Steps:

 1. ctr = 0

Goldberg, et al. Expires September 6, 2018 [Page 13]

Internet-Draft VRF March 2018

 2. pk = EC2OSP(y)

 3. h = "INVALID"

 4. While h is "INVALID" or h is EC point at infinity:

 A. CTR = I2OSP(ctr, 4)

 B. ctr = ctr + 1

 C. attempted_hash = Hash(pk || alpha || CTR)

 D. h = RS2ECP(attempted_hash)

 E. If h is not "INVALID" and cofactor > 1, set h = h^cofactor

 5. Output h

5.4.1.2. ECVRF_hash_to_curve2

 For applications where VRF input alpha must be kept secret, the
 following ECVRF_hash_to_curve algorithm MAY be used to used as
 generic way to hash an octet string onto any elliptic curve.

 [TODO: We should look into specifying the generic deterministic time
 hash_to_curve algorithm from [Icart09]. We should also consider
 Shallue-Woestijne-Ulas algorithm from [BCIMRT10] as well as Elligator
 (for Ed25519) and Elligator Squared for more general curves. Some of
 these options are summarized in an upcoming draft [SW18].]

5.4.2. EC-VRF Hash Points

 ECVRF_hash_points(p_1, p_2, ..., p_j)

 Input:

 p_i - EC point in G

 Output:

 h - hash value, integer between 0 and 2^(8n)-1

 Steps:

 1. P = empty octet string

 2. for p_i in [p_1, p_2, ... p_j]:
 P = P || EC2OSP(p_i)

Goldberg, et al. Expires September 6, 2018 [Page 14]

Internet-Draft VRF March 2018

 3. h1 = Hash(P)

 4. h2 = first n octets of h1

 5. h = OS2IP(h2)

 6. Output h

5.4.3. EC-VRF Decode Proof

 ECVRF_decode_proof(pi)

 Input:

 pi - VRF proof, octet string (m+3n octets)

 Output:

 "INVALID", or

 gamma - EC point

 c - integer between 0 and 2^(8n)-1

 s - integer between 0 and 2^(16n)-1

 Steps:

 1. let gamma', c', s' be pi split after m-th and m+n-th octet

 2. gamma = OS2ECP(gamma')

 3. if gamma = "INVALID" output "INVALID" and stop.

 4. c = OS2IP(c')

 5. s = OS2IP(s')

 6. Output gamma, c, and s

5.5. EC-VRF Ciphersuites

 This document defines EC-VRF-P256-SHA256 as follows:

 o The EC group G is the NIST-P256 elliptic curve, with curve
 parameters as specified in [FIPS-186-3] (Section D.1.2.3) and
 [RFC5114] (Section 2.6). For this group, 2n = 32 and cofactor =
 1.

https://datatracker.ietf.org/doc/html/rfc5114

Goldberg, et al. Expires September 6, 2018 [Page 15]

Internet-Draft VRF March 2018

 o The key pair generation primitive is specified in Section 3.2.1 of
 [SECG1].

 o EC2OSP is specified in Section 2.3.3 of [SECG1] with point
 compression on. This implies m = 2n + 1 = 33.

 o OS2ECP is specified in Section 2.3.4 of [SECG1].

 o RS2ECP(h) = OS2ECP(0x02 || h). The input h is a 32-octet string
 and the output is either an EC point or "INVALID".

 o The hash function Hash is SHA-256 as specified in [RFC6234].

 o The ECVRF_hash_to_curve function is as specified in
Section 5.4.1.1.

 This document defines EC-VRF-ED25519-SHA256 as follows:

 o The EC group G is the Ed25519 elliptic curve with parameters
 defined in Table 1 of [RFC8032]. For this group, 2n = 32 and
 cofactor = 8.

 o The key pair generation primitive is specified in Section 5.1.5 of
 [RFC8032]

 o EC2OSP is specified in Section 5.1.2 of [RFC8032]. This implies m
 = 2n = 32.

 o OS2ECP is specified in Section 5.1.3 of [RFC8032].

 o RS2ECP is equivalent to OS2ECP.

 o The hash function Hash is SHA-256 as specified in [RFC6234].

 o The ECVRF_hash_to_curve function is as specified in
Section 5.4.1.1.

 [TODO: Should we add an EC-VRF-ED25519-SHA256-Elligator ciphersuite
 where the Elligator hash function is used for ECVRF_hash-to-curve?
 Should we add Elligator-Squared? We may want to consider options in
 the upcoming draft [SW18].]

 [TODO: Add an Ed448 ciphersuite? This is probably not needed...]

 [NOTE: In the unlikely case that future versions of this spec use a
 elliptic curve group G that does not also come with a specification
 of the group generator g, then we can still have full uniqueness and
 full collision resistance by adding an check to

https://datatracker.ietf.org/doc/html/rfc6234
https://datatracker.ietf.org/doc/html/rfc8032
https://datatracker.ietf.org/doc/html/rfc8032#section-5.1.5
https://datatracker.ietf.org/doc/html/rfc8032#section-5.1.5
https://datatracker.ietf.org/doc/html/rfc8032#section-5.1.2
https://datatracker.ietf.org/doc/html/rfc8032#section-5.1.3
https://datatracker.ietf.org/doc/html/rfc6234

Goldberg, et al. Expires September 6, 2018 [Page 16]

Internet-Draft VRF March 2018

 ECVRF_validate_key(PK) that ensures that g is a point on the elliptic
 curve and g^cofactor is not the EC point at infinity.]

5.6. When the EC-VRF Keys are Untrusted

 The EC-VRF as specified above is a VRF that satisfies the "trusted
 uniqueness", "trusted collision resistance", and "full
 pseudorandomness" properties defined in Section 3. If the elliptic
 curve parameters (including the generator g) are trusted, but the VRF
 public key PK is not trusted, this VRF can be modified to
 additionally satisfy "full uniqueness", and "full collision
 resistance". This is done by additionally requiring the Verifier to
 perform the following validation procedure upon receipt of the public
 VRF key.

 The Verifier MUST perform this validation procedure when the entity
 that generated the public VRF key is untrusted. The public key MUST
 NOT be used if this procedure returns "INVALID". Note well that this
 procedure is not sufficient if the elliptic curve E or if g, the
 generator of group G, is untrusted.

 This procedure supposes that the public key provided to the Verifier
 is an octet string. The procedure returns "INVALID" if the public
 key in invalid. Otherwise, it returns y, the public key as an EC
 point.

5.6.1. EC-VRF Validate Key

 ECVRF_validate_key(PK)

 Input:

 PK - public key, an octet string

 Output:

 "INVALID", or

 y - public key, an EC point

 Steps:

 1. y = OS2ECP(PK)

 2. If y is "INVALID", output "INVALID" and stop

 3. If y^cofactor is the EC point at infinty, output "INVALID" and
 stop

Goldberg, et al. Expires September 6, 2018 [Page 17]

Internet-Draft VRF March 2018

 4. Output y

6. Implementation Status

 An implementation of the RSA-FDH-VRF (SHA-256) and EC-VRF-P256-SHA256
 was first developed as a part of the NSEC5 project [I-D.vcelak-nsec5]
 and is available at <http://github.com/fcelda/nsec5-crypto>. The EC-
 VRF implementation may be out of date as this spec has evolved.

 The Key Transparency project at Google uses a VRF implemention that
 is similar to the EC-VRF-P256-SHA256, with a few minor changes
 including the use of SHA-512 instead of SHA-256. Its implementation
 is available
 <https://github.com/google/keytransparency/blob/master/core/vrf/

vrf.go>

 An implementation by Yahoo! similar to the EC-VRF is available at
 <https://github.com/r2ishiguro/vrf>.

 An implementation similar to EC-VRF is available as part of the
 CONIKS implementation in Golang at <https://github.com/coniks-sys/

coniks-go/tree/master/crypto/vrf>.

 Open Whisper Systems also uses a VRF very similar to EC-VRF-
 ED25519-SHA512-Elligator, called VXEdDSA, and specified here:
 <https://whispersystems.org/docs/specifications/xeddsa/>

7. Security Considerations

7.1. Key Generation

 Applications that use the VRFs defined in this document MUST ensure
 that that the VRF key is generated correctly, using good randomness.

7.1.1. Uniqueness and collision resistance with untrusted keys

 The EC-VRF as specified in Section 5.1-Section 5.5 statisfies the
 "trusted uniqueness" and "trusted collision resistance" properties as
 long as the VRF keys are generated correctly, with good randomness.
 If the Verifier trusts the VRF keys are generated correctly, it MAY
 use the public key y as is.

 However, if the EC-VRF uses keys that could be generated
 adversarially, then the the Verfier MUST first perform the validation
 procedure ECVRF_validate_key(PK) (specified in Section 5.6) upon
 receipt of the public key PK as an octet string. If the validation
 procedure outputs "INVALID", then the public key MUST not be used.
 Otherwise, the procedure will output a valid public key y, and the

http://github.com/fcelda/nsec5-crypto
https://github.com/google/keytransparency/blob/master/core/vrf/vrf.go
https://github.com/google/keytransparency/blob/master/core/vrf/vrf.go
https://github.com/r2ishiguro/vrf
https://github.com/coniks-sys/coniks-go/tree/master/crypto/vrf
https://github.com/coniks-sys/coniks-go/tree/master/crypto/vrf
https://whispersystems.org/docs/specifications/xeddsa/

Goldberg, et al. Expires September 6, 2018 [Page 18]

Internet-Draft VRF March 2018

 EC-VRF with public key y satisfies the "full uniqueness" and "full
 collision resistance" properties.

 The RSA-FDH-VRF statisfies the "trusted uniqueness" and "trusted
 collision resistance" properties as long as the VRF keys are
 generated correctly, with good randomness. These properties may not
 hold if the keys are generated adversarially (e.g., if RSA is not
 permutation). Meanwhile, the "full uniqueness" and "full collision
 resistance" are properties that hold even if VRF keys are generated
 by an adversary. The RSA-FDH-VRF defined in this document does not
 have these properties. However, if adversarial key generation is a
 concern, the RSA-FDH-VRF may be modifed to have these properties by
 adding additional cryptographic checks that its public key has the
 right form. These modifications are left for future specification.

7.1.2. Pseudorandomness with untrusted keys

 Without good randomness, the "pseudorandomness" properties of the VRF
 may not hold. Note that it is not possible to guarantee
 pseudorandomness in the face of adversarially generated VRF keys.
 This is because an adversary can always use bad randomness to
 generate the VRF keys, and thus, the VRF output may not be
 pseudorandom.

7.2. Selective vs Full Pseudorandomness

 [nsec5ecc] presents cryptographic reductions to an underlying hard
 problem (e.g. Decisional Diffie Hellman for the EC-VRF, or the
 standard RSA assumption for RSA-FDH-VRF) that prove the VRFs
 specificied in this document possess full pseudorandomness as well as
 selective pseudorandomness. However, the cryptographic reductions
 are tighter for selective pseudorandomness than for full
 pseudorandomness. This means the the VRFs have quantitavely stronger
 security guarentees for selective pseudorandomness.

 Applications that are concerned about tightness of cryptographic
 reductions therefore have two options.

 o They may choose to ensure that selective pseudorandomness is
 sufficient for the application. That is, that pseudorandomness of
 outputs matters only for inputs that are chosen independently of
 the VRF key.

 o If full pseudorandomness is required for the application, the
 application may increase security parameters to make up for the
 loose security reduction. For RSA-FDH-VRF, this means increasing
 the RSA key length. For EC-VRF, this means increasing the
 cryptographic strength of the EC group G. For both RSA-FDH-VRF

Goldberg, et al. Expires September 6, 2018 [Page 19]

Internet-Draft VRF March 2018

 and EC-VRF the cryptographic strength of the hash function Hash
 may also potentially need to be increased.

7.3. Proper randomness for EC-VRF

 Applications that use the EC-VRF defined in this document MUST ensure
 that the random nonce k used in the ECVRF_prove algorithm is chosen
 with proper randomness. Otherwise, an adversary may be able to
 recover the private VRF key x (and thus break pseudorandomness of the
 VRF) after observing several valid VRF proofs pi.

 [TODO: In the next version of the draft we should add a specification
 for nonce generation.]

7.4. Timing attacks

 The EC-VRF_hash_to_curve algorithm defined in Section 5.4.1.1 SHOULD
 NOT be used in applications where the VRF input alpha is secret and
 is hashed by the VRF on-the-fly. This is because the EC-
 VRF_hash_to_curve algorithm's running time depends on the VRF input
 alpha, and thus creates a timing channel that can be used to learn
 information about alpha. That said, for most inputs the amount of
 information obtained from such a timing attack is likely to be small
 (1 bit, on average), since the algorithm is expected to find a valid
 curve point after only two attempts. However, there might be inputs
 which cause the algorithm to make many attempts before it finds a
 valid curve point; for such inputs, the information leaked in a
 timing attack will be more than 1 bit.

8. Change Log

 Note to RFC Editor: if this document does not obsolete an existing
 RFC, please remove this appendix before publication as an RFC.

 00 - Forked this document from draft-goldbe-vrf-01.

 01 - Minor updates, mostly highlighting TODO items.

9. Contributors

 This document also would not be possible without the work of Moni
 Naor (Weizmann Institute), Sachin Vasant (Cisco Systems), and Asaf
 Ziv (Facebook). Shumon Huque (Salesforce) and David C. Lawerence
 (Akamai) provided valuable input to this draft.

https://datatracker.ietf.org/doc/html/draft-goldbe-vrf-01

Goldberg, et al. Expires September 6, 2018 [Page 20]

Internet-Draft VRF March 2018

10. References

10.1. Normative References

 [FIPS-186-3]
 National Institute for Standards and Technology, "Digital
 Signature Standard (DSS)", FIPS PUB 186-3, June 2009.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5114] Lepinski, M. and S. Kent, "Additional Diffie-Hellman
 Groups for Use with IETF Standards", RFC 5114,
 DOI 10.17487/RFC5114, January 2008,
 <https://www.rfc-editor.org/info/rfc5114>.

 [RFC6234] Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
 (SHA and SHA-based HMAC and HKDF)", RFC 6234,
 DOI 10.17487/RFC6234, May 2011,
 <https://www.rfc-editor.org/info/rfc6234>.

 [RFC8017] Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A. Rusch,
 "PKCS #1: RSA Cryptography Specifications Version 2.2",

RFC 8017, DOI 10.17487/RFC8017, November 2016,
 <https://www.rfc-editor.org/info/rfc8017>.

 [RFC8032] Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital
 Signature Algorithm (EdDSA)", RFC 8032,
 DOI 10.17487/RFC8032, January 2017,
 <https://www.rfc-editor.org/info/rfc8032>.

 [SECG1] Standards for Efficient Cryptography Group (SECG), "SEC 1:
 Elliptic Curve Cryptography", Version 2.0, May 2009,
 <http://www.secg.org/sec1-v2.pdf>.

10.2. Informative References

 [BCIMRT10]
 Brier, E., Coron, J., Icart, T., Madore, D., Randriam, H.,
 and M. Tibouchi, "Efficient Indifferentiable Hashing into
 Ordinary Elliptic Curves", in CRYPTO, 2010.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc5114
https://www.rfc-editor.org/info/rfc5114
https://datatracker.ietf.org/doc/html/rfc6234
https://www.rfc-editor.org/info/rfc6234
https://datatracker.ietf.org/doc/html/rfc8017
https://www.rfc-editor.org/info/rfc8017
https://datatracker.ietf.org/doc/html/rfc8032
https://www.rfc-editor.org/info/rfc8032
http://www.secg.org/sec1-v2.pdf

Goldberg, et al. Expires September 6, 2018 [Page 21]

Internet-Draft VRF March 2018

 [I-D.vcelak-nsec5]
 Vcelak, J., Goldberg, S., Papadopoulos, D., Huque, S., and
 D. Lawrence, "NSEC5, DNSSEC Authenticated Denial of
 Existence", draft-vcelak-nsec5-06 (work in progress),
 January 2018.

 [Icart09] Icart, T., "How to Hash into Elliptic Curves", in CRYPTO,
 2009.

 [MRV99] Michali, S., Rabin, M., and S. Vadhan, "Verifiable Random
 Functions", in FOCS, 1999.

 [nsec5ecc]
 Papadopoulos, D., Wessels, D., Huque, S., Vcelak, J.,
 Naor, M., Reyzin, L., and S. Goldberg, "Making NSEC5
 Practical for DNSSEC", in ePrint Cryptology Archive
 2017/099, February 2017,
 <https://eprint.iacr.org/2017/099.pdf>.

 [SW18] Sullivan, E. and C. Wood, "Hashing to Elliptic Curves",
 2018.

Authors' Addresses

 Sharon Goldberg
 Boston University
 111 Cummington St, MCS135
 Boston, MA 02215
 USA

 EMail: goldbe@cs.bu.edu

 Leonid Reyzin
 Boston University
 111 Cummington St, MCS135
 Boston, MA 02215
 USA

 EMail: reyzin@bu.edu

 Dimitrios Papadopoulos
 Hong Kong University of Science and Techology
 Clearwater Bay
 Hong Kong

 EMail: dipapado@cse.ust.hkbu.edu

https://datatracker.ietf.org/doc/html/draft-vcelak-nsec5-06
https://eprint.iacr.org/2017/099.pdf

Goldberg, et al. Expires September 6, 2018 [Page 22]

Internet-Draft VRF March 2018

 Jan Vcelak
 NS1
 16 Beaver St
 New York, NY 10004
 USA

 EMail: jvcelak@ns1.com

Goldberg, et al. Expires September 6, 2018 [Page 23]

