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Abstract

   A Verifiable Random Function (VRF) is the public-key version of a
   keyed cryptographic hash.  Only the holder of the private key can
   compute the hash, but anyone with public key can verify the
   correctness of the hash.  VRFs are useful for preventing enumeration
   of hash-based data structures.  This document specifies several VRF
   constructions that are secure in the cryptographic random oracle
   model.  One VRF uses RSA and the other VRF uses Eliptic Curves (EC).
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   publication of this document.  Please review these documents
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1.  Introduction

1.1.  Rationale

   A Verifiable Random Function (VRF) [MRV99] is the public-key version
   of a keyed cryptographic hash.  Only the holder of the private VRF
   key can compute the hash, but anyone with corresponding public key
   can verify the correctness of the hash.

   A key application of the VRF is to provide privacy against offline
   enumeration (e.g. dictionary attacks) on data stored in a hash-based
   data structure.  In this application, a Prover holds the VRF private
   key and uses the VRF hashing to construct a hash-based data structure
   on the input data.  Due to the nature of the VRF, only the Prover can
   answer queries about whether or not some data is stored in the data
   structure.  Anyone who knows the public VRF key can verify that the
   Prover has answered the queries correctly.  However no offline
   inferences (i.e. inferences without querying the Prover) can be made
   about the data stored in the data strucuture.

1.2.  Requirements

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

1.3.  Terminology

   The following terminology is used through this document:

   SK:  The private key for the VRF.

   PK:  The public key for the VRF.

   alpha or alpha_string:  The input to be hashed by the VRF.

   beta or beta_string:  The VRF hash output.

https://datatracker.ietf.org/doc/html/rfc2119
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   pi or pi_string:  The VRF proof.

   Prover:  The Prover holds the private VRF key SK and public VRF key
      PK.

   Verifier:  The Verifier holds the public VRF key PK.

2.  VRF Algorithms

   A VRF comes with a key generation algorithm that generates a public
   VRF key PK and private VRF key SK.

   The prover hashes an input alpha using the private VRF key SK to
   obtain a VRF hash output beta

      beta = VRF_hash(SK, alpha)

   The VRF_hash algorithm is deterministic, in the sense that it always
   produces the same output beta given a pair of inputs (SK, alpha).
   The prover also uses the private key SK to construct a proof pi that
   beta is the correct hash output

      pi = VRF_prove(SK, alpha)

   The VRFs defined in this document allow anyone to deterministically
   obtain the VRF hash output beta directly from the proof value pi as

      beta = VRF_proof_to_hash(pi)

   Notice that this means that

      VRF_hash(SK, alpha) = VRF_proof_to_hash(VRF_prove(SK, alpha))

   and thus this document will specify VRF_prove and VRF_proof_to_hash
   rather than VRF_hash.

   The proof pi allows a Verifier holding the public key PK to verify
   that beta is the correct VRF hash of input alpha under key PK.  Thus,
   the VRF also comes with an algorithm

      VRF_verify(PK, alpha, pi)

   that outputs (VALID, beta = VRF_proof_to_hash(pi)) if pi is valid,
   and INVALID otherwise.
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3.  VRF Security Properties

   VRFs are designed to ensure the following security properties.

3.1.  Full Uniqueness or Trusted Uniqueness

   Uniqueness means that, for any fixed public VRF key and for any input
   alpha, there is a unique VRF output beta that can be proved to be
   valid.  Uniqueness must hold even for an adversarial Prover that
   knows the VRF private key SK.

   More precisely, "full uniqueness" states that a computationally-
   bounded adversary cannot choose a VRF public key PK, a VRF input
   alpha, and two proofs pi1 and pi2 such that VRF_verify(PK, alpha,
   pi1) outputs (VALID, beta1), VRF_verify(PK, alpha, pi2) outputs
   (VALID, beta2), and beta1 is not equal to beta2.

   A slightly weaker security property called "trusted uniqueness"
   sufficies for many applications.  Trusted uniqueness is the same as
   full uniqueness, but it must hold only if the VRF keys PK and SK were
   generated in a trustworthy manner.  In other words, uniqueness might
   not hold if keys were generated in an invalid manner or with bad
   randomness.

3.2.  Full Collison Resistance or Trusted Collision Resistance

   Like any cryprographic hash function, VRFs need to be collision
   resistant.  Collison resistance must hold even for an adversarial
   Prover that knows the VRF private key SK.

   More precisely, "full collision resistance" states that it should be
   computationally infeasible for an adversary to find two distinct VRF
   inputs alpha1 and alpha2 that have the same VRF hash beta, even if
   that adversary knows the private VRF key SK.

   For most applications, a slightly weaker security property called
   "trusted collision resistance" suffices.  Trusted collision
   resistance is the same as collision resistance, but it holds only if
   PK and SK were generated in a trustworthy manner.

3.3.  Full Pseudorandomness or Selective Pseudorandomness

   Pseudorandomness ensures that when an adversarial Verifier sees a VRF
   hash output beta without its corresponding VRF proof pi, then beta is
   indistinguishable from a random value.

   More precisely, suppose the public and private VRF keys (PK, SK) were
   generated in a trustworthy manner.  Pseudorandomness ensures that the
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   VRF hash output beta (without its corresponding VRF proof pi) on any
   adversarially-chosen "target" VRF input alpha looks indistinguishable
   from random for any computationally bounded adversary who does not
   know the private VRF key SK.  This holds even if the adversary also
   gets to choose other VRF inputs alpha' and observe their
   corresponding VRF hash outputs beta' and proofs pi'.

   With "full pseudorandomness", the adversary is allowed to choose the
   "target" VRF input alpha at any time, even after it observes VRF
   outputs beta' and proofs pi' on a variety of chosen inputs alpha'.

   "Selective pseudorandomness" is a weaker security property which
   suffices in many applications.  Here, the adversary must choose the
   target VRF input alpha independently of the public VRF key PK, and
   before it observes VRF outputs beta' and proofs pi' on inputs alpha'
   of its choice.

   It is important to remember that the VRF output beta does not look
   random to the Prover, or to any other party that knows the private
   VRF key SK!  Such a party can easily distinguish beta from a random
   value by comparing beta to the result of VRF_hash(SK, alpha).

   Also, the VRF output beta does not look random to any party that
   knows valid VRF proof pi corresponding to the VRF input alpha, even
   if this party does not know the private VRF key SK.  Such a party can
   easily distinguish beta from a random value by checking whether
   VRF_verify(PK, alpha, pi) returns (VALID, beta).

   Also, the VRF output beta may not look random if VRF key generation
   was not done in a trustworthy fashion.  (For example, if VRF keys
   were generated with bad randomness.)

3.4.  A random-oracle-like unpredictability property

   Pseudorandomness, as defined in Section 3.3, does not hold if the VRF
   keys were generated adversarially.  For instance, if an adversary
   outputs VRF keys that are deterministically generated (or hard-coded
   and publicly known), then the outputs are easily derived by anyone.

   There is, however, a different type of unpredictability that is
   desirable in certain VRF applications (such as [GHMVZ17] and
   [KRDO17]).  This property is similar to the unpredictability achieved
   by an (ordinary, unkeyed) cryptographic hash function: if the input
   has enough entropy (i.e., cannot be predicted), then the correct
   output is indistinguishable from uniform.

   Although neither formal definitions nor proofs of this property have
   appeared in cryptographic literature, the VRF schemes presented in
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   this specification are believed to satisfy this property if the
   public key was generated in a trustworthy manner.  Additionally, the
   ECVRF also satisifies this property even if the public key was not
   generated in a trustworthy manner, as long as the public key
   satisfies the key validation procedure in Section 5.6.

4.  RSA Full Domain Hash VRF (RSA-FDH-VRF)

   The RSA Full Domain Hash VRF (RSA-FDH-VRF) is a VRF that satisfies
   the "trusted uniqueness", "trusted collision resistance", and "full
   pseudorandomness" properties defined in Section 3.  Its security
   follows from the standard RSA assumption in the random oracle model.
   Formal security proofs are in [PWHVNRG17].

   The VRF computes the proof pi as a deterministic RSA signature on
   input alpha using the RSA Full Domain Hash Algorithm [RFC8017]
   parametrized with the selected hash algorithm.  RSA signature
   verification is used to verify the correctness of the proof.  The VRF
   hash output beta is simply obtained by hashing the proof pi with the
   selected hash algorithm.

   The key pair for RSA-FDH-VRF MUST be generated in a way that it
   satisfies the conditions specified in Section 3 of [RFC8017].

   In this document, the notation from [RFC8017] is used.

   Parameters used:

      (n, e) - RSA public key

      K - RSA private key

      k - length in octets of the RSA modulus n (k must be less than
      2^32)

   Fixed options:

      Hash - cryptographic hash function

      hLen - output length in octets of hash function Hash

   Primitives used:

      I2OSP - Conversion of a nonnegative integer to an octet string as
      defined in Section 4.1 of [RFC8017]

      OS2IP - Conversion of an octet string to a nonnegative integer as
      defined in Section 4.2 of [RFC8017]

https://datatracker.ietf.org/doc/html/rfc8017
https://datatracker.ietf.org/doc/html/rfc8017#section-3
https://datatracker.ietf.org/doc/html/rfc8017
https://datatracker.ietf.org/doc/html/rfc8017#section-4.1
https://datatracker.ietf.org/doc/html/rfc8017#section-4.2
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      RSASP1 - RSA signature primitive as defined in Section 5.2.1 of
      [RFC8017]

      RSAVP1 - RSA verification primitive as defined in Section 5.2.2 of
      [RFC8017]

      MGF1 - Mask Generation Function based on the hash function Hash as
      defined in Section B.2.1 of [RFC8017]

      || - octet string concatenation

4.1.  RSA-FDH-VRF Proving

   RSAFDHVRF_prove(K, alpha_string)

   Input:

      K - RSA private key

      alpha_string - VRF hash input, an octet string

   Output:

      pi_string - proof, an octet string of length k

   Steps:

   1.  one_string = 0x01 = I2OSP(1, 1), a single octet with value 1

   2.  EM = MGF1(one_string || I2OSP(k, 4) || I2OSP(n, k) ||
       alpha_string, k - 1)

   3.  m = OS2IP(EM)

   4.  s = RSASP1(K, m)

   5.  pi_string = I2OSP(s, k)

   6.  Output pi_string

4.2.  RSA-FDH-VRF Proof To Hash

   RSAFDHVRF_proof_to_hash(pi_string)

   Input:

      pi_string - proof, an octet string of length k

https://datatracker.ietf.org/doc/html/rfc8017#section-5.2.1
https://datatracker.ietf.org/doc/html/rfc8017#section-5.2.1
https://datatracker.ietf.org/doc/html/rfc8017#section-5.2.2
https://datatracker.ietf.org/doc/html/rfc8017#section-5.2.2
https://datatracker.ietf.org/doc/html/rfc8017
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   Output:

      beta_string - VRF hash output, an octet string of length hLen

   Important note:

      RSAFDHVRF_proof_to_hash should be run only on pi_string that is
      known to have been produced by RSAFDHVRF_prove, or from within
      RSAFDHVRF_verify as specified in Section 4.3.

   Steps:

   1.  two_string = 0x02 = I2OSP(2, 1), a single octet with value 2

   2.  beta_string = Hash(two_string || pi_string)

   3.  Output beta_string

4.3.  RSA-FDH-VRF Verifying

   RSAFDHVRF_verify((n, e), alpha_string, pi_string)

   Input:

      (n, e) - RSA public key

      alpha_string - VRF hash input, an octet string

      pi_string - proof to be verified, an octet string of length n

   Output:

      ("VALID", beta_string), where beta_string is the VRF hash output,
      an octet string of length hLen; or
      "INVALID"

   Steps:

   1.  s = OS2IP(pi_string)

   2.  m = RSAVP1((n, e), s)

   3.  EM = I2OSP(m, k - 1)

   4.  one_string = 0x01 = I2OSP(1, 1), a single octet with value 1

   5.  EM' = MGF1(one_string || I2OSP(k, 4) || I2OSP(n, k) ||
       alpha_string, k - 1)
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   6.  If EM and EM' are equal, output ("VALID",
       RSAFDHVRF_proof_to_hash(pi_string)); else output "INVALID".

5.  Elliptic Curve VRF (ECVRF)

   The Elliptic Curve Verifiable Random Function (ECVRF) is a VRF that
   satisfies the trusted uniqueness, trusted collision resistance, and
   full pseudorandomness properties defined in Section 3.  The security
   of this VRF follows from the decisional Diffie-Hellman (DDH)
   assumption in the random oracle model.  Formal security proofs are in
   [PWHVNRG17].

   To additionally satisfy "full uniqueness" and "full collision
   resistance", the Verifier MUST additionally perform the validation
   procedure specified in Section 5.6 upon receipt of the public VRF
   key.

   Fixed options (specified in Section 5.5):

      F - finite field

      2n - length, in octets, of a field element in F, rounded up to the
      nearest even integer

      E - elliptic curve (EC) defined over F

      ptLen - length, in octets, of an EC point encoded as an octet
      string

      G - subgroup of E of large prime order

      q - prime order of group G

      qLen - length of q in octets, i.e., smallest integer such that
      2^(8qLen)>q (note that in the typical case, qLen equals 2n or is
      close to 2n)

      cofactor - number of points on E divided by q

      B - generator of group G

      Hash - cryptographic hash function

      hLen - output length in octets of Hash; must be at least 2n

      suite_string - a single nonzero octet specifying the ECVRF
      ciphersuite, which determines the above options



Goldberg, et al.         Expires August 14, 2020               [Page 10]



Internet-Draft                     VRF                     February 2020

   Notation and primitives used:

      Elliptic curve operations are written in additive notation, with
      P+Q denoting point addition and x*P denoting scalar multiplication
      of a point P by a scalar x

      x^y - a raised to the power b

      x*y - a multiplied by b

      || - octet string concatenation

      ECVRF_hash_to_curve - collision resistant hash of strings to an EC
      point; options described in Section 5.4.1 and specified in

Section 5.5.

      ECVRF_nonce_generation - derives a pseudorandom nonce from SK and
      the input as part of ECVRF proving.  Specified in Section 5.5

      ECVRF_hash_points - collision resistant hash of EC points to an
      integer.  Specified in Section 5.4.3.

   Type conversions:

      int_to_string(a, len) - conversion of nonnegative integer a to to
      octet string of length len as specified in Section 5.5.

      string_to_int(a_string) - conversion of an octet string a_string
      to a nonnegative integer as specified in Section 5.5.

      point_to_string - conversion of EC point to an ptLen-octet string
      as specified in Section 5.5

      string_to_point - conversion of an ptLen-octet string to EC point
      as specified in Section 5.5.  string_to_point returns INVALID if
      the octet string does not convert to a valid EC point.

      arbitrary_string_to_point - conversion of an arbitrary octet
      string to an EC point as specified in Section 5.5

      Note that with certain software libraries (for big integer and
      elliptic curve arithmetic), the int_to_string and point_to_string
      conversions are not needed.  For example, in some implementations,
      EC point operations will take octet strings as inputs and produce
      octet strings as outputs, without introducing a separate elliptic
      curve point type.
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   Parameters used (the generation of these parameters is specified in
Section 5.5):

      SK - VRF private key

      x - VRF secret scalar, an integer

         Note: depending on the ciphersuite used, the VRF secret scalar
         may be equal to SK; else, it is derived from SK

      Y = x*B - VRF public key, an EC point

5.1.  ECVRF Proving

   ECVRF_prove(SK, alpha_string)

   Input:

      SK - VRF private key

      alpha_string = input alpha, an octet string

   Output:

      pi_string - VRF proof, octet string of length ptLen+n+qLen

   Steps:

   1.  Use SK to derive the VRF secret scalar x and the VRF public key Y
       = x*B
       (this derivation depends on the ciphersuite, as per Section 5.5;
       these values can be cached, for example, after key generation,
       and need not be rederived each time)

   2.  H = ECVRF_hash_to_curve(suite_string, Y, alpha_string)

   3.  h_string = point_to_string(H)

   4.  Gamma = x*H

   5.  k = ECVRF_nonce_generation(SK, h_string)

   6.  c = ECVRF_hash_points(H, Gamma, k*B, k*H)

   7.  s = (k + c*x) mod q

   8.  pi_string = point_to_string(Gamma) || int_to_string(c, n) ||
       int_to_string(s, qLen)
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   9.  Output pi_string

5.2.  ECVRF Proof To Hash

   ECVRF_proof_to_hash(pi_string)

   Input:

      pi_string - VRF proof, octet string of length ptLen+n+qLen

   Output:

      "INVALID", or

      beta_string - VRF hash output, octet string of length hLen

   Important note:

      ECVRF_proof_to_hash should be run only on pi_string that is known
      to have been produced by ECVRF_prove, or from within ECVRF_verify
      as specified in Section 5.3.

   Steps:

   1.  D = ECVRF_decode_proof(pi_string)

   2.  If D is "INVALID", output "INVALID" and stop

   3.  (Gamma, c, s) = D

   4.  three_string = 0x03 = int_to_string(3, 1), a single octet with
       value 3

   5.  beta_string = Hash(suite_string || three_string ||
       point_to_string(cofactor * Gamma))

   6.  Output beta_string

5.3.  ECVRF Verifying

   ECVRF_verify(Y, pi_string, alpha_string)

   Input:

      Y - public key, an EC point

      pi_string - VRF proof, octet string of length ptLen+n+qLen
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      alpha_string - VRF input, octet string

   Output:

      ("VALID", beta_string), where beta_string is the VRF hash output,
      octet string of length hLen; or
      "INVALID"

   Steps:

   1.  D = ECVRF_decode_proof(pi_string)

   2.  If D is "INVALID", output "INVALID" and stop

   3.  (Gamma, c, s) = D

   4.  H = ECVRF_hash_to_curve(suite_string, Y, alpha_string)

   5.  U = s*B - c*Y

   6.  V = s*H - c*Gamma

   7.  c' = ECVRF_hash_points(H, Gamma, U, V)

   8.  If c and c' are equal, output ("VALID",
       ECVRF_proof_to_hash(pi_string)); else output "INVALID"

5.4.  ECVRF Auxiliary Functions

5.4.1.  ECVRF Hash To Curve

   The ECVRF_hash_to_curve algorithm takes in the VRF input alpha and
   converts it to H, an EC point in G.  This algorithm is the only place
   the VRF input alpha is used in for proving and verfying.  See

Section 7.6 for further discussion.

   The algorithms in this section are not compatible with each other;
   the choice of algorithm is made in Section 5.5.

5.4.1.1.  ECVRF_hash_to_curve_try_and_increment

   The following ECVRF_hash_to_curve_try_and_increment(suite_string, Y,
   alpha_string) algorithm implements ECVRF_hash_to_curve in a simple
   and generic way that works for any elliptic curve.

   The running time of this algorithm depends on alpha_string.  For the
   ciphersuites specified in Section 5.5, this algorithm is expected to
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   find a valid curve point after approximately two attempts (i.e., when
   ctr=1) on average.

   However, because the running time of algorithm depends on
   alpha_string, this algorithm SHOULD be avoided in applications where
   it is important that the VRF input alpha remain secret.

   ECVRF_hash_to_try_and_increment(suite_string, Y, alpha_string)

   Input:

      suite_string - a single octet specifying ECVRF ciphersuite.

      Y - public key, an EC point

      alpha_string - value to be hashed, an octet string

   Output:

      H - hashed value, a finite EC point in G

   Steps:

   1.  ctr = 0

   2.  PK_string = point_to_string(Y)

   3.  one_string = 0x01 = int_to_string(1, 1), a single octet with
       value 1

   4.  H = "INVALID"

   5.  While H is "INVALID" or H is EC point at infinity:

       A.  ctr_string = int_to_string(ctr, 1)

       B.  hash_string = Hash(suite_string || one_string || PK_string ||
           alpha_string || ctr_string)

       C.  H = arbitrary_string_to_point(hash_string)

       D.  If H is not "INVALID" and cofactor > 1, set H = cofactor * H

       E.  ctr = ctr + 1

   6.  Output H
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5.4.1.2.  ECVRF_hash_to_curve_elligator2_25519

   The following ECVRF_hash_to_curve_elligator2_25519(suite_string, Y,
   alpha_string) algorithm implements ECVRF_hash_to_curve using the
   elligator2 algorithm from Section 5 of [BHKT13] (see also
   [I-D.irtf-cfrg-hash-to-curve]) exclusively for the edwards25519
   elliptic curve.  It can be implemented with running time that is
   independent of the input alpha (so-called "constant-time").

   ECVRF_hash_to_curve_elligator2_25519(suite_string, Y, alpha_string)

   Input:

      suite_string - a single octet specifying ECVRF ciphersuite.

      alpha_string - value to be hashed, an octet string

      Y - public key, an EC point

   Output:

      H - hashed value, a finite EC point in G

   Fixed options:

      p = 2^255-19, the size of the finite field F, a prime, for
      edwards25519 and curve25519 curves

      A = 486662, Montgomery curve constant for curve25519

      cofactor = 8, the cofactor for edwards25519 and curve25519 curves

   Constraints on options:

      output length of Hash is at least 16n (i.e., 256) bits

   Steps:

   1.   PK_string = point_to_string(Y)

   2.   one_string = 0x01 = int_to_string(1, 1)
        (a single octet with value 1)

   3.   hash_string = Hash(suite_string || one_string || PK_string ||
        alpha_string )

   4.   r_string = hash_string[0]...hash_string[31]
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   5.   oneTwentySeven_string = 0x7F = int_to_string(127, 1)
        (a single octet with value 127)

   6.   r_string[31] = r_string[31] & oneTwentySeven_string
        (this step clears the high-order bit of octet 31)

   7.   r = string_to_int(r_string)

   8.   u = - A / (1 + 2*(r^2) ) mod p
        (note: the inverse of (1+2*(r^2)) modulo p is guaranteed to
        exist)

   9.   w = u * (u^2 + A*u + 1) mod p
        (this step evaluates the Montgomery equation for Curve25519)

   10.  Let e equal the Legendre symbol of w and p
        (see note below on how to compute e)

   11.  If e is equal to 1 then final_u = u; else final_u = (-A - u) mod
        p
        (note: final_u is the Montgomery u-coordinate of the output; see
        note below on how to compute it)

   12.  y_coordinate = (final_u - 1) / (final_u + 1) mod p
        (note 1: y_coordinate is the Edwards coordinate corresponding to
        final_u)
        (note 2: the inverse of (final_u + 1) modulo p is guaranteed to
        exist)

   13.  y_string = int_to_string (y_coordinate, 32)

   14.  H_prelim = string_to_point(y_string)
        (note: string_to_point will not return INVALID by correctness of
        Elligator2)

   15.  Set H = cofactor * H_prelim

   16.  Output H

   In order to make this algorithm run in time that is (almost)
   independent of the input alpha_string (so-called "constant-time"),
   implementers should pay particular attention to Steps 10 and 11
   above.  These steps can be implemented using the following approach:

      e = w ^ ((p-1)/2) mod p

      final_u = (e*u + (e-1) * (A/2)) mod p
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   The first step will produce a value e that is either 1 or p-1 (it is
   guaranteed not to be any other value, because w is guaranteed to be
   nonzero).  Implementers should also ensure that the second step runs
   in the same amount of time regardless of e by ensuring that
   arithmetic in constant time.

   Alternatively, let CMOV(result_if_1, result_if_0, selector) be the
   function that returns result_if_1 when selector is 1 and result_if_0
   when selector is 0.  If CMOV is implemented in constant time, then
   steps 12 and 13 above can be implemented as follows:

      e = (w^((p-1)/2))+1 mod p

      b = e/2

      other_u = (-A-u) mod p

      final_u = CMOV(u, other_u, b)

   (Note that after the first step, e is either 0 or 2, and only the
   least significant byte of e is needed in the second step).  CMOV can
   be implemented in constant time a variety of ways; for example, by
   expanding b from a single bit to an all-0 or all-1 string
   (accomplished by negating b in standard two's-complement arithmetic)
   and then applying bitwise XOR and AND operations as follows: other_x
   XOR ((x XOR other_x) AND b)

   If having this algorithm run in constant time is not important, then
   there are much faster algorithms to compute the Legendre symbol
   (which is the same as the Jacobi symbol because p is a prime).  See,
   for example, Section 12.3 of [ntb].

5.4.1.3.  ECVRF_hash_to_curve_Simplified_SWU

   The following ECVRF_hash_to_curve_Simplified_SWU(suite_string, Y,
   alpha_string) algorithm implements ECVRF_hash_to_curve using the
   simplified Shallue-Woestijne [SW06] and Ulas [Ulas07] algorithm from
   Section 7 of [BCIMRT10] (see also [I-D.irtf-cfrg-hash-to-curve]).  It
   can be implemented with running time that is independent of the input
   alpha (so-called "constant-time").  Generally, this method can be
   used for any curve with prime p that is congruent to 3 modulo 4;
   however, the (very unlikely) case of d=0 in step 6 below may need to
   be handled differently depending on the curve equation, to ensure
   that the result is a point on the curve.

   ECVRF_hash_to_curve_Simplified_SWU(suite_string, Y, alpha_string)

   Input:
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      suite_string - a single octet specifying ECVRF ciphersuite.

      alpha_string - value to be hashed, an octet string

      Y - public key, an EC point

   Output:

      H - hashed value, a finite EC point in G

   Fixed options:

      a and b, constants for the Weierstrass form elliptic curve
      equation y^2 = x^3 + ax +b for the curve E

   Steps:

   1.   PK_string = EC2OSP(Y)

   2.   one_string = 0x01 = I2OSP(1, 1), a single octet with value 1

   3.   t_string = Hash(suite_string || one_string || PK_string ||
        alpha_string)

   4.   t = string_to_int(t_string) mod p

   5.   r = -(t^2) mod p

   6.   d = (r^2 + r) mod p
        (d is t^4-t^2 mod p)

   7.   If d = 0 then d_inverse = 0; else d_inverse = 1/d mod p
        (as long as Hash is secure, the case of d = 0 is an utterly
        improbably occurrence;
        the two cases can be combined into one by computing d_inverse =
        d^(p-2) mod p)

   8.   x = ((-b/a) * (1 + d_inverse)) mod p

   9.   w = (x^3 + a*x + b) mod p
        (this step evaluates the curve equation)

   10.  Let e equal the Legendre symbol of w and p
        (see note below on how to compute e)

   11.  If e is equal to 0 or 1 then final_x = x; else final_x = r * x
        mod p
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        (final_x is the x-coordinate of the output; see note below on
        how to compute it)

   12.  H_prelim = arbitrary_string_to_point(int_to_string(final_x, 2n))
        (note: arbitrary_string_to_point will not return INVALID by
        correctness of Simple SWU)

   13.  If cofactor > 1, set H = cofactor * H; else set H = H_prelim

   14.  Output H

   In order to make this algorithm run in time that is (almost)
   independent of the input (so-called "constant-time"), implementers
   should pay particular attention to Steps 10 and 11 above.  These
   steps can be implemented using the following approach.  Let
   CMOV(result_if_1, result_if_0, selector) be the function that returns
   result_if_1 when selector is 1 and result_if_0 when selector is 0.
   If arithmetic and CMOV are implemented in constant time, then steps 9
   and 10 above can be implemented as follows:

      e = (w ^ ((p-1)/2))+1 mod p
      (At this point, e is 0, 1, or 2, as an integer.)

      Let b = (e+1) / 2, where / denotes integer division with rounding
      down.
      (Note carefully that this step is integer, not modular, division.
      Only the last byte of e is needed for this step.  This step
      converts 0, 1, or 2 to 0 or 1.)

      other_x = r * x mod p

      final_x = CMOV(x, other_x, b)

   CMOV can be implemented in constant time a variety of ways; for
   example, by expanding b from a single bit to an all-0 or all-1 string
   (accomplished by negating b in standard two's-complement arithmetic)
   and then applying bitwise XOR and AND operations as follows: other_x
   XOR ((x XOR other_x) AND b)

   If having this algorithm run in constant time is not important, then
   there are much faster algorithms to compute the Legendre symbol
   (which is the same as the Jacobi symbol because p is a prime).  See,
   for example, Section 12.3 of [ntb].
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5.4.2.  ECVRF Nonce Generation

   The following subroutines generate the nonce value k in a
   deterministic pseudorandom fashion.

5.4.2.1.  ECVRF Nonce Generation From RFC 6979

   ECVRF_nonce_generation_RFC6979(SK, h_string)

   Input:

      SK - an ECVRF secret key

      h_string - an octet string

   Output:

      k - an integer between 1 and q-1

   The ECVRF_nonce_generation function is as specified in [RFC6979]
   Section 3.2 where

      Input m is set equal to h_string

      The "suitable for DSA or ECDSA" check in step h.3 is omitted

      The hash function H is Hash and its output length hlen is set as
      hLen*8

      The secret key x is set equal to the VRF secret scalar x

      The prime q is the same as in this specification

      qlen is the binary length of q, i.e., the smallest integer such
      that 2^qlen > q

      All the other values and primitives as defined in [RFC6979]

5.4.2.2.  ECVRF Nonce Generation From RFC 8032

   The following is from Steps 2-3 of Section 5.1.6 in [RFC8032].

   ECVRF_nonce_generation_RFC8032(SK, h_string)

   Input:

      SK - an ECVRF secret key

https://datatracker.ietf.org/doc/html/rfc6979
https://datatracker.ietf.org/doc/html/rfc6979#section-3.2
https://datatracker.ietf.org/doc/html/rfc6979#section-3.2
https://datatracker.ietf.org/doc/html/rfc6979
https://datatracker.ietf.org/doc/html/rfc8032
https://datatracker.ietf.org/doc/html/rfc8032#section-5.1.6
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      h_string - an octet string

   Output:

      k - an integer between 0 and q-1

   Steps:

   1.  hashed_sk_string = Hash (SK)

   2.  truncated_hashed_sk_string =
       hashed_sk_string[32]...hashed_sk_string[63]

   3.  k_string = Hash(truncated_hashed_sk_string || h_string)

   4.  k = string_to_int(k_string) mod q

5.4.3.  ECVRF Hash Points

   ECVRF_hash_points(P1, P2, ..., PM)

   Input:

      P1...PM - EC points in G

   Output:

      c - hash value, integer between 0 and 2^(8n)-1

   Steps:

   1.  two_string = 0x02 = int_to_string(2, 1), a single octet with
       value 2

   2.  Initialize str = suite_string || two_string

   3.  for PJ in [P1, P2, ... PM]:
       str = str || point_to_string(PJ)

   4.  c_string = Hash(str)

   5.  truncated_c_string = c_string[0]...c_string[n-1]

   6.  c = string_to_int(truncated_c_string)

   7.  Output c
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5.4.4.  ECVRF Decode Proof

   ECVRF_decode_proof(pi_string)

   Input:

      pi_string - VRF proof, octet string (ptLen+n+qLen octets)

   Output:

      "INVALID", or

      Gamma - EC point

      c - integer between 0 and 2^(8n)-1

      s - integer between 0 and 2^(8qLen)-1

   Steps:

   1.  let gamma_string = pi_string[0]...p_string[ptLen-1]

   2.  let c_string = pi_string[ptLen]...pi_string[ptLen+n-1]

   3.  let s_string =pi_string[ptLen+n]...pi_string[ptLen+n+qLen-1]

   4.  Gamma = string_to_point(gamma_string)

   5.  if Gamma = "INVALID" output "INVALID" and stop.

   6.  c = string_to_int(c_string)

   7.  s = string_to_int(s_string)

   8.  Output Gamma, c, and s

5.5.  ECVRF Ciphersuites

   This document defines ECVRF-P256-SHA256-TAI as follows:

   o  suite_string = 0x01 = int_to_string(1, 1).

   o  The EC group G is the NIST P-256 elliptic curve, with curve
      parameters as specified in [FIPS-186-4] (Section D.1.2.3) and
      [RFC5114] (Section 2.6).  For this group, 2n = qLen = 32 and
      cofactor = 1.

https://datatracker.ietf.org/doc/html/rfc5114
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   o  The key pair generation primitive is specified in Section 3.2.1 of
      [SECG1] (q, B, SK, and PK in this document correspond to in n, G,
      d, and Q in Section 3.2.1 of [SECG1]).  In this ciphersuite, the
      secret scalar x is equal to the private key SK.

   o  The ECVRF_nonce_generation function is as specified in
Section 5.4.2.1.

   o  The int_to_string function is the I2OSP function specified in
Section 4.1 of [RFC8017].  (This is big endian representation.)

   o  The string_to_int function is the OS2IP function specified in
Section 4.2 of [RFC8017].  (This is big endian representation.)

   o  The point_to_string function converts an EC point to an octet
      string according to the encoding specified in Section 2.3.3 of
      [SECG1] with point compression on.  This implies ptLen = 2n + 1 =
      33.  (Note that certain software implementations do not introduce
      a separate elliptic curve point type and instead directly treat
      the EC point as an octet string per above encoding.  When using
      such an implementation, the point_to_string function can be
      treated as the identity function.)

   o  The string_to_point function converts an octet string to an EC
      point according to the encoding specified in Section 2.3.4 of
      [SECG1].  This function MUST output INVALID if the octet string
      does not decode to an EC point.

   o  arbitrary_string_to_point(s) = string_to_point(0x02 || s) (where
      0x02 is a single octet with value 2, 0x02=int_to_string(2, 1)).
      The input s is a 32-octet string and the output is either an EC
      point or "INVALID".

   o  The hash function Hash is SHA-256 as specified in [RFC6234], with
      hLen = 32.

   o  The ECVRF_hash_to_curve function is as specified in
Section 5.4.1.1.

   This document defines ECVRF-P256-SHA256-SWU as follows:

   o  This ciphersuite is identical to ECVRF-P256-SHA256-TAI except that
      the ECVRF_hash_to_curve function is as specified in

Section 5.4.1.3 and suite_string = 0x02 = int_to_string(2, 1).

   This document defines ECVRF-EDWARDS25519-SHA512-TAI as follows:

   o  suite_string = 0x03 = int_to_string(3, 1).

https://datatracker.ietf.org/doc/html/rfc8017#section-4.1
https://datatracker.ietf.org/doc/html/rfc8017#section-4.2
https://datatracker.ietf.org/doc/html/rfc6234
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   o  The EC group G is the edwards25519 elliptic curve with parameters
      defined in Table 1 of [RFC8032].  For this group, 2n = qLen = 32
      and cofactor = 8.

   o  The private key and generation of the secret scalar and the public
      key are specified in Section 5.1.5 of [RFC8032]

   o  The ECVRF_nonce_generation function is as specified in
Section 5.4.2.2.

   o  The int_to_string function as specified in the first paragraph of
Section 5.1.2 of [RFC8032].  (This is little endian

      representation.)

   o  The string_to_int function interprets the string as an integer in
      little-endian representation.

   o  The point_to_string function converts an EC point to an octect
      string according to the encoding specified in Section 5.1.2 of
      [RFC8032].  This implies ptLen = 2n = 32.  (Note that certain
      software implementations do not introduce a separate elliptic
      curve point type and instead directly treat the EC point as an
      octet string per above encoding.  When using such and
      implementation, the point_to_string function can be treated as the
      identity function.)

   o  The string_to_point function converts an octet string to an EC
      point according to the encoding specified in Section 5.1.3 of
      [RFC8032].  This function MUST output INVALID if the octet string
      does not decode to an EC point.

   o  arbitrary_string_to_point(s) = string_to_point(s[0]...s[31])

   o  The hash function Hash is SHA-512 as specified in [RFC6234], with
      hLen = 64.

   o  The ECVRF_hash_to_curve function is as specified in
Section 5.4.1.1.

   This document defines ECVRF-EDWARDS25519-SHA512-Elligator2 as
   follows:

   o  This ciphersuite is identical to ECVRF-EDWARDS25519-SHA512-TAI
      except that the ECVRF_hash_to_curve function is as specified in

Section 5.4.1.2 and suite_string = 0x04 = int_to_string(4, 1).

https://datatracker.ietf.org/doc/html/rfc8032
https://datatracker.ietf.org/doc/html/rfc8032#section-5.1.5
https://datatracker.ietf.org/doc/html/rfc8032#section-5.1.2
https://datatracker.ietf.org/doc/html/rfc8032#section-5.1.2
https://datatracker.ietf.org/doc/html/rfc8032#section-5.1.2
https://datatracker.ietf.org/doc/html/rfc8032#section-5.1.3
https://datatracker.ietf.org/doc/html/rfc8032#section-5.1.3
https://datatracker.ietf.org/doc/html/rfc6234
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5.6.  When the ECVRF Keys are Untrusted

   The ECVRF as specified above is a VRF that satisfies the "trusted
   uniqueness", "trusted collision resistance", and "full
   pseudorandomness" properties defined in Section 3.  In order to
   obtain "full uniqueness" and "full collision resistance" (which
   provide protection against a malicious VRF public key), the Verifier
   MUST perform the following additional validation procedure upon
   receipt of the public VRF key.  The public VRF key MUST NOT be used
   if this procedure returns "INVALID".

   Note that this procedure is not sufficient if the elliptic curve E or
   the point B, the generator of group G, is untrusted.  If the prover
   is untrusted, the Verifier MUST obtain E and B from a trusted source,
   such as a ciphersuite specification, rather than from the prover.

   This procedure supposes that the public key provided to the Verifier
   is an octet string.  The procedure returns "INVALID" if the public
   key in invalid.  Otherwise, it returns Y, the public key as an EC
   point.

5.6.1.  ECVRF Validate Key

   ECVRF_validate_key(PK_string)

   Input:

      PK_string - public key, an octet string

   Output:

      "INVALID", or

      Y - public key, an EC point

   Steps:

   1.  Y = string_to_point(PK_string)

   2.  If Y is "INVALID", output "INVALID" and stop

   3.  If cofactor*Y is the EC point at infinty, output "INVALID" and
       stop

   4.  Output Y

   Note that if the cofactor = 1, then Step 3 need not multiply Y by the
   cofactor; instead, it suffices to output "INVALID" if Y is the point



Goldberg, et al.         Expires August 14, 2020               [Page 26]



Internet-Draft                     VRF                     February 2020

   at infinity.  Moreover, when cofactor>1, it is not necessary to
   verify that Y is in the subgroup G; Step 3 suffices.  Therefore, if
   the cofactor is small, the total number of points that could cause
   Step 3 to output "INVALID" may be small, and it may be more efficient
   to simply check Y against a fixed list of such points.  For example,
   the following algorithm can be used for the edwards25519 curve:

   1.   Y = string_to_point(PK_string)

   2.   If Y is "INVALID", output "INVALID" and stop

   3.   y_string = PK_string

   4.   oneTwentySeven_string = 0x7F = int_to_string(127, 1)
        (a single octet with value 127)

   5.   y_string[31] = y_string[31] & oneTwentySeven_string
        (this step clears the high-order bit of octet 31)

   6.   bad_pk[0] = int_to_string(0, 32)

   7.   bad_pk[1] = int_to_string(1, 32)

   8.   bad_y2 = 2707385501144840649318225287225658788936804267575313519
        463743609750303402022

   9.   bad_pk[2] = int_to_string(bad_y2, 32)

   10.  bad_pk[3] = int_to_string(p-bad_y2, 32)

   11.  bad_pk[4] = int_to_string(p-1, 32)

   12.  bad_pk[5] = int_to_string(p, 32)

   13.  bad_pk[6] = int_to_string(p+1, 32)

   14.  If y_string is in bad_pk[0]...bad_pk[6], output "INVALID" and
        stop

   15.  Output Y

   (bad_pk[0], bad_pk[2], bad_pk[3] each match two bad public keys,
   depending on the sign of the x-coordinate, which was cleared in step
   5, in order to make sure that it does not affect the comparison.
   bad_pk[1] and bad_pk[4] each match one bad public key, because
   x-coordinate is 0 for these two public keys. bad_pk[5] and bad_pk[6]
   are simply bad_pk[0] and bad_pk[1] shifted by p, in case the
   y-coordinate had not been modular reduced by p.  There is no need to
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   shift the other bad_pk values by p, because they will exceed 2^255.
   These bad keys, which represent all points of order 1, 2, 4, and 8,
   have been obtained by converting the points specified in [X25519] to
   Edwards coordinates.)

6.  Implementation Status

   A reference C++ implementation of ECVRF-P256-SHA256-TAI, ECVRF-
   P256-SHA256-SWU, ECVRF-EDWARDS25519-SHA512-TAI, ECVRF-
   EDWARDS25519-SHA512-Elligator2 is available at
   <https://github.com/reyzin/ecvrf>.  This implementation is neither
   secure nor especially effecient, but can be used to generate test
   vectors.

   A Python implementation of ECVRF-EDWARDS25519-SHA512-Elligator2 is
   available at <https://github.com/integritychain/draft-irtf-cfrg-vrf-

05>.

   A C implementation of ECVRF-EDWARDS25519-SHA512-Elligator2 is
   available at <https://github.com/algorand/libsodium/tree/draft-irtf-

cfrg-vrf-03/src/libsodium/crypto_vrf/ietfdraft03>.

   A Rust implemention of ECVRF-P256-SHA256-TAI, as well as variants for
   the sect163k1 and secp256k1 curves, is available at
   <https://crates.io/crates/vrf>.

   A C implemention of a variant of this VRF for the secp256k1 curve is
   available at <https://github.com/aergoio/secp256k1-vrf>.

   An implementation of an earlier, slightly different, version of RSA-
   FDH-VRF (SHA-256) and ECVRF-P256-SHA256-TAI was first developed as a
   part of the NSEC5 project [I-D.vcelak-nsec5] and is available at
   <http://github.com/fcelda/nsec5-crypto>.

   The Key Transparency project at Google uses a VRF implemention that
   is similar to the ECVRF-P256-SHA256-TAI, with a few minor changes
   including the use of SHA-512 instead of SHA-256.  Its implementation
   is available at
   <https://github.com/google/keytransparency/blob/master/core/vrf/

vrf.go>

   An implementation by Yahoo! similar to the ECVRF is available at
   <https://github.com/r2ishiguro/vrf>.

   An implementation similar to ECVRF is available as part of the CONIKS
   implementation in Golang at <https://github.com/coniks-sys/coniks-

go/tree/master/crypto/vrf>.

https://github.com/reyzin/ecvrf
https://github.com/integritychain/draft-irtf-cfrg-vrf-05
https://github.com/integritychain/draft-irtf-cfrg-vrf-05
https://github.com/algorand/libsodium/tree/draft-irtf-cfrg-vrf-03/src/libsodium/crypto_vrf/ietfdraft03
https://github.com/algorand/libsodium/tree/draft-irtf-cfrg-vrf-03/src/libsodium/crypto_vrf/ietfdraft03
https://crates.io/crates/vrf
https://github.com/aergoio/secp256k1-vrf
http://github.com/fcelda/nsec5-crypto
https://github.com/google/keytransparency/blob/master/core/vrf/vrf.go
https://github.com/google/keytransparency/blob/master/core/vrf/vrf.go
https://github.com/r2ishiguro/vrf
https://github.com/coniks-sys/coniks-go/tree/master/crypto/vrf
https://github.com/coniks-sys/coniks-go/tree/master/crypto/vrf
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   Open Whisper Systems also uses a VRF very similar to ECVRF-
   EDWARDS25519-SHA512-Elligator, called VXEdDSA, and specified here
   <https://whispersystems.org/docs/specifications/xeddsa/> and here
   <https://moderncrypto.org/mail-archive/curves/2017/000925.html>.
   Implementations in C and Java are available at
   <https://github.com/signalapp/curve25519-java> and
   <https://github.com/wavesplatform/curve25519-java>.

7.  Security Considerations

7.1.  Key Generation

   Applications that use the VRFs defined in this document MUST ensure
   that that the VRF key is generated correctly, using good randomness.

7.1.1.  Uniqueness and collision resistance with untrusted keys

   The ECVRF as specified in Section 5.1-Section 5.5 statisfies the
   "trusted uniqueness" and "trusted collision resistance" properties as
   long as the VRF keys are generated correctly, with good randomness.
   If the Verifier trusts the VRF keys are generated correctly, it MAY
   use the public key Y as is.

   However, if the ECVRF uses keys that could be generated
   adversarially, then the the Verfier MUST first perform the validation
   procedure ECVRF_validate_key(PK) (specified in Section 5.6) upon
   receipt of the public key PK as an octet string.  If the validation
   procedure outputs "INVALID", then the public key MUST not be used.
   Otherwise, the procedure will output a valid public key Y, and the
   ECVRF with public key Y satisfies the "full uniqueness" and "full
   collision resistance" properties.

   The RSA-FDH-VRF statisfies the "trusted uniqueness" and "trusted
   collision resistance" properties as long as the VRF keys are
   generated correctly, with good randomness.  These properties may not
   hold if the keys are generated adversarially (e.g., if RSA is not
   permutation).  Meanwhile, the "full uniqueness" and "full collision
   resistance" are properties that hold even if VRF keys are generated
   by an adversary.  The RSA-FDH-VRF defined in this document does not
   have these properties.  However, if adversarial key generation is a
   concern, the RSA-FDH-VRF may be modifed to have these properties by
   adding additional cryptographic checks that its public key has the
   right form.  These modifications are left for future specification.

https://whispersystems.org/docs/specifications/xeddsa/
https://moderncrypto.org/mail-archive/curves/2017/000925.html
https://github.com/signalapp/curve25519-java
https://github.com/wavesplatform/curve25519-java
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7.1.2.  Pseudorandomness with untrusted keys

   Without good randomness, the "pseudorandomness" properties of the VRF
   may not hold.  Note that it is not possible to guarantee
   pseudorandomness in the face of adversarially generated VRF keys.
   This is because an adversary can always use bad randomness to
   generate the VRF keys, and thus, the VRF output may not be
   pseudorandom.

7.2.  Selective vs Full Pseudorandomness

   [PWHVNRG17] presents cryptographic reductions to an underlying hard
   problem (e.g.  Decisional Diffie Hellman for the ECVRF, or the
   standard RSA assumption for RSA-FDH-VRF) that prove the VRFs
   specificied in this document possess full pseudorandomness as well as
   selective pseudorandomness.  However, the cryptographic reductions
   are tighter for selective pseudorandomness than for full
   pseudorandomness.  This means the the VRFs have quantitavely stronger
   security guarentees for selective pseudorandomness.

   Applications that are concerned about tightness of cryptographic
   reductions therefore have two options.

   o  They may choose to ensure that selective pseudorandomness is
      sufficient for the application.  That is, that pseudorandomness of
      outputs matters only for inputs that are chosen independently of
      the VRF key.

   o  If full pseudorandomness is required for the application, the
      application may increase security parameters to make up for the
      loose security reduction.  For RSA-FDH-VRF, this means increasing
      the RSA key length.  For ECVRF, this means increasing the
      cryptographic strength of the EC group G.  For both RSA-FDH-VRF
      and ECVRF the cryptographic strength of the hash function Hash may
      also potentially need to be increased.

7.3.  Proper pseudorandom nonce for ECVRF

   The security of the ECVRF defined in this document relies on the fact
   that nonce k used in the ECVRF_prove algorithm is chosen uniformly
   and pseudorandomly modulo q, and is unknown to the advesrary.
   Otherwise, an adversary may be able to recover the private VRF key x
   (and thus break pseudorandomness of the VRF) after observing several
   valid VRF proofs pi.  The nonce generation methods specified in the
   ECVRF ciphersuites of Section 5.5 are designed with this requirement
   in mind.
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7.4.  Side-channel attacks

   Side channel attacks on cryptographic primatives are an important
   issue.  Here we discuss only one such side channel: timing attacks
   that can be used to leak information about the VRF input alpha.
   Implementers should take care to avoid side-channel attacks that leak
   information about the VRF private key SK (and the nonce k used in the
   ECVRF).

   The ECVRF_hash_to_curve_try_and_increment algorithm defined in
Section 5.4.1.1 SHOULD NOT be used in applications where the VRF

   input alpha is secret and is hashed by the VRF on-the-fly.  This is
   because the algorithm's running time depends on the VRF input alpha,
   and thus creates a timing channel that can be used to learn
   information about alpha.  That said, for most inputs the amount of
   information obtained from such a timing attack is likely to be small
   (1 bit, on average), since the algorithm is expected to find a valid
   curve point after only two attempts.  However, there might be inputs
   which cause the algorithm to make many attempts before it finds a
   valid curve point; for such inputs, the information leaked in a
   timing attack will be more than 1 bit.

   Meanwhile, ECVRF-P256-SHA256-SWU and ECVRF-
   EDWARDS25519-SHA512-Elligator2 can be made to run in time constant in
   alpha.

7.5.  Proofs Provide No Secrecy for VRF Input

   The VRF proof pi is not designed to provide secrecy and, in general,
   may reveal the VRF input alpha.  Anyone who knows PK and pi is able
   to perform an offline dictionary attack to search for alpha, by
   verifying guesses for alpha using VRF_verify.  This is in contrast to
   the VRF hash output beta which, without the proof, is pseudorandom
   and thus is designed to reveal no information about alpha.

7.6.  Prehashing

   The VRFs specified in this document allow for read-once access to the
   input alpha for both signing and verifying.  Thus, additional
   prehashing of alpha (as specified, for example, in [RFC8032] for
   EdDSA signatures) is not needed, even for applications that need to
   handle long alpha or to support the Initialized-Update-Finalize (IUF)
   interface (in such an interface, alpha is not supplied all at once,
   but rather in pieces by a sequence of calls to Update).  The ECVRF,
   in particular, uses alpha only in ECVRF_hash_to_curve.  The curve
   point H becomes the representative of alpha thereafter.  Note that
   the suite_string octet and the public key are hashed together with
   alpha in ECVRF_hash_to_curve, which ensures that the curve (including

https://datatracker.ietf.org/doc/html/rfc8032
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   the generator B) and the public key are included indirectly into
   subsequent hashes.

7.7.  Hash function domain separation and future-proofing

   Hashing is used for different purposes in the two VRFs (namely, in
   the RSA-FDH-VRF, in MGF1 and in proof_to_hash; in the ECVRF, in
   hash_to_curve, nonce_generation, hash_points, and proof_to_hash).
   The theoretical analysis assumes each of these functions is a
   separate random oracle.  This analysis still holds even if the same
   hash function is used, as long as the four queries made to the hash
   function for a given SK and alpha are overwhelmingly unlikely to
   equal each other or to any queries made to the hash function for the
   same SK and different alpha.  This is indeed the case for the RSA-
   FDH-VRF defined in this document, because the first octets of the
   input to the hash function used in MGF1 and in proof_to_hash are
   different.  This is also the case for the ECVRF ciphersuites defined
   in this document, because:

   o  inputs to the hash function used during nonce_generation are
      unlikely to equal to inputs given to hash_to_curve, proof_to_hash,
      and hash_points.  This follows since nonce_generation inputs a
      secret to the hash function that is not used by honest parties as
      input to any other hash function, and is not available to the
      adversary

   o  the second octet of the input to the hash function used in
      hash_to_curve, proof_to_hash, and hash_points are all different

   For the RSA VRF, if future designs need to specify variants of the
   design in this document, such variants should use different first
   octets in inputs to MGF1 and to the hash funciton used in
   proof_to_hash, in order to avoid the possibility that an adversary
   can obtain a VRF output under one variant, and then claim it was
   obtained under another variant

   For the elliptic curve VRF, if future designs need to specify
   variants (e.g., additional ciphersuites) of the design in this
   document, then, to avoid the possibility that an adversary can obtain
   a VRF output under one variant, and then claim it was obtained under
   another variant, they should specify a different suite_string
   constant.  This way, the inputs to the hash_to_curve hash function
   used in producing H are guaranteed to be different; since all the
   other hashing done by the prover depends on H, inputs all the hash
   functions used by the prover will also be different as long as
   hash_to_curve is collision resistant.
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8.  Change Log

   Note to RFC Editor: if this document does not obsolete an existing
   RFC, please remove this appendix before publication as an RFC.

      00 - Forked this document from draft-goldbe-vrf-01.

      01 - Minor updates, mostly highlighting TODO items.

      02 - Added specification of elligator2 for Curve25519, along with
      ciphersuites for ECVRF-ED25519-SHA512-Elligator.  Changed ECVRF-
      ED25519-SHA256 suite_string to ECVRF-ED25519-SHA512.  (This change
      made because Ed25519 in [RFC8032] signatures use SHA512 and not
      SHA256.)  Made ECVRF nonce generation a separate component, so
      that nonces are determinsitic.  In ECVRF proving, changed + to -
      (and made corresponding verification changes) in order to be
      consistent with EdDSA and ECDSA.  Highlighted that
      ECVRF_hash_to_curve acts like a prehash.  Added "suites" variable
      to ECVRF for future-proofing.  Ensured domain separation for hash
      functions by modifying hash_points and added discussion about
      domain separation.  Updated todos in the "additional
      pseudorandomness property" section.  Added an discussion of
      secrecy into security considerations.  Removed B and PK=Y from
      ECVRF_hash_points because they are already present via H, which is
      computed via hash_to_curve using the suite_string (which
      identifies B) and Y.

      03 - Changed Ed25519 conversions to little-endian, to match RFC
8032; added simple key validation for Ed25519; added Simple SWU

      cipher suite; clarified Elligator and removed the extra x0 bit, to
      make Montgomery and Edwards Elligator the same; added domain
      separation for RSA VRF; improved notation throughout; added nonce
      generation as a section; changed counter in try-and-increment from
      four bytes to one, to avoid endian issues; renamed try-and-
      increment ciphersuites to -TAI; added qLen as a separate
      paremeter; changed output length to hLen for ECVRF, to match
      RSAVRF; made Verify return beta so unverified proofs don't end up
      in proof_to_hash; added test vectors.

      04 - Clarified handling of optional arguments x and PK in
      ECVRF_prove.  Edited implementation status to bring it up to date.

      05 - Renamed ed25519 into the more commonly used edwards25519.
      Corrected ECVRF_nonce_generation_RFC6979 (thanks to Gorka Irazoqui
      Apecechea and Mario Cao Cueto for finding the problem) and
      corresponding test vectors for the P256 suites.  Added a reference
      to the Rust implementation.

https://datatracker.ietf.org/doc/html/draft-goldbe-vrf-01
https://datatracker.ietf.org/doc/html/rfc8032
https://datatracker.ietf.org/doc/html/rfc8032
https://datatracker.ietf.org/doc/html/rfc8032
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      06 - Made some variable names more descriptive.  Added a few
      implementation references.

9.  Contributors

   This document also would not be possible without the work of Moni
   Naor (Weizmann Institute), Sachin Vasant (Cisco Systems), and Asaf
   Ziv (Facebook).  Shumon Huque, David C.  Lawerence, Trevor Perrin,
   Annie Yousar, Stanislav Smyshlyaev, Liliya Akhmetzyanova, Tony
   Arcieri, Sergey Gorbunov, Sam Scott, Nick Sullivan, Christopher Wood,
   Marek Jankowski, Derek Ting-Haye Leung, Adam Suhl, Gary Belvinm,
   Piotr Nojszewski, Gorka Irazoqui Apecechea, and Mario Cao Cueto
   provided valuable input to this draft.
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Appendix A.  Test Vectors for the ECVRFs

   The test vectors in this section were genereated using the reference
   implementation at <https://github.com/reyzin/ecvrf>.

A.1.  ECVRF-P256-SHA256-TAI

   These two example secret keys and messages are taken from
Appendix A.2.5 of [RFC6979].

   SK = x =
   c9afa9d845ba75166b5c215767b1d6934e50c3db36e89b127b8a622b120f6721
   PK =
   0360fed4ba255a9d31c961eb74c6356d68c049b8923b61fa6ce669622e60f29fb6
   alpha = 73616d706c65 (ASCII "sample")
   try_and_increment succeded on ctr = 0
   H =
   02e2e1ab1b9f5a8a68fa4aad597e7493095648d3473b213bba120fe42d1a595f3e
   k = b7de5757b28c349da738409dfba70763ace31a6b15be8216991715fbc833e5fa
   U = k*B =
   030286d82c95d54feef4d39c000f8659a5ce00a5f71d3a888bd1b8e8bf07449a50
   V = k*H =
   03e4258b4a5f772ed29830050712fa09ea8840715493f78e5aaaf7b27248efc216
   pi = 029bdca4cc39e57d97e2f42f88bcf0ecb1120fb67eb408a856050dbfbcbf57c5
   24347fc46ccd87843ec0a9fdc090a407c6fbae8ac1480e240c58854897eabbc3a7bb6
   1b201059f89186e7175af796d65e7
   beta =
   59ca3801ad3e981a88e36880a3aee1df38a0472d5be52d6e39663ea0314e594c

   SK = x =
   c9afa9d845ba75166b5c215767b1d6934e50c3db36e89b127b8a622b120f6721
   PK =
   0360fed4ba255a9d31c961eb74c6356d68c049b8923b61fa6ce669622e60f29fb6
   alpha = 74657374 (ASCII "test")
   try_and_increment succeded on ctr = 0
   H =
   02ca565721155f9fd596f1c529c7af15dad671ab30c76713889e3d45b767ff6433
   k = c3c4f385523b814e1794f22ad1679c952e83bff78583c85eb5c2f6ea6eee2e7d
   U = k*B =
   034b3793d1088500ec3cccdea079beb0e2c7cdf4dccef1bbda379cc06e084f09d0
   V = k*H =
   02427cdb19aa5dd645e153d6bd8c0d81a658deee37b203edfd461953f301c4f868
   pi = 03873a1cce2ca197e466cc116bca7b1156fff599be67ea40b17256c4f34ba254
   9c94ffd2b31588b5fe034fd92c87de5b520b12084da6c4ab63080a7c5467094a1ee84
   b80b59aca54bba2e2baa0d108191b
   beta =
   dc85c20f95100626eddc90173ab58d5e4f837bb047fb2f72e9a408feae5bc6c1

https://github.com/reyzin/ecvrf
https://datatracker.ietf.org/doc/html/rfc6979#appendix-A.2.5
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   This example secret key and message are taken from Appendix L.4.2 of
   [ANSI.X9-62-2005].

   SK = x =
   2ca1411a41b17b24cc8c3b089cfd033f1920202a6c0de8abb97df1498d50d2c8
   PK =
   03596375e6ce57e0f20294fc46bdfcfd19a39f8161b58695b3ec5b3d16427c274d
   alpha = 4578616d706c65206f66204543445341207769746820616e7369703235367
   23120616e64205348412d323536 (ASCII "Example of ECDSA with ansip256r1
   and SHA-256")
   try_and_increment succeded on ctr = 1
   H =
   02141e41d4d55802b0e3adaba114c81137d95fd3869b6b385d4487b1130126648d
   k = 6ac8f1efa102bdcdcc8db99b755d39bc995491e3f9dea076add1905a92779610
   U = k*B =
   034bf7bd3638ef06461c6ec0cfaef7e58bfdaa971d7e36125811e629e1a1e77c8a
   V = k*H =
   03b8b33a134759eb8c9094fb981c9590aa53fd13d35042575067a7bd7c5bc6287b
   pi = 02abe3ce3b3aa2ab3c6855a7e729517ebfab6901c2fd228f6fa066f15ebc9b9d
   415a680736f7c33f6c796e367f7b2f467026495907affb124be9711cf0e2d05722d3a
   33e11d0c5bf932b8f0c5ed1981b64
   beta =
   e880bde34ac5263b2ce5c04626870be2cbff1edcdadabd7d4cb7cbc696467168

A.2.  ECVRF-P256-SHA256-SWU

   These two example secret keys and messages are taken from
Appendix A.2.5 of [RFC6979].

   SK = x =
   c9afa9d845ba75166b5c215767b1d6934e50c3db36e89b127b8a622b120f6721
   PK =
   0360fed4ba255a9d31c961eb74c6356d68c049b8923b61fa6ce669622e60f29fb6
   alpha = 73616d706c65 (ASCII "sample")
   In SWU: t =
   f1523667d029b9119a319a5bb316ff846691600e3552514ec4f93f9c84d65a4f
   In SWU: w =
   d8125c3ae82fc2b7f1c326b6f3dbfdf3583272336a60cb08efb84e002e98a3b3
   In SWU: e = -1
   H =
   027827143876a58c2189402306c6ff6f7f9a7271067f3ed28eb63790d58a84fdd6
   k = cabfb61ad47b639814365bcbe2cc48a9ad4e3cfe61172aced7d539d47f459654
   U = k*B =
   023cd2988db2421dbfd5cefb8c2342ed2413160d4f6521d301e7b2995fe8551bd6
   V = k*H =
   025443fe6f00281ff3afa0ff93db2ce9cb20dfcafb7c17b78c9e912d26f4e22cf2

https://datatracker.ietf.org/doc/html/rfc6979#appendix-A.2.5
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   pi = 021d684d682e61dd76c794eef43988a2c61fbdb2af64fbb4f435cc2a842b0024
   c3b3056b7310e0130317274a58e57317c469b46fe5ab6a34463d7ecb2a7ae1d808381
   f53c0f6aaaebe62195cfd14526f03
   beta =
   143f36bf7175053315693cfcfdff5aebb13e5eb9c47f897f53f81561993cfcd2

   SK = x =
   c9afa9d845ba75166b5c215767b1d6934e50c3db36e89b127b8a622b120f6721
   PK =
   0360fed4ba255a9d31c961eb74c6356d68c049b8923b61fa6ce669622e60f29fb6
   alpha = 74657374 (ASCII "test")
   In SWU: t =
   e20da1d7386cb673deffec63d47ec65862dce55f113be168fa45cba2a6c1ddbc
   In SWU: w =
   0eed10be2937c902c9612d80b8ea5b0783f81c419faedd57efc84e6dfcfe2c72
   In SWU: e = 1
   H =
   020e6c14efc8bc7150a3467aafa78be9856a2c6e405bdcc50f767fe638569d0172
   k = eb2035e5d6993b96589937c36482c647dab2b420fd152ffe026437b0b6c22e26
   U = k*B =
   038bf7231765143e6de2cef1bbd79dd80729a320dbc040ecd8f3d937b756b68e56
   V = k*H =
   0365e6610ff260aef9721450e2353677470e179573937756a803df1df9680ca698
   pi = 0376b758f457d2cabdfaeb18700e46e64f073eb98c119dee4db6c5bb1eaf6778
   0654504c6e583fd6eb129195b1836f91a6dd16504f957c8dedb653806952e3b0217ef
   187b87b9dda851f0a515f4dcc09d1
   beta =
   6b5bb622a6bc1387a7dcc4f46cfdcc3bce67669b32f3bc39e047c3b6cd3e65d9

   This example secret key and message are taken from Appendix L.4.2 of
   [ANSI.X9-62-2005].

   SK = x =
   2ca1411a41b17b24cc8c3b089cfd033f1920202a6c0de8abb97df1498d50d2c8
   PK =
   03596375e6ce57e0f20294fc46bdfcfd19a39f8161b58695b3ec5b3d16427c274d
   alpha = 4578616d706c65206f66204543445341207769746820616e7369703235367
   23120616e64205348412d323536 (ASCII "Example of ECDSA with ansip256r1
   and SHA-256")
   In SWU: t =
   e93da6ba2bca714061dc94c8c513343ad11bfc9678339e4a8bd86a08232aa6d7
   In SWU: w =
   76f564cca31934c80dd2a285ba43543df63a078b132c8f34d2ab1b7089cb3401
   In SWU: e = -1
   H =
   02429690b91e1783cd0d7e393db07cc44b48c226cb837adb2282251cabf431a484
   k = 6181315ddb4f4d159ce8cbad48d5454625ccbf47c46c4cabd972be72b372a50b
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   U = k*B =
   02c6dac6f9a51b79b8bc928a67320f4d569090b8c6b86f011ddf898788559c134d
   V = k*H =
   033f8070c0a09ac089d1ceffc384d3f25bb0597f63161ca82431331278baf1568f
   pi = 035e844533a7c5109ab3dffd04f2ef0d38d679101124f15243199ce92f0f2947
   7ca8e8f01b40c77c61a169ad6db9d76fae7938e94a4338bca9c586c8e266ead7a6b24
   b769d3d34efc85f6cdb82d96bb717
   beta =
   be1dcb17e9815ac6acf819e7ad4b75e575eafad25915c2608959d780364fc912

A.3.  ECVRF-EDWARDS25519-SHA512-TAI

   These three example secret keys and messages are taken from
Section 7.1 of [RFC8032].

   SK = 9d61b19deffd5a60ba844af492ec2cc44449c5697b326919703bac031cae7f60
   PK = d75a980182b10ab7d54bfed3c964073a0ee172f3daa62325af021a68f707511a
   alpha = (the empty string)
   x = 307c83864f2833cb427a2ef1c00a013cfdff2768d980c0a3a520f006904de94f
   try_and_increment succeded on ctr = 0
   H = 5b2c80db3ce2d79cc85b1bfb269f02f915c5f0e222036dc82123f640205d0d24
   k = 647ac2b3ca3f6a77e4c4f4f79c6c4c8ce1f421a9baaa294b0adf0244915130f70
   67640acb6fd9e7e84f8bc30d4e03a95e410b82f96a5ada97080e0f187758d38
   U = k*B =
   a21c342b8704853ad10928e3db3e58ede289c798e3cdfd485fbbb8c1b620604f
   V = k*H =
   426fe41752f0b27439eb3d0c342cb645174a720cae2d4e9bb37de034eefe27ad
   pi = 9275df67a68c8745c0ff97b48201ee6db447f7c93b23ae24cdc2400f52fdb08a
   1a6ac7ec71bf9c9c76e96ee4675ebff60625af28718501047bfd87b810c2d2139b73c
   23bd69de66360953a642c2a330a
   beta = a64c292ec45f6b252828aff9a02a0fe88d2fcc7f5fc61bb328f03f4c6c0657
   a9d26efb23b87647ff54f71cd51a6fa4c4e31661d8f72b41ff00ac4d2eec2ea7b3

   SK = 4ccd089b28ff96da9db6c346ec114e0f5b8a319f35aba624da8cf6ed4fb8a6fb
   PK = 3d4017c3e843895a92b70aa74d1b7ebc9c982ccf2ec4968cc0cd55f12af4660c
   alpha = 72 (1 byte)
   x = 68bd9ed75882d52815a97585caf4790a7f6c6b3b7f821c5e259a24b02e502e51
   try_and_increment succeded on ctr = 4
   H = 08e18a34f3923db32e80834fb8ced4e878037cd0459c63ddd66e5004258cf76c
   k = 627237308294a8b344a09ad893997c630153ee514cd292eddd577a9068e2a6f24
   cbee0038beb0b1ee5df8be08215e9fc74608e6f9358b0e8d6383b1742a70628
   U = k*B =
   18b5e500cb34690ced061a0d6995e2722623c105221eb91b08d90bf0491cf979
   V = k*H =
   87e1f47346c86dbbd2c03eafc7271caa1f5307000a36d1f71e26400955f1f627
   pi = 84a63e74eca8fdd64e9972dcda1c6f33d03ce3cd4d333fd6cc789db12b5a7b9d
   03f1cb6b2bf7cd81a2a20bacf6e1c04e59f2fa16d9119c73a45a97194b504fb9a5c8c
   f37f6da85e03368d6882e511008

https://datatracker.ietf.org/doc/html/rfc8032#section-7.1
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   beta = cddaa399bb9c56d3be15792e43a6742fb72b1d248a7f24fd5cc585b232c26c
   934711393b4d97284b2bcca588775b72dc0b0f4b5a195bc41f8d2b80b6981c784e

   SK = c5aa8df43f9f837bedb7442f31dcb7b166d38535076f094b85ce3a2e0b4458f7
   PK = fc51cd8e6218a1a38da47ed00230f0580816ed13ba3303ac5deb911548908025
   alpha = af82 (2 bytes)
   x = 909a8b755ed902849023a55b15c23d11ba4d7f4ec5c2f51b1325a181991ea95c
   try_and_increment succeded on ctr = 0
   H = e4581824b70badf0e57af789dd8cf85513d4b9814566de0e3f738439becfba33
   k = a950f736af2e3ae2dbcb76795f9cbd57c671eee64ab17069f945509cd6c4a7485
   2fe1bbc331e1bd573038ec703ca28601d861ad1e9684ec89d57bc22986acb0e
   U = k*B =
   5114dc4e741b7c4a28844bc585350240a51348a05f337b5fd75046d2c2423f7a
   V = k*H =
   a6d5780c472dea1ace78795208aaa05473e501ed4f53da57e1fb13b7e80d7f59
   pi = aca8ade9b7f03e2b149637629f95654c94fc9053c225ec21e5838f193af2b727
   b84ad849b0039ad38b41513fe5a66cdd2367737a84b488d62486bd2fb110b4801a46b
   fca770af98e059158ac563b690f
   beta = d938b2012f2551b0e13a49568612effcbdca2aed5d1d3a13f47e180e012189
   16e049837bd246f66d5058e56d3413dbbbad964f5e9f160a81c9a1355dcd99b453

A.4.  ECVRF-EDWARDS25519-SHA512-Elligator2

   These three example secret keys and messages are taken from
Section 7.1 of [RFC8032].

   SK = 9d61b19deffd5a60ba844af492ec2cc44449c5697b326919703bac031cae7f60
   PK = d75a980182b10ab7d54bfed3c964073a0ee172f3daa62325af021a68f707511a
   alpha = (the empty string)
   x = 307c83864f2833cb427a2ef1c00a013cfdff2768d980c0a3a520f006904de94f
   In Elligator: r =
   9ddd071cd5837e591a3a40c57a46701bb7f49b1b53c670d490c2766a08fa6e3d
   In Elligator: w =
   c7b5d6239e52a473a2b57a92825e0e5de4656e349bb198de5afd6a76e5a07066
   In Elligator: e = -1
   H = 1c5672d919cc0a800970cd7e05cb36ed27ed354c33519948e5a9eaf89aee12b7
   k = 868b56b8b3faf5fc7e276ff0a65aaa896aa927294d768d0966277d94599b7afe4
   a6330770da5fdc2875121e0cbecbffbd4ea5e491eb35be53fa7511d9f5a61f2
   U = k*B =
   c4743a22340131a2323174bfc397a6585cbe0cc521bfad09f34b11dd4bcf5936
   V = k*H =
   e309cf5272f0af2f54d9dc4a6bad6998a9d097264e17ae6fce2b25dcbdd10e8b
   pi = b6b4699f87d56126c9117a7da55bd0085246f4c56dbc95d20172612e9d38e8d7
   ca65e573a126ed88d4e30a46f80a666854d675cf3ba81de0de043c3774f061560f55e
   dc256a787afe701677c0f602900
   beta = 5b49b554d05c0cd5a5325376b3387de59d924fd1e13ded44648ab33c21349a
   603f25b84ec5ed887995b33da5e3bfcb87cd2f64521c4c62cf825cffabbe5d31cc

https://datatracker.ietf.org/doc/html/rfc8032#section-7.1
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   SK = 4ccd089b28ff96da9db6c346ec114e0f5b8a319f35aba624da8cf6ed4fb8a6fb
   PK = 3d4017c3e843895a92b70aa74d1b7ebc9c982ccf2ec4968cc0cd55f12af4660c
   alpha = 72 (1 byte)
   x = 68bd9ed75882d52815a97585caf4790a7f6c6b3b7f821c5e259a24b02e502e51
   In Elligator: r =
   92181bd612695e464049590eb1f9746750d6057441789c9759af8308ac77fd4a
   In Elligator: w =
   7ff6d8b773bfbae57b2ab9d49f9d3cb7d9af40a03d3ed3c6beaaf2d486b1fe6e
   In Elligator: e = 1
   H = 86725262c971bf064168bca2a87f593d425a49835bd52beb9f52ea59352d80fa
   k = fd919e9d43c61203c4cd948cdaea0ad4488060db105d25b8fb4a5da2bd40e4b83
   30ca44a0538cc275ac7d568686660ccfd6323c805b917e91e28a4ab352b9575
   U = k*B =
   04b1ba4d8129f0d4cec522b0fd0dff84283401df791dcc9b93a219c51cf27324
   V = k*H =
   ca8a97ce1947d2a0aaa280f03153388fa7aa754eedfca2b4a7ad405707599ba5
   pi = ae5b66bdf04b4c010bfe32b2fc126ead2107b697634f6f7337b9bff8785ee111
   200095ece87dde4dbe87343f6df3b107d91798c8a7eb1245d3bb9c5aafb093358c13e
   6ae1111a55717e895fd15f99f07
   beta = 94f4487e1b2fec954309ef1289ecb2e15043a2461ecc7b2ae7d4470607ef82
   eb1cfa97d84991fe4a7bfdfd715606bc27e2967a6c557cfb5875879b671740b7d8

   SK = c5aa8df43f9f837bedb7442f31dcb7b166d38535076f094b85ce3a2e0b4458f7
   PK = fc51cd8e6218a1a38da47ed00230f0580816ed13ba3303ac5deb911548908025
   alpha = af82 (2 bytes)
   x = 909a8b755ed902849023a55b15c23d11ba4d7f4ec5c2f51b1325a181991ea95c
   In Elligator: r =
   dcd7cda88d6798599e07216de5a48a27dcd1cde197ab39ccaf6a906ae6b25c7f
   In Elligator: w =
   2ceaa2c2ff3028c34f9fbe076ff99520b925f18d652285b4daad5ccc467e523b
   In Elligator: e = -1
   H = 9d8663faeb6ab14a239bfc652648b34f783c2e99f758c0e1b6f4f863f9419b56
   k = 8f675784cdc984effc459e1054f8d386050ec400dc09d08d2372c6fe0850eaaa5
   0defd02d965b79930dcbca5ba9222a3d99510411894e63f66bbd5d13d25db4b
   U = k*B =
   d6f8a95a4ce86812e3e50febd9d48196b3bc5d1d9fa7b6dfa33072641b45d029
   V = k*H =
   f77cd4ce0b49b386e80c3ce404185f93bb07463600dc14c31b0a09beaff4d592
   pi = dfa2cba34b611cc8c833a6ea83b8eb1bb5e2ef2dd1b0c481bc42ff36ae7847f6
   ab52b976cfd5def172fa412defde270c8b8bdfbaae1c7ece17d9833b1bcf31064fff7
   8ef493f820055b561ece45e1009
   beta = 2031837f582cd17a9af9e0c7ef5a6540e3453ed894b62c293686ca3c1e319d
   de9d0aa489a4b59a9594fc2328bc3deff3c8a0929a369a72b1180a596e016b5ded
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