
CFRG S. Goldberg
Internet-Draft Boston University
Intended status: Standards Track L. Reyzin
Expires: November 18, 2021 Boston University and Algorand
 D. Papadopoulos
 Hong Kong University of Science and Technology
 J. Vcelak
 NS1
 May 17, 2021

Verifiable Random Functions (VRFs)
draft-irtf-cfrg-vrf-09

Abstract

 A Verifiable Random Function (VRF) is the public-key version of a
 keyed cryptographic hash. Only the holder of the private key can
 compute the hash, but anyone with public key can verify the
 correctness of the hash. VRFs are useful for preventing enumeration
 of hash-based data structures. This document specifies several VRF
 constructions that are secure in the cryptographic random oracle
 model. One VRF uses RSA and the other VRF uses Elliptic Curves (EC).

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 18, 2021.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents

Goldberg, et al. Expires November 18, 2021 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78

Internet-Draft VRF May 2021

 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Rationale . 3
1.2. Requirements . 3
1.3. Terminology . 3

2. VRF Algorithms . 4
3. VRF Security Properties 5
3.1. Full Uniqueness or Trusted Uniqueness 5

 3.2. Full Collison Resistance or Trusted Collision Resistance 5
3.3. Full Pseudorandomness or Selective Pseudorandomness . . . 5
3.4. A random-oracle-like unpredictability property 6

4. RSA Full Domain Hash VRF (RSA-FDH-VRF) 7
4.1. RSA-FDH-VRF Proving 8
4.2. RSA-FDH-VRF Proof to Hash 9
4.3. RSA-FDH-VRF Verifying 9

5. Elliptic Curve VRF (ECVRF) 10
5.1. ECVRF Proving . 12
5.2. ECVRF Proof to Hash 13
5.3. ECVRF Verifying . 14
5.4. ECVRF Auxiliary Functions 14
5.4.1. ECVRF Hash to Curve 14
5.4.2. ECVRF Nonce Generation 17
5.4.3. ECVRF Hash Points 18
5.4.4. ECVRF Decode Proof 19

5.5. ECVRF Ciphersuites 20
5.6. When the ECVRF Keys are Untrusted 22
5.6.1. ECVRF Validate Key 23

6. Implementation Status . 24
7. Security Considerations 26
7.1. Key Generation . 26

 7.1.1. Uniqueness and collision resistance with untrusted
 keys . 26

7.1.2. Pseudorandomness with untrusted keys 26
7.2. Selective vs Full Pseudorandomness 27
7.3. Proper pseudorandom nonce for ECVRF 27
7.4. Side-channel attacks 27
7.5. Proofs provide no secrecy for the VRF input 28
7.6. Prehashing . 28
7.7. Hash function domain separation and futureproofing . . . 28

https://trustee.ietf.org/license-info

Goldberg, et al. Expires November 18, 2021 [Page 2]

Internet-Draft VRF May 2021

8. Change Log . 30
9. Contributors . 31
10. References . 31
10.1. Normative References 31
10.2. Informative References 32

Appendix A. Test Vectors for the ECVRFs 34
A.1. ECVRF-P256-SHA256-TAI 34
A.2. ECVRF-P256-SHA256-SSWU 35
A.3. ECVRF-EDWARDS25519-SHA512-TAI 37
A.4. ECVRF-EDWARDS25519-SHA512-ELL2 38

 Authors' Addresses . 40

1. Introduction

1.1. Rationale

 A Verifiable Random Function (VRF) [MRV99] is the public-key version
 of a keyed cryptographic hash. Only the holder of the private VRF
 key can compute the hash, but anyone with corresponding public key
 can verify the correctness of the hash.

 A key application of the VRF is to provide privacy against offline
 enumeration (e.g. dictionary attacks) on data stored in a hash-based
 data structure. In this application, a Prover holds the VRF private
 key and uses the VRF hashing to construct a hash-based data structure
 on the input data. Due to the nature of the VRF, only the Prover can
 answer queries about whether or not some data is stored in the data
 structure. Anyone who knows the public VRF key can verify that the
 Prover has answered the queries correctly. However, no offline
 inferences (i.e. inferences without querying the Prover) can be made
 about the data stored in the data structure.

1.2. Requirements

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

1.3. Terminology

 The following terminology is used through this document:

 SK: The private key for the VRF.

 PK: The public key for the VRF.

 alpha or alpha_string: The input to be hashed by the VRF.

https://datatracker.ietf.org/doc/html/rfc2119

Goldberg, et al. Expires November 18, 2021 [Page 3]

Internet-Draft VRF May 2021

 beta or beta_string: The VRF hash output.

 pi or pi_string: The VRF proof.

 Prover: The Prover holds the private VRF key SK and public VRF key
 PK.

 Verifier: The Verifier holds the public VRF key PK.

2. VRF Algorithms

 A VRF comes with a key generation algorithm that generates a public
 VRF key PK and private VRF key SK.

 The prover hashes an input alpha using the private VRF key SK to
 obtain a VRF hash output beta

 beta = VRF_hash(SK, alpha)

 The VRF_hash algorithm is deterministic, in the sense that it always
 produces the same output beta given the same pair of inputs (SK,
 alpha). The prover also uses the private key SK to construct a proof
 pi that beta is the correct hash output

 pi = VRF_prove(SK, alpha)

 The VRFs defined in this document allow anyone to deterministically
 obtain the VRF hash output beta directly from the proof value pi by
 using the function VRF_proof_to_hash:

 beta = VRF_proof_to_hash(pi)

 Thus, for VRFs defined in this document, VRF_hash is defined as

 VRF_hash(SK, alpha) = VRF_proof_to_hash(VRF_prove(SK, alpha)),

 and therefore this document will specify VRF_prove and
 VRF_proof_to_hash rather than VRF_hash.

 The proof pi allows a Verifier holding the public key PK to verify
 that beta is the correct VRF hash of input alpha under key PK. Thus,
 the VRF also comes with an algorithm

 VRF_verify(PK, alpha, pi)

 that outputs (VALID, beta = VRF_proof_to_hash(pi)) if pi is valid,
 and INVALID otherwise.

Goldberg, et al. Expires November 18, 2021 [Page 4]

Internet-Draft VRF May 2021

3. VRF Security Properties

 VRFs are designed to ensure the following security properties.

3.1. Full Uniqueness or Trusted Uniqueness

 Uniqueness means that, for any fixed public VRF key and for any input
 alpha, there is a unique VRF output beta that can be proved to be
 valid. Uniqueness must hold even for an adversarial Prover that
 knows the VRF private key SK.

 More precisely, "full uniqueness" states that a computationally-
 bounded adversary cannot choose a VRF public key PK, a VRF input
 alpha, and two proofs pi1 and pi2 such that VRF_verify(PK, alpha,
 pi1) outputs (VALID, beta1), VRF_verify(PK, alpha, pi2) outputs
 (VALID, beta2), and beta1 is not equal to beta2.

 A slightly weaker security property called "trusted uniqueness"
 suffices for many applications. Trusted uniqueness is the same as
 full uniqueness, but it must hold only if the VRF keys PK and SK were
 generated in a trustworthy manner. In other words, uniqueness might
 not hold if keys were generated in an invalid manner or with bad
 randomness.

3.2. Full Collison Resistance or Trusted Collision Resistance

 Like any cryptographic hash function, VRFs need to be collision
 resistant. Collison resistance must hold even for an adversarial
 Prover that knows the VRF private key SK.

 More precisely, "full collision resistance" states that it should be
 computationally infeasible for an adversary to find two distinct VRF
 inputs alpha1 and alpha2 that have the same VRF hash beta, even if
 that adversary knows the private VRF key SK.

 For most applications, a slightly weaker security property called
 "trusted collision resistance" suffices. Trusted collision
 resistance is the same as collision resistance, but it holds only if
 PK and SK were generated in a trustworthy manner.

3.3. Full Pseudorandomness or Selective Pseudorandomness

 Pseudorandomness ensures that when an adversarial Verifier sees a VRF
 hash output beta without its corresponding VRF proof pi, then beta is
 indistinguishable from a random value.

 More precisely, suppose the public and private VRF keys (PK, SK) were
 generated in a trustworthy manner. Pseudorandomness ensures that the

Goldberg, et al. Expires November 18, 2021 [Page 5]

Internet-Draft VRF May 2021

 VRF hash output beta (without its corresponding VRF proof pi) on any
 adversarially-chosen "target" VRF input alpha looks indistinguishable
 from random for any computationally bounded adversary who does not
 know the private VRF key SK. This holds even if the adversary also
 gets to choose other VRF inputs alpha' and observe their
 corresponding VRF hash outputs beta' and proofs pi'.

 With "full pseudorandomness", the adversary is allowed to choose the
 "target" VRF input alpha at any time, even after it observes VRF
 outputs beta' and proofs pi' on a variety of chosen inputs alpha'.

 "Selective pseudorandomness" is a weaker security property which
 suffices in many applications. Here, the adversary must choose the
 target VRF input alpha independently of the public VRF key PK, and
 before it observes VRF outputs beta' and proofs pi' on inputs alpha'
 of its choice.

 It is important to remember that the VRF output beta does not look
 random to the Prover, or to any other party that knows the private
 VRF key SK! Such a party can easily distinguish beta from a random
 value by comparing beta to the result of VRF_hash(SK, alpha).

 Also, the VRF output beta does not look random to any party that
 knows the valid VRF proof pi corresponding to the VRF input alpha,
 even if this party does not know the private VRF key SK. Such a
 party can easily distinguish beta from a random value by checking
 whether VRF_verify(PK, alpha, pi) returns (VALID, beta).

 Also, the VRF output beta may not look random if VRF key generation
 was not done in a trustworthy fashion. (For example, if VRF keys
 were generated with bad randomness.)

3.4. A random-oracle-like unpredictability property

 As explained in Section 3.3, pseudorandomness is guaranteed only if
 the VRF keys were generated in a trustworthy fashion. For instance,
 if an adversary outputs VRF keys that are deterministically generated
 (or hard-coded and publicly known), then the outputs are easily
 derived by anyone and are therefore not pseudorandom.

 There is, however, a different type of unpredictability that is
 desirable in certain VRF applications (such as [GHMVZ17] and
 [DGKR18]). This property is similar to the unpredictability achieved
 by an (ordinary, unkeyed) cryptographic hash function: if the input
 has enough entropy (i.e., cannot be predicted), then the correct
 output is indistinguishable from uniform.

Goldberg, et al. Expires November 18, 2021 [Page 6]

Internet-Draft VRF May 2021

 A formal definition of this property appears in Section 3.2 of
 [DGKR18]. The VRF schemes presented in this specification are
 believed to satisfy this property if the public key was generated in
 a trustworthy manner. Additionally, the ECVRF is believed to also
 satisfy this property even if the public key was not generated in a
 trustworthy manner, as long as the public key satisfies the key
 validation procedure in Section 5.6.

4. RSA Full Domain Hash VRF (RSA-FDH-VRF)

 The RSA Full Domain Hash VRF (RSA-FDH-VRF) is a VRF that satisfies
 the "trusted uniqueness", "trusted collision resistance", and "full
 pseudorandomness" properties defined in Section 3. Its security
 follows from the standard RSA assumption in the random oracle model.
 Formal security proofs are in [PWHVNRG17].

 The VRF computes the proof pi as a deterministic RSA signature on
 input alpha using the RSA Full Domain Hash Algorithm [RFC8017]
 parametrized with the selected hash algorithm. RSA signature
 verification is used to verify the correctness of the proof. The VRF
 hash output beta is simply obtained by hashing the proof pi with the
 selected hash algorithm.

 The key pair for RSA-FDH-VRF MUST be generated in a way that it
 satisfies the conditions specified in Section 3 of [RFC8017].

 In this document, the notation from [RFC8017] is used.

 Parameters used:

 (n, e) - RSA public key

 K - RSA private key

 k - length in octets of the RSA modulus n (k must be less than
 2^32)

 Fixed options:

 Hash - cryptographic hash function

 hLen - output length in octets of hash function Hash

 Primitives used:

 I2OSP - Conversion of a nonnegative integer to an octet string as
 defined in Section 4.1 of [RFC8017] (given an integer and a length

https://datatracker.ietf.org/doc/html/rfc8017
https://datatracker.ietf.org/doc/html/rfc8017#section-3
https://datatracker.ietf.org/doc/html/rfc8017
https://datatracker.ietf.org/doc/html/rfc8017#section-4.1

Goldberg, et al. Expires November 18, 2021 [Page 7]

Internet-Draft VRF May 2021

 in octets, produces a big-endian representation of the integer,
 zero-padded to the desired length)

 OS2IP - Conversion of an octet string to a nonnegative integer as
 defined in Section 4.2 of [RFC8017] (given a big-endian encoding
 of an integer, produces the integer)

 RSASP1 - RSA signature primitive as defined in Section 5.2.1 of
 [RFC8017] (given a secret key and an input, raises the input to
 the secret RSA exponent modulo n)

 RSAVP1 - RSA verification primitive as defined in Section 5.2.2 of
 [RFC8017] (given a public key and an input, raises the input to
 the public RSA exponent modulo n)

 MGF1 - Mask Generation Function based on the hash function Hash as
 defined in Section B.2.1 of [RFC8017]

 || - octet string concatenation

4.1. RSA-FDH-VRF Proving

 RSAFDHVRF_prove(K, alpha_string)

 Input:

 K - RSA private key

 alpha_string - VRF hash input, an octet string

 Output:

 pi_string - proof, an octet string of length k

 Steps:

 1. one_string = 0x01 = I2OSP(1, 1), a single octet with value 1

 2. EM = MGF1(one_string || I2OSP(k, 4) || I2OSP(n, k) ||
 alpha_string, k - 1)

 3. m = OS2IP(EM)

 4. s = RSASP1(K, m)

 5. pi_string = I2OSP(s, k)

 6. Output pi_string

https://datatracker.ietf.org/doc/html/rfc8017#section-4.2
https://datatracker.ietf.org/doc/html/rfc8017#section-5.2.1
https://datatracker.ietf.org/doc/html/rfc8017#section-5.2.1
https://datatracker.ietf.org/doc/html/rfc8017#section-5.2.2
https://datatracker.ietf.org/doc/html/rfc8017#section-5.2.2
https://datatracker.ietf.org/doc/html/rfc8017

Goldberg, et al. Expires November 18, 2021 [Page 8]

Internet-Draft VRF May 2021

4.2. RSA-FDH-VRF Proof to Hash

 RSAFDHVRF_proof_to_hash(pi_string)

 Input:

 pi_string - proof, an octet string of length k

 Output:

 beta_string - VRF hash output, an octet string of length hLen

 Important note:

 RSAFDHVRF_proof_to_hash should be run only on pi_string that is
 known to have been produced by RSAFDHVRF_prove, or from within
 RSAFDHVRF_verify as specified in Section 4.3.

 Steps:

 1. two_string = 0x02 = I2OSP(2, 1), a single octet with value 2

 2. beta_string = Hash(two_string || pi_string)

 3. Output beta_string

4.3. RSA-FDH-VRF Verifying

 RSAFDHVRF_verify((n, e), alpha_string, pi_string)

 Input:

 (n, e) - RSA public key

 alpha_string - VRF hash input, an octet string

 pi_string - proof to be verified, an octet string of length n

 Output:

 ("VALID", beta_string), where beta_string is the VRF hash output,
 an octet string of length hLen; or
 "INVALID"

 Steps:

 1. s = OS2IP(pi_string)

Goldberg, et al. Expires November 18, 2021 [Page 9]

Internet-Draft VRF May 2021

 2. m = RSAVP1((n, e), s)

 3. EM = I2OSP(m, k - 1)

 4. one_string = 0x01 = I2OSP(1, 1), a single octet with value 1

 5. EM' = MGF1(one_string || I2OSP(k, 4) || I2OSP(n, k) ||
 alpha_string, k - 1)

 6. If EM and EM' are equal, output ("VALID",
 RSAFDHVRF_proof_to_hash(pi_string)); else output "INVALID".

5. Elliptic Curve VRF (ECVRF)

 The Elliptic Curve Verifiable Random Function (ECVRF) is a VRF that
 satisfies the trusted uniqueness, trusted collision resistance, and
 full pseudorandomness properties defined in Section 3. The security
 of this VRF follows from the decisional Diffie-Hellman (DDH)
 assumption in the random oracle model. Formal security proofs are in
 [PWHVNRG17].

 To additionally satisfy "full uniqueness" and "full collision
 resistance", the Verifier MUST additionally perform the validation
 procedure specified in Section 5.6 upon receipt of the public VRF
 key.

 Notation used:

 Elliptic curve operations are written in additive notation, with
 P+Q denoting point addition and x*P denoting scalar multiplication
 of a point P by a scalar x

 x^y - x raised to the power y

 x*y - x multiplied by y

 s || t - concatenation of octet strings s and t

 Fixed options (specified in Section 5.5):

 F - finite field

 2n - length, in octets, of a field element in F, rounded up to the
 nearest even integer

 E - elliptic curve (EC) defined over F

Goldberg, et al. Expires November 18, 2021 [Page 10]

Internet-Draft VRF May 2021

 ptLen - length, in octets, of an EC point encoded as an octet
 string

 G - subgroup of E of large prime order

 q - prime order of group G

 qLen - length of q in octets, i.e., smallest integer such that
 2^(8qLen)>q (note that in the typical case, qLen equals 2n or is
 close to 2n)

 cofactor - number of points on E divided by q

 B - generator of group G

 Hash - cryptographic hash function

 hLen - output length in octets of Hash; must be at least 2n

 ECVRF_hash_to_curve - a function that hashes strings to an EC
 point.

 ECVRF_nonce_generation - a function that derives a pseudorandom
 nonce from SK and the input as part of ECVRF proving.

 suite_string - a single nonzero octet specifying the ECVRF
 ciphersuite, which determines the above options as well as type
 conversions and parameter generation

 Type conversions (specified in Section 5.5):

 int_to_string(a, len) - conversion of nonnegative integer a to
 octet string of length len

 string_to_int(a_string) - conversion of an octet string a_string
 to a nonnegative integer

 point_to_string - conversion of EC point to an ptLen-octet string

 string_to_point - conversion of an ptLen-octet string to EC point.
 string_to_point returns INVALID if the octet string does not
 convert to a valid EC point.

 Note that with certain software libraries (for big integer and
 elliptic curve arithmetic), the int_to_string and point_to_string
 conversions are not needed. For example, in some implementations,
 EC point operations will take octet strings as inputs and produce

Goldberg, et al. Expires November 18, 2021 [Page 11]

Internet-Draft VRF May 2021

 octet strings as outputs, without introducing a separate elliptic
 curve point type.

 Parameters used (the generation of these parameters is specified in
Section 5.5):

 SK - VRF private key

 x - VRF secret scalar, an integer

 Note: depending on the ciphersuite used, the VRF secret scalar
 may be equal to SK; else, it is derived from SK

 Y = x*B - VRF public key, an EC point

5.1. ECVRF Proving

 ECVRF_prove(SK, alpha_string)

 Input:

 SK - VRF private key

 alpha_string = input alpha, an octet string

 Output:

 pi_string - VRF proof, octet string of length ptLen+n+qLen

 Steps:

 1. Use SK to derive the VRF secret scalar x and the VRF public key Y
 = x*B
 (this derivation depends on the ciphersuite, as per Section 5.5;
 these values can be cached, for example, after key generation,
 and need not be rederived each time)

 2. H = ECVRF_hash_to_curve(Y, alpha_string)

 3. h_string = point_to_string(H)

 4. Gamma = x*H

 5. k = ECVRF_nonce_generation(SK, h_string)

 6. c = ECVRF_hash_points(H, Gamma, k*B, k*H) (see Section 5.4.3)

 7. s = (k + c*x) mod q

Goldberg, et al. Expires November 18, 2021 [Page 12]

Internet-Draft VRF May 2021

 8. pi_string = point_to_string(Gamma) || int_to_string(c, n) ||
 int_to_string(s, qLen)

 9. Output pi_string

5.2. ECVRF Proof to Hash

 ECVRF_proof_to_hash(pi_string)

 Input:

 pi_string - VRF proof, octet string of length ptLen+n+qLen

 Output:

 "INVALID", or

 beta_string - VRF hash output, octet string of length hLen

 Important note:

 ECVRF_proof_to_hash should be run only on pi_string that is known
 to have been produced by ECVRF_prove, or from within ECVRF_verify
 as specified in Section 5.3.

 Steps:

 1. D = ECVRF_decode_proof(pi_string) (see Section 5.4.4)

 2. If D is "INVALID", output "INVALID" and stop

 3. (Gamma, c, s) = D

 4. three_string = 0x03 = int_to_string(3, 1), a single octet with
 value 3

 5. zero_string = 0x00 = int_to_string(0, 1), a single octet with
 value 0

 6. beta_string = Hash(suite_string || three_string ||
 point_to_string(cofactor * Gamma) || zero_string)

 7. Output beta_string

Goldberg, et al. Expires November 18, 2021 [Page 13]

Internet-Draft VRF May 2021

5.3. ECVRF Verifying

 ECVRF_verify(Y, pi_string, alpha_string)

 Input:

 Y - public key, an EC point

 pi_string - VRF proof, octet string of length ptLen+n+qLen

 alpha_string - VRF input, octet string

 Output:

 ("VALID", beta_string), where beta_string is the VRF hash output,
 octet string of length hLen; or
 "INVALID"

 Steps:

 1. D = ECVRF_decode_proof(pi_string) (see Section 5.4.4)

 2. If D is "INVALID", output "INVALID" and stop

 3. (Gamma, c, s) = D

 4. H = ECVRF_hash_to_curve(Y, alpha_string)

 5. U = s*B - c*Y

 6. V = s*H - c*Gamma

 7. c' = ECVRF_hash_points(H, Gamma, U, V) (see Section 5.4.3)

 8. If c and c' are equal, output ("VALID",
 ECVRF_proof_to_hash(pi_string)); else output "INVALID"

5.4. ECVRF Auxiliary Functions

5.4.1. ECVRF Hash to Curve

 The ECVRF_hash_to_curve algorithm takes in the VRF input alpha and
 converts it to H, an EC point in G. This algorithm is the only place
 the VRF input alpha is used for proving and verifying. See

Section 7.6 for further discussion.

Goldberg, et al. Expires November 18, 2021 [Page 14]

Internet-Draft VRF May 2021

 This section specifies a number of such algorithms, which are not
 compatible with each other. The choice of a particular algorithm
 from the options specified in this section is made in Section 5.5.

5.4.1.1. ECVRF_hash_to_curve_try_and_increment

 The following ECVRF_hash_to_curve_try_and_increment(Y, alpha_string)
 algorithm implements ECVRF_hash_to_curve in a simple and generic way
 that works for any elliptic curve.

 The running time of this algorithm depends on alpha_string. For the
 ciphersuites specified in Section 5.5, this algorithm is expected to
 find a valid curve point after approximately two attempts (i.e., when
 ctr=1) on average.

 However, because the running time of algorithm depends on
 alpha_string, this algorithm SHOULD be avoided in applications where
 it is important that the VRF input alpha remain secret.

 ECVRF_hash_to_try_and_increment(Y, alpha_string)

 Input:

 Y - public key, an EC point

 alpha_string - value to be hashed, an octet string

 Output:

 H - hashed value, a finite EC point in G

 Fixed option (specified in Section 5.5):

 arbitrary_string_to_point - conversion of an arbitrary octet
 string to an EC point.

 Steps:

 1. ctr = 0

 2. PK_string = point_to_string(Y)

 3. one_string = 0x01 = int_to_string(1, 1), a single octet with
 value 1

 4. zero_string = 0x00 = int_to_string(0, 1), a single octet with
 value 0

Goldberg, et al. Expires November 18, 2021 [Page 15]

Internet-Draft VRF May 2021

 5. H = "INVALID"

 6. While H is "INVALID" or H is the identity element of the elliptic
 curve group:

 A. ctr_string = int_to_string(ctr, 1)

 B. hash_string = Hash(suite_string || one_string || PK_string ||
 alpha_string || ctr_string || zero_string)

 C. H = arbitrary_string_to_point(hash_string)

 D. If H is not "INVALID" and cofactor > 1, set H = cofactor * H

 E. ctr = ctr + 1

 7. Output H

5.4.1.2. ECVRF_hash_to_curve_h2c_suite

 The ECVRF_hash_to_curve_h2c_suite(Y, alpha_string) algorithm
 implements ECVRF_hash_to_curve using one of the several hash-to-curve
 options defined in [I-D.irtf-cfrg-hash-to-curve]. The specific
 choice of the hash-to-curve option (called Suite ID in
 [I-D.irtf-cfrg-hash-to-curve]) is given by the h2c_suite_ID_string
 parameter.

 ECVRF_hash_to_curve_h2c_suite(Y, alpha_string)

 Input:

 alpha_string - value to be hashed, an octet string

 Y - public key, an EC point

 Output:

 H - hashed value, a finite EC point in G

 Fixed option (specified in Section 5.5):

 h2c_suite_ID_string - a hash-to-curve suite ID, encoded in ASCII
 (see discussion below)

 Steps

 1. PK_string = point_to_string(Y)

Goldberg, et al. Expires November 18, 2021 [Page 16]

Internet-Draft VRF May 2021

 2. string_to_hash = PK_string || alpha_string

 3. H = encode(string_to_hash)
 (the encode function is discussed below)

 4. Output H

 The encode function is provided by the hash-to-curve suite whose ID
 is h2c_suite_ID_string, as specified in
 [I-D.irtf-cfrg-hash-to-curve], Section 8. The domain separation tag
 DST, a parameter to the hash-to-curve suite, SHALL be set to

 "ECVRF_" || h2c_suite_ID_string || suite_string

 where "ECVRF_" is represented as a 6-byte ASCII encoding (in
 hexadecimal, octets 45 43 56 52 46 5F).

5.4.2. ECVRF Nonce Generation

 The following algorithms generate the nonce value k in a
 deterministic pseudorandom fashion. This section specifies a number
 of such algorithms, which are not compatible with each other. The
 choice of a particular algorithm from the options specified in this
 section is made in Section 5.5.

5.4.2.1. ECVRF Nonce Generation from RFC 6979

 ECVRF_nonce_generation_RFC6979(SK, h_string)

 Input:

 SK - an ECVRF secret key

 h_string - an octet string

 Output:

 k - an integer between 1 and q-1

 The ECVRF_nonce_generation function is as specified in [RFC6979]
 Section 3.2 where

 Input m is set equal to h_string

 The "suitable for DSA or ECDSA" check in step h.3 is omitted

 The hash function H is Hash and its output length hlen is set as
 hLen*8

https://datatracker.ietf.org/doc/html/rfc6979
https://datatracker.ietf.org/doc/html/rfc6979#section-3.2
https://datatracker.ietf.org/doc/html/rfc6979#section-3.2

Goldberg, et al. Expires November 18, 2021 [Page 17]

Internet-Draft VRF May 2021

 The secret key x is set equal to the VRF secret scalar x

 The prime q is the same as in this specification

 qlen is the binary length of q, i.e., the smallest integer such
 that 2^qlen > q

 All the other values and primitives as defined in [RFC6979]

5.4.2.2. ECVRF Nonce Generation from RFC 8032

 The following is from Steps 2-3 of Section 5.1.6 in [RFC8032].

 ECVRF_nonce_generation_RFC8032(SK, h_string)

 Input:

 SK - an ECVRF secret key

 h_string - an octet string

 Output:

 k - an integer between 0 and q-1

 Steps:

 1. hashed_sk_string = Hash(SK)

 2. truncated_hashed_sk_string =
 hashed_sk_string[32]...hashed_sk_string[63]

 3. k_string = Hash(truncated_hashed_sk_string || h_string)

 4. k = string_to_int(k_string) mod q

5.4.3. ECVRF Hash Points

 ECVRF_hash_points(P1, P2, ..., PM)

 Input:

 P1...PM - EC points in G

 Output:

 c - hash value, integer between 0 and 2^(8n)-1

https://datatracker.ietf.org/doc/html/rfc6979
https://datatracker.ietf.org/doc/html/rfc8032
https://datatracker.ietf.org/doc/html/rfc8032#section-5.1.6

Goldberg, et al. Expires November 18, 2021 [Page 18]

Internet-Draft VRF May 2021

 Steps:

 1. two_string = 0x02 = int_to_string(2, 1), a single octet with
 value 2

 2. Initialize str = suite_string || two_string

 3. for PJ in [P1, P2, ... PM]:
 str = str || point_to_string(PJ)

 4. zero_string = 0x00 = int_to_string(0, 1), a single octet with
 value 0

 5. str = str || zero_string

 6. c_string = Hash(str)

 7. truncated_c_string = c_string[0]...c_string[n-1]

 8. c = string_to_int(truncated_c_string)

 9. Output c

5.4.4. ECVRF Decode Proof

 ECVRF_decode_proof(pi_string)

 Input:

 pi_string - VRF proof, octet string (ptLen+n+qLen octets)

 Output:

 "INVALID", or

 Gamma - EC point

 c - integer between 0 and 2^(8n)-1

 s - integer between 0 and 2^(8qLen)-1

 Steps:

 1. let gamma_string = pi_string[0]...pi_string[ptLen-1]

 2. let c_string = pi_string[ptLen]...pi_string[ptLen+n-1]

 3. let s_string =pi_string[ptLen+n]...pi_string[ptLen+n+qLen-1]

Goldberg, et al. Expires November 18, 2021 [Page 19]

Internet-Draft VRF May 2021

 4. Gamma = string_to_point(gamma_string)

 5. if Gamma = "INVALID" output "INVALID" and stop.

 6. c = string_to_int(c_string)

 7. s = string_to_int(s_string)

 8. Output Gamma, c, and s

5.5. ECVRF Ciphersuites

 This document defines ECVRF-P256-SHA256-TAI as follows:

 o suite_string = 0x01 = int_to_string(1, 1), a single octet with
 value 1.

 o The EC group G is the NIST P-256 elliptic curve, with curve
 parameters as specified in [FIPS-186-4] (Section D.1.2.3) and
 [RFC5114] (Section 2.6). For this group, 2n = qLen = 32 and
 cofactor = 1.

 o The key pair generation primitive is specified in Section 3.2.1 of
 [SECG1] (q, B, SK, and PK in this document correspond to n, G, d,
 and Q in Section 3.2.1 of [SECG1]). In this ciphersuite, the
 secret scalar x is equal to the private key SK.

 o The ECVRF_nonce_generation function is as specified in
Section 5.4.2.1.

 o The int_to_string function is the I2OSP function specified in
Section 4.1 of [RFC8017]. (This is big-endian representation.)

 o The string_to_int function is the OS2IP function specified in
Section 4.2 of [RFC8017]. (This is big-endian representation.)

 o The point_to_string function converts an EC point to an octet
 string according to the encoding specified in Section 2.3.3 of
 [SECG1] with point compression on. This implies ptLen = 2n + 1 =
 33. (Note that certain software implementations do not introduce
 a separate elliptic curve point type and instead directly treat
 the EC point as an octet string per above encoding. When using
 such an implementation, the point_to_string function can be
 treated as the identity function.)

 o The string_to_point function converts an octet string to an EC
 point according to the encoding specified in Section 2.3.4 of

https://datatracker.ietf.org/doc/html/rfc5114
https://datatracker.ietf.org/doc/html/rfc8017#section-4.1
https://datatracker.ietf.org/doc/html/rfc8017#section-4.2

Goldberg, et al. Expires November 18, 2021 [Page 20]

Internet-Draft VRF May 2021

 [SECG1]. This function MUST output INVALID if the octet string
 does not decode to an EC point.

 o The hash function Hash is SHA-256 as specified in [RFC6234], with
 hLen = 32.

 o The ECVRF_hash_to_curve function is as specified in
Section 5.4.1.1, with arbitrary_string_to_point(s) =

 string_to_point(0x02 || s) (where 0x02 is a single octet with
 value 2, 0x02=int_to_string(2, 1)). The input s to
 arbitrary_string_to_point is a 32-octet string and the output is
 either an EC point or "INVALID".

 This document defines ECVRF-P256-SHA256-SSWU as identical to ECVRF-
 P256-SHA256-TAI, except that:

 o suite_string = 0x02 = int_to_string(2, 1), a single octet with
 value 2.

 o the ECVRF_hash_to_curve function is as specified in
Section 5.4.1.2 with h2c_suite_ID_string = P256_XMD:SHA-

 256_SSWU_NU_ (the suite is defined in
 [I-D.irtf-cfrg-hash-to-curve] Section 8.2)

 This document defines ECVRF-EDWARDS25519-SHA512-TAI as follows:

 o suite_string = 0x03 = int_to_string(3, 1), a single octet with
 value 3.

 o The EC group G is the edwards25519 elliptic curve with parameters
 defined in Table 1 of [RFC8032]. For this group, 2n = qLen = 32
 and cofactor = 8.

 o The private key and generation of the secret scalar and the public
 key are specified in Section 5.1.5 of [RFC8032]

 o The ECVRF_nonce_generation function is as specified in
Section 5.4.2.2.

 o The int_to_string function as specified in the first paragraph of
Section 5.1.2 of [RFC8032]. (This is little-endian

 representation.)

 o The string_to_int function interprets the string as an integer in
 little-endian representation.

 o The point_to_string function converts an EC point to an octet
 string according to the encoding specified in Section 5.1.2 of

https://datatracker.ietf.org/doc/html/rfc6234
https://datatracker.ietf.org/doc/html/rfc8032
https://datatracker.ietf.org/doc/html/rfc8032#section-5.1.5
https://datatracker.ietf.org/doc/html/rfc8032#section-5.1.2

Goldberg, et al. Expires November 18, 2021 [Page 21]

Internet-Draft VRF May 2021

 [RFC8032]. This implies ptLen = 2n = 32. (Note that certain
 software implementations do not introduce a separate elliptic
 curve point type and instead directly treat the EC point as an
 octet string per above encoding. When using such and
 implementation, the point_to_string function can be treated as the
 identity function.)

 o The string_to_point function converts an octet string to an EC
 point according to the encoding specified in Section 5.1.3 of
 [RFC8032]. This function MUST output INVALID if the octet string
 does not decode to an EC point.

 o The hash function Hash is SHA-512 as specified in [RFC6234], with
 hLen = 64.

 o The ECVRF_hash_to_curve function is as specified in
Section 5.4.1.1, with arbitrary_string_to_point(s) =

 string_to_point(s[0]...s[31]).

 This document defines ECVRF-EDWARDS25519-SHA512-ELL2 as identical to
 ECVRF-EDWARDS25519-SHA512-TAI, except:

 o suite_string = 0x04 = int_to_string(4, 1), a single octet with
 value 4.

 o the ECVRF_hash_to_curve function is as specified in
Section 5.4.1.2 with h2c_suite_ID_string = edwards25519_XMD:SHA-

 512_ELL2_NU_ (the suite is defined in
 [I-D.irtf-cfrg-hash-to-curve] Section 8.5.)

5.6. When the ECVRF Keys are Untrusted

 The ECVRF as specified above is a VRF that satisfies the "trusted
 uniqueness", "trusted collision resistance", and "full
 pseudorandomness" properties defined in Section 3. In order to
 obtain "full uniqueness" and "full collision resistance" (which
 provide protection against a malicious VRF public key), the Verifier
 MUST perform the following additional validation procedure upon
 receipt of the public VRF key. The public VRF key MUST NOT be used
 if this procedure returns "INVALID".

 Note that this procedure is not sufficient if the elliptic curve E or
 the point B, the generator of group G, is untrusted. If the prover
 is untrusted, the Verifier MUST obtain E and B from a trusted source,
 such as a ciphersuite specification, rather than from the prover.

 This procedure supposes that the public key provided to the Verifier
 is an octet string. The procedure returns "INVALID" if the public

https://datatracker.ietf.org/doc/html/rfc8032
https://datatracker.ietf.org/doc/html/rfc8032#section-5.1.3
https://datatracker.ietf.org/doc/html/rfc8032#section-5.1.3
https://datatracker.ietf.org/doc/html/rfc6234

Goldberg, et al. Expires November 18, 2021 [Page 22]

Internet-Draft VRF May 2021

 key in invalid. Otherwise, it returns Y, the public key as an EC
 point.

5.6.1. ECVRF Validate Key

 ECVRF_validate_key(PK_string)

 Input:

 PK_string - public key, an octet string

 Output:

 "INVALID", or

 Y - public key, an EC point

 Steps:

 1. Y = string_to_point(PK_string)

 2. If Y is "INVALID", output "INVALID" and stop

 3. If cofactor*Y is the identity element of the elliptic curve
 group, output "INVALID" and stop

 4. Output Y

 Note that if the cofactor = 1, then Step 3 need not multiply Y by the
 cofactor; instead, it suffices to output "INVALID" if Y is the
 identity element of the elliptic curve group. Moreover, when
 cofactor>1, it is not necessary to verify that Y is in the subgroup
 G; Step 3 suffices. Therefore, if the cofactor is small, the total
 number of points that could cause Step 3 to output "INVALID" may be
 small, and it may be more efficient to simply check Y against a fixed
 list of such points. For example, the following algorithm can be
 used for the edwards25519 curve:

 1. Y = string_to_point(PK_string)

 2. If Y is "INVALID", output "INVALID" and stop

 3. y_string = PK_string

 4. oneTwentySeven_string = 0x7F = int_to_string(127, 1)
 (a single octet with value 127)

 5. y_string[31] = y_string[31] & oneTwentySeven_string

Goldberg, et al. Expires November 18, 2021 [Page 23]

Internet-Draft VRF May 2021

 (this step clears the high-order bit of octet 31)

 6. bad_pk[0] = int_to_string(0, 32)

 7. bad_pk[1] = int_to_string(1, 32)

 8. bad_y2 = 2707385501144840649318225287225658788936804267575313519
 463743609750303402022

 9. bad_pk[2] = int_to_string(bad_y2, 32)

 10. bad_pk[3] = int_to_string(p-bad_y2, 32)

 11. bad_pk[4] = int_to_string(p-1, 32)

 12. bad_pk[5] = int_to_string(p, 32)

 13. bad_pk[6] = int_to_string(p+1, 32)

 14. If y_string is in bad_pk[0]...bad_pk[6], output "INVALID" and
 stop

 15. Output Y

 (bad_pk[0], bad_pk[2], bad_pk[3] each match two bad public keys,
 depending on the sign of the x-coordinate, which was cleared in step
 5, in order to make sure that it does not affect the comparison.
 bad_pk[1] and bad_pk[4] each match one bad public key, because
 x-coordinate is 0 for these two public keys. bad_pk[5] and bad_pk[6]
 are simply bad_pk[0] and bad_pk[1] shifted by p, in case the
 y-coordinate had not been modular reduced by p. There is no need to
 shift the other bad_pk values by p, because they will exceed 2^255.
 These bad keys, which represent all points of order 1, 2, 4, and 8,
 have been obtained by converting the points specified in [X25519] to
 Edwards coordinates.)

6. Implementation Status

 Note to RFC editor: Remove before publication

 A reference C++ implementation of ECVRF-P256-SHA256-TAI, ECVRF-
 P256-SHA256-SSWU, ECVRF-EDWARDS25519-SHA512-TAI, and ECVRF-
 EDWARDS25519-SHA512-ELL2 is available at <https://github.com/reyzin/

ecvrf>. This implementation is neither secure nor especially
 efficient, but can be used to generate test vectors.

 A Python implementation of an older version of ECVRF-
 EDWARDS25519-SHA512-ELL2 from the -05 version of this draft is

https://github.com/reyzin/ecvrf
https://github.com/reyzin/ecvrf

Goldberg, et al. Expires November 18, 2021 [Page 24]

Internet-Draft VRF May 2021

 available at <https://github.com/integritychain/draft-irtf-cfrg-vrf-
05>.

 A C implementation of an older version of ECVRF-
 EDWARDS25519-SHA512-ELL2 from the -03 version of this draft is
 available at <https://github.com/algorand/libsodium/tree/draft-irtf-

cfrg-vrf-03/src/libsodium/crypto_vrf/ietfdraft03>.

 A Rust implementation of an older version of ECVRF-P256-SHA256-TAI
 from the -05 version of this draft, as well as variants for the
 sect163k1 and secp256k1 curves, is available at
 <https://crates.io/crates/vrf>.

 A C implementation of a variant of ECVRF-P256-SHA256-TAI from the -05
 version of this draft adapted for the secp256k1 curve is available at
 <https://github.com/aergoio/secp256k1-vrf>.

 An implementation of an earlier version of RSA-FDH-VRF (SHA-256) and
 ECVRF-P256-SHA256-TAI was first developed as a part of the NSEC5
 project [I-D.vcelak-nsec5] and is available at
 <http://github.com/fcelda/nsec5-crypto>.

 The Key Transparency project at Google uses a VRF implementation that
 is similar to the ECVRF-P256-SHA256-TAI, with a few changes including
 the use of SHA-512 instead of SHA-256. Its implementation is
 available at
 <https://github.com/google/keytransparency/blob/master/core/crypto/

vrf/>

 An implementation by Ryuji Ishiguro following an older version of
 ECVRF-EDWARDS25519-SHA512-TAI from the -00 version of this draft is
 available at <https://github.com/r2ishiguro/vrf>.

 An implementation similar to ECVRF-EDWARDS25519-SHA512-ELL2 (with
 some changes, including the use of SHA-3) is available as part of the
 CONIKS implementation in Golang at <https://github.com/coniks-sys/

coniks-go/tree/master/crypto/vrf>.

 Open Whisper Systems also uses a VRF similar to ECVRF-
 EDWARDS25519-SHA512-ELL2, called VXEdDSA, and specified here
 <https://whispersystems.org/docs/specifications/xeddsa/> and here
 <https://moderncrypto.org/mail-archive/curves/2017/000925.html>.
 Implementations in C and Java are available at
 <https://github.com/signalapp/curve25519-java> and
 <https://github.com/wavesplatform/curve25519-java>.

https://github.com/integritychain/draft-irtf-cfrg-vrf-05
https://github.com/integritychain/draft-irtf-cfrg-vrf-05
https://github.com/algorand/libsodium/tree/draft-irtf-cfrg-vrf-03/src/libsodium/crypto_vrf/ietfdraft03
https://github.com/algorand/libsodium/tree/draft-irtf-cfrg-vrf-03/src/libsodium/crypto_vrf/ietfdraft03
https://crates.io/crates/vrf
https://github.com/aergoio/secp256k1-vrf
http://github.com/fcelda/nsec5-crypto
https://github.com/google/keytransparency/blob/master/core/crypto/vrf/
https://github.com/google/keytransparency/blob/master/core/crypto/vrf/
https://github.com/r2ishiguro/vrf
https://github.com/coniks-sys/coniks-go/tree/master/crypto/vrf
https://github.com/coniks-sys/coniks-go/tree/master/crypto/vrf
https://whispersystems.org/docs/specifications/xeddsa/
https://moderncrypto.org/mail-archive/curves/2017/000925.html
https://github.com/signalapp/curve25519-java
https://github.com/wavesplatform/curve25519-java

Goldberg, et al. Expires November 18, 2021 [Page 25]

Internet-Draft VRF May 2021

7. Security Considerations

7.1. Key Generation

 Applications that use the VRFs defined in this document MUST ensure
 that that the VRF key is generated correctly, using good randomness.

7.1.1. Uniqueness and collision resistance with untrusted keys

 The ECVRF as specified in Section 5.1-Section 5.5 satisfies the
 "trusted uniqueness" and "trusted collision resistance" properties as
 long as the VRF keys are generated correctly, with good randomness.
 If the Verifier trusts the VRF keys are generated correctly, it MAY
 use the public key Y as is.

 However, if the ECVRF uses keys that could be generated
 adversarially, then the Verifier MUST first perform the validation
 procedure ECVRF_validate_key(PK) (specified in Section 5.6) upon
 receipt of the public key PK as an octet string. If the validation
 procedure outputs "INVALID", then the public key MUST not be used.
 Otherwise, the procedure will output a valid public key Y, and the
 ECVRF with public key Y satisfies the "full uniqueness" and "full
 collision resistance" properties.

 The RSA-FDH-VRF satisfies the "trusted uniqueness" and "trusted
 collision resistance" properties as long as the VRF keys are
 generated correctly, with good randomness. These properties may not
 hold if the keys are generated adversarially (e.g., if the RSA
 function specified in the public key is not bijective). Meanwhile,
 the "full uniqueness" and "full collision resistance" are properties
 that hold even if VRF keys are generated by an adversary. The RSA-
 FDH-VRF defined in this document does not have these properties.
 However, if adversarial key generation is a concern, the RSA-FDH-VRF
 may be modified to have these properties by adding additional
 cryptographic checks that its public key has the right form. These
 modifications are left for future specification.

7.1.2. Pseudorandomness with untrusted keys

 Without good randomness, the "pseudorandomness" properties of the VRF
 may not hold. Note that it is not possible to guarantee
 pseudorandomness in the face of adversarially generated VRF keys.
 This is because an adversary can always use bad randomness to
 generate the VRF keys, and thus, the VRF output may not be
 pseudorandom.

Goldberg, et al. Expires November 18, 2021 [Page 26]

Internet-Draft VRF May 2021

7.2. Selective vs Full Pseudorandomness

 [PWHVNRG17] presents cryptographic reductions to an underlying hard
 problem (e.g. Decisional Diffie-Hellman for the ECVRF, or the
 standard RSA assumption for RSA-FDH-VRF) that prove the VRFs
 specified in this document possess full pseudorandomness as well as
 selective pseudorandomness. However, the cryptographic reductions
 are tighter for selective pseudorandomness than for full
 pseudorandomness. This means that the VRFs have quantitively
 stronger security guarantees for selective pseudorandomness.

 Applications that are concerned about tightness of cryptographic
 reductions therefore have two options.

 o They may choose to ensure that selective pseudorandomness is
 sufficient for the application. That is, that pseudorandomness of
 outputs matters only for inputs that are chosen independently of
 the VRF key.

 o If full pseudorandomness is required for the application, the
 application may increase security parameters to make up for the
 loose security reduction. For RSA-FDH-VRF, this means increasing
 the RSA key length. For ECVRF, this means increasing the
 cryptographic strength of the EC group G. For both RSA-FDH-VRF
 and ECVRF, the cryptographic strength of the hash function Hash
 may also potentially need to be increased.

7.3. Proper pseudorandom nonce for ECVRF

 The security of the ECVRF defined in this document relies on the fact
 that the nonce k used in the ECVRF_prove algorithm is chosen
 uniformly and pseudorandomly modulo q, and is unknown to the
 adversary. Otherwise, an adversary may be able to recover the
 private VRF key x (and thus break pseudorandomness of the VRF) after
 observing several valid VRF proofs pi. The nonce generation methods
 specified in the ECVRF ciphersuites of Section 5.5 are designed with
 this requirement in mind.

7.4. Side-channel attacks

 Side channel attacks on cryptographic primitives are an important
 issue. Here we discuss only one such side channel: timing attacks
 that can be used to leak information about the VRF input alpha.
 Implementers should take care to avoid side-channel attacks that leak
 information about the VRF private key SK (and the nonce k used in the
 ECVRF).

Goldberg, et al. Expires November 18, 2021 [Page 27]

Internet-Draft VRF May 2021

 The ECVRF_hash_to_curve_try_and_increment algorithm defined in
Section 5.4.1.1 SHOULD NOT be used in applications where the VRF

 input alpha is secret and is hashed by the VRF on-the-fly. This is
 because the algorithm's running time depends on the VRF input alpha,
 and thus creates a timing channel that can be used to learn
 information about alpha. That said, for most inputs the amount of
 information obtained from such a timing attack is likely to be small
 (1 bit, on average), since the algorithm is expected to find a valid
 curve point after only two attempts. However, there might be inputs
 which cause the algorithm to make many attempts before it finds a
 valid curve point; for such inputs, the information leaked in a
 timing attack will be more than 1 bit.

 ECVRF-P256-SHA256-SSWU and ECVRF-EDWARDS25519-SHA512-ELL2 can be made
 to run in time independent of alpha, following recommendations in
 [I-D.irtf-cfrg-hash-to-curve].

7.5. Proofs provide no secrecy for the VRF input

 The VRF proof pi is not designed to provide secrecy and, in general,
 may reveal the VRF input alpha. Anyone who knows PK and pi is able
 to perform an offline dictionary attack to search for alpha, by
 verifying guesses for alpha using VRF_verify. This is in contrast to
 the VRF hash output beta which, without the proof, is pseudorandom
 and thus is designed to reveal no information about alpha.

7.6. Prehashing

 The VRFs specified in this document allow for read-once access to the
 input alpha for both signing and verifying. Thus, additional
 prehashing of alpha (as specified, for example, in [RFC8032] for
 EdDSA signatures) is not needed, even for applications that need to
 handle long alpha or to support the Initialized-Update-Finalize (IUF)
 interface (in such an interface, alpha is not supplied all at once,
 but rather in pieces by a sequence of calls to Update). The ECVRF,
 in particular, uses alpha only in ECVRF_hash_to_curve. The curve
 point H becomes the representative of alpha thereafter. Note that
 the suite_string octet and the public key are hashed together with
 alpha in ECVRF_hash_to_curve, which ensures that the curve (including
 the generator B) and the public key are included indirectly into
 subsequent hashes.

7.7. Hash function domain separation and futureproofing

 Hashing is used for different purposes in the two VRFs (namely, in
 the RSA-FDH-VRF, in MGF1 and in proof_to_hash; in the ECVRF, in
 hash_to_curve, nonce_generation, hash_points, and proof_to_hash).
 The theoretical analysis assumes each of these functions is a

https://datatracker.ietf.org/doc/html/rfc8032

Goldberg, et al. Expires November 18, 2021 [Page 28]

Internet-Draft VRF May 2021

 separate random oracle. This analysis still holds even if the same
 hash function is used, as long as the four queries made to the hash
 function for a given SK and alpha are overwhelmingly unlikely to
 equal each other or to any queries made to the hash function for the
 same SK and different alpha. This is indeed the case for the RSA-
 FDH-VRF defined in this document, because the first octets of the
 input to the hash function used in MGF1 and in proof_to_hash are
 different.

 This is also the case for the ECVRF ciphersuites defined in this
 document, because:

 o inputs to the hash function used during nonce_generation are
 unlikely to equal inputs used in hash_to_curve, proof_to_hash, and
 hash_points. This follows since nonce_generation inputs a secret
 to the hash function that is not used by honest parties as input
 to any other hash function, and is not available to the adversary.

 o the second octets of the inputs to the hash function used in
 proof_to_hash, hash_points, and
 ECVRF_hash_to_curve_try_and_increment are all different.

 o the last octet of the input to the hash function used in
 proof_to_hash, hash_points, and
 ECVRF_hash_to_curve_try_and_increment is always zero, and
 therefore different from the last octet of the input to the hash
 function used in ECVRF_hash_to_curve_h2c_suite, which is set equal
 to the nonzero length of the domain separation tag by
 [I-D.irtf-cfrg-hash-to-curve].

 For the RSA VRF, if future designs need to specify variants of the
 design in this document, such variants should use different first
 octets in inputs to MGF1 and to the hash function used in
 proof_to_hash, in order to avoid the possibility that an adversary
 can obtain a VRF output under one variant, and then claim it was
 obtained under another variant

 For the elliptic curve VRF, if future designs need to specify
 variants (e.g., additional ciphersuites) of the design in this
 document, then, to avoid the possibility that an adversary can obtain
 a VRF output under one variant, and then claim it was obtained under
 another variant, they should specify a different suite_string
 constant. This way, the inputs to the hash_to_curve hash function
 used in producing H are guaranteed to be different; since all the
 other hashing done by the prover depends on H, inputs all the hash
 functions used by the prover will also be different as long as
 hash_to_curve is collision resistant.

Goldberg, et al. Expires November 18, 2021 [Page 29]

Internet-Draft VRF May 2021

8. Change Log

 Note to RFC Editor: if this document does not obsolete an existing
 RFC, please remove this appendix before publication as an RFC.

 00 - Forked this document from draft-goldbe-vrf-01.

 01 - Minor updates, mostly highlighting TODO items.

 02 - Added specification of elligator2 for Curve25519, along with
 ciphersuites for ECVRF-ED25519-SHA512-Elligator. Changed ECVRF-
 ED25519-SHA256 suite_string to ECVRF-ED25519-SHA512. (This change
 made because Ed25519 in [RFC8032] signatures use SHA512 and not
 SHA256.) Made ECVRF nonce generation a separate component, so
 that nonces are deterministic. In ECVRF proving, changed + to -
 (and made corresponding verification changes) in order to be
 consistent with EdDSA and ECDSA. Highlighted that
 ECVRF_hash_to_curve acts like a prehash. Added "suites" variable
 to ECVRF for futureproofing. Ensured domain separation for hash
 functions by modifying hash_points and added discussion about
 domain separation. Updated todos in the "additional
 pseudorandomness property" section. Added a discussion of secrecy
 into security considerations. Removed B and PK=Y from
 ECVRF_hash_points because they are already present via H, which is
 computed via hash_to_curve using the suite_string (which
 identifies B) and Y.

 03 - Changed Ed25519 conversions to little-endian, to match RFC
8032; added simple key validation for Ed25519; added Simple SWU

 cipher suite; clarified Elligator and removed the extra x0 bit, to
 make Montgomery and Edwards Elligator the same; added domain
 separation for RSA VRF; improved notation throughout; added nonce
 generation as a section; changed counter in try-and-increment from
 four bytes to one, to avoid endian issues; renamed try-and-
 increment ciphersuites to -TAI; added qLen as a separate
 parameter; changed output length to hLen for ECVRF, to match
 RSAVRF; made Verify return beta so unverified proofs don't end up
 in proof_to_hash; added test vectors.

 04 - Clarified handling of optional arguments x and PK in
 ECVRF_prove. Edited implementation status to bring it up to date.

 05 - Renamed ed25519 into the more commonly used edwards25519.
 Corrected ECVRF_nonce_generation_RFC6979 (thanks to Gorka Irazoqui
 Apecechea and Mario Cao Cueto for finding the problem) and
 corresponding test vectors for the P256 suites. Added a reference
 to the Rust implementation.

https://datatracker.ietf.org/doc/html/draft-goldbe-vrf-01
https://datatracker.ietf.org/doc/html/rfc8032
https://datatracker.ietf.org/doc/html/rfc8032
https://datatracker.ietf.org/doc/html/rfc8032

Goldberg, et al. Expires November 18, 2021 [Page 30]

Internet-Draft VRF May 2021

 06 - Made some variable names more descriptive. Added a few
 implementation references.

 07 - Incorporated hash-to-curve draft by reference to replace our
 own Elligator2 and Simple SWU. Clarified discussion of EC
 parameters and functions. Added a 0 octet to all hashing to
 enforce domain separation from hashing done inside hash-to-curve.

 08 - Incorporated suggestions from crypto panel review by Chloe
 Martindale. Changed Reyzin's affiliation. Updated references.

 09 - Added a note to remove the implementation page before
 publication.

9. Contributors

 This document also would not be possible without the work of Moni
 Naor (Weizmann Institute), Sachin Vasant (Cisco Systems), and Asaf
 Ziv (Facebook). Shumon Huque, David C. Lawerence, Trevor Perrin,
 Annie Yousar, Stanislav Smyshlyaev, Liliya Akhmetzyanova, Tony
 Arcieri, Sergey Gorbunov, Sam Scott, Nick Sullivan, Christopher Wood,
 Marek Jankowski, Derek Ting-Haye Leung, Adam Suhl, Gary Belvinm,
 Piotr Nojszewski, Gorka Irazoqui Apecechea, and Mario Cao Cueto
 provided valuable input to this draft. Riad Wahby was very helpful
 with the integration of the hash-to-curve draft.

10. References

10.1. Normative References

 [FIPS-186-4]
 National Institute for Standards and Technology, "Digital
 Signature Standard (DSS)", FIPS PUB 186-4, July 2013,
 <https://csrc.nist.gov/publications/detail/fips/186/4/

final>.

 [I-D.irtf-cfrg-hash-to-curve]
 Faz-Hernandez, A., Scott, S., Sullivan, N., Wahby, R., and
 C. Wood, "Hashing to Elliptic Curves", draft-irtf-cfrg-

hash-to-curve-10 (work in progress), October 2020.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

https://csrc.nist.gov/publications/detail/fips/186/4/final
https://csrc.nist.gov/publications/detail/fips/186/4/final
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-10
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-10
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119

Goldberg, et al. Expires November 18, 2021 [Page 31]

Internet-Draft VRF May 2021

 [RFC5114] Lepinski, M. and S. Kent, "Additional Diffie-Hellman
 Groups for Use with IETF Standards", RFC 5114,
 DOI 10.17487/RFC5114, January 2008,
 <https://www.rfc-editor.org/info/rfc5114>.

 [RFC6234] Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
 (SHA and SHA-based HMAC and HKDF)", RFC 6234,
 DOI 10.17487/RFC6234, May 2011,
 <https://www.rfc-editor.org/info/rfc6234>.

 [RFC6979] Pornin, T., "Deterministic Usage of the Digital Signature
 Algorithm (DSA) and Elliptic Curve Digital Signature
 Algorithm (ECDSA)", RFC 6979, DOI 10.17487/RFC6979, August
 2013, <https://www.rfc-editor.org/info/rfc6979>.

 [RFC8017] Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A. Rusch,
 "PKCS #1: RSA Cryptography Specifications Version 2.2",

RFC 8017, DOI 10.17487/RFC8017, November 2016,
 <https://www.rfc-editor.org/info/rfc8017>.

 [RFC8032] Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital
 Signature Algorithm (EdDSA)", RFC 8032,
 DOI 10.17487/RFC8032, January 2017,
 <https://www.rfc-editor.org/info/rfc8032>.

 [SECG1] Standards for Efficient Cryptography Group (SECG), "SEC 1:
 Elliptic Curve Cryptography", Version 2.0, May 2009,
 <http://www.secg.org/sec1-v2.pdf>.

10.2. Informative References

 [ANSI.X9-62-2005]
 "Public Key Cryptography for the Financial Services
 Industry: The Elliptic Curve Digital Signature Algorithm
 (ECDSA)", ANSI X9.62, 2005.

 [DGKR18] David, B., Gazi, P., Kiayias, A., and A. Russell,
 "Ouroboros Praos: An adaptively-secure, semi-synchronous
 proof-of-stake protocol", in Advances in Cryptology -
 EUROCRYPT, 2018, <https://eprint.iacr.org/2017/573>.

 [GHMVZ17] Gilad, Y., Hemo, R., Micali, Y., Vlachos, Y., and Y.
 Zeldovich, "Algorand: Scaling Byzantine Agreements for
 Cryptocurrencies", in Proceedings of the 26th Symposium on
 Operating Systems Principles (SOSP), 2017,
 <https://eprint.iacr.org/2017/454>.

https://datatracker.ietf.org/doc/html/rfc5114
https://www.rfc-editor.org/info/rfc5114
https://datatracker.ietf.org/doc/html/rfc6234
https://www.rfc-editor.org/info/rfc6234
https://datatracker.ietf.org/doc/html/rfc6979
https://www.rfc-editor.org/info/rfc6979
https://datatracker.ietf.org/doc/html/rfc8017
https://www.rfc-editor.org/info/rfc8017
https://datatracker.ietf.org/doc/html/rfc8032
https://www.rfc-editor.org/info/rfc8032
http://www.secg.org/sec1-v2.pdf
https://eprint.iacr.org/2017/573
https://eprint.iacr.org/2017/454

Goldberg, et al. Expires November 18, 2021 [Page 32]

Internet-Draft VRF May 2021

 [I-D.vcelak-nsec5]
 Vcelak, J., Goldberg, S., Papadopoulos, D., Huque, S., and
 D. Lawrence, "NSEC5, DNSSEC Authenticated Denial of
 Existence", draft-vcelak-nsec5-08 (work in progress),
 December 2018.

 [MRV99] Micali, S., Rabin, M., and S. Vadhan, "Verifiable Random
 Functions", in FOCS, 1999,
 <https://dash.harvard.edu/handle/1/5028196>.

 [PWHVNRG17]
 Papadopoulos, D., Wessels, D., Huque, S., Vcelak, J.,
 Naor, M., Reyzin, L., and S. Goldberg, "Making NSEC5
 Practical for DNSSEC", in ePrint Cryptology Archive
 2017/099, February 2017,
 <https://eprint.iacr.org/2017/099>.

 [X25519] Bernstein, D., "How do I validate Curve25519 public
 keys?", 2006, <https://cr.yp.to/ecdh.html#validate>.

https://datatracker.ietf.org/doc/html/draft-vcelak-nsec5-08
https://dash.harvard.edu/handle/1/5028196
https://eprint.iacr.org/2017/099
https://cr.yp.to/ecdh.html#validate

Goldberg, et al. Expires November 18, 2021 [Page 33]

Internet-Draft VRF May 2021

Appendix A. Test Vectors for the ECVRFs

 The test vectors in this section were generated using the reference
 implementation at <https://github.com/reyzin/ecvrf>.

A.1. ECVRF-P256-SHA256-TAI

 These two example secret keys and messages are taken from
Appendix A.2.5 of [RFC6979].

 SK = x =
 c9afa9d845ba75166b5c215767b1d6934e50c3db36e89b127b8a622b120f6721
 PK =
 0360fed4ba255a9d31c961eb74c6356d68c049b8923b61fa6ce669622e60f29fb6
 alpha = 73616d706c65 (ASCII "sample")
 try_and_increment succeeded on ctr = 1
 H =
 0272a877532e9ac193aff4401234266f59900a4a9e3fc3cfc6a4b7e467a15d06d4
 k = 0d90591273453d2dc67312d39914e3a93e194ab47a58cd598886897076986f77
 U = k*B =
 02bb6a034f67643c6183c10f8b41dc4babf88bff154b674e377d90bde009c21672
 V = k*H =
 02893ebee7af9a0faa6da810da8a91f9d50e1dc071240c9706726820ff919e8394
 pi = 035b5c726e8c0e2c488a107c600578ee75cb702343c153cb1eb8dec77f4b5071
 b498e7c291a16dafb9ccff8c2ae1f039fa92a328d5f7e0d483ee18353067a13f69994
 4a78892ff24939bcd044827eef884
 beta =
 a3ad7b0ef73d8fc6655053ea22f9bede8c743f08bbed3d38821f0e16474b505e

 SK = x =
 c9afa9d845ba75166b5c215767b1d6934e50c3db36e89b127b8a622b120f6721
 PK =
 0360fed4ba255a9d31c961eb74c6356d68c049b8923b61fa6ce669622e60f29fb6
 alpha = 74657374 (ASCII "test")
 try_and_increment succeeded on ctr = 3
 H =
 02173119b4fff5e6f8afed4868a29fe8920f1b54c2cf89cc7b301d0d473de6b974
 k = 5852353a868bdce26938cde1826723e58bf8cb06dd2fed475213ea6f3b12e961
 U = k*B =
 022779a2cafcb65414c4a04a4b4d2adf4c50395f57995e89e6de823250d91bc48e
 V = k*H =
 033b4a14731672e82339f03b45ff6b5b13dee7ada38c9bf1d6f8f61e2ce5921119
 pi = 034dac60aba508ba0c01aa9be80377ebd7562c4a52d74722e0abae7dc3080ddb
 56c874cc95b7d29a6a65cb518fe6f4418256385f12b1eccbad023c901bb983ff707b1
 09b3a3b526ca3a1e8661f7b8481a2
 beta =
 a284f94ceec2ff4b3794629da7cbafa49121972671b466cab4ce170aa365f26d

https://github.com/reyzin/ecvrf
https://datatracker.ietf.org/doc/html/rfc6979#appendix-A.2.5

Goldberg, et al. Expires November 18, 2021 [Page 34]

Internet-Draft VRF May 2021

 This example secret key is taken from Appendix L.4.2 of
 [ANSI.X9-62-2005].

 SK = x =
 2ca1411a41b17b24cc8c3b089cfd033f1920202a6c0de8abb97df1498d50d2c8
 PK =
 03596375e6ce57e0f20294fc46bdfcfd19a39f8161b58695b3ec5b3d16427c274d
 alpha = 4578616d706c65207573696e67204543445341206b65792066726f6d20417
 070656e646978204c2e342e32206f6620414e53492e58392d36322d32303035
 (ASCII "Example using ECDSA key from Appendix L.4.2 of
 ANSI.X9-62-2005")
 try_and_increment succeeded on ctr = 1
 H =
 0258055c26c4b01d01c00fb57567955f7d39cd6f6e85fd37c58f696cc6b7aa761d
 k = 5689e2e08e1110b4dda293ac21667eac6db5de4a46a519c73d533f69be2f4da3
 U = k*B =
 020f465cd0ec74d2e23af0abde4c07e866ae4e5138bded5dd1196b8843f380db84
 V = k*H =
 036cb6f811428fc4904370b86c488f60c280fa5b496d2f34ff8772f60ed24b2d1d
 pi = 03d03398bf53aa23831d7d1b2937e005fb0062cbefa06796579f2a1fc7e7b8c6
 679d92353c8a4fdfddb2a8540094b686cb5fb50f730d833a098a0399ccad32f3fec4d
 a2299891fc75ebda42baeb65e8c11
 beta =
 90871e06da5caa39a3c61578ebb844de8635e27ac0b13e829997d0d95dd98c19

A.2. ECVRF-P256-SHA256-SSWU

 These two example secret keys and messages are taken from
Appendix A.2.5 of [RFC6979].

 SK = x =
 c9afa9d845ba75166b5c215767b1d6934e50c3db36e89b127b8a622b120f6721
 PK =
 0360fed4ba255a9d31c961eb74c6356d68c049b8923b61fa6ce669622e60f29fb6
 alpha = 73616d706c65 (ASCII "sample")
 In SSWU: uniform_bytes = 5024e98d6067dec313af09ff0cbe78218324a645c2a4
 b0aae2453f6fe91aa3bd9471f7b4a5fbf128e4b53f0c59603f7e
 In SSWU: u =
 df565615a2372e8b31b8771f7503bafc144e48b05688b97958cc27ce29a8d810
 In SSWU: x1 =
 e7e39eb8a4c982426fcff629e55a3e13516cfeb62c02c369b1e750316f5e94eb
 In SSWU: gx1 is a nonsquare
 H =
 02b31973e872d4a097e2cfae9f37af9f9d73428fde74ac537dda93b5f18dbc5842
 k = e92820035a0a8afe132826c6312662b6ea733fc1a0d33737945016de54d02dd8
 U = k*B =
 031490f49d0355ffcdf66e40df788bee93861917ee713acff79be40d20cc91a30a

https://datatracker.ietf.org/doc/html/rfc6979#appendix-A.2.5

Goldberg, et al. Expires November 18, 2021 [Page 35]

Internet-Draft VRF May 2021

 V = k*H =
 03701df0228138fa3d16612c0d720389326b3265151bc7ac696ea4d0591cd053e3
 pi = 0331d984ca8fece9cbb9a144c0d53df3c4c7a33080c1e02ddb1a96a365394c78
 88a39dfe7432f119228473f37db3f87ca470c63b0237432a791f18f823c1215e276b7
 ac0962725ba8daec2bf90c0ccc91a
 beta =
 21e66dc9747430f17ed9efeda054cf4a264b097b9e8956a1787526ed00dc664b

 SK = x =
 c9afa9d845ba75166b5c215767b1d6934e50c3db36e89b127b8a622b120f6721
 PK =
 0360fed4ba255a9d31c961eb74c6356d68c049b8923b61fa6ce669622e60f29fb6
 alpha = 74657374 (ASCII "test")
 In SSWU: uniform_bytes = 910cc66d84a57985a1d15843dad83fd9138a109afb24
 3b7fa5d64d766ec9ca3894fdcf46ebeb21a3972eb452a4232fd3
 In SSWU: u =
 d8b0107f7e7aa36390240d834852f8703a6dc407019d6196bda5861b8fc00181
 In SSWU: x1 =
 ccc747fa7318b9486ce4044adbbecaa084c27be6eda88eb7b7f3d688fd0968c7
 In SSWU: gx1 is a square
 H =
 03ccc747fa7318b9486ce4044adbbecaa084c27be6eda88eb7b7f3d688fd0968c7
 k = febc3451ea7639fde2cf41ffd03f463124ecb3b5a79913db1ed069147c8a7dea
 U = k*B =
 031200f9900e96f811d1247d353573f47e0d9da601fc992566234fc1a5b37749ae
 V = k*H =
 02d3715dcfee136c7ae50e95ffca76f4ca6c29ddfb92a39c31a0d48e75c6605cd1
 pi = 03f814c0455d32dbc75ad3aea08c7e2db31748e12802db23640203aebf1fa8db
 2721e0499b7cecd68027a82f6095da076625a5f2f62908f1c283d5ee9b9e852d85bed
 f64f2452a4e5094729e101824443e
 beta =
 8e7185d2b420e4f4681f44ce313a26d05613323837da09a69f00491a83ad25dd

 This example secret key is taken from Appendix L.4.2 of
 [ANSI.X9-62-2005].

 SK = x =
 2ca1411a41b17b24cc8c3b089cfd033f1920202a6c0de8abb97df1498d50d2c8
 PK =
 03596375e6ce57e0f20294fc46bdfcfd19a39f8161b58695b3ec5b3d16427c274d
 alpha = 4578616d706c65207573696e67204543445341206b65792066726f6d20417
 070656e646978204c2e342e32206f6620414e53492e58392d36322d32303035
 (ASCII "Example using ECDSA key from Appendix L.4.2 of
 ANSI.X9-62-2005")
 In SSWU: uniform_bytes = 9b81d55a242d3e8438d3bcfb1bee985a87fd144802c9
 268cf9adeee160e6e9ff765569797a0f701cb4316018de2e7dd4
 In SSWU: u =
 e43c98c2ae06d13839fedb0303e5ee815896beda39be83fb11325b97976efdce

Goldberg, et al. Expires November 18, 2021 [Page 36]

Internet-Draft VRF May 2021

 In SSWU: x1 =
 be9e195a50f175d3563aed8dc2d9f513a5536c1e9aee1757d86c08d32d582a86
 In SSWU: gx1 is a nonsquare
 H =
 022dd5150e5a2a24c66feab2f68532be1486e28e07f1b9a055cf38ccc16f6595ff
 k = 8e29221f33564f3f66f858ba2b0c14766e1057adbd422c3e7d0d99d5e142b613
 U = k*B =
 03a8823ff9fd16bf879261c740b9c7792b77fee0830f21314117e441784667958d
 V = k*H =
 02d48fbb45921c755b73b25be2f23379e3ce69294f6cee9279815f57f4b422659d
 pi = 039f8d9cdc162c89be2871cbcb1435144739431db7fab437ab7bc4e2651a9e99
 d5288aac70a5e4bd07df303c1d460eb6336bb5fa95436a07c2f6b7aec6fef7cc4846e
 a901ee1e238dee12bf752029b0b2e
 beta =
 4fbadf33b42a5f42f23a6f89952d2e634a6e3810f15878b46ef1bb85a04fe95a

A.3. ECVRF-EDWARDS25519-SHA512-TAI

 These three example secret keys and messages are taken from
Section 7.1 of [RFC8032].

 SK = 9d61b19deffd5a60ba844af492ec2cc44449c5697b326919703bac031cae7f60
 PK = d75a980182b10ab7d54bfed3c964073a0ee172f3daa62325af021a68f707511a
 alpha = (the empty string)
 x = 307c83864f2833cb427a2ef1c00a013cfdff2768d980c0a3a520f006904de94f
 try_and_increment succeeded on ctr = 0
 H = 91bbed02a99461df1ad4c6564a5f5d829d0b90cfc7903e7a5797bd658abf3318
 k = 7100f3d9eadb6dc4743b029736ff283f5be494128df128df2817106f345b8594b
 6d6da2d6fb0b4c0257eb337675d96eab49cf39e66cc2c9547c2bf8b2a6afae4
 U = k*B =
 aef27c725be964c6a9bf4c45ca8e35df258c1878b838f37d9975523f09034071
 V = k*H =
 5016572f71466c646c119443455d6cb9b952f07d060ec8286d678615d55f954f
 pi = 8657106690b5526245a92b003bb079ccd1a92130477671f6fc01ad16f26f723f
 5e8bd1839b414219e8626d393787a192241fc442e6569e96c462f62b8079b9ed83ff2
 ee21c90c7c398802fdeebea4001
 beta = 90cf1df3b703cce59e2a35b925d411164068269d7b2d29f3301c03dd757876
 ff66b71dda49d2de59d03450451af026798e8f81cd2e333de5cdf4f3e140fdd8ae

 SK = 4ccd089b28ff96da9db6c346ec114e0f5b8a319f35aba624da8cf6ed4fb8a6fb
 PK = 3d4017c3e843895a92b70aa74d1b7ebc9c982ccf2ec4968cc0cd55f12af4660c
 alpha = 72 (1 byte)
 x = 68bd9ed75882d52815a97585caf4790a7f6c6b3b7f821c5e259a24b02e502e51
 try_and_increment succeeded on ctr = 1
 H = 5b659fc3d4e9263fd9a4ed1d022d75eaacc20df5e09f9ea937502396598dc551
 k = 42589bbf0c485c3c91c1621bb4bfe04aed7be76ee48f9b00793b2342acb9c167c
 ab856f9f9d4febc311330c20b0a8afd3743d05433e8be8d32522ecdc16cc5ce

https://datatracker.ietf.org/doc/html/rfc8032#section-7.1

Goldberg, et al. Expires November 18, 2021 [Page 37]

Internet-Draft VRF May 2021

 U = k*B =
 1dcb0a4821a2c48bf53548228b7f170962988f6d12f5439f31987ef41f034ab3
 V = k*H =
 fd03c0bf498c752161bae4719105a074630a2aa5f200ff7b3995f7bfb1513423
 pi = f3141cd382dc42909d19ec5110469e4feae18300e94f304590abdced48aed593
 f7eaf3eb2f1a968cba3f6e23b386aeeaab7b1ea44a256e811892e13eeae7c9f6ea899
 2557453eac11c4d5476b1f35a08
 beta = eb4440665d3891d668e7e0fcaf587f1b4bd7fbfe99d0eb2211ccec90496310
 eb5e33821bc613efb94db5e5b54c70a848a0bef4553a41befc57663b56373a5031

 SK = c5aa8df43f9f837bedb7442f31dcb7b166d38535076f094b85ce3a2e0b4458f7
 PK = fc51cd8e6218a1a38da47ed00230f0580816ed13ba3303ac5deb911548908025
 alpha = af82 (2 bytes)
 x = 909a8b755ed902849023a55b15c23d11ba4d7f4ec5c2f51b1325a181991ea95c
 try_and_increment succeeded on ctr = 0
 H = bf4339376f5542811de615e3313d2b36f6f53c0acfebb482159711201192576a
 k = 38b868c335ccda94a088428cbf3ec8bc7955bfaffe1f3bd2aa2c59fc31a0febc5
 9d0e1af3715773ce11b3bbdd7aba8e3505d4b9de6f7e4a96e67e0d6bb6d6c3a
 U = k*B =
 2bae73e15a64042fcebf062abe7e432b2eca6744f3e8265bc38e009cd577ecd5
 V = k*H =
 88cba1cb0d4f9b649d9a86026b69de076724a93a65c349c988954f0961c5d506
 pi = 9bc0f79119cc5604bf02d23b4caede71393cedfbb191434dd016d30177ccbf80
 e29dc513c01c3a980e0e545bcd848222d08a6c3e3665ff5a4cab13a643bef812e284c
 6b2ee063a2cb4f456794723ad0a
 beta = 645427e5d00c62a23fb703732fa5d892940935942101e456ecca7bb217c61c
 452118fec1219202a0edcf038bb6373241578be7217ba85a2687f7a0310b2df19f

A.4. ECVRF-EDWARDS25519-SHA512-ELL2

 These three example secret keys and messages are taken from
Section 7.1 of [RFC8032].

 SK = 9d61b19deffd5a60ba844af492ec2cc44449c5697b326919703bac031cae7f60
 PK = d75a980182b10ab7d54bfed3c964073a0ee172f3daa62325af021a68f707511a
 alpha = (the empty string)
 x = 307c83864f2833cb427a2ef1c00a013cfdff2768d980c0a3a520f006904de94f
 In Elligator2: uniform_bytes = d620782a206d9de584b74e23ae5ee1db5ca529
 8b3fc527c4867f049dee6dd419b3674967bd614890f621c128d72269ae
 In Elligator2: u =
 30f037b9745a57a9a2b8a68da81f397c39d46dee9d047f86c427c53f8b29a55c
 In Elligator2: gx1 =
 8cb66318fb2cea01672d6c27a5ab662ae33220961607f69276080a56477b4a08
 In Elligator2: gx1 is a square
 H = b8066ebbb706c72b64390324e4a3276f129569eab100c26b9f05011200c1bad9
 k = b5682049fee54fe2d519c9afff73bbfad724e69a82d5051496a42458f817bed7a
 386f96b1a78e5736756192aeb1818a20efb336a205ffede351cfe88dab8d41c

https://datatracker.ietf.org/doc/html/rfc8032#section-7.1

Goldberg, et al. Expires November 18, 2021 [Page 38]

Internet-Draft VRF May 2021

 U = k*B =
 762f5c178b68f0cddcc1157918edf45ec334ac8e8286601a3256c3bbf858edd9
 V = k*H =
 4652eba1c4612e6fce762977a59420b451e12964adbe4fbecd58a7aeff5860af
 pi = 7d9c633ffeee27349264cf5c667579fc583b4bda63ab71d001f89c10003ab46f
 25898f6bd7d4ed4c75f0282b0f7bb9d0e61b387b76db60b3cbf34bf09109ccb33fab7
 42a8bddc0c8ba3caf5c0b75bb04
 beta = 9d574bf9b8302ec0fc1e21c3ec5368269527b87b462ce36dab2d14ccf80c53
 cccf6758f058c5b1c856b116388152bbe509ee3b9ecfe63d93c3b4346c1fbc6c54

 SK = 4ccd089b28ff96da9db6c346ec114e0f5b8a319f35aba624da8cf6ed4fb8a6fb
 PK = 3d4017c3e843895a92b70aa74d1b7ebc9c982ccf2ec4968cc0cd55f12af4660c
 alpha = 72 (1 byte)
 x = 68bd9ed75882d52815a97585caf4790a7f6c6b3b7f821c5e259a24b02e502e51
 In Elligator2: uniform_bytes = 04ae20a9ad2a2330fb33318e376a2448bd77bb
 99e81d126f47952b156590444a9225b84128b66a2f15b41294fa2f2f6d
 In Elligator2: u =
 3092f033b16d4d5f74a3f7dc7091fe434b449065152b95476f121de899bb773d
 In Elligator2: gx1 =
 25d7fe7f82456e7078e99fdb24ef2582b4608357cdba9c39a8d535a3fd98464d
 In Elligator2: gx1 is a nonsquare
 H = 76ac3ccb86158a9104dff819b1ca293426d305fd76b39b13c9356d9b58c08e57
 k = 88bf479281fd29a6cbdffd67e2c5ec0024d92f14eaed58f43f22f37c4c37f1d41
 e65c036fbf01f9fba11d554c07494d0c02e7e5c9d64be88ef78cab7544e444d
 U = k*B =
 8ec26e77b8cb3114dd2265fe1564a4efb40d109aa3312536d93dfe3d8d80a061
 V = k*H =
 fe799eb5770b4e3a5a27d22518bb631db183c8316bb552155f442c62a47d1c8b
 pi = 47b327393ff2dd81336f8a2ef10339112401253b3c714eeda879f12c509072ef
 9bf1a234f833f72d8fff36075fd9b836da28b5569e74caa418bae7ef521f2ddd35f57
 27d271ecc70b4a83c1fc8ebc40c
 beta = 38561d6b77b71d30eb97a062168ae12b667ce5c28caccdf76bc88e093e4635
 987cd96814ce55b4689b3dd2947f80e59aac7b7675f8083865b46c89b2ce9cc735

 SK = c5aa8df43f9f837bedb7442f31dcb7b166d38535076f094b85ce3a2e0b4458f7
 PK = fc51cd8e6218a1a38da47ed00230f0580816ed13ba3303ac5deb911548908025
 alpha = af82 (2 bytes)
 x = 909a8b755ed902849023a55b15c23d11ba4d7f4ec5c2f51b1325a181991ea95c
 In Elligator2: uniform_bytes = be0aed556e36cdfddf8f1eeddbb7356a24fad6
 4cf95a922a098038f215588b216beabbfe6acf20256188e883292b7a3a
 In Elligator2: u =
 f6675dc6d17fc790d4b3f1c6acf689a13d8b5815f23880092a925af94cd6fa24
 In Elligator2: gx1 =
 a63d48e3247c903e22fdfb88fd9295e396712a5fe576af335dbe16f99f0af26c
 In Elligator2: gx1 is a square
 H = 13d2a8b5ca32db7e98094a61f656a08c6c964344e058879a386a947a4e189ed1
 k = a7ddd74a3a7d165d511b02fa268710ddbb3b939282d276fa2efcfa5aaf79cf576
 087299ca9234aacd7cd674d912deba00f4e291733ef189a51e36c861b3d683b

Goldberg, et al. Expires November 18, 2021 [Page 39]

Internet-Draft VRF May 2021

 U = k*B =
 a012f35433df219a88ab0f9481f4e0065d00422c3285f3d34a8b0202f20bac60
 V = k*H =
 fb613986d171b3e98319c7ca4dc44c5dd8314a6e5616c1a4f16ce72bd7a0c25a
 pi = 926e895d308f5e328e7aa159c06eddbe56d06846abf5d98c2512235eaa57fdce
 6187befa109606682503b3a1424f0f729ca0418099fbd86a48093e6a8de26307b8d93
 e02da927e6dd5b73c8f119aee0f
 beta = 121b7f9b9aaaa29099fc04a94ba52784d44eac976dd1a3cca458733be5cd09
 0a7b5fbd148444f17f8daf1fb55cb04b1ae85a626e30a54b4b0f8abf4a43314a58

Authors' Addresses

 Sharon Goldberg
 Boston University
 111 Cummington Mall
 Boston, MA 02215
 USA

 EMail: goldbe@cs.bu.edu

 Leonid Reyzin
 Boston University and Algorand
 111 Cummington Mall
 Boston, MA 02215
 USA

 EMail: reyzin@bu.edu

 Dimitrios Papadopoulos
 Hong Kong University of Science and Technology
 Clearwater Bay
 Hong Kong

 EMail: dipapado@cse.ust.hk

 Jan Vcelak
 NS1
 16 Beaver St
 New York, NY 10004
 USA

 EMail: jvcelak@ns1.com

Goldberg, et al. Expires November 18, 2021 [Page 40]

