
Workgroup: CFRG

Internet-Draft: draft-irtf-cfrg-vrf-14

Published: 28 July 2022

Intended Status: Informational

Expires: 29 January 2023

Authors: S. Goldberg

Boston University

L. Reyzin

Boston University and Algorand

D. Papadopoulos

Hong Kong University of Science and Technology

J. Vcelak

NS1

Verifiable Random Functions (VRFs)

Abstract

A Verifiable Random Function (VRF) is the public-key version of a

keyed cryptographic hash. Only the holder of the secret key can

compute the hash, but anyone with the public key can verify the

correctness of the hash. VRFs are useful for preventing enumeration

of hash-based data structures. This document specifies VRF

constructions based on RSA and elliptic curves that are secure in

the cryptographic random oracle model.

This document is a product of the Crypto Forum Research Group (CFRG)

in the IRTF.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 29 January 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Requirements

1.2. Terminology

2. VRF Algorithms

3. VRF Security Properties

3.1. Full Uniqueness

3.2. Full Collison Resistance

3.3. Trusted Uniqueness and Trusted Collision Resistance

3.4. Full Pseudorandomness or Selective Pseudorandomness

3.5. Unpredictability Under Malicious Key Generation

4. RSA Full Domain Hash VRF (RSA-FDH-VRF)

4.1. RSA-FDH-VRF Proving

4.2. RSA-FDH-VRF Proof to Hash

4.3. RSA-FDH-VRF Verifying

4.4. RSA-FDH-VRF Ciphersuites

5. Elliptic Curve VRF (ECVRF)

5.1. ECVRF Proving

5.2. ECVRF Proof to Hash

5.3. ECVRF Verifying

5.4. ECVRF Auxiliary Functions

5.4.1. ECVRF Encode to Curve

5.4.2. ECVRF Nonce Generation

5.4.3. ECVRF Challenge Generation

5.4.4. ECVRF Decode Proof

5.4.5. ECVRF Validate Key

5.5. ECVRF Ciphersuites

6. Implementation Status

7. Security Considerations

7.1. Key Generation

7.1.1. Uniqueness and collision resistance under malicious key

generation

7.1.2. Pseudorandomness under malicious key generation

7.1.3. Unpredictability under malicious key generation

7.2. Security Levels

7.3. Selective vs. Full Pseudorandomness

7.4. Proper pseudorandom nonce for ECVRF

7.5. Side-channel attacks

¶

https://trustee.ietf.org/license-info

7.6. Proofs provide no secrecy for the VRF input

7.7. Prehashing

7.8. Hash function domain separation

7.9. Hash function salting

7.10. Futureproofing

8. Change Log

9. Contributors

10. References

10.1. Normative References

10.2. Informative References

Appendix A. Test Vectors for the ECVRFs

A.1. ECVRF-P256-SHA256-TAI

A.2. ECVRF-P256-SHA256-SSWU

A.3. ECVRF-EDWARDS25519-SHA512-TAI

A.4. ECVRF-EDWARDS25519-SHA512-ELL2

Authors' Addresses

1. Introduction

A Verifiable Random Function (VRF) [MRV99] is the public-key version

of a keyed cryptographic hash. Only the holder of the VRF secret key

can compute the hash, but anyone with the corresponding public key

can verify the correctness of the hash.

A key application of the VRF is to provide privacy against offline

dictionary attacks (also known as enumeration attacks) on data

stored in a hash-based data structure. In this application, a Prover

holds the VRF secret key and uses the VRF hashing to construct a

hash-based data structure on the input data.

Due to the nature of the VRF, only the Prover can answer queries

about whether or not some data is stored in the data structure.

Anyone who knows the VRF public key can verify that the Prover has

answered the queries correctly. However, no offline inferences (i.e.

inferences without querying the Prover) can be made about the data

stored in the data structure.

This document defines VRFs based on RSA and elliptic curves. The

choices of VRFs for inclusion into this document were based, in

part, on synergy with existing RFCs and commonly available

implementations of individual components that are used within the

VRFs.

The particular choice of the VRF for a given application depends on

the desired security properties, the availability of

cryptographically strong implementations, efficiency constraints,

and the trust one places in RSA and elliptic curve Diffie-Hellman

assumptions (and the trust in a particular choice of curve in case

¶

¶

¶

¶

SK:

PK:

alpha or alpha_string:

beta or beta_string:

pi or pi_string:

Prover:

Verifier:

Adversary:

Malicious (or adversarial):

of elliptic curves). Differences in the security properties provided

by the different options are discussed in Section 3 and Section 7.

This document represents the consensus of the Crypto Forum Research

Group (CFRG).

1.1. Requirements

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC8174].

1.2. Terminology

The following terminology is used through this document:

The secret key for the VRF. (Note: the secret key is also

sometimes called "private key".)

The public key for the VRF.

The input to be hashed by the VRF.

The VRF hash output.

The VRF proof.

The Prover holds the VRF secret key SK and public key PK.

The Verifier holds the VRF public key PK.

Potential attacker; often used to define a security

property.

Performed by an adversary.

2. VRF Algorithms

A VRF comes with a key generation algorithm that generates a VRF

public key PK and secret key SK.

The prover hashes an input alpha using the VRF secret key SK to

obtain a VRF hash output beta

beta = VRF_hash(SK, alpha)

The VRF_hash algorithm is deterministic, in the sense that it always

produces the same output beta given the same pair of inputs (SK,

alpha).

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

The prover also uses the secret key SK to construct a proof pi that

beta is the correct hash output

pi = VRF_prove(SK, alpha)

The VRFs defined in this document allow anyone to deterministically

obtain the VRF hash output beta directly from the proof value pi by

using the function VRF_proof_to_hash:

beta = VRF_proof_to_hash(pi)

Thus, for VRFs defined in this document, VRF_hash is defined as

VRF_hash(SK, alpha) = VRF_proof_to_hash(VRF_prove(SK, alpha)),

and therefore this document will specify VRF_prove and

VRF_proof_to_hash rather than VRF_hash.

The proof pi allows a Verifier holding the public key PK to verify

that beta is the correct VRF hash of input alpha under key PK. Thus,

the VRFs defined in this document also come with an algorithm

VRF_verify(PK, alpha, pi)

that outputs (VALID, beta = VRF_proof_to_hash(pi)) if pi is valid,

and INVALID otherwise.

3. VRF Security Properties

VRFs are designed to ensure the following security properties:

uniqueness (full or trusted), collision resistance (full or

trusted), and pseudorandomness (full or selective). Some are

designed to also ensure unpredictability under malicious key

generation. We now describe these properties.

3.1. Full Uniqueness

Uniqueness means that, for any fixed VRF public key and for any

input alpha, it is infeasible to find proofs for more than one VRF

output beta.

More precisely, "full uniqueness" means that an adversary cannot

find

a VRF public key PK,

a VRF input alpha,

and two proofs pi1 and pi2

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

such that

VRF_verify(PK, alpha, pi1) outputs (VALID, beta1),

VRF_verify(PK, alpha, pi2) outputs (VALID, beta2),

and beta1 is not equal to beta2.

3.2. Full Collison Resistance

Like cryptographic hash functions, VRFs are collision resistant.

Collison resistance means that it is infeasible to find two

different inputs alpha1 and alpha2 with the same output beta.

More precisely, "full collision resistance" means that an adversary

cannot find

a VRF public key PK,

two VRF inputs alpha1 and alpha2 that are not equal to each

other,

and two proofs pi1 and pi2

such that

VRF_verify(PK, alpha1, pi1) outputs (VALID, beta1),

VRF_verify(PK, alpha2, pi2) outputs (VALID, beta2),

and beta1 is equal to beta2.

3.3. Trusted Uniqueness and Trusted Collision Resistance

Full uniqueness and full collision resistance hold even if the VRF

keys are generated maliciously. For some applications, it is

sufficient for a VRF to possess weaker security properties than full

uniqueness and full collision resistance, called "trusted

uniqueness" and "trusted collision resistance". These properties are

the same as full uniqueness and full collision resistance,

respectively, but are not guaranteed to hold if the adversary gets

to choose the VRF public key PK. Instead, they are guaranteed to

hold only if the VRF keys PK and SK are generated as specified by

the VRF key generation algorithm and then given to the adversary. In

other words, they are guaranteed to hold even if the adversary has

the knowledge of SK and PK, but not guaranteed to hold if the

adversary has the ability to choose SK and PK.

As further discussed in Section 7.1.1, some VRFs specified in this

document satisfy only trusted uniqueness and trusted collision

¶

* ¶

* ¶

* ¶

¶

¶

* ¶

*

¶

* ¶

¶

* ¶

* ¶

* ¶

¶

resistance. VRFs in this document that satisfy only trusted

uniqueness and trusted collision resistance MUST NOT be used in

applications that need protection against adversarial VRF key

generation.

3.4. Full Pseudorandomness or Selective Pseudorandomness

Pseudorandomness ensures that when someone who does not know SK sees

a VRF hash output beta without its corresponding VRF proof pi, then

beta is indistinguishable from a random value.

More precisely, suppose the public and secret VRF keys (PK, SK) were

generated correctly. Pseudorandomness ensures that the VRF hash

output beta (without its corresponding VRF proof pi) on any

adversarially chosen "target" VRF input alpha looks

indistinguishable from random for any adversary who does not know

the VRF secret key SK. This holds even if the adversary sees VRF

hash outputs beta' and proofs pi' for multiple other inputs alpha'

(and even if those other inputs alpha' are chosen by the adversary).

"Full pseudorandomness" security property holds even against an

adversary who is allowed to choose the "target" VRF input alpha at

any time, even after it observes VRF outputs beta' and proofs pi' on

a variety of chosen inputs alpha'.

"Selective pseudorandomness" is a weaker security property that

suffices in many applications. This security property holds against

an adversary who chooses the target VRF input alpha first, before it

learns the VRF public key PK and obtains VRF outputs beta' and

proofs pi' on other inputs alpha' of its choice.

As further discussed in Section 7.3, VRFs specified in this document

satisfy both full pseudorandomness and selective pseudorandomness,

but their quantitative security against the selective

pseudorandomness attack is stronger.

It is important to remember that the VRF output beta is always

distinguishable from random by the Prover, or by any other party

that knows the VRF secret key SK. Such a party can easily

distinguish beta from a random value by comparing beta to the result

of VRF_hash(SK, alpha).

Similarly, the VRF output beta is always distinguishable from random

by any party that knows a valid VRF proof pi corresponding to the

VRF input alpha, even if this party does not know the VRF secret key

SK. Such a party can easily distinguish beta from a random value by

checking whether VRF_verify(PK, alpha, pi) returns (VALID, beta).

¶

¶

¶

¶

¶

¶

¶

¶

Additionally, the VRF output beta may be distinguishable from random

if VRF key generation was not done correctly. (For example, if VRF

keys were generated with bad randomness.)

3.5. Unpredictability Under Malicious Key Generation

As explained in Section 3.4, pseudorandomness cannot hold against

malicious key generation. For instance, if an adversary outputs VRF

keys that are deterministically generated (or hard-coded and

publicly known), then the outputs are easily derived by anyone and

are therefore not pseudorandom.

There is, however, a different type of unpredictability that is

desirable in certain VRF applications (such as leader selection in

the consensus protocols of [GHMVZ17] and [DGKR18]), called

"unpredictability under malicious key generation". This property is

similar to the unpredictability achieved by an (ordinary, unkeyed)

cryptographic hash function: if the input has enough entropy (i.e.,

cannot be predicted), then the correct output is indistinguishable

from uniformly random, no matter how the VRF keys are generated.

A formal definition of this property appears in Section 3.2 of

[DGKR18]. As further discussed in Section 7.1.3, only some VRFs

specified in this document satisfy this property.

4. RSA Full Domain Hash VRF (RSA-FDH-VRF)

The RSA Full Domain Hash VRF (RSA-FDH-VRF) is a VRF that, for

suitable key lengths, satisfies the "trusted uniqueness", "trusted

collision resistance", and "full pseudorandomness" properties

defined in Section 3, as further discussed in Section 7. Its

security follows from the standard RSA assumption in the random

oracle model. Formal security proofs are in [PWHVNRG17].

The VRF computes the proof pi as a deterministic RSA signature on

input alpha using the RSA Full Domain Hash Algorithm [RFC8017]

parametrized with the selected hash algorithm. RSA signature

verification is used to verify the correctness of the proof. The VRF

hash output beta is simply obtained by hashing the proof pi with the

selected hash algorithm.

The key pair for RSA-FDH-VRF MUST be generated in a way that it

satisfies the conditions specified in Section 3 of [RFC8017].

In this section, the notation from [RFC8017] is used.

Parameters used:

(n, e) - RSA public key

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

K - RSA private key (its representation is implementation-

dependent)

k - length in octets of the RSA modulus n (k must be less than

2^32)

Fixed options (specified in Section 4.4):

Hash - cryptographic hash function

hLen - output length in octets of hash function Hash

suite_string - an octet string specifying the RSA-FDH-VRF

ciphersuite, which determines the above options

Primitives used:

I2OSP - Conversion of a nonnegative integer to an octet string as

defined in Section 4.1 of [RFC8017] (given an integer and a

length in octets, produces a big-endian representation of the

integer, zero-padded to the desired length)

OS2IP - Conversion of an octet string to a nonnegative integer as

defined in Section 4.2 of [RFC8017] (given a big-endian encoding

of an integer, produces the integer)

RSASP1 - RSA signature primitive as defined in Section 5.2.1 of

[RFC8017] (given a private key and an input, raises the input to

the private RSA exponent modulo n)

RSAVP1 - RSA verification primitive as defined in Section 5.2.2

of [RFC8017] (given a public key and an input, raises the input

to the public RSA exponent modulo n)

MGF1 - Mask Generation Function based on the hash function Hash

as defined in Section B.2.1 of [RFC8017] (given an input,

produces a random-oracle-like output of desired length)

|| - octet string concatenation

4.1. RSA-FDH-VRF Proving

RSAFDHVRF_prove(K, alpha_string[, MGF_salt])

Input:

K - RSA private key

alpha_string - VRF hash input, an octet string

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Optional Input:

MGF_salt - a public octet string used as a hash function salt;

this input is not used when MGF_salt is specified as part of the

ciphersuite

Output:

pi_string - proof, an octet string of length k

Steps:

mgf_domain_separator = 0x01

EM = MGF1(suite_string || mgf_domain_separator || MGF_salt ||

alpha_string, k - 1)

m = OS2IP(EM)

s = RSASP1(K, m)

pi_string = I2OSP(s, k)

Output pi_string

4.2. RSA-FDH-VRF Proof to Hash

RSAFDHVRF_proof_to_hash(pi_string)

Input:

pi_string - proof, an octet string of length k

Output:

beta_string - VRF hash output, an octet string of length hLen

Important note:

RSAFDHVRF_proof_to_hash should be run only on pi_string that is

known to have been produced by RSAFDHVRF_prove, or from within

RSAFDHVRF_verify as specified in Section 4.3.

Steps:

proof_to_hash_domain_separator = 0x02

beta_string = Hash(suite_string ||

proof_to_hash_domain_separator || pi_string)

Output beta_string

¶

¶

¶

¶

¶

1. ¶

2.

¶

3. ¶

4. ¶

5. ¶

6. ¶

¶

¶

¶

¶

¶

¶

¶

¶

1. ¶

2.

¶

3. ¶

4.3. RSA-FDH-VRF Verifying

RSAFDHVRF_verify((n, e), alpha_string, pi_string[, MGF_salt])

Input:

(n, e) - RSA public key

alpha_string - VRF hash input, an octet string

pi_string - proof to be verified, an octet string of length k

Optional Input:

MGF_salt - a public octet string used as a hash function salt;

this input is not used when MGF_salt is specified as part of the

ciphersuite

Output:

Output:

("VALID", beta_string), where beta_string is the VRF hash output,

an octet string of length hLen; or

"INVALID"

Steps:

s = OS2IP(pi_string)

m = RSAVP1((n, e), s); if RSAVP1 returns "signature

representative out of range", output "INVALID" and stop.

mgf_domain_separator = 0x01

EM' = MGF1(suite_string || mgf_domain_separator || MGF_salt ||

alpha_string, k - 1)

m' = OS2IP(EM')

If m and m' are equal, output ("VALID",

RSAFDHVRF_proof_to_hash(pi_string)); else output "INVALID".

4.4. RSA-FDH-VRF Ciphersuites

This document defines RSA-FDH-VRF-SHA256 as follows:

suite_string = 0x01

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

1. ¶

2.

¶

3. ¶

4.

¶

5. ¶

6.

¶

¶

* ¶

The hash function Hash is SHA-256 as specified in [RFC6234], with

hLen = 32

MGF_salt = I2OSP(k, 4) || I2OSP(n, k)

This document defines RSA-FDH-VRF-SHA384 as follows:

suite_string = 0x02

The hash function Hash is SHA-384 as specified in [RFC6234], with

hLen = 48

MGF_salt = I2OSP(k, 4) || I2OSP(n, k)

This document defines RSA-FDH-VRF-SHA512 as follows:

suite_string = 0x03

The hash function Hash is SHA-512 as specified in [RFC6234], with

hLen = 64

MGF_salt = I2OSP(k, 4) || I2OSP(n, k)

5. Elliptic Curve VRF (ECVRF)

The Elliptic Curve Verifiable Random Function (ECVRF) is a VRF that,

for suitable parameter choices, satisfies the "full uniqueness",

"trusted collision resistance", and "full pseudorandomness

properties" defined in Section 3. If validate_key parameter given to

the ECVRF_verify is TRUE, then the ECVRF additionally satisfies

"full collision resistance" and "unpredictability under malicious

key generation". See Section 7 for further discussion. Formal

security proofs are in [PWHVNRG17].

Notation used:

Elliptic curve operations are written in additive notation, with

P+Q denoting point addition and x*P denoting scalar

multiplication of a point P by a scalar x

x^y - x raised to the power y

x*y - x multiplied by y

s || t - concatenation of octet strings s and t

0xMN (where M and N are hexadecimal digits) - a single octet with

value M*16+N; equivalently, int_to_string(M*16+N, 1), where

int_to_string is as defined below.

*

¶

* ¶

¶

* ¶

*

¶

* ¶

¶

* ¶

*

¶

* ¶

¶

¶

¶

¶

¶

¶

¶

Fixed options (specified in Section 5.5):

F - finite field

fLen - length, in octets, of an element in F encoded as an octet

string

E - elliptic curve (EC) defined over F

ptLen - length, in octets, of a point on E encoded as an octet

string

G - subgroup of E of large prime order

q - prime order of group G

qLen - length of q in octets, i.e., smallest integer such that

2^(8qLen)>q

cLen - length, in octets, of a challenge value used by the VRF

(note that in the typical case, cLen is qLen/2 or close to it)

cofactor - number of points on E divided by q

B - generator of group G

Hash - cryptographic hash function

hLen - output length in octets of Hash (hLen must be at least

cLen; in the typical case, it is at least qLen)

ECVRF_encode_to_curve - a function that hashes strings to points

on E.

ECVRF_nonce_generation - a function that derives a pseudorandom

nonce from SK and the input as part of ECVRF proving.

suite_string - an octet string specifying the ECVRF ciphersuite,

which determines the above options as well as type conversions

and parameter generation

Type conversions (specified in Section 5.5):

int_to_string(a, len) - conversion of nonnegative integer a to

octet string of length len

string_to_int(a_string) - conversion of an octet string a_string

to a nonnegative integer

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

point_to_string - conversion of a point on E to an ptLen-octet

string

string_to_point - conversion of an ptLen-octet string to a point

on E. string_to_point returns INVALID if the octet string does

not convert to a valid EC point on the curve E.

Note that with certain software libraries (for big integer and

elliptic curve arithmetic), the int_to_string and point_to_string

conversions are not needed, when the libraries encode integers

and EC points in the same way as required by the ciphersuites.

For example, in some implementations, EC point operations will

take octet strings as inputs and produce octet strings as

outputs, without introducing a separate elliptic curve point

type.

Parameters used (the generation of these parameters is specified in

Section 5.5):

SK - VRF secret key

x - VRF secret scalar, an integer. Note: depending on the

ciphersuite used, the VRF secret scalar may be equal to SK; else,

it is derived from SK

Y = x*B - VRF public key, an point on E

PK_string = point_to_string(Y) - VRF public key represented as an

octet string

encode_to_curve_salt - a public value used as a hash function

salt

5.1. ECVRF Proving

ECVRF_prove(SK, alpha_string[, encode_to_curve_salt])

Input:

SK - VRF secret key

alpha_string - input alpha, an octet string

Optional input:

encode_to_curve_salt - a public salt value, an octet string; this

input is not used when encode_to_curve_salt is specified as part

of the ciphersuite

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Output:

pi_string - VRF proof, octet string of length ptLen+cLen+qLen

Steps:

Use SK to derive the VRF secret scalar x and the VRF public key

Y = x*B

(this derivation depends on the ciphersuite, as per Section

5.5;

these values can be cached, for example, after key generation,

and need not be rederived each time)

H = ECVRF_encode_to_curve(encode_to_curve_salt, alpha_string)

(see Section 5.4.1)

h_string = point_to_string(H)

Gamma = x*H

k = ECVRF_nonce_generation(SK, h_string) (see Section 5.4.2)

c = ECVRF_challenge_generation(Y, H, Gamma, k*B, k*H) (see

Section 5.4.3)

s = (k + c*x) mod q

pi_string = point_to_string(Gamma) || int_to_string(c, cLen) ||

int_to_string(s, qLen)

Output pi_string

5.2. ECVRF Proof to Hash

ECVRF_proof_to_hash(pi_string)

Input:

pi_string - VRF proof, octet string of length ptLen+cLen+qLen

Output:

"INVALID", or

beta_string - VRF hash output, octet string of length hLen

¶

¶

¶

1.

¶

¶

¶

2.

¶

3. ¶

4. ¶

5. ¶

6.

¶

7. ¶

8.

¶

9. ¶

¶

¶

¶

¶

¶

¶

Important note:

ECVRF_proof_to_hash should be run only on pi_string that is known

to have been produced by ECVRF_prove, or from within ECVRF_verify

as specified in Section 5.3.

Steps:

D = ECVRF_decode_proof(pi_string) (see Section 5.4.4)

If D is "INVALID", output "INVALID" and stop

(Gamma, c, s) = D

proof_to_hash_domain_separator_front = 0x03

proof_to_hash_domain_separator_back = 0x00

beta_string = Hash(suite_string ||

proof_to_hash_domain_separator_front ||

point_to_string(cofactor * Gamma) ||

proof_to_hash_domain_separator_back)

Output beta_string

5.3. ECVRF Verifying

ECVRF_verify(PK_string, alpha_string, pi_string[,

encode_to_curve_salt, validate_key])

Input:

PK_string - public key, an octet string

alpha_string - VRF input, octet string

pi_string - VRF proof, octet string of length ptLen+cLen+qLen

Optional input:

encode_to_curve_salt - a public salt value, an octet string; this

input is not used when encode_to_curve_salt is specified as part

of the ciphersuite

validate_key - a boolean. An implementation MAY support only the

option of validate_key = TRUE, or only the option of validate_key

= FALSE, in which case this input is not needed. If an

implementation supports only one option, it MUST specify which

option is supports.

¶

¶

¶

1. ¶

2. ¶

3. ¶

4. ¶

5. ¶

6.

¶

7. ¶

¶

¶

¶

¶

¶

¶

¶

¶

Output:

("VALID", beta_string), where beta_string is the VRF hash output,

octet string of length hLen; or

"INVALID"

Steps:

Y = string_to_point(PK_string)

If Y is "INVALID", output "INVALID" and stop

If validate_key, run ECVRF_validate_key(Y) (Section 5.4.5); if

it outputs "INVALID", output "INVALID" and stop

D = ECVRF_decode_proof(pi_string) (see Section 5.4.4)

If D is "INVALID", output "INVALID" and stop

(Gamma, c, s) = D

H = ECVRF_encode_to_curve(encode_to_curve_salt, alpha_string)

(see Section 5.4.1)

U = s*B - c*Y

V = s*H - c*Gamma

c' = ECVRF_challenge_generation(Y, H, Gamma, U, V) (see Section

5.4.3)

If c and c' are equal, output ("VALID",

ECVRF_proof_to_hash(pi_string)); else output "INVALID"

Note that the first three steps need to be performed only once for a

given public key.

5.4. ECVRF Auxiliary Functions

5.4.1. ECVRF Encode to Curve

The ECVRF_encode_to_curve algorithm takes a public salt (see Section

7.9) and the VRF input alpha and converts it to H, an EC point in G.

This algorithm is the only place the VRF input alpha is used for

proving and verifying. See Section 7.7 for further discussion.

This section specifies a number of such algorithms, which are not

compatible with each other and are intended to use with various

ciphersuites specified in Section 5.5.

¶

¶

¶

¶

1. ¶

2. ¶

3.

¶

4. ¶

5. ¶

6. ¶

7.

¶

8. ¶

9. ¶

10.

¶

11.

¶

¶

¶

¶

Input:

encode_to_curve_salt - public salt value, an octet string

alpha_string - value to be hashed, an octet string

Output:

H - hashed value, a point in G

5.4.1.1. ECVRF_encode_to_curve_try_and_increment

The following

ECVRF_encode_to_curve_try_and_increment(encode_to_curve_salt,

alpha_string) algorithm implements ECVRF_encode_to_curve in a simple

and generic way that works for any elliptic curve. To use this

algorithm, hLen MUST be at least fLen.

The running time of this algorithm depends on alpha_string. For the

ciphersuites specified in Section 5.5, this algorithm is expected to

find a valid curve point after approximately two attempts (i.e.,

when ctr=1) on average.

However, because the running time of algorithm depends on

alpha_string, this algorithm SHOULD be avoided in applications where

it is important that the VRF input alpha remain secret.

ECVRF_encode_to_curve_try_and_increment(encode_to_curve_salt,

alpha_string)

Fixed option (specified in Section 5.5):

interpret_hash_value_as_a_point - a function that attempts to

convert a cryptographic hash value to a point on E; may output

INVALID.

Steps:

ctr = 0

encode_to_curve_domain_separator_front = 0x01

encode_to_curve_domain_separator_back = 0x00

H = "INVALID"

While H is "INVALID" or H is the identity element of the

elliptic curve group:

ctr_string = int_to_string(ctr, 1)

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

1. ¶

2. ¶

3. ¶

4. ¶

5.

¶

a. ¶

hash_string = Hash(suite_string ||

encode_to_curve_domain_separator_front ||

encode_to_curve_salt || alpha_string || ctr_string ||

encode_to_curve_domain_separator_back)

H = interpret_hash_value_as_a_point(hash_string)

If H is not "INVALID" and cofactor > 1, set H = cofactor *

H

ctr = ctr + 1

Output H

Note even though the loop is infinite as written, and

int_to_string(ctr,1) may fail when ctr reaches 256,

interpret_hash_value_as_a_point functions specified in Section 5.5

will succeed on roughly half hash_string values. Thus the loop is

expected to stop after two iterations, and ctr is overwhelmingly

unlikely (probability about 2^-256) to reach 256.

5.4.1.2. ECVRF_encode_to_curve_h2c_suite

The ECVRF_encode_to_curve_h2c_suite(encode_to_curve_salt,

alpha_string) algorithm implements ECVRF_encode_to_curve using one

of the several hash-to-curve options defined in [I-D.irtf-cfrg-hash-

to-curve]. The specific choice of the hash-to-curve option (called

Suite ID in [I-D.irtf-cfrg-hash-to-curve]) is given by the

h2c_suite_ID_string parameter.

ECVRF_encode_to_curve_h2c_suite(encode_to_curve_salt, alpha_string)

Fixed option (specified in Section 5.5):

h2c_suite_ID_string - a hash-to-curve suite ID, encoded in ASCII

(see discussion below)

Steps:

string_to_be_hashed = encode_to_curve_salt || alpha_string

H = encode(string_to_be_hashed)

(the encode function is discussed below)

Output H

The encode function is provided by the hash-to-curve suite whose ID

is h2c_suite_ID_string, as specified in [I-D.irtf-cfrg-hash-to-

b.

¶

c. ¶

d.

¶

e. ¶

6. ¶

¶

¶

¶

¶

¶

¶

1. ¶

2. ¶

¶

3. ¶

curve], Section 8. The domain separation tag DST, a parameter to the

hash-to-curve suite, SHALL be set to

"ECVRF_" || h2c_suite_ID_string || suite_string

where "ECVRF_" is represented as a 6-byte ASCII encoding (in

hexadecimal, octets 45 43 56 52 46 5F).

5.4.2. ECVRF Nonce Generation

The following algorithms generate the nonce value k in a

deterministic pseudorandom fashion. This section specifies a number

of such algorithms, which are not compatible with each other. The

choice of a particular algorithm from the options specified in this

section depends on the ciphersuite, as specified in Section 5.5.

5.4.2.1. ECVRF Nonce Generation from RFC 6979

ECVRF_nonce_generation_RFC6979(SK, h_string)

Input:

SK - an ECVRF secret key

h_string - an octet string

Output:

k - an integer nonce between 1 and q-1

The ECVRF_nonce_generation function is as specified in [RFC6979]

Section 3.2 where

Input m is set equal to h_string

The "suitable for DSA or ECDSA" check in step h.3 is omitted

The hash function H is Hash and its output length hlen (in bits)

is set as hLen*8

The secret key x is set equal to the VRF secret scalar x

The prime q is the same as in this specification

qlen is the binary length of q, i.e., the smallest integer such

that 2^qlen > q (this qlen is not to be confused with qLen in

this document, which is the length of q in octets)

All the other values and primitives as defined in [RFC6979]

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

5.4.2.2. ECVRF Nonce Generation from RFC 8032

The following is from Steps 2-3 of Section 5.1.6 in [RFC8032]. To

use this algorithm, hLen MUST be at least 64.

ECVRF_nonce_generation_RFC8032(SK, h_string)

Input:

SK - an ECVRF secret key

h_string - an octet string

Output:

k - an integer nonce between 0 and q-1

Steps:

hashed_sk_string = Hash(SK)

truncated_hashed_sk_string =

hashed_sk_string[32]...hashed_sk_string[63]

k_string = Hash(truncated_hashed_sk_string || h_string)

k = string_to_int(k_string) mod q

5.4.3. ECVRF Challenge Generation

ECVRF_challenge_generation(P1, P2, P3, P4, P5)

Input:

P1, P2, P3, P4, P5 - EC points

Output:

c - challenge value, integer between 0 and 2^(8*cLen)-1

Steps:

challenge_generation_domain_separator_front = 0x02

Initialize str = suite_string ||

challenge_generation_domain_separator_front

for PJ in [P1, P2, P3, P4, P5]:

str = str || point_to_string(PJ)

¶

¶

¶

¶

¶

¶

¶

¶

1. ¶

2.

¶

3. ¶

4. ¶

¶

¶

¶

¶

¶

¶

1. ¶

2.

¶

3. ¶

¶

challenge_generation_domain_separator_back = 0x00

str = str || challenge_generation_domain_separator_back

c_string = Hash(str)

truncated_c_string = c_string[0]...c_string[cLen-1]

c = string_to_int(truncated_c_string)

Output c

5.4.4. ECVRF Decode Proof

ECVRF_decode_proof(pi_string)

Input:

pi_string - VRF proof, octet string (ptLen+cLen+qLen octets)

Output:

"INVALID", or

Gamma - a point on E

c - integer between 0 and 2^(8*cLen)-1

s - integer between 0 and q-1

Steps:

gamma_string = pi_string[0]...pi_string[ptLen-1]

c_string = pi_string[ptLen]...pi_string[ptLen+cLen-1]

s_string = pi_string[ptLen+cLen]...pi_string[ptLen+cLen+qLen-1]

Gamma = string_to_point(gamma_string)

if Gamma = "INVALID" output "INVALID" and stop

c = string_to_int(c_string)

s = string_to_int(s_string)

if s >= q output "INVALID" and stop

Output Gamma, c, and s

4. ¶

5. ¶

6. ¶

7. ¶

8. ¶

9. ¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

1. ¶

2. ¶

3. ¶

4. ¶

5. ¶

6. ¶

7. ¶

8. ¶

9. ¶

5.4.5. ECVRF Validate Key

ECVRF_validate_key(Y)

Input:

Y - public key, a point on E

Output:

"VALID" or "INVALID"

Important note: the public key Y given to this procedure MUST be a

valid point on E.

Steps:

Let Y' = cofactor*Y

If Y' is the identity element of the elliptic curve group,

output "INVALID" and stop

Output "VALID"

Note that if the cofactor = 1, then Step 1 simply sets Y'=Y. In

particular, for the P-256 curve, ECVRF_validate_key simply ensures

that Y is not the point at infinity.

Any algorithm with identical input-output behavior MAY be used in

place of the above steps. For example, if the total number of Y

values that could cause Step 2 to output "INVALID" is small, it may

be more efficient to simply check Y against a fixed list of such

values. For example, the following algorithm MAY be used for the

edwards25519 curve:

PK_string = point_to_string(Y)

oneTwentySeven_string = 0x7F

y_string[31] = y_string[31] & oneTwentySeven_string

(this step clears the high-order bit of octet 31)

bad_pk[0] = int_to_string(0, 32)

bad_pk[1] = int_to_string(1, 32)

bad_y2 =

2707385501144840649318225287225658788936804267575313519463743609750303402022

¶

¶

¶

¶

¶

¶

¶

1. ¶

2.

¶

3. ¶

¶

¶

1. ¶

2. ¶

3. ¶

¶

4. ¶

5. ¶

6.

¶

bad_pk[2] = int_to_string(bad_y2, 32)

bad_pk[3] = int_to_string(p-bad_y2, 32)

bad_pk[4] = int_to_string(p-1, 32)

bad_pk[5] = int_to_string(p, 32)

bad_pk[6] = int_to_string(p+1, 32)

If y_string is in the list [bad_pk[0],...,bad_pk[6]], output

"INVALID" and stop

Output "VALID"

(This algorithm works for the following reason. Note that there are

8 bad points -- namely, the points whose order is 1, 2, 4, or 8 --

on the edwards25519 curve. Their y coordinates happen to be 0 (two

points of order 4), 1 (one point of order 1), bad_y2 (two points of

order 8), p-bad_y2 (two points of order 8), and p-1 (one point of

order 2). They can obtained by converting the points specified in

[X25519] to Edwards coordinates. Thus, bad_pk[0] (of order 4),

bad_pk[2] (of order 8), and bad_pk[3] (of order 8) each match two

bad points, depending on the sign of the x-coordinate, which was

cleared in step 3, in order to make sure that it does not affect the

comparison. bad_pk[1] (of order 1) and bad_pk[4] (of order 2) each

match one bad point, because x-coordinate is 0 for these two points.

Note that the first 5 list elements cover the 8 bad points. However,

in case the y-coordinate of the public key Y had not been modular

reduced by p, the list also includes bad_pk[5] and bad_pk[6], which

are simply bad_pk[0] and bad_pk[1] shifted by p. There is no need to

shift the other bad_pk values by p (or any bad_pk values by a larger

multiple of p), because their y coordinate would exceed 2^255; and

we ensure that y_string corresponds to an integer less than 2^255 in

step 3.)

5.5. ECVRF Ciphersuites

This document defines ECVRF-P256-SHA256-TAI as follows:

suite_string = 0x01.

The EC group G is the NIST P-256 elliptic curve, with curve

parameters as specified in [FIPS-186-4] (Section D.1.2.3) and

[RFC5114] (Section 2.6). For this group, fLen = qLen = 32 and

cofactor = 1.

cLen = 16.

7. ¶

8. ¶

9. ¶

10. ¶

11. ¶

12.

¶

13. ¶

¶

¶

* ¶

*

¶

* ¶

The key pair generation primitive is specified in Section 3.2.1

of [SECG1] (q, B, SK, and Y in this document correspond to n, G,

d, and Q in Section 3.2.1 of [SECG1]). In this ciphersuite, the

secret scalar x is equal to the secret key SK.

encode_to_curve_salt = PK_string

The ECVRF_nonce_generation function is as specified in Section

5.4.2.1.

The int_to_string function is the I2OSP function specified in

Section 4.1 of [RFC8017]. (This is big-endian representation.)

The string_to_int function is the OS2IP function specified in

Section 4.2 of [RFC8017]. (This is big-endian representation.)

The point_to_string function converts a point on E to an octet

string according to the encoding specified in Section 2.3.3 of

[SECG1] with point compression on. This implies ptLen = fLen + 1

= 33. (Note that certain software implementations do not

introduce a separate elliptic curve point type and instead

directly treat the EC point as an octet string per above

encoding. When using such an implementation, the point_to_string

function can be treated as the identity function.)

The string_to_point function converts an octet string to an a

point on E according to the encoding specified in Section 2.3.4

of [SECG1]. This function MUST output INVALID if the octet string

does not decode to a point on the curve E.

The hash function Hash is SHA-256 as specified in [RFC6234], with

hLen = 32.

The ECVRF_encode_to_curve function is as specified in Section

5.4.1.1, with interpret_hash_value_as_a_point(s) =

string_to_point(0x02 || s).

This document defines ECVRF-P256-SHA256-SSWU as identical to ECVRF-

P256-SHA256-TAI, except that:

suite_string = 0x02.

the ECVRF_encode_to_curve function is as specified in Section

5.4.1.2 with h2c_suite_ID_string = P256_XMD:SHA-256_SSWU_NU_ (the

suite is defined in [I-D.irtf-cfrg-hash-to-curve] Section 8.2)

This document defines ECVRF-EDWARDS25519-SHA512-TAI as follows:

suite_string = 0x03.

*

¶

* ¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

* ¶

*

¶

¶

* ¶

The EC group G is the edwards25519 elliptic curve with parameters

defined in Table 1 of [RFC8032]. For this group, fLen = qLen = 32

and cofactor = 8.

cLen = 16.

The secret key and generation of the secret scalar and the public

key are specified in Section 5.1.5 of [RFC8032].

encode_to_curve_salt = PK_string

The ECVRF_nonce_generation function is as specified in Section

5.4.2.2.

The int_to_string function as specified in the first paragraph of

Section 5.1.2 of [RFC8032]. (This is little-endian

representation.)

The string_to_int function interprets the string as an integer in

little-endian representation.

The point_to_string function converts an point on E to an octet

string according to the encoding specified in Section 5.1.2 of

[RFC8032]. This implies ptLen = fLen = 32. (Note that certain

software implementations do not introduce a separate elliptic

curve point type and instead directly treat the EC point as an

octet string per above encoding. When using such and

implementation, the point_to_string function can be treated as

the identity function.)

The string_to_point function converts an octet string to a point

on E according to the encoding specified in Section 5.1.3 of

[RFC8032]. This function MUST output INVALID if the octet string

does not decode to a point on the curve E.

The hash function Hash is SHA-512 as specified in [RFC6234], with

hLen = 64.

The ECVRF_encode_to_curve function is as specified in Section

5.4.1.1, with interpret_hash_value_as_a_point(s) =

string_to_point(s[0]...s[31]).

This document defines ECVRF-EDWARDS25519-SHA512-ELL2 as identical to

ECVRF-EDWARDS25519-SHA512-TAI, except:

suite_string = 0x04.

the ECVRF_encode_to_curve function is as specified in Section

5.4.1.2 with h2c_suite_ID_string =

*

¶

* ¶

*

¶

* ¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

* ¶

*

edwards25519_XMD:SHA-512_ELL2_NU_ (the suite is defined in [I-

D.irtf-cfrg-hash-to-curve] Section 8.5).

6. Implementation Status

Note to RFC editor: Remove before publication

A reference C++ implementation of ECVRF-P256-SHA256-TAI, ECVRF-P256-

SHA256-SSWU, ECVRF-EDWARDS25519-SHA512-TAI, and ECVRF-EDWARDS25519-

SHA512-ELL2 is available at https://github.com/reyzin/ecvrf. This

implementation is neither secure nor especially efficient, but can

be used to generate test vectors.

A Python implementation of an older version of ECVRF-EDWARDS25519-

SHA512-ELL2 from the -05 version of this draft is available at

https://github.com/integritychain/draft-irtf-cfrg-vrf-05.

A C implementation of an older version of ECVRF-EDWARDS25519-SHA512-

ELL2 from the -03 version of this draft is available at https://

github.com/algorand/libsodium/tree/draft-irtf-cfrg-vrf-03/src/

libsodium/crypto_vrf/ietfdraft03.

A Rust implementation of an older version of ECVRF-P256-SHA256-TAI

from the -05 version of this draft, as well as variants for the

sect163k1 and secp256k1 curves, is available at https://crates.io/

crates/vrf.

A C implementation of a variant of ECVRF-P256-SHA256-TAI from the

-05 version of this draft adapted for the secp256k1 curve is

available at https://github.com/aergoio/secp256k1-vrf.

An implementation of an earlier version of RSA-FDH-VRF (SHA-256) and

ECVRF-P256-SHA256-TAI was first developed as a part of the NSEC5

project [I-D.vcelak-nsec5] and is available at http://github.com/

fcelda/nsec5-crypto.

The Key Transparency project at Google uses a VRF implementation

that is similar to the ECVRF-P256-SHA256-TAI, with a few changes

including the use of SHA-512 instead of SHA-256. Its implementation

is available at https://github.com/google/keytransparency/blob/

master/core/crypto/vrf/

An implementation by Ryuji Ishiguro following an older version of

ECVRF-EDWARDS25519-SHA512-TAI from the -00 version of this draft is

available at https://github.com/r2ishiguro/vrf.

An implementation similar to ECVRF-EDWARDS25519-SHA512-ELL2 (with

some changes, including the use of SHA-3) is available as part of

the CONIKS implementation in Golang at https://github.com/coniks-

sys/coniks-go/tree/master/crypto/vrf.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://github.com/reyzin/ecvrf
https://github.com/integritychain/draft-irtf-cfrg-vrf-05
https://github.com/algorand/libsodium/tree/draft-irtf-cfrg-vrf-03/src/libsodium/crypto_vrf/ietfdraft03
https://github.com/algorand/libsodium/tree/draft-irtf-cfrg-vrf-03/src/libsodium/crypto_vrf/ietfdraft03
https://github.com/algorand/libsodium/tree/draft-irtf-cfrg-vrf-03/src/libsodium/crypto_vrf/ietfdraft03
https://crates.io/crates/vrf
https://crates.io/crates/vrf
https://github.com/aergoio/secp256k1-vrf
http://github.com/fcelda/nsec5-crypto
http://github.com/fcelda/nsec5-crypto
https://github.com/google/keytransparency/blob/master/core/crypto/vrf/
https://github.com/google/keytransparency/blob/master/core/crypto/vrf/
https://github.com/r2ishiguro/vrf
https://github.com/coniks-sys/coniks-go/tree/master/crypto/vrf
https://github.com/coniks-sys/coniks-go/tree/master/crypto/vrf

Open Whisper Systems also uses a VRF similar to ECVRF-EDWARDS25519-

SHA512-ELL2, called VXEdDSA, and specified here https://

whispersystems.org/docs/specifications/xeddsa/ and here https://

moderncrypto.org/mail-archive/curves/2017/000925.html.

Implementations in C and Java are available at https://github.com/

signalapp/curve25519-java and https://github.com/wavesplatform/

curve25519-java.

7. Security Considerations

7.1. Key Generation

Implementations of VRFs defined in this document MUST ensure that

they generate VRF keys correctly and using good randomness. However,

in some applications keys may be generated by an adversary who does

not necessarily implement this document. We now discuss the

implications of this possibility.

7.1.1. Uniqueness and collision resistance under malicious key

generation

See Section 3 for definitions of uniqueness and collision resistance

properties.

The RSA-FDH-VRF satisfies only the "trusted" variants of uniqueness

and collision resistance. Thus, for RSA-FDH-VRF, uniqueness and

collision resistance may not hold if the keys are generated

adversarially (specifically, if the RSA function specified in the

public key is not bijective because the modulus n or the exponent e

are chosen not in compliance with [RFC8017]); thus, RSA-FDH-VRF

defined in this document does not have "full uniqueness" and "full

collision resistance". Therefore, if malicious key generation is a

concern, the RSA-FDH-VRF has to be enhanced by additional

cryptographic checks (such as zero-knowledge proofs) that its public

key has the right form. These enhancements are left for future

specification.

For the ECVRF, the Verifier MUST obtain E and B from a trusted

source, such as a ciphersuite specification, rather than from the

prover. If the verifier does so, then the ECVRF satisfies the "full

uniqueness", ensuring uniqueness even under malicious key

generation. The ECVRF also satisfies "trusted collision resistance".

It additionally satisfies "full collision resistance" if

validate_key parameter given to the ECVRF_verify is TRUE. This

setting of ECVRF_verify ensures collision resistance under malicious

key generation.

¶

¶

¶

¶

¶

https://whispersystems.org/docs/specifications/xeddsa/
https://whispersystems.org/docs/specifications/xeddsa/
https://moderncrypto.org/mail-archive/curves/2017/000925.html
https://moderncrypto.org/mail-archive/curves/2017/000925.html
https://github.com/signalapp/curve25519-java
https://github.com/signalapp/curve25519-java
https://github.com/wavesplatform/curve25519-java
https://github.com/wavesplatform/curve25519-java

7.1.2. Pseudorandomness under malicious key generation

Without good randomness, the "pseudorandomness" properties of the

VRF (defined in Section 3.4) may not hold. Note that it is not

possible to guarantee pseudorandomness in the face of adversarially

generated VRF keys. This is because an adversary can always use bad

randomness to generate the VRF keys, and thus, the VRF output may

not be pseudorandom.

7.1.3. Unpredictability under malicious key generation

Unpredictability under malicious key generation (defined in Section

3.5) does not hold for the RSA-FDH-VRF. (Specifically, the VRF

output may be predictable if the RSA function specified in the

public key is far from bijective because the modulus n or the

exponent e are chosen not in compliance with [RFC8017].) If

unpredictability under malicious key generation is desired, the RSA-

FDH-VRF has to be enhanced by additional cryptographic checks (such

as zero-knowledge proofs) that its public key has the right form.

These enhancements are left for future specification.

Unpredictability under malicious key generation holds for the ECVRF

if validate_key parameter given to the ECVRF_verify is TRUE.

7.2. Security Levels

As shown in [PWHVNRG17], RSA-FDH-VRF satisfies the trusted

uniqueness property unconditionally. The security level of the RSA-

FDH-VRF, measured in bits, for the other two properties is as

follows (in the random oracle model for the functions MGF1 and

Hash):

For trusted collision resistance: approximately 8*min(k/2, hLen/

2) (as shown in [PWHVNRG17]).

For selective pseudorandomness: approximately as strong as the

security, in bits, of the RSA problem for the key (n, e) (as

shown in [GNPRVZ15]).

As shown in [PWHVNRG17], the security level of the ECVRF, measured

in bits, is as follows (in the random oracle model for the functions

Hash and ECVRF_encode_to_curve):

For uniqueness (both trusted and full): approximately 8*min(qLen,

cLen).

For collision resistance (trusted or full, depending on whether

validation is performed as explained in Section 7.1.1):

approximately 8*min(qLen/2, hLen/2).

¶

¶

¶

¶

*

¶

*

¶

¶

*

¶

*

¶

For the selective pseudorandomness property: approximately as

strong as the security, in bits, of the decisional Diffie-Hellman

problem in the group G (which is at most 8*qLen/2).

See Section 3 for the definitions of these security properties. See

Section 7.3 for the discussion of full pseudorandomness.

7.3. Selective vs. Full Pseudorandomness

[PWHVNRG17] presents cryptographic reductions to an underlying hard

problem (namely, the RSA problem for RSA-FDH-VRF and the Decisional

Diffie-Hellman problem for the ECVRF) to prove that the VRFs

specified in this document possess not only selective

pseudorandomness, but also full pseudorandomness (see Section 3.4

for an explanation of these notions). However, the cryptographic

reductions are tighter for selective pseudorandomness than for full

pseudorandomness. Specifically, the approximate provable security

level, measured in bits, for full pseudorandomness may be obtained

from the provable security level for selective pseudorandomness

(given in Section 7.2) by subtracting the binary logarithm of the

number of proofs produced for a given secret key. This holds for

both the RSA-FDH-VRF and the ECVRF.

While no known attacks against full pseudorandomness are stronger

than similar attacks against selective pseudorandomness, some

applications may be concerned about tightness of cryptographic

reductions to ensure specific levels of provable security. Such

applications may consider the following three options:

They may limit the number of proofs produced for a given secret

key, to reduce the loss in the provable security level.

They may work to ensure that selective pseudorandomness is

sufficient for the application. That is, they may design the

application in such a way that pseudorandomness of outputs

matters only for inputs that are chosen independently of the VRF

key.

They may increase security parameters to make up for the loose

security reduction. For RSA-FDH-VRF, this means increasing the

RSA key length. For ECVRF, this means increasing the

cryptographic strength of the EC group G by specifying a new

ciphersuite.

7.4. Proper pseudorandom nonce for ECVRF

The security of the ECVRF defined in this document relies on the

fact that the nonce k used in the ECVRF_prove algorithm is chosen

uniformly and pseudorandomly modulo q, and is unknown to the

adversary. Otherwise, an adversary may be able to recover the VRF

*

¶

¶

¶

¶

*

¶

*

¶

*

¶

secret scalar x (and thus break pseudorandomness of the VRF) after

observing several valid VRF proofs pi, using, for example,

techniques described in [BreHen19]. The nonce generation methods

specified in the ECVRF ciphersuites of Section 5.5 are designed with

this requirement in mind.

7.5. Side-channel attacks

Side channel attacks on cryptographic primitives are an important

issue. Implementers should take care to avoid side-channel attacks

that leak information about the VRF secret key SK (and the nonce k

used in the ECVRF), which is used in VRF_prove. In most

applications, VRF_proof_to_hash and VRF_verify algorithms take only

inputs that are public, and thus side channel attacks are typically

not a concern for these algorithms.

The VRF input alpha may be also a sensitive input to VRF_prove and

may need to be protected against side channel attacks. Below we

discuss one particular class of such attacks: timing attacks that

can be used to leak information about the VRF input alpha.

The ECVRF_encode_to_curve_try_and_increment algorithm defined in

Section 5.4.1.1 SHOULD NOT be used in applications where the VRF

input alpha is secret and is hashed by the VRF on-the-fly. This is

because the algorithm's running time depends on the VRF input alpha,

and thus creates a timing channel that can be used to learn

information about alpha. That said, for most inputs the amount of

information obtained from such a timing attack is likely to be small

(1 bit, on average), since the algorithm is expected to find a valid

curve point after only two attempts. However, there might be inputs

which cause the algorithm to make many attempts before it finds a

valid curve point; for such inputs, the information leaked in a

timing attack will be more than 1 bit.

ECVRF-P256-SHA256-SSWU and ECVRF-EDWARDS25519-SHA512-ELL2 can be

made to run in time independent of alpha, following recommendations

in [I-D.irtf-cfrg-hash-to-curve].

7.6. Proofs provide no secrecy for the VRF input

The VRF proof pi is not designed to provide secrecy and, in general,

may reveal the VRF input alpha. Anyone who knows PK and pi is able

to perform an offline dictionary attack to search for alpha, by

verifying guesses for alpha using VRF_verify. This is in contrast to

the VRF hash output beta which, without the proof, is pseudorandom

and thus is designed to reveal no information about alpha.

¶

¶

¶

¶

¶

¶

7.7. Prehashing

The VRFs specified in this document allow for read-once access to

the input alpha for both signing and verifying. Thus, additional

prehashing of alpha (as specified, for example, in [RFC8032] for

EdDSA signatures) is not needed, even for applications that need to

handle long alpha or to support the Initialize-Update-Finalize (IUF)

interface (in such an interface, alpha is not supplied all at once,

but rather in pieces by a sequence of calls to Update). The ECVRF,

in particular, uses alpha only in ECVRF_encode_to_curve. The curve

point H becomes the representative of alpha thereafter.

7.8. Hash function domain separation

Hashing is used for different purposes in the two VRFs.

Specifically, in the RSA-FDH-VRF, hashing is used in MGF1 and in

proof_to_hash; in the ECVRF, hashing is used in encode_to_curve,

nonce_generation, challenge_generation, and proof_to_hash. The

theoretical analysis treats each of these functions as a separate

hash function, modeled as a random oracle. This analysis still holds

even if the same hash function is used, as long as the four inputs

given to the hash function for a given SK and alpha are

overwhelmingly unlikely to equal each other or to any inputs given

to the hash function for the same SK and different alpha. This is

indeed the case for the RSA-FDH-VRF defined in this document,

because the second octets of the input to the hash function used in

MGF1 and in proof_to_hash are different.

This is also the case for the ECVRF ciphersuites defined in this

document, because:

inputs to the hash function used during nonce_generation are

unlikely to equal inputs used in encode_to_curve, proof_to_hash,

and challenge_generation. This follows since nonce_generation

inputs a secret to the hash function that is not used by honest

parties as input to any other hash function, and is not available

to the adversary.

the second octets of the inputs to the hash function used in

proof_to_hash, challenge_generation, and

encode_to_curve_try_and_increment are all different.

the last octet of the input to the hash function used in

proof_to_hash, challenge_generation, and

encode_to_curve_try_and_increment is always zero, and therefore

different from the last octet of the input to the hash function

used in ECVRF_encode_to_curve_h2c_suite, which is set equal to

the nonzero length of the domain separation tag by [I-D.irtf-

cfrg-hash-to-curve].

¶

¶

¶

*

¶

*

¶

*

¶

7.9. Hash function salting

In case a hash collision is found, in order to make it more

difficult for the adversary to exploit such a collision, the MGF1

function for the RSA-FDH-VRF and ECVRF_encode_to_curve function for

the ECVRF use a public value in addition to alpha (as a so-called

salt). This value is determined by the ciphersuite. For the

ciphersuites defined in this document, it is set equal to the string

representation of the RSA modulus and EC public key, respectively.

Implementations that do not use one of the ciphersuites (see Section

7.10) MAY use a different salt. For example, if a group of public

keys to share the same salt, then the hash of the VRF input alpha

will be the same for the entire group of public keys, which may aid

in some protocol that uses the VRF.

7.10. Futureproofing

If future designs need to specify variants (e.g., additional

ciphersuites) of the RSA-FDH-VRF or the ECVRF in this document,

then, to avoid the possibility that an adversary can obtain a VRF

output under one variant, and then claim it was obtained under

another variant, they should specify a different suite_string

constant. The suite_string constants in this document are all single

octets; if a future suite_string constant is longer than one octet,

then it should start with a different octet than the suite_string

constants in this document. Then, for the RSA-FDH-VRF, the inputs to

the hash function used in MGF1 and proof_to_hash will be different

from other ciphersuites. For the ECVRF, the inputs

ECVRF_encode_to_curve hash function used in producing H are then

guaranteed to be different from other ciphersuites; since all the

other hashing done by the prover depends on H, inputs to all the

hash functions used by the prover will also be different from other

ciphersuites as long as ECVRF_encode_to_curve is collision

resistant.

8. Change Log

Note to RFC Editor: if this document does not obsolete an existing

RFC, please remove this appendix before publication as an RFC.

00 - Forked this document from draft-goldbe-vrf-01.

01 - Minor updates, mostly highlighting TODO items.

02 - Added specification of elligator2 for Curve25519, along with

ciphersuites for ECVRF-ED25519-SHA512-Elligator. Changed ECVRF-

ED25519-SHA256 suite_string to ECVRF-ED25519-SHA512. (This change

made because Ed25519 in [RFC8032] signatures use SHA512 and not

SHA256.) Made ECVRF nonce generation a separate component, so

that nonces are deterministic. In ECVRF proving, changed + to -

¶

¶

¶

¶

¶

(and made corresponding verification changes) in order to be

consistent with EdDSA and ECDSA. Highlighted that

ECVRF_hash_to_curve acts like a prehash. Added "suites" variable

to ECVRF for futureproofing. Ensured domain separation for hash

functions by modifying hash_points and added discussion about

domain separation. Updated todos in the "additional

pseudorandomness property" section. Added a discussion of secrecy

into security considerations. Removed B and PK=Y from

ECVRF_hash_points because they are already present via H, which

is computed via hash_to_curve using the suite_string (which

identifies B) and Y.

03 - Changed Ed25519 conversions to little-endian, to match RFC

8032; added simple key validation for Ed25519; added Simple SWU

cipher suite; clarified Elligator and removed the extra x0 bit,

to make Montgomery and Edwards Elligator the same; added domain

separation for RSA VRF; improved notation throughout; added nonce

generation as a section; changed counter in try-and-increment

from four bytes to one, to avoid endian issues; renamed try-and-

increment ciphersuites to -TAI; added qLen as a separate

parameter; changed output length to hLen for ECVRF, to match

RSAVRF; made Verify return beta so unverified proofs don't end up

in proof_to_hash; added test vectors.

04 - Clarified handling of optional arguments x and PK in

ECVRF_prove. Edited implementation status to bring it up to date.

05 - Renamed ed25519 into the more commonly used edwards25519.

Corrected ECVRF_nonce_generation_RFC6979 (thanks to Gorka

Irazoqui Apecechea and Mario Cao Cueto for finding the problem)

and corresponding test vectors for the P256 suites. Added a

reference to the Rust implementation.

06 - Made some variable names more descriptive. Added a few

implementation references.

07 - Incorporated hash-to-curve draft by reference to replace our

own Elligator2 and Simple SWU. Clarified discussion of EC

parameters and functions. Added a 0 octet to all hashing to

enforce domain separation from hashing done inside hash-to-curve.

08 - Incorporated suggestions from crypto panel review by Chloe

Martindale. Changed Reyzin's affiliation. Updated references.

09 - Added a note to remove the implementation page before

publication.

10 - Added a check in ECVRF_decode_proof to ensure that s is

reduced mod q. Connected security properties (Section 3) and

security considerations (Section 7) with more cross-references.

¶

¶

¶

¶

¶

¶

¶

¶

¶

[RFC8174]

[RFC8017]

[RFC5114]

11 - Processed last call comments. Clarified various notation,

including lengths of various parameters for ECVRF; added error

handling to RSA-FDH-VRF; added security levels section; clarified

full vs trusted uniqueness and full vs selective

pseudorandomness; added RSA ciphersuites; made key validation

clearer; renamed hash_to_curve to encode_to_curve to be

consistent with the hash_to_curve draft; allowed a more general

salt in hashing, added the public key as input to

ECVRF_challenge_generation, and added an explanation about the

salt.

12 - Added k_string to edwards25519 test vectors

13 - Clarified key validation for edwards25519 and addressed IRTF

Chair comments

14 - Addressed IRSG review comments, which resulted in a

substantial reworking of section 3.

9. Contributors

This document would not be possible without the work of Moni Naor,

Sachin Vasant, and Asaf Ziv. Chloe Martindale provided a thorough

cryptographer's review. Liliya Akhmetzyanova, Tony Arcieri, Gary

Belvin, Mario Cao Cueto, Brian Chen, Sergey Gorbunov, Shumon Huque,

Gorka Irazoqui Apecechea, Marek Jankowski, Burt Kaliski, Mallory

Knodel, David C. Lawerence, Derek Ting-Haye Leung, Antonio

Marcedone, Piotr Nojszewski, Chris Peikert, Colin Perkins, Trevor

Perrin, Sam Scott, Stanislav Smyshlyaev, Adam Suhl, Nick Sullivan,

Christopher Wood, Jiayu Xu, and Annie Yousar provided valuable input

to this draft. Riad Wahby helped this document align with draft-

irtf-cfrg-hash-to-curve.

10. References

10.1. Normative References

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", DOI 10.17487/RFC8174, RFC 8174, BCP 14,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A.

Rusch, "PKCS #1: RSA Cryptography Specifications Version

2.2", DOI 10.17487/RFC8017, RFC 8017, November 2016,

<https://www.rfc-editor.org/info/rfc8017>.

Lepinski, M. and S. Kent, "Additional Diffie-Hellman

Groups for Use with IETF Standards", DOI 10.17487/

RFC5114, RFC 5114, January 2008, <https://www.rfc-

editor.org/info/rfc5114>.

¶

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8017
https://www.rfc-editor.org/info/rfc5114
https://www.rfc-editor.org/info/rfc5114

[RFC6234]

[RFC8032]

[RFC6979]

[I-D.irtf-cfrg-hash-to-curve]

[FIPS-186-4]

[SECG1]

[ANSI.X9-62-2005]

[BreHen19]

[DGKR18]

[GHMVZ17]

Eastlake 3rd, D. and T. Hansen, "US Secure Hash

Algorithms (SHA and SHA-based HMAC and HKDF)", RFC 6234,

DOI 10.17487/RFC6234, May 2011, <https://www.rfc-

editor.org/info/rfc6234>.

Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital

Signature Algorithm (EdDSA)", RFC 8032, DOI 10.17487/

RFC8032, January 2017, <https://www.rfc-editor.org/info/

rfc8032>.

Pornin, T., "Deterministic Usage of the Digital Signature

Algorithm (DSA) and Elliptic Curve Digital Signature

Algorithm (ECDSA)", RFC 6979, DOI 10.17487/RFC6979,

August 2013, <https://www.rfc-editor.org/info/rfc6979>.

Faz-Hernandez, A., Scott, S.,

Sullivan, N., Wahby, R. S., and C. A. Wood, "Hashing to

Elliptic Curves", Work in Progress, Internet-Draft,

draft-irtf-cfrg-hash-to-curve-16, 15 June 2022, <https://

datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-

curve-16>.

National Institute for Standards and Technology,

"Digital Signature Standard (DSS)", FIPS PUB 186-4, July

2013, <https://csrc.nist.gov/publications/detail/fips/

186/4/final>.

Standards for Efficient Cryptography Group (SECG), "SEC

1: Elliptic Curve Cryptography", Version 2.0, May 2009,

<http://www.secg.org/sec1-v2.pdf>.

10.2. Informative References

"Public Key Cryptography for the Financial

Services Industry: The Elliptic Curve Digital Signature

Algorithm (ECDSA)", ANSI X9.62, 2005.

Breitner, J. and N. Heninger, "Biased Nonce Sense:

Lattice Attacks against Weak ECDSA Signatures in

Cryptocurrencies", in Financial Cryptography, 2019,

<https://eprint.iacr.org/2019/023>.

David, B., Gazi, P., Kiayias, A., and A. Russell,

"Ouroboros Praos: An adaptively-secure, semi-synchronous

proof-of-stake protocol", in Advances in Cryptology -

EUROCRYPT, 2018, <https://eprint.iacr.org/2017/573>.

Gilad, Y., Hemo, R., Micali, Y., Vlachos, Y., and Y.

Zeldovich, "Algorand: Scaling Byzantine Agreements for

https://www.rfc-editor.org/info/rfc6234
https://www.rfc-editor.org/info/rfc6234
https://www.rfc-editor.org/info/rfc8032
https://www.rfc-editor.org/info/rfc8032
https://www.rfc-editor.org/info/rfc6979
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-16
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-16
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-16
https://csrc.nist.gov/publications/detail/fips/186/4/final
https://csrc.nist.gov/publications/detail/fips/186/4/final
http://www.secg.org/sec1-v2.pdf
https://eprint.iacr.org/2019/023
https://eprint.iacr.org/2017/573

[GNPRVZ15]

[I-D.vcelak-nsec5]

[MRV99]

[PWHVNRG17]

[X25519]

Cryptocurrencies", in Proceedings of the 26th Symposium

on Operating Systems Principles (SOSP), 2017, <https://

eprint.iacr.org/2017/454>.

Goldberg, S., Naor, M., Papadopoulos, D., Reyzin, L.,

Vasant, S., and A. Ziv, "NSEC5: Provably Preventing

DNSSEC Zone Enumeration", in NDSS, 2015, <https://

eprint.iacr.org/2014/582.pdf>.

Vcelak, J., Goldberg, S., Papadopoulos, D.,

Huque, S., and D. C. Lawrence, "NSEC5, DNSSEC

Authenticated Denial of Existence", Work in Progress,

Internet-Draft, draft-vcelak-nsec5-08, 29 December 2018,

<https://datatracker.ietf.org/doc/html/draft-vcelak-

nsec5-08>.

Micali, S., Rabin, M., and S. Vadhan, "Verifiable Random

Functions", in FOCS, 1999, <https://dash.harvard.edu/

handle/1/5028196>.

Papadopoulos, D., Wessels, D., Huque, S., Vcelak, J.,

Naor, M., Reyzin, L., and S. Goldberg, "Making NSEC5

Practical for DNSSEC", in ePrint Cryptology Archive

2017/099, February 2017, <https://eprint.iacr.org/

2017/099>.

Bernstein, D.J., "How do I validate Curve25519 public

keys?", 2006, <https://cr.yp.to/ecdh.html#validate>.

Appendix A. Test Vectors for the ECVRFs

The test vectors in this section were generated using the reference

implementation at https://github.com/reyzin/ecvrf.

A.1. ECVRF-P256-SHA256-TAI

The example secret keys and messages in Examples 1 and 2 are taken

from Appendix A.2.5 of [RFC6979].

Example 1:

SK = x =

c9afa9d845ba75166b5c215767b1d6934e50c3db36e89b127b8a622b120f6721

PK =

0360fed4ba255a9d31c961eb74c6356d68c049b8923b61fa6ce669622e60f29fb6

alpha = 73616d706c65 (ASCII "sample")

try_and_increment succeeded on ctr = 1

¶

¶

¶

¶

¶

¶

¶

https://eprint.iacr.org/2017/454
https://eprint.iacr.org/2017/454
https://eprint.iacr.org/2014/582.pdf
https://eprint.iacr.org/2014/582.pdf
https://datatracker.ietf.org/doc/html/draft-vcelak-nsec5-08
https://datatracker.ietf.org/doc/html/draft-vcelak-nsec5-08
https://dash.harvard.edu/handle/1/5028196
https://dash.harvard.edu/handle/1/5028196
https://eprint.iacr.org/2017/099
https://eprint.iacr.org/2017/099
https://cr.yp.to/ecdh.html#validate
https://github.com/reyzin/ecvrf

H =

0272a877532e9ac193aff4401234266f59900a4a9e3fc3cfc6a4b7e467a15d06d4

k =

0d90591273453d2dc67312d39914e3a93e194ab47a58cd598886897076986f77

U = k*B =

02bb6a034f67643c6183c10f8b41dc4babf88bff154b674e377d90bde009c21672

V = k*H =

02893ebee7af9a0faa6da810da8a91f9d50e1dc071240c9706726820ff919e8394

pi =

035b5c726e8c0e2c488a107c600578ee75cb702343c153cb1eb8dec77f4b5071b4a53f0a46f018bc2c56e58d383f2305e0975972c26feea0eb122fe7893c15af376b33edf7de17c6ea056d4d82de6bc02f

beta =

a3ad7b0ef73d8fc6655053ea22f9bede8c743f08bbed3d38821f0e16474b505e

Example 2:

SK = x =

c9afa9d845ba75166b5c215767b1d6934e50c3db36e89b127b8a622b120f6721

PK =

0360fed4ba255a9d31c961eb74c6356d68c049b8923b61fa6ce669622e60f29fb6

alpha = 74657374 (ASCII "test")

try_and_increment succeeded on ctr = 3

H =

02173119b4fff5e6f8afed4868a29fe8920f1b54c2cf89cc7b301d0d473de6b974

k =

5852353a868bdce26938cde1826723e58bf8cb06dd2fed475213ea6f3b12e961

U = k*B =

022779a2cafcb65414c4a04a4b4d2adf4c50395f57995e89e6de823250d91bc48e

V = k*H =

033b4a14731672e82339f03b45ff6b5b13dee7ada38c9bf1d6f8f61e2ce5921119

pi =

034dac60aba508ba0c01aa9be80377ebd7562c4a52d74722e0abae7dc3080ddb56c19e067b15a8a8174905b13617804534214f935b94c2287f797e393eb0816969d864f37625b443f30f1a5a33f2b3c854

beta =

a284f94ceec2ff4b3794629da7cbafa49121972671b466cab4ce170aa365f26d

The example secret key in Example 3 is taken from Appendix L.4.2 of

[ANSI.X9-62-2005].

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Example 3:

SK = x =

2ca1411a41b17b24cc8c3b089cfd033f1920202a6c0de8abb97df1498d50d2c8

PK =

03596375e6ce57e0f20294fc46bdfcfd19a39f8161b58695b3ec5b3d16427c274d

alpha =

4578616d706c65207573696e67204543445341206b65792066726f6d20417070656e646978204c2e342e32206f6620414e53492e58392d36322d32303035

(ASCII "Example using ECDSA key from Appendix L.4.2 of

ANSI.X9-62-2005")

try_and_increment succeeded on ctr = 1

H =

0258055c26c4b01d01c00fb57567955f7d39cd6f6e85fd37c58f696cc6b7aa761d

k =

5689e2e08e1110b4dda293ac21667eac6db5de4a46a519c73d533f69be2f4da3

U = k*B =

020f465cd0ec74d2e23af0abde4c07e866ae4e5138bded5dd1196b8843f380db84

V = k*H =

036cb6f811428fc4904370b86c488f60c280fa5b496d2f34ff8772f60ed24b2d1d

pi =

03d03398bf53aa23831d7d1b2937e005fb0062cbefa06796579f2a1fc7e7b8c667d091c00b0f5c3619d10ecea44363b5a599cadc5b2957e223fec62e81f7b4825fc799a771a3d7334b9186bdbee87316b1

beta =

90871e06da5caa39a3c61578ebb844de8635e27ac0b13e829997d0d95dd98c19

A.2. ECVRF-P256-SHA256-SSWU

The example secret keys and messages in Examples 4 and 5 are taken

from Appendix A.2.5 of [RFC6979].

Example 4:

SK = x =

c9afa9d845ba75166b5c215767b1d6934e50c3db36e89b127b8a622b120f6721

PK =

0360fed4ba255a9d31c961eb74c6356d68c049b8923b61fa6ce669622e60f29fb6

alpha = 73616d706c65 (ASCII "sample")

In SSWU: uniform_bytes =

5024e98d6067dec313af09ff0cbe78218324a645c2a4b0aae2453f6fe91aa3bd9471f7b4a5fbf128e4b53f0c59603f7e

In SSWU: u =

df565615a2372e8b31b8771f7503bafc144e48b05688b97958cc27ce29a8d810

In SSWU: x1 =

e7e39eb8a4c982426fcff629e55a3e13516cfeb62c02c369b1e750316f5e94eb

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

In SSWU: gx1 is a nonsquare

H =

02b31973e872d4a097e2cfae9f37af9f9d73428fde74ac537dda93b5f18dbc5842

k =

e92820035a0a8afe132826c6312662b6ea733fc1a0d33737945016de54d02dd8

U = k*B =

031490f49d0355ffcdf66e40df788bee93861917ee713acff79be40d20cc91a30a

V = k*H =

03701df0228138fa3d16612c0d720389326b3265151bc7ac696ea4d0591cd053e3

pi =

0331d984ca8fece9cbb9a144c0d53df3c4c7a33080c1e02ddb1a96a365394c7888782fffde7b842c38c20c08de6ec6c2e7027a97000f2c9fa4425d5c03e639fb48fde58114d755985498d7eb234cf4aed9

beta =

21e66dc9747430f17ed9efeda054cf4a264b097b9e8956a1787526ed00dc664b

Example 5:

SK = x =

c9afa9d845ba75166b5c215767b1d6934e50c3db36e89b127b8a622b120f6721

PK =

0360fed4ba255a9d31c961eb74c6356d68c049b8923b61fa6ce669622e60f29fb6

alpha = 74657374 (ASCII "test")

In SSWU: uniform_bytes =

910cc66d84a57985a1d15843dad83fd9138a109afb243b7fa5d64d766ec9ca3894fdcf46ebeb21a3972eb452a4232fd3

In SSWU: u =

d8b0107f7e7aa36390240d834852f8703a6dc407019d6196bda5861b8fc00181

In SSWU: x1 =

ccc747fa7318b9486ce4044adbbecaa084c27be6eda88eb7b7f3d688fd0968c7

In SSWU: gx1 is a square

H =

03ccc747fa7318b9486ce4044adbbecaa084c27be6eda88eb7b7f3d688fd0968c7

k =

febc3451ea7639fde2cf41ffd03f463124ecb3b5a79913db1ed069147c8a7dea

U = k*B =

031200f9900e96f811d1247d353573f47e0d9da601fc992566234fc1a5b37749ae

V = k*H =

02d3715dcfee136c7ae50e95ffca76f4ca6c29ddfb92a39c31a0d48e75c6605cd1

pi =

03f814c0455d32dbc75ad3aea08c7e2db31748e12802db23640203aebf1fa8db2743aad348a3006dc1caad7da28687320740bf7dd78fe13c298867321ce3b36b79ec3093b7083ac5e4daf3465f9f43c627

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

beta =

8e7185d2b420e4f4681f44ce313a26d05613323837da09a69f00491a83ad25dd

The example secret key in Example 6 is taken from Appendix L.4.2 of

[ANSI.X9-62-2005].

Example 6:

SK = x =

2ca1411a41b17b24cc8c3b089cfd033f1920202a6c0de8abb97df1498d50d2c8

PK =

03596375e6ce57e0f20294fc46bdfcfd19a39f8161b58695b3ec5b3d16427c274d

alpha =

4578616d706c65207573696e67204543445341206b65792066726f6d20417070656e646978204c2e342e32206f6620414e53492e58392d36322d32303035

(ASCII "Example using ECDSA key from Appendix L.4.2 of

ANSI.X9-62-2005")

In SSWU: uniform_bytes =

9b81d55a242d3e8438d3bcfb1bee985a87fd144802c9268cf9adeee160e6e9ff765569797a0f701cb4316018de2e7dd4

In SSWU: u =

e43c98c2ae06d13839fedb0303e5ee815896beda39be83fb11325b97976efdce

In SSWU: x1 =

be9e195a50f175d3563aed8dc2d9f513a5536c1e9aee1757d86c08d32d582a86

In SSWU: gx1 is a nonsquare

H =

022dd5150e5a2a24c66feab2f68532be1486e28e07f1b9a055cf38ccc16f6595ff

k =

8e29221f33564f3f66f858ba2b0c14766e1057adbd422c3e7d0d99d5e142b613

U = k*B =

03a8823ff9fd16bf879261c740b9c7792b77fee0830f21314117e441784667958d

V = k*H =

02d48fbb45921c755b73b25be2f23379e3ce69294f6cee9279815f57f4b422659d

pi =

039f8d9cdc162c89be2871cbcb1435144739431db7fab437ab7bc4e2651a9e99d5488405a11a6c7fc8defddd9e1573a563b7333aab4effe73ae9803274174c659269fd39b53e133dcd9e0d24f01288de9a

beta =

4fbadf33b42a5f42f23a6f89952d2e634a6e3810f15878b46ef1bb85a04fe95a

A.3. ECVRF-EDWARDS25519-SHA512-TAI

The example secret keys and messages in Examples 7, 8, and 9 are

taken from Section 7.1 of [RFC8032].

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Example 7:

SK =

9d61b19deffd5a60ba844af492ec2cc44449c5697b326919703bac031cae7f60

PK =

d75a980182b10ab7d54bfed3c964073a0ee172f3daa62325af021a68f707511a

alpha = (the empty string)

x =

307c83864f2833cb427a2ef1c00a013cfdff2768d980c0a3a520f006904de94f

try_and_increment succeeded on ctr = 0

H =

91bbed02a99461df1ad4c6564a5f5d829d0b90cfc7903e7a5797bd658abf3318

k_string =

7100f3d9eadb6dc4743b029736ff283f5be494128df128df2817106f345b8594b6d6da2d6fb0b4c0257eb337675d96eab49cf39e66cc2c9547c2bf8b2a6afae4

k =

8a49edbd1492a8ee09766befe50a7d563051bf3406cbffc20a88def030730f0f

U = k*B =

aef27c725be964c6a9bf4c45ca8e35df258c1878b838f37d9975523f09034071

V = k*H =

5016572f71466c646c119443455d6cb9b952f07d060ec8286d678615d55f954f

pi =

8657106690b5526245a92b003bb079ccd1a92130477671f6fc01ad16f26f723f26f8a57ccaed74ee1b190bed1f479d9727d2d0f9b005a6e456a35d4fb0daab1268a1b0db10836d9826a528ca76567805

beta =

90cf1df3b703cce59e2a35b925d411164068269d7b2d29f3301c03dd757876ff66b71dda49d2de59d03450451af026798e8f81cd2e333de5cdf4f3e140fdd8ae

Example 8:

SK =

4ccd089b28ff96da9db6c346ec114e0f5b8a319f35aba624da8cf6ed4fb8a6fb

PK =

3d4017c3e843895a92b70aa74d1b7ebc9c982ccf2ec4968cc0cd55f12af4660c

alpha = 72 (1 byte)

x =

68bd9ed75882d52815a97585caf4790a7f6c6b3b7f821c5e259a24b02e502e51

try_and_increment succeeded on ctr = 1

H =

5b659fc3d4e9263fd9a4ed1d022d75eaacc20df5e09f9ea937502396598dc551

k_string =

42589bbf0c485c3c91c1621bb4bfe04aed7be76ee48f9b00793b2342acb9c167cab856f9f9d4febc311330c20b0a8afd3743d05433e8be8d32522ecdc16cc5ce

k =

d8c3a66921444cb3427d5d989f9b315aa8ca3375e9ec4d52207711a1fdb44107

U = k*B =

1dcb0a4821a2c48bf53548228b7f170962988f6d12f5439f31987ef41f034ab3

V = k*H =

fd03c0bf498c752161bae4719105a074630a2aa5f200ff7b3995f7bfb1513423

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

pi =

f3141cd382dc42909d19ec5110469e4feae18300e94f304590abdced48aed5933bf0864a62558b3ed7f2fea45c92a465301b3bbf5e3e54ddf2d935be3b67926da3ef39226bbc355bdc9850112c8f4b02

beta =

eb4440665d3891d668e7e0fcaf587f1b4bd7fbfe99d0eb2211ccec90496310eb5e33821bc613efb94db5e5b54c70a848a0bef4553a41befc57663b56373a5031

Example 9:

SK =

c5aa8df43f9f837bedb7442f31dcb7b166d38535076f094b85ce3a2e0b4458f7

PK =

fc51cd8e6218a1a38da47ed00230f0580816ed13ba3303ac5deb911548908025

alpha = af82 (2 bytes)

x =

909a8b755ed902849023a55b15c23d11ba4d7f4ec5c2f51b1325a181991ea95c

try_and_increment succeeded on ctr = 0

H =

bf4339376f5542811de615e3313d2b36f6f53c0acfebb482159711201192576a

k_string =

38b868c335ccda94a088428cbf3ec8bc7955bfaffe1f3bd2aa2c59fc31a0febc59d0e1af3715773ce11b3bbdd7aba8e3505d4b9de6f7e4a96e67e0d6bb6d6c3a

k =

5ffdbc72135d936014e8ab708585fda379405542b07e3bd2c0bd48437fbac60a

U = k*B =

2bae73e15a64042fcebf062abe7e432b2eca6744f3e8265bc38e009cd577ecd5

V = k*H =

88cba1cb0d4f9b649d9a86026b69de076724a93a65c349c988954f0961c5d506

pi =

9bc0f79119cc5604bf02d23b4caede71393cedfbb191434dd016d30177ccbf8096bb474e53895c362d8628ee9f9ea3c0e52c7a5c691b6c18c9979866568add7a2d41b00b05081ed0f58ee5e31b3a970e

beta =

645427e5d00c62a23fb703732fa5d892940935942101e456ecca7bb217c61c452118fec1219202a0edcf038bb6373241578be7217ba85a2687f7a0310b2df19f

A.4. ECVRF-EDWARDS25519-SHA512-ELL2

The example secret keys and messages in Examples 10, 11, and 12 are

taken from Section 7.1 of [RFC8032].

Example 10:

SK =

9d61b19deffd5a60ba844af492ec2cc44449c5697b326919703bac031cae7f60

PK =

d75a980182b10ab7d54bfed3c964073a0ee172f3daa62325af021a68f707511a

alpha = (the empty string)

x =

307c83864f2833cb427a2ef1c00a013cfdff2768d980c0a3a520f006904de94f

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

In Elligator2: uniform_bytes =

d620782a206d9de584b74e23ae5ee1db5ca5298b3fc527c4867f049dee6dd419b3674967bd614890f621c128d72269ae

In Elligator2: u =

30f037b9745a57a9a2b8a68da81f397c39d46dee9d047f86c427c53f8b29a55c

In Elligator2: gx1 =

8cb66318fb2cea01672d6c27a5ab662ae33220961607f69276080a56477b4a08

In Elligator2: gx1 is a square

H =

b8066ebbb706c72b64390324e4a3276f129569eab100c26b9f05011200c1bad9

k_string =

b5682049fee54fe2d519c9afff73bbfad724e69a82d5051496a42458f817bed7a386f96b1a78e5736756192aeb1818a20efb336a205ffede351cfe88dab8d41c

k =

55cbb247af9b8372259a97b2cfec656d78868deb33b203d51b9961c364522400

U = k*B =

762f5c178b68f0cddcc1157918edf45ec334ac8e8286601a3256c3bbf858edd9

V = k*H =

4652eba1c4612e6fce762977a59420b451e12964adbe4fbecd58a7aeff5860af

pi =

7d9c633ffeee27349264cf5c667579fc583b4bda63ab71d001f89c10003ab46f14adf9a3cd8b8412d9038531e865c341cafa73589b023d14311c331a9ad15ff2fb37831e00f0acaa6d73bc9997b06501

beta =

9d574bf9b8302ec0fc1e21c3ec5368269527b87b462ce36dab2d14ccf80c53cccf6758f058c5b1c856b116388152bbe509ee3b9ecfe63d93c3b4346c1fbc6c54

Example 11:

SK =

4ccd089b28ff96da9db6c346ec114e0f5b8a319f35aba624da8cf6ed4fb8a6fb

PK =

3d4017c3e843895a92b70aa74d1b7ebc9c982ccf2ec4968cc0cd55f12af4660c

alpha = 72 (1 byte)

x =

68bd9ed75882d52815a97585caf4790a7f6c6b3b7f821c5e259a24b02e502e51

In Elligator2: uniform_bytes =

04ae20a9ad2a2330fb33318e376a2448bd77bb99e81d126f47952b156590444a9225b84128b66a2f15b41294fa2f2f6d

In Elligator2: u =

3092f033b16d4d5f74a3f7dc7091fe434b449065152b95476f121de899bb773d

In Elligator2: gx1 =

25d7fe7f82456e7078e99fdb24ef2582b4608357cdba9c39a8d535a3fd98464d

In Elligator2: gx1 is a nonsquare

H =

76ac3ccb86158a9104dff819b1ca293426d305fd76b39b13c9356d9b58c08e57

k_string =

88bf479281fd29a6cbdffd67e2c5ec0024d92f14eaed58f43f22f37c4c37f1d41e65c036fbf01f9fba11d554c07494d0c02e7e5c9d64be88ef78cab7544e444d

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

k =

9565956daeedf376cad61b829b2a4d21ba1b52e9b3e2457477a64630a9711003

U = k*B =

8ec26e77b8cb3114dd2265fe1564a4efb40d109aa3312536d93dfe3d8d80a061

V = k*H =

fe799eb5770b4e3a5a27d22518bb631db183c8316bb552155f442c62a47d1c8b

pi =

47b327393ff2dd81336f8a2ef10339112401253b3c714eeda879f12c509072ef055b48372bb82efbdce8e10c8cb9a2f9d60e93908f93df1623ad78a86a028d6bc064dbfc75a6a57379ef855dc6733801

beta =

38561d6b77b71d30eb97a062168ae12b667ce5c28caccdf76bc88e093e4635987cd96814ce55b4689b3dd2947f80e59aac7b7675f8083865b46c89b2ce9cc735

Example 12:

SK =

c5aa8df43f9f837bedb7442f31dcb7b166d38535076f094b85ce3a2e0b4458f7

PK =

fc51cd8e6218a1a38da47ed00230f0580816ed13ba3303ac5deb911548908025

alpha = af82 (2 bytes)

x =

909a8b755ed902849023a55b15c23d11ba4d7f4ec5c2f51b1325a181991ea95c

In Elligator2: uniform_bytes =

be0aed556e36cdfddf8f1eeddbb7356a24fad64cf95a922a098038f215588b216beabbfe6acf20256188e883292b7a3a

In Elligator2: u =

f6675dc6d17fc790d4b3f1c6acf689a13d8b5815f23880092a925af94cd6fa24

In Elligator2: gx1 =

a63d48e3247c903e22fdfb88fd9295e396712a5fe576af335dbe16f99f0af26c

In Elligator2: gx1 is a square

H =

13d2a8b5ca32db7e98094a61f656a08c6c964344e058879a386a947a4e189ed1

k_string =

a7ddd74a3a7d165d511b02fa268710ddbb3b939282d276fa2efcfa5aaf79cf576087299ca9234aacd7cd674d912deba00f4e291733ef189a51e36c861b3d683b

k =

1fda4077f737098b3f361c33a36cccafd7e9e9b720e1f84011254e25f37eed02

U = k*B =

a012f35433df219a88ab0f9481f4e0065d00422c3285f3d34a8b0202f20bac60

V = k*H =

fb613986d171b3e98319c7ca4dc44c5dd8314a6e5616c1a4f16ce72bd7a0c25a

pi =

926e895d308f5e328e7aa159c06eddbe56d06846abf5d98c2512235eaa57fdce35b46edfc655bc828d44ad09d1150f31374e7ef73027e14760d42e77341fe05467bb286cc2c9d7fde29120a0b2320d04

beta =

121b7f9b9aaaa29099fc04a94ba52784d44eac976dd1a3cca458733be5cd090a7b5fbd148444f17f8daf1fb55cb04b1ae85a626e30a54b4b0f8abf4a43314a58

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Authors' Addresses

Sharon Goldberg

Boston University

111 Cummington Mall

Boston, MA 02215

United States of America

Email: goldbe@cs.bu.edu

Leonid Reyzin

Boston University and Algorand

111 Cummington Mall

Boston, MA 02215

United States of America

Email: reyzin@bu.edu

Dimitrios Papadopoulos

Hong Kong University of Science and Technology

Clearwater Bay

Hong Kong

Email: dipapado@cse.ust.hk

Jan Vcelak

NS1

16 Beaver St

New York, NY 10004

United States of America

Email: jvcelak@ns1.com

mailto:goldbe@cs.bu.edu
mailto:reyzin@bu.edu
mailto:dipapado@cse.ust.hk
mailto:jvcelak@ns1.com

	Verifiable Random Functions (VRFs)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements
	1.2. Terminology

	2. VRF Algorithms
	3. VRF Security Properties
	3.1. Full Uniqueness
	3.2. Full Collison Resistance
	3.3. Trusted Uniqueness and Trusted Collision Resistance
	3.4. Full Pseudorandomness or Selective Pseudorandomness
	3.5. Unpredictability Under Malicious Key Generation

	4. RSA Full Domain Hash VRF (RSA-FDH-VRF)
	4.1. RSA-FDH-VRF Proving
	4.2. RSA-FDH-VRF Proof to Hash
	4.3. RSA-FDH-VRF Verifying
	4.4. RSA-FDH-VRF Ciphersuites

	5. Elliptic Curve VRF (ECVRF)
	5.1. ECVRF Proving
	5.2. ECVRF Proof to Hash
	5.3. ECVRF Verifying
	5.4. ECVRF Auxiliary Functions
	5.4.1. ECVRF Encode to Curve
	5.4.1.1. ECVRF_encode_to_curve_try_and_increment
	5.4.1.2. ECVRF_encode_to_curve_h2c_suite

	5.4.2. ECVRF Nonce Generation
	5.4.2.1. ECVRF Nonce Generation from RFC 6979
	5.4.2.2. ECVRF Nonce Generation from RFC 8032

	5.4.3. ECVRF Challenge Generation
	5.4.4. ECVRF Decode Proof
	5.4.5. ECVRF Validate Key

	5.5. ECVRF Ciphersuites

	6. Implementation Status
	7. Security Considerations
	7.1. Key Generation
	7.1.1. Uniqueness and collision resistance under malicious key generation
	7.1.2. Pseudorandomness under malicious key generation
	7.1.3. Unpredictability under malicious key generation

	7.2. Security Levels
	7.3. Selective vs. Full Pseudorandomness
	7.4. Proper pseudorandom nonce for ECVRF
	7.5. Side-channel attacks
	7.6. Proofs provide no secrecy for the VRF input
	7.7. Prehashing
	7.8. Hash function domain separation
	7.9. Hash function salting
	7.10. Futureproofing

	8. Change Log
	9. Contributors
	10. References
	10.1. Normative References
	10.2. Informative References

	Appendix A. Test Vectors for the ECVRFs
	A.1. ECVRF-P256-SHA256-TAI
	A.2. ECVRF-P256-SHA256-SSWU
	A.3. ECVRF-EDWARDS25519-SHA512-TAI
	A.4. ECVRF-EDWARDS25519-SHA512-ELL2

	Authors' Addresses

