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Abstract

   This document describes the ZSS Short Signature Scheme for
   implementation from bilinear pairings on Barreto-Naerhig (BN)
   ordinary elliptic curves. The ZSS Short Signature Scheme uses general
   cryptographic hash functions such as SHA-1 or SHA-2 and is efficient
   in terms of pairing operations.
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   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
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1  Introduction

   This document describes the ZSS Short Signature Scheme (designed by
   Zhang, Safavi-Naini, and Susilo) for implementation from bilinear
   pairings [ZSS].  It does not require any special hash function such
   as MapToPoint [B-F], which is still probabilistic and generally
   inefficient, but rather can use cryptographic hash functions such as
   SHA-1 or SHA-2.

   This document is restricted to implementation of ZSS on a particular
   family of Barreto-Naerhig (BN) elliptic curves, though the scheme is
   valid on other elliptic curve groups.  BN curves are a family of non-
   supersingular (i.e., ordinary) curves that are attractive for
   pairing-based cryptography for a variety of reasons.  These curves
   are plentiful and easily found and they support a sextic twist, which
   allows pairing arguments to be defined over relatively small finite
   fields. Computation of the pairing is the most time consuming
   procedure in pairing-based cryptography, and BN curves are amenable
   to twofold or threefold pairing compression and attain high
   efficiency for all pairing computation algorithms known (e.g., Tate,
   ate, eil, R-ate, Xate). These curves are also suitable for software
   and hardware implementations on a wide range of platforms.

   The specific subclass of BN curves that we choose for this document
   is discussed in [Pereira], and offers many additional efficiency
   advantages.  The subclass automatically yields the right sextic twist
   (thus entirely avoiding curve arithmetic for that purpose) and
   provides simple and obvious generators for the curve and its twist
   (removing the need for extra processing and storage).  It allows for
   pairing efficiency, uniform finite field arithmetic, choice of
   suitable field sizes, and enables virtually all optimizations
   currently proposed in the literature for involved algebraic
   structures. These advantages are important since short signatures are
   needed in low-bandwidth communication environments.

   The scheme is constructed from the Inverse Computational Diffie-
   Hellman Problem (Inv-CDHP) on bilinear pairings (see Section 1.2
   below for a discussion of Inv-CDHP).  The security of the scheme is
   based on the assumed hardness of this problem (which is widely
   accepted), which means there is no polynomial time algorithm to solve
   it with non-negligible probability.  Bilinear pairings have been used
   to construct Identity (ID)-Based cryptosystems [B-F], so that the
   identity information of a user functions as his public key.  The
   signing process in a short signature scheme can be regarded as the
   private key extract process in the ID-based public key setting from
   bilinear pairings.  Therefore, the ZSS signature scheme can be
   regarded as being derived from Sakai-Kasahara's ID-based encryption
   scheme with pairing [S-K, RFC6508].
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   The algorithm is for use in the following context:

      *  where there are two parties, a Signer and a Verifier;

      *  where a message is to be signed and then verified (e.g., for
      authenticating the initiating party during key establishment);

      *  where a Certificate Authority (CA) or Trusted Third Party (TTP)
      within a traditional Public Key Infrastructure (PKI) provides a
      root of trust for both parties.

1.1 Bilinear Pairings

      Let G_1 and G_2 be cyclic additive groups generated by P and P',
      respectively, both of whose order is a prime q. Let G_3 be a
      cyclic multiplicative group with the same order q. Let Z_q be the
      additive group of integers modulo q.

      Let <,>: G_1 X G_2 --> G_3 be a map with the following properties.

      1. Bilinearity: <aP,bQ>=<P,Q>^(ab) for all P, Q elements of G_1
      and G_2, respectively, and a, b elements of Z_q.

      2. Non-degeneracy: There exists P, Q elements of G_1 and G_2,
      respectively, such that <P,Q> != 1. In other words, the map does
      not send all pairs in G_1 X G_2 to the identity in G_3.

      3. Computability: There is an efficient algorithm to compute <P,Q>
      for all P in G_1 and Q in G_2.

   In our setting of prime order groups, non-degeneracy is equivalent to
   <P,Q> != 1 for all nontrivial P, Q elements in G_1 and G_2,
   respectively.  So, when P is a generator of G_1 and Q is a generator
   of G_2, then <P,Q> is a generator of G_3.  Such a bilinear map is
   called a bilinear pairing.

1.2 Discrete Logarithm Problem and Diffie-Hellman Problems

   We consider the following problems in the additive group (G_1;+).

      Discrete Logarithm Problem (DLP): Given two group elements P and
      Q, find an integer n in (Z_q)*, such that Q=nP whenever such an
      integer exists.

      Decision Diffie-Hellman Problem (DDHP): For a,b,c in (Z_q)*, given
      P, aP, bP, cP decide whether c is congruent to ab mod q.

      Computational Diffie-Hellman Problem (CDHP): For a,b in (Z_q)*,
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      given P, aP, bP, compute abP.

      Inverse Computational Diffie-Hellman Problem (Inv-CDHP): For a in
      (Z_q)*, given P, aP, compute [a^(-1)]P.

      Square Computational Diffie-Hellman Problem (Squ-CDHP): For a in
      (Z_q)*, given P, aP, compute [a^2]P.

      Bilinear Diffie-Hellman problem (BDHP): Given (P, aP, bP, cP) for
      some a,b,c in (Z_q)*, compute v in G_3 such that v = <P,P>^(abc).

   The CDHP, Inv-CDHP, and Squ-CDHP are polynomial time equivalent.  The
   DLP, CDHP, Inv-CDHP, Squ-CDHP, and BDHP are assumed to be hard, which
   means there is no polynomial time algorithm to solve any of them with
   non-negligible probability.  Therefore, the security of pairing based
   cryptosystems are typically based on these problems.  A Gap Diffie-
   Hellman (GDH) group is a group in which the DDHP can be efficiently
   solved but the CDHP is intractable.  The bilinear pairing gives us
   such a group, found on elliptic curves or hyperelliptic curves over
   finite fields.  The bilinear pairings can be derived from the Weil or
   Tate pairing, as in [B-F, Cha-Cheon, Hess].  The ZSS scheme works on
   any GDH group, but in this document we focus on a particular family
   of ordinary (i.e., non-supersingular) elliptic curves, known as BN
   curves, described in Section 3.4 and the pairing described in

Appendix A.2.

1.3  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

2 Architecture

   We consider the situation where one entity (the Signer) wishes to
   sign a message that it is sending to another entity (the Verifier).

   As in a traditional Public Key Infrastructure (PKI), a Certificate
   Authority (CA) or Trusted Third Party (TTP) provides assurance of a
   signer's identity, which is bound to the signer's public key.  The CA
   may generate a public key and private key (a key pair) or the signer
   may generate their own key pair and register the Signer Public Key
   (SPK) with a CA.

   The mechanism by which a secret key is transported MUST be secure, as
   the security of the authentication provided by ZSS signatures is no
   stronger than the security of this supply channel. The choice of
   secret key transport mechanism is outside the scope of this document.
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   During the signing process, once the Signer has formed its message,
   it signs the message using its Signer Secret Key (SSK).  It transmits
   the Signature with the message.  The Verifier MUST then use the
   message, Signature, and SPK in verification.

   This document specifies

     *  an algorithm for creating a Signature from a message, using an
        SSK;

     *  an algorithm for verifying a Signature for a message, using an
        SPK.

   This document does not specify (but comments on)

     *  how to choose a valid and secure elliptic curve;

     *  which hash function to use.

3 Notation, Definitions and Parameters

3.1  Notation

   n     A security parameter; n should be at most half the bit size of
         q.

   p     A prime, of size at least 2n bits, which is the order of the
         finite field F_p.  In this document, p is always congruent to 3
         modulo 4.

   F_p   The finite field of order p (i.e., field with p elements).

   F*    The multiplicative group of the non-zero elements in the field
         F; e.g., (F_p)* is the multiplicative group of the finite field
         F_p.

   q     The order of E(F_p).  In this document, for BN curves, q is
         always prime. To provide the desired level of security, lg(q)
         MUST be greater than 2*n.

   E     An elliptic curve defined over F_p, having prime order q.  In
         this document, we use BN elliptic curves with equation y^2 =
         x^3 + 2 modulo p.

   E'    A sextic twist of the elliptic curve E.  In this document,
         E':y^2 = x^3 + (1-i) over F_p^12.  The order of E' over F_{p^2}
         is q(2p-q).

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-zssbn-01
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   E(F)  The additive group of points of affine coordinates (x,y) with
         x, y in the field F, that satisfy the curve equation for E.

   P     A generator of E(F_p).  P has order q.

   P'    A point of E'(F_p^2) that generates the cyclic subgroup of
         order q.

   0     The null element of any additive group of points on an elliptic
         curve, also called the point at infinity.

   F_p^2 The extension field of degree 2 of the field F_p.  In this
         document, we use a particular instantiation of this field;
         F_p^2 = F_p[i], where i^2 + 1 = 0. It is for this reason that
         we choose p congruent to 3 modulo 4.

   G[q]  The q-torsion of a group G.  This is the subgroup generated by
         points of order q in G.

   < , > The Ate pairing. In this document, this is a bilinear map from
         E'(F_p^2)[q] X E(F_p)[q] onto the subgroup of order q in
         (F_p^12)*. A full definition is given in Appendix A.2.

   g     g = <P,P'>. Having this pre-computed value allows the Verifier
         to only perform one pairing operation to verify a signature.

   H     A cryptographic hash function. [FIPS180-3] contains NIST
         approved hash functions.

   lg(x) The base 2 logarithm of the real value x.

3.2  Definitions

   Certificate Authority (CA) - The Certificate Authority is a trusted
                    third party who provides assurance that the SPK
                    belongs to the signer and verified proof of the
                    signer's identity when the signer registered the
                    SPK.

   Public parameters - The public parameters are a set of parameters
                    that are held by all users of the system.  Each
                    application of ZSS MUST define the set of public
                    parameters to be used.  The parameters needed are n,
                    p, q, E, P, P', < , >, g, and H.

   Signer Public Key (SPK) - The Signer's Public key is used to verify
                    the signature of the entity whose SSK corresponds to
                    the SPK. It is a point on the elliptic curve E.
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   Signer Secret Key (SSK) - The Signer's Secret Key is used to generate
                    a signature and must not be revealed to any entity
                    other than the trusted third party and the
                    authorized signer. It is a value between 2 and q-1.

3.3 Representations

   This section provides canonical representations of values that MUST
   be used to ensure interoperability of implementations.  The following
   representations MUST be used for input into hash functions and for
   transmission.  In this document, concatenation of octet strings s and
   t is denoted s || t.

   Integers         Integers MUST be represented as an octet string,
                    with bit length a multiple of 8.  To achieve this,
                    the integer is represented most significant bit
                    first, and padded with zero bits on the left until
                    an octet string of the necessary length is obtained.
                    This is the octet string representation described in

Section 6 of [RFC6090].

   F_p elements     Elements of F_p MUST be represented as integers in
                    the range 0 to p-1 using the octet string
                    representation defined above.  Such octet strings
                    MUST have length L = Ceiling(lg(p)/8).

   F_p^2 elements   The elements of F_p^2 = F_p[i] are represented as
                    x_1 + i * x_2, where x_1 and x_2 are elements of
                    F_p. It is for this reason that we choose p
                    congruent to 3 modulo 4.

   Points on E, E'  Elliptic curve points MUST be represented in
                    uncompressed form as defined in Section 2.2 of
                    [RFC5480].  For an elliptic curve point (x,y) with x
                    and y in F_p, this representation is given by 0x04
                    || x' || y', where x' is the octet string
                    representing x, y' is the octet string representing
                    y, and || denotes concatenation.  The representation
                    is 2*L+1 octets in length.

3.4 Arithmetic

   ZSS relies on elliptic curve arithmetic.  The coordinates of a point
   P on the elliptic curve are given by P = (P_x,P_y), where  Px and Py
   are the affine coordinates in F_p satisfying the curve equation.

   The following conventions are assumed for curve operations:
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   Point addition - If P and Q are two points on a curve E, their sum is
                    denoted as P + Q.

   Scalar multiplication - If P is a point on a curve, and k an integer,
                    the result of adding P to itself a total of k times
                    is denoted [k]P.

   In this document, we use BN curves with equation y^2 = x^3 + 2 modulo
   p.  This curve is chosen because of the many efficiency and
   simplicity advantages it offers, as mentioned in Section 1 and
   discussed in [Pereira].  For example, one advantage is an easy
   determination of a generator P of E(F_p), namely P = (-1,1).

4  The ZSS Cryptosystem

   This section describes the ZSS short signature scheme [ZSS].

4.1 Parameter Generation

   The following static parameters are fixed for each implementation.
   They are not intended to change frequently, and MUST be specified for
   each user community.

   The system parameters to be generated for a given security parameter
   n are {p, q, E, P, P', <,>, g, H}. These are known by the Sender and
   the Verifier.

4.2 Key Generation

   To create signatures, each Signer requires an SSK and SPK.  The SSK
   is an integer, and the SPK is an elliptic curve point. The SSK MUST
   be kept secret (to the Signer and possibly the CA), but the SPK need
   not be kept secret.

   The Signer (or CA) MUST randomly select a value in the range 2 to q-
   1, and assigns this value to x, which is the SSK.

   The Signer MUST derive its SPK, X, by performing the calculation X
   =[x]P.

   If the signer generated the SPK, then it must be registered with a
   CA.

4.3 Signature Generation

   Given the SSK x, and a message m, the Signer computes the signature S
   by performing the following steps:

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-zssbn-01
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      1) Compute the hash of the message as a mod q value using the hash
      algorithm specified in the public parameters.

      2) Compute (H(m)+x)^-1, where the inversion is performed modulo q.

      3) Compute S = [(H(m)+x)^-1]P'. The signature is S, and this is a
      point on the curve E'.

   The Signer sends m and S.

4.4 Signature Verification

   Given the SPK X, a message m, and a signature S, the Receiver
   verifies that <[H(m)]P + X, S> = g, to ensure that the Signer is
   authentic and the message was not altered in transit. This is
   achieved by the Verifier performing the following steps:

      1) Check that S is a point on the curve E', otherwise reject the
      signature.

      2) Compute the hash of the message as a mod q value using the hash
      algorithm specified in the public parameters.

      3) Compute the elliptic curve point [H(m)]P + X.

      4) Compute the pairing <[H(m)]P + X, S>.

      5) Verify that <[H(m)]P + X, S> = g; if not, reject the signature.

5  Security Considerations

   This document describes the ZSS Short Signature Scheme.  We assume
   that the security provided by this algorithm depends entirely on the
   secrecy of the secret keys it uses, and that for an adversary to
   defeat this security, he will need to perform computationally
   intensive cryptanalytic attacks to recover a secret key.  Note that a
   security proof exists for ZSS in the Random Oracle Model [ZSS].

   When defining public parameters, guidance on parameter sizes from
   [RFC4492] SHOULD be followed.  For lower security levels (e.g., less
   than 128 bit security), the parameter sizes must be determined based
   on the elliptic curve discrete logarithm problem over F_p, and for
   the higher security levels the parameter sizes are based on the
   finite field size (e.g., 12*lg(p)). Table 1 shows bits of security
   afforded by various sizes of p.

     Security (bits) | EC size (lg(p) | finite field size (12*lg(p))
     ---------------------------------------------------------------
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            80       |       160      |          1920
           112       |       224      |          2688
           128       |       256      |          3072
           192       |      640       |          7680
           256       |     1280       |         15360

              Table 1: Comparable Strengths, taken from [RFC4492]

        The order of the base point P used in ZSS, and hence the order
        of E(F_p) for BN curves, MUST be a large prime q. If n bits of
        security are needed, then lg(q) SHOULD be chosen to be at least
        2*n. Similarly, if n bits of security are needed, then a hash
        with output size at least 2*n SHOULD be chosen.

        Randomizing the messages that are signed is a way to enhance the
        security of the cryptographic hash function. [SP800-106]
        provides a technique to randomize messages that are input to a
        cryptographic hash function during the signature generation
        step.  The intent of this method is to strengthen the collision
        resistance provided by the hash functions without any changes to
        the core hash functions and signature algorithms.  If the
        message is randomized with a different random value each time it
        is signed, it will result in the message having a different
        digital signature each time.

        Each user's SSK protects the ZSS communications it receives.
        This key MUST NOT be revealed to any entity other than the
        authorized user and possibly the CA (if the CA generated the key
        pair).

        In order to ensure that the SSK is received only by an
        authorized entity, it MUST be transported through a secure
        channel.  The security offered by this signature scheme is no
        greater than the security provided by this delivery channel.

        The randomness of values stipulated to be selected at random, as
        described in this document, is essential to the security
        provided by ZSS.  If the value of x used by a user is
        predictable, then the value of his SSK could be recovered.  This
        would allow that user's signatures to be forged.  Guidance on
        the generation of random values for security can be found in
        [RFC4086].

6  IANA Considerations

        This memo includes no request to IANA.
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Appendix A.  BN Elliptic Curves, Twists, Pairings and Supporting
               Algorithms

A.1. BN Elliptic Curves
   E is an ordinary elliptic curve, known as a BN curve (of j-invariant
   0), where E: y^2=x^3+b, defined over a finite prime field F_p.  In
   this document, we let b = 2.  We require that p is congruent to 3
   modulo 4, for efficiency reasons.  E has prime order q = #E(F_p), and
   for BN curves, the primes p and q are given by p = p(u) =
   36u^4+36u^3+24u^2+6u+1 and q = q(u) = 36u^4+36u^3+18u^2+6u+1, for
   some integer u.  The curve in this document has a generator P = (-
   1,1).  BN curves have embedding degree k = 12 and admit a sextic
   twist, which allows for an optimal ate pairing on the groups, as we
   discuss below.

   Routines for point addition and doubling on E(F_p) can be found in
Appendix A.10 of [P1363].

A.2. Sextic Twists Since p is a prime congruent to 3 modulo 4, the
   finite field F_p^2 can be represented as F_p[i]/(i^2+1).  So i^2+1 =
   0 and elements of F_p^2 are represented as x_1 + i * x_2, where x_1
   and x_2 are elements of F_p. We may view F_p^12 as F_p^2[x]/(x^6-z),
   where x^6-z is irreducible over F_p^2.

   Consider the twisting isomorphism, psi: E'(F_p^2) --> E(F_p), where
   (x',y') is mapped to (x'z^2),y'z^3) for some z in the multiplicative
   group of F_p^12. It can be shown that E':y^2 = x^3 +b/z over F_p^2,
   where z is not a cube nor square in F_p^2. E' is called the sextic
   twist of E over F_p^2. E'(F_p^2)[q] has a generator P' = [h](-i,1)
   where h=2p-q. So in the case of E: y^2=x^3+2 over F_p, we have E':
   y^2=x^3+(1-i) over F_p^2.

A.3.  The Ate Pairing

   The Tate, Ate or R-ate pairings can be used with BN curves in ZSS,
   but we describe the Ate pairing in this document  The Ate pairing for
   BN curves uses roughly half the number of iterations of the Miller
   loop needed to compute the Tate pairing.

   In general, the Ate pairing is from G_2 X G1 onto the subgroup of
   order q in (F_p^12)*, where G_2 = E(F_p^12)[q] and G_1 = E(F_p)[q].
   Thus, the Ate pairing <Q,R> takes a point Q in E(F_p^12) and a point
   R in E(F_p), and evaluates f_Q(R), where f_Q is some polynomial over
   F_p^12 whose divisor is (q)(Q) - (q)(0).  (Note that f_Q is defined
   only up to scalars of F_p^12.) Miller's algorithm [Miller] provides a
   method for evaluation of f_Q(R).

   However, for BN curves, instead of using the full point Q in

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-zssbn-01


<L. Hitt>                Expires March 15, 2014                [Page 14]



INTERNET DRAFT          draft-irtf-cfrg-zssbn-01      September 11, 2013

   E(F_p^12), we can use Q' in E'(F_p^2), where E' is the twist under
   the twisting isomorphism described in the section above, so
   psi(Q')=Q.  This allows us to use a compact representation of the
   point and to avoid F_p^12 arithmetic when computing the pairing.

   Thus, let us consider G_1 = E(F_p)[q] and G_2 = E'(F_p^2)[q].  We
   note that if Q=(Q_x,Q_y) and Q'=(Q_x',Q_y'), then (Q_x,Q_y)=
   ((z^2)Q_x',(z^3)Q_y').  The version of the Ate pairing used in this
   document is given by <Q',R> = f_Q'(R)^c  in (F_p^12)*, where c=(p^12-
   1)/q.  It satisfies the bilinear relation <[x]Q',R> = <Q',[x]R> =
   <Q',R>^x for all Q' in E'(F_p^2)[q] and R in E(F_p)[q], for all
   integers x.

   We provide pseudocode for computing <Q',R> with elliptic curve
   arithmetic expressed in affine coordinates.  From this point forward,
   we will drop the notation of Q' and just use Q, understanding that Q
   is a point on E'(F_p^2). Note that this section does not fully
   describe the most efficient way of computing the pairing, as there
   are further ways of reducing the number and complexity of the
   operations needed to compute the pairing (e.g., [Devegili]). For
   example, a common optimization is to factor c = (p^12-1)/q into three
   parts: (p^6-1), (p^2+1) and (p^4-p^2+1)/q.

     <CODE BEGINS>

     /* Copyright (c) 2012 IETF Trust and the persons identified as
     authors of the code.  All rights reserved.

     Redistribution and use in source and binary forms, with or without
     modification, is permitted pursuant to, and subject to the license
     terms contained in, the Simplified BSD License set forth in Section

4.c of the IETF Trust's Legal Provisions Relating to IETF Documents
     (http://trustee.ietf.org/license-info). */

          Routine for computing the pairing <Q,R>:

            Input Q, a point in E'(F_p^2)[q], and R, a point on
            E(F_p)[q].

            Initialize variables:
               f = (F_p^12)*;    // An element of (F_p^12)*
               C = Q;         // An element of E'(F_p^2)[q]
               c = (p^12-1)/q;   // An integer

            for bits of q-1, starting with the second most significant
            bit, ending with the least significant bit, do

               // gradient of line through C, C, [-2]C.
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               l = 3*( C_x^2 ) / ( 2*C_y );

               //accumulate line evaluated at R into f

               f = f^2 * ( l*( - R_x + C_x ) + ( R_y - C_y ) );

               C = [2]C;

               if bit is 1, then

                  // gradient of line through C, Q, -C-Q.

                  l = ( C_y - Q_y )/( C_x - Q_x );

                  //accumulate line evaluated at R into f

                  f = f * ( l*( - R_x + C_x ) + ( R_y - C_y ) );

                  C = C+Q;

                end if;

              end for;

              t = f^c;

              return representative in (F_p^12)* of t;

      <CODE ENDS>

A.4.  Hashing to an Integer Range

   We use the function HashToIntegerRange( s, n, hashfn ) to hash
   strings to an integer range.  Given a string (s), a hash function
   (hashfn), and an integer (n), this function returns a value between 0
   and n - 1.

   Input:
        * an octet string, s

        * an integer, n <= (2^hashlen)^hashlen

        * a hash function, hashfn, with output length hashlen bits

   Output:

        * an integer, v, in the range 0 to n-1
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   Method:

        1) Let A = hashfn( s )

        2) Let h_0 = 00...00, a string of null bits of length hashlen
        bits

        3) Let l = Ceiling(lg(n)/hashlen)

        4) For each i in 1 to l, do:

           a) Let h_i = hashfn(h_(i - 1))

           b) Let v_i = hashfn(h_i || A), where || denotes concatenation

        5) Let v' = v_1 || ...  || v_l

        6) Let v = v' mod n

Appendix B.  Example Data

   This appendix provides example data for the ZSS short signature
   scheme with the public parameters  (n, p, q, E, P, P', g, H).

   We denote elements of Fp_2 by (alpha, beta) for alpha + i*beta, where
   i in Fp_2 is a root of X^2+1.  We denote elements of Fp_12 by
   ((gamma_0), (gamma_1), (gamma_2), (gamma_3), (gamma_4), (gamma_5))
   for gamma_0 + gamma_1*Z + gamma_2*Z^2 + gamma_3*Z^3 + gamma_4*Z^4 +
   gamma_5*Z^5, where Z in Fp_12 is a root of x^6-z and
   gamma_j=(alpha_j, beta_j) are elements of Fp_2.

B.1 Example 1

   n = 111 and lg(p) = 222

   p = p(u) = p(18577485901856771)
     = 42879554281412312425684491434343070045094087778429904430372487209
       23

   q = q(u) = q(18577485901856771)
     = 42879554281412312425684491434343049337715141757204855580048574422
       77

   E: y^2 = x^3 + 2

      Thus, E': y'^2 = x'^3 + (1, 42879554281412312425684491434343070045
      09408777842990443037248720922)

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-zssbn-01


<L. Hitt>                Expires March 15, 2014                [Page 17]



INTERNET DRAFT          draft-irtf-cfrg-zssbn-01      September 11, 2013

   P = (-1,1)
     = (4287955428141231242568449143434307004509408777842990443037248720
     922, 1)

   P' = [h](-i,1)=(P'x,P'y) where P'x and P'y are elements of Fp_2 and

       P'x = (4150062559496717098010848775383950942405168339753729033708
       91183040, 3201547425391805499092396849287316949217764330692173661
       045966218196)

       P'y = (2739493618867793153898969775521693478241455091691296751947
       733115593, 166470767945024234715239288329979167344659708006587338
       7257740360355)

   g = <P, P'> is an element of Fp_12 given by

     ((36699339660626669649427399393560215125019796922092031025948063026
     15, 247927466780520015848965517635750695647326440402643111951301234
     2995),

     (53440222253683237877269791416098727648815280997704796178179123615
     5, 152660447468210228523508984531632103922262052241800765770764185
     1816),

     (49145419234025334524484519757289516582314844784075278041512123443,
     176265594691520614080041515255534401194732308979032729979138040295
     4),

     (23696703075178036967923154124988633199564384190798395748600577760
     85, 23618404356311472082427998195066752928773113611373491721529464
     37996),

     (12762283628400824508803470970369296405340301501303861200304473348
     06, 13459347095597820798563091367816489138601686487822582178268889
     4443),

     (52536691068804792250953154403977106032469644538529906910544187717
     3, 111049479509897086258622292367384411180467475476136042303440990
     5476))

   SSK = 2121608753564392499593333521375987220574081909435960440370410
   821656

   SPK = (120851890594243637869885901573990997912577177623964284017952
   0609651, 5156510979532175335881708985883359220634082111209944466019
   22864253)

   Suppose H(m) = 6104193801232612202724894323091424875875271378342228
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   81137528506355

   Signature S = (Sx,Sy) where Sx and Sy are elements of Fp_2 and

   Sx = (4603970358468010885038949506701201323979300401623873254674143
   95606, 390184854411376879582308121331828716038030146457335118850788
   9233137)

   Sy = (2942449282558423549330843008093657343677696839292115922361297
   49298, 202625687787456997385822667969165094633744989095128763600003
   736610)

   For verification of the signature:
          <H(m)P + X, S> = g

B.2 Example 2

   n = 127 and lg(p) = 254

   p = p(u) = p(-4647714815446351873)
     = 1679810873101583228494080414223173390988918712143906984893371542
       6072753864723

   q = q(u) = q(-4647714815446351873)
     = 16798108731015832284940804142231733909759579603404752749028378864
       165570215949

   E: y^2 = x^3 + 2

      Thus, E': y'^2 = x'^3 + (1, 16798108731015832284940804142231733909
      889187121439069848933715426072753864722)

   P = (-1,1)
     = (1679810873101583228494080414223173390988918712143906984893371542
       6072753864722, 1)

   P' = [h](-i,1) = (P'x,P'y), where P'x and P'y are elements of Fp_2

       P'x =
       (2759930593230997547690248631365636073479225314645471320757910281
       674905877291, 230161490788271857374524411062025673221233257170073
       7603512907075120331574515)

       P'y =
       (9480765153516887970576068394945041092622478388406602889697250323
       02618946458, 6663077446927392079224045631425291036692402823802663
       947112913140121004068507)

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-zssbn-01


<L. Hitt>                Expires March 15, 2014                [Page 19]



INTERNET DRAFT          draft-irtf-cfrg-zssbn-01      September 11, 2013

   g = <P, P'> is an element of Fp_12 given by
     ((13070690801249658484759892809227642840919015841299984602661540278
     97835831306, 362837632692008901334341187262873478716707643732273036
     6913713646023905731503),

     (352778753845190583740690941014710408681261806065247837729422038997
     7928485580, 1390842049595369881149037040415050751861458203097739688
     0797626940316305362787),

     (148957391318235038979721383575910962973602682276093210989431526351
     38088456200, 154193402372256829285477206567013233448625527219699948
     30027125771243100988775),

     (657015345250965363244058395947686331467494595330600581669861545909
     8579995196, 9246328720071559688457720607053218330889647295590139338
     238624175808225962795),

     (151014665406602395528454680822744016147807484038495196740696804034
     7117671512, 6964231951063075324378672955330091045708301556113455379
     316967754148774004530),

     (132001962407792355737177261139163922637454993559842085107451833663
     5435672354, 9476335168658772594045570476784073542275866387029189317
     560203959549876656582))

   SSK = 228064033978937665992889984775405287134161793365057496448735949
   2611

   SPK = (48893896735870064320433171153400539525040538030176968340812183
   01282547698392, 15356945755932217528217084848811599775130985825038998
   692965243198105904624442)

   Suppose H(m) =  21668398097129279358779433271119370918865051659048528
   91187078055077

   Signature S = (Sx,Sy) where Sx and Sy are elements of Fp_2 and

   Sx = (729051981497750473018989894592657769743437818459774775561224900
   9723218090232, 683378059974468691645078542720737033649767207447427118
   6472709797618120651615)

   Sy = (157432174827386069860812184931399877857826328817373172771264166
   63269695635786, 93427588866953969700345687463198658107209055412980315
   33851535785638159753756)

   For verification of the signature:
          <H(m)P + X, S> = g
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