
Workgroup: COINRG

Internet-Draft: draft-irtf-coinrg-use-cases-03

Published: 11 March 2023

Intended Status: Informational

Expires: 12 September 2023

Authors: I. Kunze

RWTH Aachen

K. Wehrle

RWTH Aachen

D. Trossen

Huawei

M. J. Montpetit

Concordia

X. de Foy

InterDigital Communications, LLC

D. Griffin

UCL

M. Rio

UCL

Use Cases for In-Network Computing

Abstract

Computing in the Network (COIN) comes with the prospect of deploying

processing functionality on networking devices, such as switches and

network interface cards. While such functionality can be beneficial,

it has to be carefully placed into the context of the general

Internet communication and it needs to be clearly identified where

and how those benefits apply.

This document presents some use cases to demonstrate how a number of

salient COIN-related applications can benefit from COIN, further

identifying their essential requirements.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 12 September 2023.

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document.

Table of Contents

1. Introduction

2. Terminology

3. Providing New COIN Experiences

3.1. Mobile Application Offloading

3.2. Extended Reality and Immersive Media

3.3. Personalized and interactive performing arts

4. Supporting new COIN Systems

4.1. In-Network Control / Time-sensitive applications

4.2. Large Volume Applications

4.3. Industrial Safety

5. Improving existing COIN capabilities

5.1. Content Delivery Networks

5.2. Compute-Fabric-as-a-Service (CFaaS)

5.3. Virtual Networks Programming

6. Enabling new COIN capabilities

6.1. Distributed AI

7. Security Considerations

8. IANA Considerations

9. Conclusion

10. Acknowledgements

11. References

11.1. Normative References

11.2. Informative References

Authors' Addresses

1. Introduction

The Internet was designed as a best-effort packet network,

forwarding packets from source to destination with limited

guarantees regarding their timely and successful reception. Data

manipulation, computation, and more complex protocol functionality

is generally provided by the end-hosts while network nodes are kept

simple and only offer a "store and forward" packet facility. This

simplicity of purpose of the network has shown to be suitable for a

wide variety of applications and has facilitated the rapid growth of

the Internet.

However, with the rise of new services, some of which are described

in this document, there are more and more fields that require more

than best-effort forwarding including strict performance guarantees

¶

¶

https://trustee.ietf.org/license-info

or closed-loop integration to manage data flows. In this context,

allowing for a tighter integration of computing and networking

resources for enabling a more flexible distribution of computation

tasks across the network, e.g., beyond 'just' endpoints, may help to

achieve the desired guarantees and behaviors as well as increase

overall performance.

The vision of 'in-network computing' and the provisioning of such

capabilities that capitalize on joint computation and communication

resource usage throughout the network is part of the move from a

telephone network analogy of the Internet into a more distributed

computer board architecture. We refer to those capabilities as 'COIN

capabilities' in the remainder of the document.

We believe that this vision of 'in-network computing' can be best

outlined along four dimensions of use cases, namely those that (i)

provide new user experiences through the utilization of COIN

capabilities (referred to as 'COIN experiences'), (ii) enable new

COIN systems, e.g., through new interactions between communication

and compute providers, (iii) improve on already existing COIN

capabilities, and (iv) enable new COIN capabilities. Sections 3

through 6 capture those categories of use cases and provide the main

structure of this document. The goal is to present how computing

resources inside the network impact existing services and

applications or allow for innovation in emerging fields.

By delving into some individual examples within each of the above

categories, we outline opportunities and propose possible research

questions for consideration by the wider community when pushing

forward 'in-network computing' architectures. Furthermore,

identifying requirements for an evolving solution space of COIN

capabilities is another objective of the use case descriptions. To

achieve this, the following taxonomy is proposed to describe each of

the use cases:

Description: High-level presentation of the purpose of the use

case and a short explanation of the use case behavior.

Characterization: Explanation of the services that are being

utilized and realized as well as the semantics of interactions

in the use case.

Existing solutions: Description of current methods that may

realize the use case (if they exist), not claiming to

exhaustively review the landscape of solutions.

Opportunities: An outline of how COIN capabilities may support

or improve on the use case in terms of performance and other

metrics.

¶

¶

¶

¶

1.

¶

2.

¶

3.

¶

4.

¶

Research questions: Essential questions that are suitable for

guiding research to achieve the identified opportunities.

Requirements: Description of requirements for any COIN

capability solutions that may need development along the

opportunities outlined in item 4; we limit requirements to

those directly describing COIN capabilities, recognizing that

any use case will realistically hold many additional

requirements for its realization.

This document discusses these six aspects along a number of

individual use cases. A companion document [USECASEANALYSIS] is

tasked with performing a cross-use case analysis, i.e., summarizing

the key research questions and identifying key requirements across

all use cases.

2. Terminology

This document uses the terminology outlined in [TERMINOLOGY].

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

3. Providing New COIN Experiences

3.1. Mobile Application Offloading

3.1.1. Description

The scenario can be exemplified in an immersive gaming application,

where a single user plays a game using a VR headset.

The headset hosts functions that "display" frames to the user, as

well as the functions for VR content processing and frame rendering

that also incorporate input data received from sensors in the VR

headset.

Once this application is partitioned into constituent (COIN)

programs and deployed throughout a COIN system, utilizing the COIN

execution environment, only the "display" (COIN) program may be left

in the headset, while the compute intensive real-time VR content

processing (COIN) program can be offloaded to a nearby resource rich

home PC or a PND in the operator's access network, for a better

execution (faster and possibly higher resolution generation).

5.

¶

6.

¶

¶

¶

¶

¶

¶

3.1.2. Characterization

Partitioning a mobile application into several constituent (COIN)

programs allows for denoting the application as a collection of

(COIN) functions for a flexible composition and a distributed

execution. In our example above, most functions of a mobile

application can be categorized into any of three, "receiving",

"processing", and "displaying" function groups.

Any device may realize one or more of the (COIN) programs of a

mobile application and expose them to the (COIN) system and its

constituent (COIN) execution environments. When the (COIN) program

sequence is executed on a single device, the outcome is what you see

today as applications running on mobile devices.

However, the execution of a (COIN) program may be moved to other

(e.g., more suitable) devices, including PNDs, which have exposed

the corresponding (COIN) program as individual (COIN) program

instances to the (COIN) system by means of a 'service identifier'.

The result is the equivalent to 'mobile function offloading', for

possible reduction of power consumption (e.g., offloading CPU

intensive process functions to a remote server) or for improved end

user experience (e.g., moving display functions to a nearby smart

TV) by selecting more suitably placed (COIN) program instances in

the overall (COIN) system.

Figure 1 shows one realization of the above scenario, where a 'DPR

app' is running on a mobile device (containing the partitioned

Display(D), Process(P) and Receive(R) COIN programs) over an SDN

network. The packaged applications are made available through a

localized 'playstore server'. The mobile application installation is

realized as a 'service deployment' process, combining the local app

installation with a distributed deployment (and orchestration) of

one or more (COIN) programs on most suitable end systems or PNDs

('processing server').

¶

¶

¶

¶

Figure 1: Application Function Offloading Example.

Such localized deployment could, for instance, be provided by a

visiting site, such as a hotel or a theme park. Once the

'processing' (COIN) program is terminated on the mobile device, the

'service routing' (SR) elements in the network route (service)

requests instead to the (previously deployed) 'processing' (COIN)

program running on the processing server over an existing SDN

network. Here, capabilities and other constraints for selecting the

appropriate (COIN) program, in case of having deployed more than

one, may be provided both in the advertisement of the (COIN) program

and the service request itself.

As an extension to the above scenarios, we can also envision that

content from one processing (COIN) program may be distributed to

more than one display (COIN) program, e.g., for multi/many-viewing

scenarios, thereby realizing a service-level multicast capability

towards more than one (COIN) program.

 +----------+ Processing Server

 Mobile | +------+ |

 +---------+ | | P | |

 | App | | +------+ |

 | +-----+ | | +------+ |

 | |D|P|R| | | | SR | |

 | +-----+ | | +------+ | Internet

 | +-----+ | +----------+ /

 | | SR | | | /

 | +-----+ | +----------+ +------+

 +---------+ /|SDN Switch|_____|Border|

 +-------+ / +----------+ | SR |

 | 5GAN |/ | +------+

 +-------+ |

 +---------+ |

 |+-------+| +----------+

 ||Display|| /|SDN Switch|

 |+-------+| +-------+ / +----------+

 |+-------+| /|WIFI AP|/

 || D || / +-------+ +--+

 |+-------+|/ |SR|

 |+-------+| /+--+

 || SR || +---------+

 |+-------+| |Playstore|

 +---------+ | Server |

 TV +---------+

¶

¶

3.1.3. Existing Solutions

The ETSI Mobile Edge Computing (MEC) [ETSI] suite of technologies

provides solutions for mobile function offloading by allowing mobile

applications to select resources in edge devices to execute

functions instead of the mobile device directly. For this, ETSI MEC

utilizes a set of interfaces for the selection of suitable edge

resources, connecting to so-called MEC application servers, while

also allowing for sending data for function execution to the

application server.

However, the technologies do not utilize micro-services as described

in our use case and also do not allow for the dynamic selection and

redirection of micro-service calls to varying edge resources rather

than a single MEC application server.

Also, the selection of the edge resource (the app server) is

relatively static, relying on DNS-based endpoint selection, which

does not cater to the requirements of the example provided above,

where the latency for redirecting to another device lies within few

milliseconds for aligning with the framerate of the display micro-

service.

Lastly, MEC application servers are usually considered resources

provided by the network operator through its MEC infrastructure,

while our use case here also foresees the placement and execution of

micro-services in end user devices.

There also exists a plethora of mobile offloading platforms provided

through proprietary platforms, all of which follow a similar

approach as ETSI MEC in that a selected edge application server is

being utilized to send functional descriptions and data for

execution.

The draft at [APPCENTRES] outlines a number of enabling technologies

for the use case, some of which have been realized in an Android-

based realization of the micro-services as a single application,

which is capable to dynamically redirect traffic to other micro-

service instances in the network. This capability, together with the

underlying path-based forwarding capability (using SDN) was

demonstrated publicly, e.g., at the Mobile World Congress 2018 and

2019.

3.1.4. Opportunities

The packaging of (COIN) programs into existing mobile application

packaging may enable the migration from current (mobile) device-

centric execution of those mobile applications toward a possible

distributed execution of the constituent (COIN) programs that are

part of the overall mobile application.

¶

¶

¶

¶

¶

¶

*

¶

The orchestration for deploying (COIN) program instances in

specific end systems and PNDs alike may open up the possibility

for localized infrastructure owners, such as hotels or venue

owners, to offer their compute capabilities to their visitors for

improved or even site-specific experiences.

The execution of (current mobile) app-level (COIN) programs may

speed up the execution of said (COIN) program by relocating the

execution to more suitable devices, including PNDs.

The support for service-level routing of requests (service

routing in [APPCENTRES] may support higher flexibility when

switching from one (COIN) program instance to another, e.g., due

to changing constraints for selecting the new (COIN) program

instance.

The ability to identify service-level COIN elements will allow

for routing service requests to those COIN elements, including

PNDs, therefore possibly allowing for new COIN functionality to

be included in the mobile application.

The support for constraint-based selection of a specific (COIN)

program instance over others (constraint-based routing in

[APPCENTRES]) may allow for a more flexible and app-specific

selection of (COIN) program instances, thereby allowing for

better meeting the app-specific and end user requirements.

3.1.5. Research Questions

RQ 3.1.1: How to combine service-level orchestration frameworks

with app-level packaging methods?

RQ 3.1.2: How to reduce latencies involved in (COIN) program

interactions where (COIN) program instance locations may change

quickly?

RQ 3.1.3: How to signal constraints used for routing requests

towards (COIN) program instances in a scalable manner?

RQ 3.1.4: How to identify (COIN) programs and program instances?

RQ 3.1.5: How to identify a specific choice of (COIN) program

instances over others?

RQ 3.1.6: How to provide affinity of service requests towards

(COIN) program instances, i.e., longer-term transactions with

ephemeral state established at a specific (COIN) program

instance?

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

* ¶

*

¶

*

¶

RQ 3.1.7: How to provide constraint-based routing decisions at

packet forwarding speed?

RQ 3.1.8: What COIN capabilities may support the execution of

(COIN) programs and their instances?

3.1.6. Requirements

Req 3.1.1: Any COIN system MUST provide means for routing of

service requests between resources in the distributed

environment.

Req 3.1.2: Any COIN system MUST provide means for identifying

services exposed by (COIN) programs for directing service

requests.

Req 3.1.3: Any COIN system MUST provide means for identifying

(COIN) program instances for directing (affinity) requests to a

specific (COIN) program instance.

Req 3.1.4: Any COIN system MUST provide means for dynamically

choosing the best possible service sequence of one or more (COIN)

programs for a given application experience, i.e., support for

chaining (COIN) program executions.

Req 3.1.5: Means for discovering suitable (COIN) programs SHOULD

be provided.

Req 3.1.6: Any COIN system MUST provide means for pinning the

execution of a service of a specific (COIN) program to a specific

resource, i.e., (COIN) program instance in the distributed

environment.

Req 3.1.7: Any COIN system SHOULD provide means for packaging

micro-services for deployments in distributed networked computing

environments.

Req 3.1.8: The packaging MAY include any constraints regarding

the deployment of (COIN) program instances in specific network

locations or compute resources, including PNDs.

Req 3.1.9: Such packaging SHOULD conform to existing application

deployment models, such as mobile application packaging, TOSCA

orchestration templates or tar balls or combinations thereof.

Req 3.1.10: Any COIN system MUST provide means for real-time

synchronization and consistency of distributed application

states.

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

3.2. Extended Reality and Immersive Media

3.2.1. Description

Virtual Reality (VR), Augmented Reality (AR), and immersive media,

now globally referred to as Extended Reality (XR) and the bases for

the metaverse, are the drivers of a number of advances in

interactive technologies. While initially associated with gaming and

entertainment, metaverse applications now include remote diagnosis,

maintenance, telemedicine, manufacturing and assembly, intelligent

agriculture, smart cities, and immersive classrooms. XR is one

example of the multisource-multidestination problem that combines

video and haptics in interactive multi-party interactions under

strict delay requirements.

Indeed, XR applications require real-time interactivity for

immersive and increasingly mobile immersive applications with

tactile and time-sensitive data. Because high bandwidth is needed

for high resolution images and local rendering for 3D images and

holograms, they are difficult to run over traditional networks which

limits some of its potential benefits in the collaborative space. As

a consequence, innovation is needed to unlock the full potential of

the applications.

3.2.2. Characterization

XR experiences, especially those involving collaboration, are

difficult to deliver with a client-server cloud-based solution as

they require a combination of: stream synchronization, low delays

and delay variations, means to recover from losses and optimized

caching and rendering as close as possible to the user at the

network edge. Furthermore, when XR deals with personal information

and protected content, XR application must also provide a secure

environment and ensure user privacy. Additionally, the sheer amount

of data needed for and generated by the XR applications, such as

video holography, put them squarely in the realm of data-driven

applications that can use recent trend analysis and mechanisms, as

well as machine learning to find the optimal caching and processing

solution and hopefully reduce the size of the data that needs

transiting through the network. Other mechanims such as data

filtering and reduction, functional distribution and partitioning

are also needed to accommodate the low delay needs for the same

applications.

Those characterisitics of XR makes it ideal to profit from some COIN

capabilities to enable XR over networks. COIN can enable the

distribution of the service components across different nodes on the

path from content source to rendering destination. For example, data

filtering, image rendering, and video processing leveraging

¶

¶

¶

different HW capabilities with combinations of CPU and GPU at the

network edge and in the fog, where the content is consumed,

represent possible remedies for the high bandwidth demands of XR.

Machine learning across the network nodes can better manage the data

flows by distributing them over more adequate paths. In order to

provide adequate quality of experience, multi-variate and

heterogeneous resource allocation and goal optimization problems

need to be solved, likely requiring advanced analysis and

articificial intelligence. For the purpose of this document, it is

important to note that the use of COIN for XR does not imply a

specific protocol but targets an architecture enabling the

deployment of the services. In this context, similar considerations

as for Section 3.1 apply.

3.2.3. Existing Solutions

XR profits from extensive research in the past years in gaming,

machine learning, network telemetry, high resolution imaging, smart

cities, and IoT. Information Centric Networking (and related)

approaches that combine publish subscribe and distributed storage

are also very suited for the multisource-multidestination

applications of XR. Hence XR solutions exist and are more and more

deployed outside entertainment, and with the focus on the Metaverse

the number of publications related to XR has skyrocketed.

However, in terms of networking which is the focus of this document

current deployments remain mostly one-way: information is sent to

the destination, rendered and displayed based on local processing. A

lot of the video information goes upstream. There are still very

little truly interactive immersive media applications over networks

except within a single subnetwork that is characteristic of some

smart cities, manufacturing applications or training.

3.2.4. Opportunities

While delay is inherently related to information transmission and if

we continue the analogy of the computer board to highlight some of

the COIN capabilities in terms of computation and storage but also

allocation of resources, there are some opportunities that XR could

take advantage of:

Reduced latency: 20 ms is usually cited as an upper limit for XR

applications. Storage and preprocessing of scenes in local

elements (includng in the mobile network) could extend the reach

of XR applications at least over the extended edge.

Video transmission: The use of better transcoding, advanced

context-based compression algorithms, pre-fetching and pre-

caching, as well as movement prediction all help to reduce

¶

¶

¶

¶

*

¶

*

bandwidth consumption. While this is now limited to local

processing it is not outside the realm of COIN to push some of

these functionalities to the network especially as realted to

caching/fetching but also context based flow direction and

aggregation.

Monitoring: Since bandwidth and data are fundamental for XR

deployment, COIN functionality could help to better monitor and

distribute the XR services over collaborating network elements to

optimize end-to-end performance.

Functional decomposition: Advanced functional decomposition,

localization, and discovery of computing and storage resources in

the network can help to optimize user experience in general.

Intelligent network management and configuration: The move to

artificial intelligence in network management to learn about

flows and adapt resources based on both dataplane and control

plane programmability can help the overall deployment of XR

services.

3.2.5. Research Questions

RQ 3.2.1: Can current PNDs provide the speed required for

executing complex filtering operations, including metadata

analysis for complex and dynamic scene rendering?

RQ 3.2.2: Where should PNDs equipped with these operations be

located for optimal performance gains?

RQ 3.2.3: How can the interoperability of CPU/GPU be optimized

and used jointly with PNDs to combine low-level packet filtering

and redirection with the higher layer processing needed for image

processing, feature selection, and haptics?

RQ 3.2.4: Can the use of joint learning algorithms across both

data center and edge computers be used to create optimal function

allocation and the creation of semi-permanent datasets and

analytics for usage trending and flow management resulting in

better localization of XR functions?

RQ 3.2.5: Can COIN improve the dynamic distribution of control,

forwarding, and storage resources and related usage models in XR?

RQ 3.2.6: How COIN provide the necessary infrastructure for the

use of interactive XR everywhere?

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

3.2.6. Requirements

Req 3.2.1: COIN systems for XR MUST allow joint collaboration

across networks not just as part of the same subnetwork.

Req 3.2.2: COIN systems for XR SHOULD provide multi-stream

combining in the network for multi-views and efficient

transmission.

Req 3.2.3: COIN systems for XR SHOULD be able to dynamically

include extra streams for data-intensive services and processes.

Req 3.2.4: COIN systems for XR MAY use edge networking and

computing for improved performance and performance management

independent of a cloud connection.

Req 3.2.5: COIN systems for XR MAY integrate local and fog

caching with cloud-based pre-rendering.

Req 3.2.6: COIN systems for XR SHOULD jointly optimize COIN and

higher layer protocols to reduce latency especially in data-

intensive applications at the edge.

Req 3.2.7: COIN systems for XR SHOULD support nomadicity and

mobility.

Req 3.2.8: COIN systems for XR SHOULD provide means for

performance optimization that reduces transmitted data and

optimizes loss protection.

Req 3.2.9: COIN systems for XR MAY provide means for trend

analysis and telemetry.

Req 3.2.10: COIN systems for XR SHOULD integrate PNDs with

holography, 3D displays, and image rendering processors for

offering to improve service location selections.

Req 3.2.11: COIN systems for XR MAY provide means for managing

the quality of XR sessions through reduced in-network congestion

and improve flow delivery by determining how to prioritize XR

data.

3.3. Personalized and interactive performing arts

3.3.1. Description

This use case covers live productions of the performing arts where

the performers and audience are in different physical locations. The

performance is conveyed to the audience through multiple networked

streams which may be tailored to the requirements of individual

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

audience members; and the performers receive live feedback from the

audience.

There are two main aspects: i) to emulate as closely as possible the

experience of live performances where the performers and audience

are co-located in the same physical space, such as a theater; and

ii) to enhance traditional physical performances with features such

as personalization of the experience according to the preferences or

needs of the audience members.

Examples of personalization include:

Viewpoint selection such as choosing a specific seat in the

theater or for more advanced positioning of the audience member's

viewpoint outside of the traditional seating - amongst, above or

behind the performers (but within some limits which may be

imposed by the performers or the director for artistic reasons);

Augmentation of the performance with subtitles, audio-

description, actor-tagging, language translation, advertisements/

product-placement, other enhancements/filters to make the

performance accessible to disabled audience members (removal of

flashing images for epileptics, alternative color schemes for

color-blind audience members, etc.).

3.3.2. Characterization

There are several chained functional entities which are candidates

for being deployed as (COIN) programs:

Performer aggregation and editing functions

Distribution and encoding functions

Personalization functions

to select which of the existing streams should be forwarded to

the audience member

to augment streams with additional metadata such as subtitles

to create new streams after processing existing ones, e.g., to

interpolate between camera angles to create a new viewpoint or

to render point clouds from the audience member's chosen

perspective

to undertake remote rendering according to viewer position,

e.g., creation of VR headset display streams according to

audience head position - when this processing has been

offloaded from the viewer's end-system to the COIN function

¶

¶

¶

*

¶

*

¶

¶

* ¶

* ¶

* ¶

-

¶

- ¶

-

¶

-

due to limited processing power in the end-system, or to

limited network bandwidth to receive all of the individual

streams to be processed.

Audience feedback sensor processing functions

Audience feedback aggregation functions

These are candidates for deployment as (COIN) Programs in PNDs

rather than being located in end-systems (at the performers' site,

the audience members' premises or in a central cloud location) for

several reasons:

Personalization of the performance according to audience

preferences and requirements makes it unfeasible to be done in a

centralized manner at the performer premises: the computational

resources and network bandwidth would need to scale with the

number of audience members' personalized streams.

Rendering of VR headset content to follow viewer head movements

has an upper bound on lag to maintain viewer QoE, which requires

the processing to be undertaken sufficiently close to the viewer

to avoid large network latencies.

Viewer devices may not have the processing-power to undertake the

personalization or the viewers' network may not have the capacity

to receive all of the constituent streams to undertake the

personalization functions.

There are strict latency requirements for live and interactive

aspects that require the deviation from the direct network path

from performers to audience to be minimized, which reduces the

opportunity to route streams via large-scale processing

capabilities at centralized data-centers.

3.3.3. Existing solutions

Note: Existing solutions for some aspects of this use case are

covered in the Mobile Application Offloading, Extended Reality, and

Content Delivery Networks use cases.

3.3.4. Opportunities

Executing media processing and personalization functions on-path

as (COIN) Programs in PNDs can avoid detour/stretch to central

servers, thus reducing latency and bandwidth consumption. For

example, the overall delay for performance capture, aggregation,

distribution, personalization, consumption, capture of audience

response, feedback processing, aggregation, and rendering should

be achieved within an upper bound of latency (the tolerable

¶

* ¶

* ¶

¶

*

¶

*

¶

*

¶

*

¶

¶

*

amount is to be defined, but in the order of 100s of ms to mimic

performers perceiving audience feedback, such as laughter or

other emotional responses in a theater setting).

Processing of media streams allows (COIN) Programs, PNDs and the

wider (COIN) System/Environment to be contextually aware of flows

and their requirements which can be used for determining network

treatment of the flows, e.g., path selection, prioritization,

multi-flow coordination, synchronization and resilience.

3.3.5. Research Questions:

RQ 3.3.1: In which PNDs should (COIN) Programs for aggregation,

encoding and personalization functions be located? Close to the

performers or close to the audience members?

RQ 3.3.2: How far from the direct network path from performer to

audience should (COIN) programs be located, considering the

latency implications of path-stretch and the availability of

processing capacity at PNDs? How should tolerances be defined by

users?

RQ 3.3.3: Should users decide which PNDs should be used for

executing (COIN) Programs for their flows or should they express

requirements and constraints that will direct decisions by the

orchestrator/manager of the COIN System?

RQ 3.3.4: How to achieve synchronization across multiple streams

to allow for merging, audio-video interpolation, and other cross-

stream processing functions that require time synchronization for

the integrity of the output? How can this be achieved considering

that synchronization may be required between flows that are: i)

on the same data pathway through a PND/router, ii) arriving/

leaving through different ingress/egress interfaces of the same

PND/router, iii) routed through disjoint paths through different

PNDs/routers? This RQ raises issues associated with

synchronisation across multiple media streams and sub-streams

[RFC7272] as well as time synchronisation between PNDs/routers on

multiple paths [RFC8039].

RQ 3.3.5: Where will COIN Programs be executed? In the data-plane

of PNDs, in other on-router computational capabilities within

PNDs, or in adjacent computational nodes?

RQ 3.3.6: Are computationally-intensive tasks - such as video

stitching or media recognition and annotation (cf. Section 3.2) -

considered as suitable candidate (COIN) Programs or should they

be implemented in end-systems?

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

RQ 3.3.7: If the execution of COIN Programs is offloaded to

computational nodes outside of PNDs, e.g. for processing by GPUs,

should this still be considered as COIN? Where is the boundary

between COIN capabilities and explicit routing of flows to

endsystems?

3.3.6. Requirements

Req 3.3.1: Users SHOULD be able to specify requirements on

network and processing metrics (such as latency and throughput

bounds).

Req 3.3.2 The COIN System SHOULD be able to respect user-

specified requirements and constraints when routing flows and

selecting PNDs for executing (COIN) Programs.

Req 3.3.3: A COIN System SHOULD be able to synchronize flow

treatment and processing across multiple related flows which may

be on disjoint paths.

4. Supporting new COIN Systems

4.1. In-Network Control / Time-sensitive applications

4.1.1. Description

The control of physical processes and components of industrial

production lines is essential for the growing automation of

production and ideally allows for a consistent quality level.

Traditionally, the control has been exercised by control software

running on programmable logic controllers (PLCs) located directly

next to the controlled process or component. This approach is best-

suited for settings with a simple model that is focused on a single

or few controlled components.

Modern production lines and shop floors are characterized by an

increasing number of involved devices and sensors, a growing level

of dependency between the different components, and more complex

control models. A centralized control is desirable to manage the

large amount of available information which often has to be pre-

processed or aggregated with other information before it can be

used. PLCs are not designed for this array of tasks and computations

could theoretically be moved to more powerful devices. These devices

are no longer close to the controlled objects and induce additional

latency. Moving compute functionality onto COIN execution

environments inside the network offers a new solution space to these

challenges, providing new compute locations with much smaller

latencies.

*

¶

*

¶

*

¶

*

¶

¶

¶

4.1.2. Characterization

A control process consists of two main components as illustrated in

Figure 2: a system under control and a controller. In feedback

control, the current state of the system is monitored, e.g., using

sensors, and the controller influences the system based on the

difference between the current and the reference state to keep it

close to this reference state.

Figure 2: Simple feedback control model.

Apart from the control model, the quality of the control primarily

depends on the timely reception of the sensor feedback which can be

subject to tight latency constraints, often in the single-digit

millisecond range. While low latencies are essential, there is an

even greater need for stable and deterministic levels of latency,

because controllers can generally cope with different levels of

latency, if they are designed for them, but they are significantly

challenged by dynamically changing or unstable latencies. The

unpredictable latency of the Internet exemplifies this problem if,

e.g., off-premise cloud platforms are included.

4.1.3. Existing Solutions

Control functionality is traditionally executed on PLCs close to the

machinery. These PLCs typically require vendor-specific

implementations and are often hard to upgrade and update which makes

such control processes inflexible and difficult to manage. Moving

computations to more freely programmable devices thus has the

potential of significantly improving the flexibility. In this

context, directly moving control functionality to (central) cloud

environments is generally possible, yet only feasible if latency

constraints are lenient.

Early approaches such as [RUETH] and [VESTIN] have already shown the

general applicability of leveraging COIN for in-network control.

¶

 reference

 state ------------ -------- Output

----------> | Controller | ---> | System | ---------->

 ^ ------------ -------- |

 | |

 | observed state |

 | --------- |

 -------------------| Sensors | <-----

¶

¶

¶

4.1.4. Opportunities

Performing simple control logic on PNDs and/or in COIN execution

environments can bring the controlled system and the controller

closer together, possibly satisfying the tight latency

requirements.

Creating a coupled control that is exercised via (i) simplified

approximations of more complex control algorithms deployed in

COIN execution environments, and (ii) more complex overall

control schemes deployed in the cloud can allow for quicker, yet

more inaccurate responses from within the network while still

providing for sufficient control accuracy at higher latencies

from afar.

4.1.5. Research Questions

RQ 4.1.1: How to derive simplified versions of the global

(control) function?

How to account for the limited computational precision of

PNDs, typically only allowing for integer precision

computation, while floating-point precision is needed by most

control algorithms (cf. [KUNZE-APPLICABILITY])?

How to find suitable tradeoffs regarding simplicity of the

control function ("accuracy of the control") and

implementation complexity ("implementability")?

RQ 4.1.2: How to distribute the simplified versions in the

network?

Can there be different control levels, e.g., "quite inaccurate

& very low latency" (PNDs, deep in the network), "more

accurate & higher latency" (more powerful COIN execution

environments, farer away), "very accurate & very high latency"

(cloud environments, far away)?

Who decides which control instance is executed and how?

How do the different control instances interact?

4.1.6. Requirements

Req 4.1.1: The interaction between the COIN execution

environments and the global controller SHOULD be explicit.

Req 4.1.2: The interaction between the COIN execution

environments and the global controller MUST NOT negatively impact

the control quality.

*

¶

*

¶

*

¶

-

¶

-

¶

*

¶

-

¶

- ¶

- ¶

*

¶

*

¶

Req 4.1.3: Actions of the COIN execution environments MUST be

overridable by the global controller.

Req 4.1.4: Functions in COIN execution environments SHOULD be

executed with predictable delay.

Req 4.1.5: Functions in COIN execution environments MUST be

executed with predictable accuracy.

4.2. Large Volume Applications

4.2.1. Description

In modern industrial networks, processes and machines are

extensively monitored by distributed sensors with a large spectrum

of capabilities, ranging from simple binary (e.g., light barriers)

to sophisticated sensors with varying degrees of resolution. Sensors

further serve different purposes, as some are used for time-critical

process control while others represent redundant fallback platforms.

Overall, there is a high level of heterogeneity which makes managing

the sensor output a challenging task.

Depending on the deployed sensors and the complexity of the observed

system, the resulting overall data volume can easily be in the range

of several Gbit/s [GLEBKE]. These volumes are often already

difficult to handle in local environments and it becomes even more

challenging when off-premise clouds are used for managing the data.

While large networking companies can simply upgrade their

infrastructure to accommodate the accruing data volumes, most

industrial companies operate on tight infrastructure budgets and

upgrading is hence not always feasible or possible. A major

challenge is thus to devise a methodology that is able to handle

such amounts of data over limited access links.

Data filtering and pre-processing, similar to the considerations in

Section 3.2, can be building blocks for new solutions in this space.

Such solutions, however, might also have to address the added

challenge of business data leaving the premises and control of the

company. As this data could include sensitive information or

valuable business secrets, additional security measures have to be

taken. Yet, typical security measures such as encrypting the data

make filtering or pre-processing approaches hardly applicable as

they typically work on unencrypted data. Consequently, incorporating

security into these approaches, either by adding functionality for

handling encrypted data or devising general security measures, is

thus an additional auspicious field for research.

*

¶

*

¶

*

¶

¶

¶

¶

4.2.2. Characterization

In essence, the described monitoring systems consist of sensors that

produce large volumes of monitoring data. This data is then

transmitted to additional components that provide data processing

and analysis capabilities or simply store the data in large data

silos.

As sensors are often set up redundantly, part of the collected data

might also be redundant. Moreover, sensors are often hard to

configure or not configurable at all which is why their resolution

or sampling frequency is often larger than required. Consequently,

it is likely that more data is transmitted than is needed or

desired, prompting the deployment of filtering techniques. For

example, COIN programs deployed in the on-premise network could

filter out redundant or undesired data before it leaves the premise

using simple traffic filters, thus reducing the required (upload)

bandwidths. The available sensor data could be scaled down using

packet-based sub-sampling or using filtering as long as the sensor

value is in an uninteresting range while forwarding with a higher

resolution once the sensor value range becomes interesting (cf.

[KUNZE-SIGNAL]). While the former variant is oblivious to the

semantics of the sensor data, the latter variant requires an

understanding of the current sensor levels. In any case, it is

important that end-hosts are informed about the filtering so that

they can distinguish between data loss and data filtered out on

purpose.

In practice, the collected data is further processed using manifold

computations. Some of them are very complex or need the complete

sensor data during the computation, but there are also simpler

operations which can already be done on subsets of the overall

dataset or earlier on the communication path as soon as all data is

available. One example is finding the maximum of all sensor values

which can either be done iteratively at each intermediate hop or at

the first hop, where all data is available. Using expert knowledge

about the exact computation steps and the concrete transmission path

of the sensor data, simple computation steps can thus be deployed in

the on-premise network, again reducing the overall data volume.

4.2.3. Existing Solutions

Current approaches for handling such large amounts of information

typically build upon stream processing frameworks such as Apache

Flink. While they allow for handling large volume applications, they

are tied to performant server machines and upscaling the information

density also requires a corresponding upscaling of the compute

infrastructure.

¶

¶

¶

¶

4.2.4. Opportunities

(Semantic) packet filtering based on packet header and payload,

as well as multi-packet information can (drastically) reduce the

data volume, possibly even without losing any important

information.

(Semantic) data (pre-)processing, e.g., in the form of

computations across multiple packets and potentially leveraging

packet payload, can also reduce the data volume without losing

any important information.

4.2.5. Research Questions

RQ 4.2.1: How can the overall data processing pipeline be divided

into individual processing steps that could then be deployed as

COIN functionality?

RQ 4.2.2: How to design COIN programs for (semantic) packet

filtering?

Which criteria for filtering make sense?

RQ 4.2.3: Which kinds of COIN programs can be leveraged for

(pre-)processing steps?

How complex can they become?

RQ 4.2.4: How to distribute and coordinate COIN programs?

RQ 4.2.5: How to dynamically change COIN programs?

RQ 4.2.6: How to incorporate the (pre-)processing and filtering

steps into the overall system?

How can changes to the data by COIN programs be signaled to

the end-hosts?

4.2.6. Requirements

Req 4.2.1: Filters and preprocessors MUST conform to application-

level syntax and semantics.

Req 4.2.2: Filters and preprocessors MAY leverage packet header

and payload information.

Req 4.2.3: Filters and preprocessors SHOULD be reconfigurable at

run-time.

*

¶

*

¶

*

¶

*

¶

- ¶

*

¶

- ¶

* ¶

* ¶

*

¶

-

¶

*

¶

*

¶

*

¶

4.3. Industrial Safety

4.3.1. Description

Despite an increasing automation in production processes, human

workers are still often necessary. Consequently, safety measures

have a high priority to ensure that no human life is endangered. In

traditional factories, the regions of contact between humans and

machines are well-defined and interactions are simple. Simple safety

measures like emergency switches at the working positions are enough

to provide a good level of safety.

Modern factories are characterized by increasingly dynamic and

complex environments with new interaction scenarios between humans

and robots. Robots can either directly assist humans or perform

tasks autonomously. The intersect between the human working area and

the robots grows and it is harder for human workers to fully observe

the complete environment. Additional safety measures are essential

to prevent accidents and support humans in observing the

environment.

4.3.2. Characterization

Industrial safety measures are typically hardware solutions because

they have to pass rigorous testing before they are certified and

deployment-ready. Standard measures include safety switches and

light barriers. Additionally, the working area can be explicitly

divided into 'contact' and 'safe' areas, indicating when workers

have to watch out for interactions with machinery.

These measures are static solutions, potentially relying on

specialized hardware, and are challenged by the increased dynamics

of modern factories where the factory configuration can be changed

on demand. Software solutions offer higher flexibility as they can

dynamically respect new information gathered by the sensor systems,

but in most cases they cannot give guaranteed safety. COIN systems

could leverage the increased availability of sensor data and the

detailed monitoring of the factories to enable additional safety

measures with shorter response times and higher guarantees.

Different safety indicators within the production hall could be

combined within the network so that PNDs can give early responses if

a potential safety breach is detected. For example, the positions of

human workers and robots could be tracked and robots could be

stopped when they get too close to a human in a non-working area or

if a human enters a defined safety zone. More advanced concepts

could also include image data or combine arbitrary sensor data.

¶

¶

¶

¶

4.3.3. Existing Solutions

Due to the importance of safety, there is a wide range of software-

based approaches aiming at enhancing security. One example are tag-

based systems, e.g., using RFID, where drivers of forklifts can be

warned if pedestrian workers carrying tags are nearby. Such

solutions, however, require setting up an additional system and do

not leverage existing sensor data.

4.3.4. Opportunities

Executing safety-critical COIN functions on PNDs could allow for

early emergency reactions based on diverse sensor feedback with

low latencies.

4.3.5. Research Questions

RQ 4.3.1: Which additional safety measures can be provided?

Do these measures actually improve safety?

RQ 4.3.2: Which sensor information can be combined and how?

4.3.6. Requirements

Req 4.3.1: COIN-based safety measures MUST NOT degrade existing

safety measures.

Req 4.3.2: COIN-based safety measures MAY enhance existing safety

measures.

5. Improving existing COIN capabilities

5.1. Content Delivery Networks

5.1.1. Description

Delivery of content to end users often relies on Content Delivery

Networks (CDNs). CDNs store said content closer to end users for

latency-reduced delivery and they often utilize DNS-based

indirection to serve the request on behalf of the origin server.

5.1.2. Characterization

From the perspective of this draft, a CDN can be interpreted as a

(network service level) set of (COIN) programs. These programs

implement a distributed logic for first distributing content from

the origin server to the CDN ingress and then further to the CDN

replication points which ultimately serve the user-facing content

requests.

¶

*

¶

* ¶

- ¶

* ¶

*

¶

*

¶

¶

¶

5.1.3. Existing Solutions

CDN technologies have been well described and deployed in the

existing Internet. Core technologies like Global Server Load

Balancing (GSLB) [GSLB] and Anycast server solutions are used to

deal with the required indirection of a content request (usually in

the form of an HTTP request) to the most suitable local CDN server.

Content is replicated from seeding servers, which serve as injection

points for content from content owners/producers, to the actual CDN

servers, who will eventually serve the user's request. The

replication architecture and mechanisms itself differs from one

(CDN) provider to another, and often utilizes private peering or

network arrangements in order to distribute the content

internationally and regionally.

Studies such as those in [FCDN] have shown that content distribution

at the level of named content, utilizing efficient (e.g., Layer 2)

multicast for replication towards edge CDN nodes, can significantly

increase the overall network and server efficiency. It also reduces

indirection latency for content retrieval as well as required edge

storage capacity by benefiting from the increased network efficiency

to renew edge content more quickly against changing demand.

5.1.4. Opportunities

Supporting service-level routing of requests (service routing in

[APPCENTRES]) to specific (COIN) program instances may improve on

end user experience in faster retrieving (possibly also more,

e.g., better quality) content.

Supporting the constraint-based selection of a specific (COIN)

program instance over others (constraint-based routing in

[APPCENTRES]) may improve the overall end user experience by

selecting a 'more suitable' (COIN) program instance over another,

e.g., avoiding/reducing overload situations in specific (COIN)

program instances.

Supporting Layer 2 capabilities for multicast (compute

interconnection and collective communication in [APPCENTRES]) may

increase the network utilization and therefore increase the

overall system utilization.

5.1.5. Research Questions

In addition to the research questions in Section 3.1.5:

RQ 5.1.1: How to utilize L2 multicast to improve on CDN designs?

How to utilize COIN capabilities in those designs?

¶

¶

*

¶

*

¶

*

¶

¶

*

¶

RQ 5.1.2: What forwarding methods may support the required

multicast capabilities (see [FCDN])?

RQ 5.1.3: What are the right routing constraints that reflect

both compute and network capabilities?

RQ 5.1.4: Could traffic steering be performed on the data path

and per service request? If so, what would be performance

improvements?

RQ 5.1.5: How could storage be traded off against frequent,

multicast-based replication (see [FCDN])?

RQ 5.1.6: What scalability limits exist for L2 multicast

capabilities? How to overcome them?

5.1.6. Requirements

Requirements 3.1.1 through 3.1.6 also apply for CDN service access.

In addition:

Req 5.1.1: Any solution SHOULD utilize Layer 2 multicast

transmission capabilities for responses to concurrent service

requests.

5.2. Compute-Fabric-as-a-Service (CFaaS)

5.2.1. Description

Layer 2 connected compute resources, e.g., in regional or edge data

centers, base stations, and even end user devices, provide the

opportunity for infrastructure providers to offer CFaaS-like

offerings to application providers. App and service providers may

utilize the compute fabric exposed by this CFaaS offering for the

purposes defined through their applications and services. In other

words, the compute resources can be utilized to execute the desired

(COIN) programs of which the application is composed, while

utilizing the interconnection between those compute resources to do

so in a distributed manner.

5.2.2. Characterization

We foresee those CFaaS offerings to be tenant-specific, a tenant

here defined as the provider of at least one application. For this,

we foresee an interaction between CFaaS provider and tenant to

dynamically select the appropriate resources to define the demand

side of the fabric. Conversely, we also foresee the supply side of

the fabric to be highly dynamic with resources being offered to the

fabric through, e.g., user-provided resources (whose supply might

depend on highly context-specific supply policies) or infrastructure

*

¶

*

¶

*

¶

*

¶

*

¶

¶

*

¶

¶

resources of intermittent availability such as those provided

through road-side infrastructure in vehicular scenarios.

The resulting dynamic demand-supply matching establishes a dynamic

nature of the compute fabric that in turn requires trust

relationships to be built dynamically between the resource

provider(s) and the CFaaS provider. This also requires the

communication resources to be dynamically adjusted to suitably

interconnect all resources into the (tenant-specific) fabric exposed

as CFaaS.

5.2.3. Existing Solutions

There exist a number of technologies to build non-local (wide area)

Layer 2 networks, which in turn allows for connecting compute

resources for a distributed computational task. 5G-LAN [SA2-5GLAN]

specifies a cellular L2 bearer for interconnecting L2 resources

within a single cellular operator. The work in [ICN5GLAN] outlines

using a path-based forwarding solution over 5G-LAN as well as SDN-

based LAN connectivity together with an ICN-based naming of IP and

HTTP-level resources to achieve computational interconnections,

including scenarios such as those outlined in Section 3.1. L2

network virtualization (see, e.g., [L2Virt]) is one of the methods

used for realizing so-called 'cloud-native' applications for

applications developed with 'physical' networks in mind, thus

forming an interconnected compute and storage fabric.

5.2.4. Opportunities

Supporting service-level routing of compute resource requests

(service routing in [APPCENTRES]) may allow for utilizing the

wealth of compute resources in the overall CFaaS fabric for

execution of distributed applications, where the distributed

constituents of those applications are realized as (COIN)

programs and executed within a COIN system as (COIN) program

instances.

Supporting the constraint-based selection of a specific (COIN)

program instance over others (constraint-based routing in

[APPCENTRES]) will allow for optimizing both the CFaaS provider

constraints as well as tenant-specific constraints.

Supporting Layer 2 capabilities for multicast (compute

interconnection and collective communication in [APPCENTRES])

will allow for increasing both network utilization but also

possible compute utilization (due to avoiding unicast replication

at those compute endpoints), thereby decreasing total cost of

ownership for the CFaaS offering.

¶

¶

¶

*

¶

*

¶

*

¶

5.2.5. Research Questions

In addition to the research questions in Section 3.1.5:

RQ 5.2.1: How to convey tenant-specific requirements for the

creation of the L2 fabric?

RQ 5.2.2: How to dynamically integrate resources, particularly

when driven by tenant-level requirements and changing service-

specific constraints?

RQ 5.2.3: How to utilize COIN capabilities to aid the

availability and accountability of resources, i.e., what may be

(COIN) programs for a CFaaS environment that in turn would

utilize the distributed execution capability of a COIN system?

5.2.6. Requirements

Requirements 3.1.1 through 3.1.6 also apply for the provisioning of

services atop the CFaaS. In addition:

Req 5.2.1: Any solution SHOULD expose means to specify the

requirements for the tenant-specific compute fabric being

utilized for the service execution.

Req 5.2.2: Any solution SHOULD allow for dynamic integration of

compute resources into the compute fabric being utilized for the

app execution; those resources include, but are not limited to,

end user provided resources. From a COIN system perspective, new

resources must be possible to be exposed as possible (COIN)

execution environments.

Req 5.2.3: Any solution MUST provide means to optimize the

interconnection of compute resources, including those dynamically

added and removed during the provisioning of the tenant-specific

compute fabric.

Req 5.2.4: Any solution MUST provide means for ensuring that

availability and usage of resources is accounted for.

5.3. Virtual Networks Programming

5.3.1. Description

The term "virtual network programming" is proposed to describe

mechanisms by which tenants deploy and operate COIN programs in

their virtual network. Such COIN programs can, e.g., be P4 programs,

OpenFlow rules, or higher layer programs. This feature can enable

other use cases described in this draft to be deployed using virtual

¶

*

¶

*

¶

*

¶

¶

*

¶

*

¶

*

¶

*

¶

networks services, over underlying networks such as datacenters,

mobile networks, or other fixed or wireless networks.

For example, COIN programs could perform the following on a tenant's

virtual network:

Allow or block flows, and request rules from an SDN controller

for each new flow, or for flows to or from specific hosts that

need enhanced security

Forward a copy of some flows towards a node for storage and

analysis

Update counters based on specific sources/destinations or

protocols, for detailed analytics

Associate traffic between specific endpoints, using specific

protocols, or originated from a given application, to a given

slice, while other traffic uses a default slice

Experiment with a new routing protocol (e.g., ICN), using a P4

implementation of a router for this protocol

5.3.2. Characterization

To provide a concrete example of virtual COIN programming, we

consider a use case using a 5G underlying network, the 5GLAN

virtualization technology, and the P4 programming language and

environment. Section 5.1 of [I-D.ravi-icnrg-5gc-icn] provides a

description of the 5G network functions and interfaces relevant to

5GLAN, which are otherwise specified in [TS23.501] and [TS23.502].

From the 5GLAN service customer/tenant standpoint, the 5G network

operates as a switch.

In the use case depicted in Figure 3, the tenant operates a network

including a 5GLAN network segment (seen as a single logical switch),

as well as fixed segments. The mobile devices (or User Equipment

nodes) UE1, UE2, UE3 and UE4 are in the same 5GLAN, as well as

Device1 and Device2 (through UE4). This scenario can take place in a

plant or enterprise network, using, e.g., a 5G Non-Public Network.

The tenant uses P4 programs to determine the operation of both the

fixed and 5GLAN switches. The tenant provisions a 5GLAN P4 program

into the mobile network, and can also operate a controller.

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

Figure 3: 5G Virtual Network Programming Overview

5.3.3. Existing Solutions

Research has been conducted, for example by [Stoyanov], to enable P4

network programming of individual virtual switches. To our

knowledge, no complete solution has been developed for deploying

virtual COIN programs over mobile or datacenter networks.

5.3.4. Opportunities

Virtual network programming by tenants could bring benefits such as:

A unified programming model, which can facilitate porting COIN

programs between data centers, 5G networks, and other fixed and

wireless networks, as well as sharing controller, code and

expertise.

 Tenant

 P4 program : :

 deployment : Operation :

 V :

 +-----+ air interface +----------------+ :

 | UE1 +----------------+ | :

 +-----+ | | :

 | | :

 +-----+ | | V

 | UE2 +----------------+ 5GLAN | +------------+

 +-----+ | Logical +------+ Controller |

 | Switch | P4 +-------+----+

 +-----+ | | runtime |

 | UE3 +----------------+ | API |

 +-----+ | | |

 | | |

 +-----+ | | |

+-+ UE4 +----------------+ | |

| +-----+ +----------------+ |

| |

| Fixed or wireless connection |

| P4 runtime API |

| +---------+ +-------------------------------+

+--+ Device1 | |

| +---------+ |

| |

| +---------+ +------+-----+

`--+ Device2 +----+ P4 Switch +--->(fixed network)

 +---------+ +------------+

¶

¶

*

¶

Increasing the level of customization available to customers/

tenants of mobile networks or datacenters compared to typical

configuration capabilities. For example, 5G network evolution

points to an ever increasing specialization and customization of

private mobile networks, which could be handled by tenants using

a programming model similar to P4.

Using network programs to influence underlying network services,

e.g., request specific QoS for some flows in 5G or datacenters,

to increase the level of in-depth customization available to

tenants.

5.3.5. Research Questions

RQ 5.3.1: Underlying Network Awareness: a virtual COIN program

can be able to influence, and be influenced by, the underling

network. Since some information and actions may be available on

some nodes and not others, underlying network awareness may

impose additional constraints on distributed network programs

location.

RQ 5.3.2: Splitting/Distribution: a virtual COIN program may need

to be deployed across multiple computing nodes, leading to

research questions around instance placement and distribution.

For example, program logic should be applied exactly once or at

least once per packet, while allowing optimal forwarding path by

the underlying network. Research challenges include defining

manual (by the programmer) or automatic methods to distribute

COIN programs that use a low or minimal amount of resources.

Distributed P4 programs are studied in

[I-D.hsingh-coinrg-reqs-p4comp] and [Sultana].

RQ 5.3.3: Multi-Tenancy Support: multiple virtual COIN program

instances can run on the same compute node. While mechanisms were

proposed for P4 multi-tenancy in a switch [Stoyanov], research

questions remain about isolation between tenants and fair

repartition of resources.

RQ 5.3.4: Security: how can tenants and underlying networks be

protected against security risks, including overuse or misuse of

network resources, injection of traffic, or access to

unauthorized traffic?

RQ 5.3.5: Higher layer processing: can a virtual network model

facilitate the deployment of COIN programs acting on application

layer data? This is an open question since the present section

focused on packet/flow processing.

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

5.3.6. Requirements

Req 5.3.1: A COIN system supporting virtualization SHOULD enable

tenants to deploy COIN programs onto their virtual networks.

Req 5.3.2: A virtual COIN program SHOULD process flows/packets

once and only once (or at least once for idempotent operations),

even if the program is distributed over multiple PNDs.

Req 5.3.3: Multi-tenancy SHOULD be supported for virtual COIN

programs, i.e., instances of virtual COIN programs from different

tenants can share underlying PNDs. This includes requirements for

secure isolation between tenants, and fair (or policy-based)

sharing of computing resources.

Req 5.3.4: Virtual COIN programs SHOULD support mobility of

endpoints.

6. Enabling new COIN capabilities

6.1. Distributed AI

6.1.1. Description

There is a growing range of use cases demanding for the realization

of AI capabilities among distributed endpoints. Such demand may be

driven by the need to increase overall computational power for

large-scale problems. From a COIN perspective, those capabilities

may be realized as (COIN) programs and executed throughout the COIN

system, including in PNDs.

Some solutions may desire the localization of reasoning logic, e.g.,

for deriving attributes that better preserve privacy of the utilized

raw input data. Quickly establishing (COIN) program instances in

nearby compute resources, including PNDs, may even satisfy such

localization demands on-the-fly (e.g., when a particular use is

being realized, then terminated after a given time).

6.1.2. Characterization

Examples for large-scale AI problems include biotechnology and

astronomy related reasoning over massive amounts of observational

input data. Examples for localizing input data for privacy reasons

include radar-like application for the development of topological

mapping data based on (distributed) radio measurements at base

stations (and possibly end devices), while the processing within

radio access networks (RAN) already constitutes a distributed AI

problem to a certain extent albeit with little flexibility in

distributing the execution of the AI logic.

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

6.1.3. Existing Solutions

Reasoning frameworks, such as TensorFlow, may be utilized for the

realization of the (distributed) AI logic, building on remote

service invocation through protocols such as gRPC [GRPC] or MPI

[MPI] with the intention of providing an on-chip NPU (neural

processor unit) like abstraction to the AI framework.

A number of activities on distributed AI exist in the area of

developing the 5th and 6th generation mobile network with various

activities in the 3GPP SDO as well as use cases developed for the

ETSI MEC initiative mentioned in previous use cases.

6.1.4. Opportunities

Supporting service-level routing of requests (service routing in

[APPCENTRES]), with AI services being exposed to the network and

executed as part of (COIN) programs in selected (COIN) program

instances, may provide a highly distributed execution of the

overall AI logic, thereby addressing, e.g., localization but also

computational concerns (scale-in/out).

The support for constraint-based selection of a specific (COIN)

program instance over others (constraint-based routing in

[APPCENTRES]) may allow for utilizing the most suitable HW

capabilities (e.g., support for specific AI HW assistance in the

COIN element, including a PND), while also allowing to select

resources, e.g., based on available compute ability such as

number of cores to be used.

Supporting collective communication between multiple instances of

AI services, i.e., (COIN) program instances, may positively

impact network but also compute utilization by moving from

unicast replication to network-assisted multicast operation.

6.1.5. Research Questions

In addition to the research questions in Section 3.1.5:

RQ 6.1.1: What are the communication patterns that may be

supported by collective communication solutions?

RQ 6.1.2: How to achieve scalable multicast delivery with rapidly

changing receiver sets?

RQ 6.1.3: What COIN capabilities may support the collective

communication patterns found in distributed AI problems?

RQ 6.1.4: How to provide a service routing capability that

supports any invocation protocol (beyond HTTP)?

¶

¶

*

¶

*

¶

*

¶

¶

*

¶

*

¶

*

¶

*

¶

6.1.6. Requirements

Requirements 3.1.1 through 3.1.6 also apply for general distributed

AI capabilities. In addition:

Req 6.1.1: Any COIN system MUST provide means to specify the

constraints for placing (AI) execution logic in the form of

(COIN) programs in certain logical execution points (and their

associated physical locations), including PNDs.

Req 6.1.2: Any COIN system MUST provide support for app/micro-

service specific invocation protocols for requesting (COIN)

program services exposed to the COIN system.

7. Security Considerations

Deploying COIN solutions to the use cases described in this document

may pose a risk for security breaches if the solutions are not

deployed with security and authentication mechanisms in place. In

particular, many early PND-based approaches work on unencrypted

plain text data and often customize packet payload to account for

missing capabilities of early-generation PNDs. Such need for

operating on unencrypted data either limits the applicability of

COIN solutions to those parts of the packet transfer that happens to

be unencrypted or poses a strong requirement to user data to not

being encrypted for the sake of utilizing COIN capabilities; a

requirement hardly aligned with the strong trend to encrypting all

user-related data in traversing packets. Thus, even without having

analyzed the use cases in more detail in this document, designing

meaningful solutions for providing authentication as well as

incorporating the rightfully ongoing trend to more and more end-to-

end encrypted traffic into COIN will be key.

8. IANA Considerations

N/A

9. Conclusion

This document presented use cases gathered from several fields that

can and could profit from capabilities that are provided by in-

network and, more generally, distributed compute capabilities. We

distinguished between use cases in which COIN may enable new

experiences (Section 3), expose new features (Section 6), or improve

on existing system capabilities (Section 5), and other use cases

where COIN capabilities enable totally new applications, for

example, in industrial networking (Section 4).

Beyond the mere description and characterization of those use cases,

we identified opportunities arising from utilizing COIN capabilities

¶

*

¶

*

¶

¶

¶

¶

[RFC2119]

[RFC8174]

[APPCENTRES]

as well as research questions that may need to be addressed before

being able to reap those opportunities. We also outlined possible

requirements for building a COIN system that may realize these use

cases.

We acknowledge that this work offers no comprehensive overview of

possible use cases and is thus only a snapshot of what may be

possible if COIN capabilities existed.

In fact, the decomposition of many current client-server

applications into node by node transit could identify other

opportunities for adding computing to forwarding notably in supply-

chain, health care, intelligent cities and transportation and even

financial services (among others).

With this in mind, updates to this document might become necessary

or desirable in the future to capture this extended view on what may

be possible. We are, however, confident that the current selection

of use cases, each describing the dimensions of opportunities,

research questions, and requirements, already represents a useful

set of scenarios that yield themselves for a subsequent analysis

that is currently intended to be performed in [USECASEANALYSIS].

Through this, the use cases presented here together with the

intended analysis provide direct input into the milestones of the

COIN RG in terms of required functionalities.

10. Acknowledgements

The authors would like to thank Chathura Sarathchandra for reviewing

the document and David Oran, Phil Eardley, Stuart Card, Jeffrey He,

Toerless Eckert, and Jon Crowcroft for providing comments on earlier

versions of the document.

11. References

11.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

11.2. Informative References

Trossen, D., Sarathchandra, C., and M. Boniface, "In-

Network Computing for App-Centric Micro-Services", Work

in Progress, Internet-Draft, draft-sarathchandra-coin-

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc8174

[ETSI]

[FCDN]

[GLEBKE]

[GRPC]

[GSLB]

[I-D.hsingh-coinrg-reqs-p4comp]

[I-D.ravi-icnrg-5gc-icn]

[ICN5GLAN]

appcentres-04, 26 January 2021, <https://

datatracker.ietf.org/doc/html/draft-sarathchandra-coin-

appcentres-04>.

ETSI, "Multi-access Edge Computing (MEC)", 2022,

<https://www.etsi.org/technologies/multi-access-edge-

computing>.

Al-Naday, M., Reed, M. J., Riihijarvi, J., Trossen, D.,

Thomos, N., and M. Al-Khalidi, "A Flexible and Efficient

CDN Infrastructure without DNS Redirection of Content

Reflection", <https://arxiv.org/pdf/1803.00876.pdf>.

Glebke, R., Henze, M., Wehrle, K., Niemietz, P., Trauth,

D., Mattfeld MBA, P., and T. Bergs, "A Case for

Integrated Data Processing in Large-Scale Cyber-Physical

Systems", Proceedings of the Annual Hawaii International

Conference on System Sciences, DOI 10.24251/hicss.

2019.871, 2019, <https://doi.org/10.24251/hicss.

2019.871>.

"High performance open source universal RPC framework",

<https://grpc.io/>.

Cloudflare, "What is global server load balancing

(GSLB)?", 2022, <https://www.cloudflare.com/learning/cdn/

glossary/global-server-load-balancing-gslb/>.

Singh, H. and M. Montpetit,

"Requirements for P4 Program Splitting for Heterogeneous

Network Nodes", Work in Progress, Internet-Draft, draft-

hsingh-coinrg-reqs-p4comp-03, 18 February 2021, <https://

datatracker.ietf.org/doc/html/draft-hsingh-coinrg-reqs-

p4comp-03>.

Ravindran, R., Suthar, P., Trossen, D.,

Wang, C., and G. White, "Enabling ICN in 3GPP's 5G

NextGen Core Architecture", Work in Progress, Internet-

Draft, draft-ravi-icnrg-5gc-icn-04, 31 May 2019,

<https://datatracker.ietf.org/doc/html/draft-ravi-

icnrg-5gc-icn-04>.

Trossen, D., Wang, C., Robitzsch, S., Reed, M., AL-Naday,

M., and J. Riihijarvi, "IP-based Services over ICN in 5G

LAN Environments", Work in Progress, Internet-Draft,

draft-trossen-icnrg-ip-icn-5glan-00, 6 June 2019,

https://datatracker.ietf.org/doc/html/draft-sarathchandra-coin-appcentres-04
https://datatracker.ietf.org/doc/html/draft-sarathchandra-coin-appcentres-04
https://datatracker.ietf.org/doc/html/draft-sarathchandra-coin-appcentres-04
https://www.etsi.org/technologies/multi-access-edge-computing
https://www.etsi.org/technologies/multi-access-edge-computing
https://arxiv.org/pdf/1803.00876.pdf
https://doi.org/10.24251/hicss.2019.871
https://doi.org/10.24251/hicss.2019.871
https://grpc.io/
https://www.cloudflare.com/learning/cdn/glossary/global-server-load-balancing-gslb/
https://www.cloudflare.com/learning/cdn/glossary/global-server-load-balancing-gslb/
https://datatracker.ietf.org/doc/html/draft-hsingh-coinrg-reqs-p4comp-03
https://datatracker.ietf.org/doc/html/draft-hsingh-coinrg-reqs-p4comp-03
https://datatracker.ietf.org/doc/html/draft-hsingh-coinrg-reqs-p4comp-03
https://datatracker.ietf.org/doc/html/draft-ravi-icnrg-5gc-icn-04
https://datatracker.ietf.org/doc/html/draft-ravi-icnrg-5gc-icn-04

[KUNZE-APPLICABILITY]

[KUNZE-SIGNAL]

[L2Virt]

[MPI]

[RFC7272]

[RFC8039]

[RUETH]

[SA2-5GLAN]

<https://datatracker.ietf.org/doc/html/draft-trossen-

icnrg-ip-icn-5glan-00>.

Kunze, I., Glebke, R., Scheiper, J., Bodenbenner, M.,

Schmitt, R., and K. Wehrle, "Investigating the

Applicability of In-Network Computing to Industrial

Scenarios", 2021 4th IEEE International Conference on

Industrial Cyber-Physical Systems (ICPS), DOI 10.1109/

icps49255.2021.9468247, May 2021, <https://doi.org/

10.1109/icps49255.2021.9468247>.

Kunze, I., Niemietz, P., Tirpitz, L., Glebke, R.,

Trauth, D., Bergs, T., and K. Wehrle, "Detecting Out-Of-

Control Sensor Signals in Sheet Metal Forming using In-

Network Computing", 2021 IEEE 30th International

Symposium on Industrial Electronics (ISIE), DOI 10.1109/

isie45552.2021.9576221, June 2021, <https://doi.org/

10.1109/isie45552.2021.9576221>.

Kreger-Stickles, L., "First principles: L2 network

virtualization for lift and shift", 2022, <https://

blogs.oracle.com/cloud-infrastructure/post/first-

principles-l2-network-virtualization-for-lift-and-shift>.

Vishnu, A., Siegel, C., and J. Daily, "Scaling

Distributed Machine Learning with In-Network

Aggregation", <https://arxiv.org/pdf/1603.02339.pdf>.

van Brandenburg, R., Stokking, H., van Deventer, O.,

Boronat, F., Montagud, M., and K. Gross, "Inter-

Destination Media Synchronization (IDMS) Using the RTP

Control Protocol (RTCP)", RFC 7272, DOI 10.17487/RFC7272,

June 2014, <https://www.rfc-editor.org/rfc/rfc7272>.

Shpiner, A., Tse, R., Schelp, C., and T. Mizrahi,

"Multipath Time Synchronization", RFC 8039, DOI 10.17487/

RFC8039, December 2016, <https://www.rfc-editor.org/rfc/

rfc8039>.

Rueth, J., Glebke, R., Wehrle, K., Causevic, V., and S.

Hirche, "Towards In-Network Industrial Feedback Control",

Proceedings of the 2018 Morning Workshop on In-Network

Computing, DOI 10.1145/3229591.3229592, August 2018,

<https://doi.org/10.1145/3229591.3229592>.

3GPP-5glan, "SP-181129, Work Item Description,

Vertical_LAN(SA2), 5GS Enhanced Support of Vertical and

LAN Services", 3GPP , 2021, <http://www.3gpp.org/ftp/

tsg_sa/TSG_SA/Docs/SP-181120.zip>.

https://datatracker.ietf.org/doc/html/draft-trossen-icnrg-ip-icn-5glan-00
https://datatracker.ietf.org/doc/html/draft-trossen-icnrg-ip-icn-5glan-00
https://doi.org/10.1109/icps49255.2021.9468247
https://doi.org/10.1109/icps49255.2021.9468247
https://doi.org/10.1109/isie45552.2021.9576221
https://doi.org/10.1109/isie45552.2021.9576221
https://blogs.oracle.com/cloud-infrastructure/post/first-principles-l2-network-virtualization-for-lift-and-shift
https://blogs.oracle.com/cloud-infrastructure/post/first-principles-l2-network-virtualization-for-lift-and-shift
https://blogs.oracle.com/cloud-infrastructure/post/first-principles-l2-network-virtualization-for-lift-and-shift
https://arxiv.org/pdf/1603.02339.pdf
https://www.rfc-editor.org/rfc/rfc7272
https://www.rfc-editor.org/rfc/rfc8039
https://www.rfc-editor.org/rfc/rfc8039
https://doi.org/10.1145/3229591.3229592
http://www.3gpp.org/ftp/tsg_sa/TSG_SA/Docs/SP-181120.zip
http://www.3gpp.org/ftp/tsg_sa/TSG_SA/Docs/SP-181120.zip

[Stoyanov]

[Sultana]

[TERMINOLOGY]

[TS23.501]

[TS23.502]

[USECASEANALYSIS]

[VESTIN]

Stoyanov, R. and N. Zilberman, "MTPSA: Multi-Tenant

Programmable Switches", ACM P4 Workshop in Europe

(EuroP4'20) , 2020, <https://eng.ox.ac.uk/media/6354/

stoyanov2020mtpsa.pdf>.

Sultana, N., Sonchack, J., Giesen, H., Pedisich, I., Han,

Z., Shyamkumar, N., Burad, S., DeHon, A., and B. T. Loo,

"Flightplan: Dataplane Disaggregation and Placement for

P4 Programs", 2020, <https://flightplan.cis.upenn.edu/

flightplan.pdf>.

Kunze, I., Wehrle, K., Trossen, D., Montpetit, M., de

Foy, X., Griffin, D., and M. Rio, "Terminology for

Computing in the Network", Work in Progress, Internet-

Draft, draft-irtf-coinrg-coin-terminology-00, 10 March

2023, <https://datatracker.ietf.org/doc/html/draft-irtf-

coinrg-coin-terminology-00>.

3gpp-23.501, "Technical Specification Group Services and

System Aspects; System Architecture for the 5G System;

Stage 2 (Rel.17)", 3GPP , 2021, <https://www.3gpp.org/

DynaReport/23501.htm>.

3gpp-23.502, "Technical Specification Group Services and

System Aspects; Procedures for the 5G System; Stage 2

(Rel.17)", 3GPP , 2021, <https://www.3gpp.org/DynaReport/

23502.htm>.

Kunze, I., Wehrle, K., Trossen, D., Montpetit, M.,

de Foy, X., Griffin, D., and M. Rio, "Use Case Analysis

for Computing in the Network", Work in Progress,

Internet-Draft, draft-irtf-coinrg-use-case-analysis-00,

10 March 2023, <https://datatracker.ietf.org/doc/html/

draft-irtf-coinrg-use-case-analysis-00>.

Vestin, J., Kassler, A., and J. Akerberg, "FastReact: In-

Network Control and Caching for Industrial Control

Networks using Programmable Data Planes", 2018 IEEE 23rd

International Conference on Emerging Technologies and

Factory Automation (ETFA), DOI 10.1109/etfa.2018.8502456,

September 2018, <https://doi.org/10.1109/etfa.

2018.8502456>.

Authors' Addresses

Ike Kunze

RWTH Aachen University

Ahornstr. 55

https://eng.ox.ac.uk/media/6354/stoyanov2020mtpsa.pdf
https://eng.ox.ac.uk/media/6354/stoyanov2020mtpsa.pdf
https://flightplan.cis.upenn.edu/flightplan.pdf
https://flightplan.cis.upenn.edu/flightplan.pdf
https://datatracker.ietf.org/doc/html/draft-irtf-coinrg-coin-terminology-00
https://datatracker.ietf.org/doc/html/draft-irtf-coinrg-coin-terminology-00
https://www.3gpp.org/DynaReport/23501.htm
https://www.3gpp.org/DynaReport/23501.htm
https://www.3gpp.org/DynaReport/23502.htm
https://www.3gpp.org/DynaReport/23502.htm
https://datatracker.ietf.org/doc/html/draft-irtf-coinrg-use-case-analysis-00
https://datatracker.ietf.org/doc/html/draft-irtf-coinrg-use-case-analysis-00
https://doi.org/10.1109/etfa.2018.8502456
https://doi.org/10.1109/etfa.2018.8502456

D-52074 Aachen

Germany

Email: kunze@comsys.rwth-aachen.de

Klaus Wehrle

RWTH Aachen University

Ahornstr. 55

D-52074 Aachen

Germany

Email: wehrle@comsys.rwth-aachen.de

Dirk Trossen

Huawei Technologies Duesseldorf GmbH

Riesstr. 25C

D-80992 Munich

Germany

Email: Dirk.Trossen@Huawei.com

Marie-Jose Montpetit

Concordia University

1455 De Maisonneuve

Montreal H3G 1M8

Canada

Email: marie@mjmontpetit.com

Xavier de Foy

InterDigital Communications, LLC

1000 Sherbrooke West

Montreal H3A 3G4

Canada

Email: xavier.defoy@interdigital.com

David Griffin

University College London

Gower St

London

WC1E 6BT

United Kingdom

Email: d.griffin@ucl.ac.uk

Miguel Rio

University College London

Gower St

London

mailto:kunze@comsys.rwth-aachen.de
mailto:wehrle@comsys.rwth-aachen.de
mailto:Dirk.Trossen@Huawei.com
mailto:marie@mjmontpetit.com
mailto:xavier.defoy@interdigital.com
mailto:d.griffin@ucl.ac.uk

WC1E 6BT

United Kingdom

Email: miguel.rio@ucl.ac.uk

mailto:miguel.rio@ucl.ac.uk

	Use Cases for In-Network Computing
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Providing New COIN Experiences
	3.1. Mobile Application Offloading
	3.1.1. Description
	3.1.2. Characterization
	3.1.3. Existing Solutions
	3.1.4. Opportunities
	3.1.5. Research Questions
	3.1.6. Requirements

	3.2. Extended Reality and Immersive Media
	3.2.1. Description
	3.2.2. Characterization
	3.2.3. Existing Solutions
	3.2.4. Opportunities
	3.2.5. Research Questions
	3.2.6. Requirements

	3.3. Personalized and interactive performing arts
	3.3.1. Description
	3.3.2. Characterization
	3.3.3. Existing solutions
	3.3.4. Opportunities
	3.3.5. Research Questions:
	3.3.6. Requirements

	4. Supporting new COIN Systems
	4.1. In-Network Control / Time-sensitive applications
	4.1.1. Description
	4.1.2. Characterization
	4.1.3. Existing Solutions
	4.1.4. Opportunities
	4.1.5. Research Questions
	4.1.6. Requirements

	4.2. Large Volume Applications
	4.2.1. Description
	4.2.2. Characterization
	4.2.3. Existing Solutions
	4.2.4. Opportunities
	4.2.5. Research Questions
	4.2.6. Requirements

	4.3. Industrial Safety
	4.3.1. Description
	4.3.2. Characterization
	4.3.3. Existing Solutions
	4.3.4. Opportunities
	4.3.5. Research Questions
	4.3.6. Requirements

	5. Improving existing COIN capabilities
	5.1. Content Delivery Networks
	5.1.1. Description
	5.1.2. Characterization
	5.1.3. Existing Solutions
	5.1.4. Opportunities
	5.1.5. Research Questions
	5.1.6. Requirements

	5.2. Compute-Fabric-as-a-Service (CFaaS)
	5.2.1. Description
	5.2.2. Characterization
	5.2.3. Existing Solutions
	5.2.4. Opportunities
	5.2.5. Research Questions
	5.2.6. Requirements

	5.3. Virtual Networks Programming
	5.3.1. Description
	5.3.2. Characterization
	5.3.3. Existing Solutions
	5.3.4. Opportunities
	5.3.5. Research Questions
	5.3.6. Requirements

	6. Enabling new COIN capabilities
	6.1. Distributed AI
	6.1.1. Description
	6.1.2. Characterization
	6.1.3. Existing Solutions
	6.1.4. Opportunities
	6.1.5. Research Questions
	6.1.6. Requirements

	7. Security Considerations
	8. IANA Considerations
	9. Conclusion
	10. Acknowledgements
	11. References
	11.1. Normative References
	11.2. Informative References

	Authors' Addresses

