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Abstract

   The Delay-Tolerant Networking Bundle Protocol includes a custody
   transfer mechanism to provide acknowledgements of receipt for
   particular bundles.  No checksum is included in the basic DTN Bundle
   Protocol, however, so at intermediate hops, it is not possible to
   verify that bundles have been either forwarded or passed through
   convergence layers without error.  Without assurance that a bundle
   has been received without errors, the custody transfer receipt cannot
   guarantee that a correct copy of the bundle has been transferred, and
   errored bundles are forwarded when the destination cannot use the
   errored content, and discarding the errored bundle early would have
   been better for performance and throughput reasons.  This document
   addresses that situation by defining new ciphersuites for use within
   the existing Bundle Security Protocol's Payload Integrity Block
   (formerly called the Payload Security Block [ED: remove old name
   before RFC]) to provide error-detection functions that do not require
   support for other, more complex, security-providing ciphersuites that
   protect integrity against deliberate modifications.  This creates the
   checksum service needed for error-free reliability, and does so by
   separating security concerns from the few new reliability-only
   ciphersuite definitions that are introduced here.  The reliability-
   only ciphersuites given here are intended to protect only against
   errors and accidental modification; not against deliberate integrity
   violations.  This document discusses the advantages and disadvantages
   of this approach and the existing constraints that combined to drive
   this design.

Status of this Memo

   This Internet-Draft is submitted to IETF in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
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1.  Motivations

   Reliable transmission of information is a well-known problem for all
   protocol layers.  Error-detection and correction capabilities are
   frequently found in lower layers, but are also present in many
   higher-layer protocols in order to detect residual bit errors and
   bugs that introduce errors.  For example, IPv4 verifies a simple
   header checksum when processing packets, even when running over a
   data link, such as Ethernet, that already performs a stronger CRC.
   The TCP and UDP transport protocols further include a checksum
   covering their payloads as well as some IP header fields.  This
   checksum is verified before the data is passed to the application.
   What may seem like paranoia is actually not unfounded, as errors in
   received data or packet corruption are known to creep into networking
   systems from many causes other than channel noise [SP00].  Although
   coding of data on the channel can reduce the impact of channel noise,
   and Cylic Redundancy Codes (CRCs) across each link in a network path
   can catch many channel-induced errors, end-to-end checksums across
   the entire network path are understood to be necessary for
   applications requiring certainty that the data received is error-free
   [SGHP98].

   The Delay/Disruption-Tolerant Networking (DTN) architecture [RFC4838]
   is founded on an overlay of Bundle Agents (BAs).  These Bundle Agents
   forward data units called bundles via the Bundle Protocol [RFC5050].
   Bundles may be lost or errored both during transmission between BAs,
   or within a BA itself.  Bundles belonging to applications that are
   not tolerant of lost data have a "custody transfer" flag that
   requests reliable transmission between bundle agents.  The notion of
   reliability used in the basic custody transfer mechanism means that
   the Bundle Protocol itself not take the integrity of bundles into
   account, but acknowledges a bundle's receipt and transfers its
   custody without verifying its internal data integrity.  In this way,
   the bundle protocol provides what has been called a "better than
   best-effort" service, which attempts through persistence to provide
   delivery of content without making claims about the end-to-end
   integrity of that content.  Although [RFC4838] discusses 'reliable
   delivery', this is expected to be provided to the bundle layer, and
   is not a property of the bundle layer.  The "convergence layer
   adapters" that connect BAs to each other may or may not detect and
   correct errors before presenting bundle data to the BAs themselves.
   Convergence layer error detection and correction may be adequate in
   many cases, but is not always adequate, and the lack of adequacy is
   recognised in the well-known end-to-end principle [SRC84].  It is
   possible (and even statistically likely) that either transmission
   errors will go unnoticed, or unchecked errors will be introduced
   within a BA's memory, storage, or forwarding systems.  Here, each
   convergence-layer check is analogous to a data-link check, covering a

https://datatracker.ietf.org/doc/html/rfc4838
https://datatracker.ietf.org/doc/html/rfc5050
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   single hop between Bundle Agents, but not the entire network path
   between source and destination for the bundle.

   Within the context of DTN, even stronger convergence-layer adapter
   error detection is not sufficient.  Errors within a BA's device
   drivers, errors due to memory issues within the BA's host, e.g.
   radiation-induced soft errors, and errors introduced from file-system
   corruption cannot be detected by convergence layer adapters, as these
   errors occur in gaps between successive phases of forwarding and
   convergence-layer processing.  In order to ensure integrity of DTN
   bundles forwarded across a system composed of BAs and convergence
   layer adapters, end-to-end computation and verification of checksums
   is required [SRC84].  To detect errors introduced in storage, a
   checksum across the bundle could be verified before the bundle is
   sent to the next hop.  Detecting errors as early as possible leads to
   performance increases and better network utiization due to the nature
   of control loop in DTNs, as described later.

   Within this document, we describe a use of the Bundle Security
   Protocol (BSP) [I-D.irtf-dtnrg-bundle-security] in order to provide
   the desired error-detection service by defining suitable BSP
   ciphersuites.  The design decisions for doing this are explained in

Section 2.  It should be clearly understood by readers, implementers,
   and users that we are not using the BSP in a way that provides any
   level of security, which we explain fully in Section 2.1.  The
   guarantee that we attempt to provide is that specific blocks within a
   received bundle are highly likely to have been propagated across the
   overlay without errors, under the assumptions of no malicious
   activity within or between Bundle Agents and no capability to inject
   forged bundles.  The actual format and use of this error-detection
   mechanism based on the BSP and requirements for support are described
   in Section 3.

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119.  [RFC2119]

1.1.  Overview of Header and Payload Integrity

   It is worthwhile to review checksum use in the Internet that ensures
   error-free delivery, as this should provide a familiar starting point
   for the reader.  This can then be used as a basis for thinking about
   error-free delivery of bundles.  We must distinguish between the need
   to verify the integrity and reliability of ("protect") carried
   payloads, and the need to verify the reliability of the protocol
   carrying the payload - i.e. the need to also protect the header
   metadata surrounding the payload that the protocol tells itself.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
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   Within the topic of payload reliability, applications have differing
   requirements.  Some applications are capable of dealing with errored
   content, and desire the delivery of any sent content blocks, even if
   they are not entirely the same content blocks that were originally
   transmitted.  For instance, some voice and video codecs degrade
   perceptibly under loss of content, but cope well with low levels of
   error within delivered content.  To date, however, most Internet
   applications have not been tolerant of errored content - and carrying
   errored content from a noisy physical channel to the application
   requires that all underlying layers in use at the time pass through
   and accept errors in their payload data, while simultaneously
   protecting against and rejecting errors in their own header data.

   In IPv4, header and payload reliability are implemented separately,
   with the IPv4 header checksum covering the header information, while
   the TCP or UDP checksum covers the payload.  The TCP/UDP checksum
   also covers certain important IP header fields - this is the 'pseudo-
   header' check.  In IPv6, the header checksum was removed, to speed up
   router processing as header fields were changed.  The 'pseudo-header'
   checksum of important IPv6 header fields is still there as part of
   the overall payload checksum implemented by TCP, UDP, and other
   protocols.  This upper-layer pseudo-header checksum combines the
   header and payload checks efficiently at the receiving IPv6 endhost
   to prevent misdelivery of packets and protect against corrupted
   payloads.  This checksum is a final end-to-end check across the
   entire IP delivery path - for both header and payload.  It ensures
   that the payload has been delivered to the right place, without
   corruption being introduced.

   The TCP and UDP checksum mechanism is frequently criticised for being
   weak in that there are classes of errors it does not detect.  This
   checksum is computed by summing 16-bit values within a packet.  If
   two strings are swapped in position within the packet, the checksum
   can remain unchanged even though the datagram is now different from
   the original, and clearly corrupted.  The UDP convergence-layer
   adapter that has been popularly implemented in DTN stacks relies on
   UDP's usual 16-bit one's-complement checksum (the same algorithm used
   for IPv4 headers and TCP segments) to validate incoming datagrams.
   The proposed TCP-based convergence layer [I-D.irtf-dtnrg-tcp-clayer]
   relies on the same checksum algorithm.  This checksum algorithm is
   remarkably useful in its position covering an entire network path and
   ability to detect all errors introduced, even though its overall
   strength against errors is considered weak, and in more recent
   transport protocols has been reconsidered; for instance, SCTP uses
   the CRC-32c algorithm instead [RFC3309].  It is the ability to
   provide a check that the packet at the destination is the same at the
   source that is most useful for Internet traffic; the overall check
   mechanism strength is secondary to this.  Any check is better than

https://datatracker.ietf.org/doc/html/rfc3309
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   none.  The UDP- and TCP-convergence layers and their checksums are
   only useful for one 'bundle hop' between peer agents across the
   Internet, and will not cover multiple bundle hops as an end-to-end
   checksum.

   In absence of IP packet fragmentation, it would be possible for all
   intermediate routers in the terrestrial Internet to verify the upper-
   layer pseudo-header checksum at each hop rather than just checking
   data-link CRCs, but this is not normally done, as it would be
   burdensome to busy routers as well as a philosophical "layer
   violation".  (Network Address Translation, where the change in
   pseudo-header addresses affects the checksum value, is an exception
   to this.)  Not checking the payload at every hop takes advantage of
   the closed-loop nature of fast Internet communication; the cost of
   packet delivery is cheap, so necessary protection against corrupted
   packets or headers need only be done at the last possible moment with
   a check at the endhost, as the costs incurred in delivering the
   packet to that node, and any resent packets to that node, are
   minuscule.  It is the cheap cost of resending and the tight end-to-
   end control loop which can permit reliability checks to be pushed up
   to or only done at the application layer, in accordance with the end-
   to-end principle, without adversely affecting overall communication
   efficiency.

   In challenged delay-tolerant networks, the network capacity,
   forwarding and storage costs for bundles are far higher, as are the
   costs of getting a resent bundle.  This produces a longer, slower,
   control loop and alters the cost/benefit tradeoff.  It becomes
   worthwhile for intermediate bundle nodes to check non-error-tolerant
   content, which includes important header fields and metadata, for
   error-free correctness before forwarding it, to prevent incurring
   unnecessary transmission costs and to also increase the possibility
   of getting the bundle from the source or from over the previous hop
   again if it needs to be resent, shortening the overall resend time.
   Due to the more open-loop nature of communication across delay-
   tolerant and disrupted networks, applications do not communicate as
   well or as easily as they do in the traditional Internet, meaning
   that the efficiency tradeoff for application-only checks is such that
   non-error-tolerant DTN application performance can be expected to
   increase with earlier detection of errors and earlier resends within
   the network.  Network costs are decreased and utilization is
   increased by early discard of known 'bad' traffic.  This is a concern
   that has previously led to e.g.  ATM Early Packet Discard (EPD).

   This shift in costs caused by the difficulty of resending
   information, when compared to the traditional Internet, makes
   verifying the correctness of the header and non-error-tolerant
   payload content at each bundle node considerably more important, to
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   permit faster resends and conserve storage and transmission capacity.
   The Bundle Protocol, as specified in [RFC5050], does neither of these
   things.  Nor does the Bundle Protocol protect itself end-to-end.
   There is no Bundle Protocol check on header or payload at destination
   bundle nodes; there is no end-to-end equivalent to the two checks
   that the TCP/UDP checksum so neatly combines and provides for
   Internet traffic.  There is a need for a check at intermediate nodes
   in challenged networks for suitable traffic, given the cost tradeoffs
   outlined above, yet those nodes cannot take advantage of a
   precomputed end-to-end checksum unless one is first provided for
   them.

   This document lays out a way to redress this lack of robustness in
   the existing Bundle Protocol in Section 3, and carefully describes
   the drawbacks to this method in Section 4 and Section 5.

2.  Use of the Payload Integrity Block

   The BSP defines three types of blocks:

   o  the Bundle Authentication Block (BAB),

   o  the Payload Integrity Block (PIB),

   o  the Payload Confidentiality Block (PCB).

   Algorithms applied within each of these blocks could be reused to
   detect errors introduced in bundle contents.  However, based on the
   different design goals motivating these three block types, the PIB is
   the only candidate that is truly suitable for supporting the type of
   checksum fields needed to yield end-to-end reliability of received
   bundles.

   The BAB is intended to operate along a single hop within a DTN
   overlay network, and due to the issues discussed in the previous
   section, even an end-to-end chain of hops using the BAB over each hop
   is not sufficient for ensuring reliability.

   The PCB is primarily concerned with the operation of privacy
   transforms over a bundle's contents, which are intended to
   significantly alter and disguise the protected data while in transit,
   rather than simply performing consistency checks over untransformed
   data.

   The PIB is intended to be used end-to-end; that is, by a set of
   endpoints, rather than hop-by-hop at each intermediate point.  The
   PIB is intended to be used with sets of cryptographic algorithms

https://datatracker.ietf.org/doc/html/rfc5050
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   (ciphersuites) that provide Message Authentication Codes (MACs) or
   signatures over bundle or block contents.  MAC and signature
   algorithms are security constructions that may allow verification of
   a legitimate sender (authentication), detection of in-transit
   tampering (integrity), and proof of a particular sender (non-
   repudiation with proof of origin).  As a consequence of the integrity
   goal, which is based on the assumption of an adversary that can alter
   messages in-flight, MACs and signatures can also be effective at
   detecting errors that occur without the presence of an attacker and
   in the absence of any malicious intent, e.g. due to bit errors within
   transmission media, file system corruption, etc.  Since the PIB uses
   the BSP's mutable canonicalization and covers the Primary Bundle
   Block, the EIDs and other data influencing forwarding and delivery of
   payloads are also protected by the MACs or signatures in addition to
   the payload data.

   The error-detecting and rejecting capabilities of a MAC or signature
   are similar to those of more-simple checksum algorithms that are
   intended only for error-detection.  In fact, several popular MAC and
   signature constructions use checksums as primary components.  For
   instance, the MD5 digest (hash) algorithm [RFC1321] is used within
   the HMAC-MD5 keyed-hash MAC construction [RFC2104].  Computationally,
   for large messages, the efficiency of a security construction
   providing integrity is similar to that of a simple checksum, although
   for short messages, it may be much worse.  For instance, HMAC
   requires multiple applications of the underlying hash function, with
   the final one being over a very short input, but if the message
   itself fits within a single block, this results in twice the overhead
   compared to a simple checksum.  Thus, assuming large bundles in
   relation to the block size of typical hash functions, the PIB can
   provide end-to-end error-detection capability for bundles from the
   standpoints of both reasonable effectiveness and reasonable
   computational cost.

2.1.  Differences from Intended Use of the Payload Integrity Block

   The main difference between any simple error-detecting checksum and a
   security construction designed for integrity is that the security
   construction requires keying material.  Key management is recognized
   as an outstanding unsolved problem within the DTNRG
   [I-D.irtf-dtnrg-sec-overview] [WEH09] and is thought to be quite
   difficult.  Key management in well-connected systems, such as the
   Internet, is difficult itself, without the additional complications
   of a DTN networking environment.  However, if using a keyed security
   construction for simple error-detection, the secrecy of the key is
   unimportant, and a feasible approach is to specify a hard-coded key
   that all nodes use in the error-detection mechanism.  The NULL
   ciphersuite used in the Licklider Transmission Protocol (LTP) for its

https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc2104
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   authentication extension is one example of this [RFC5327]) that led
   directly to this approach.  Using this approach, existing keyed
   ciphersuites defined for the PIB could be used with well-known keys
   to provide an error-detection mechanism, without requiring a key
   management mechanism.  However, this key-based method reuses a
   security mechanism for error detection, for which it is not intended,
   and requires implementing a seucity algorithm more complex and
   processor-intensive than the minimal CRC32c approach discussed here.
   As the Bundle Protocol has no separate outer error detection covering
   this security payload, if a secret key is used, then third-party
   intermediate nodes that do not know that secret key cannot determine
   the reliability of the content, and would be unable to prevent
   unnecessary forwarding of errored bundles belonging to non-error-
   tolerant applications.  This may lead to decreased performance of the
   network due to utilization of storage, bandwidth, and power for
   unusable bundles, and poor end-to-end performance due to the open
   nature of its control loop as discussed above.

   If early detection and discard of unusable bundles is done to prevent
   errors, this gives unencrypted bundle delivery a network performance
   advantage over secure bundle delivery using secret keys.
   Applications wanting both security and network performance would gain
   both by implementing their own end-to-end security within unencrypted
   bundles using the insecure ciphersuites defined in this document, or
   by applying a reliability ciphersuite after applying a security
   ciphersuite.

   The only PIB ciphersuite included in the BSP to date is PIB-RSA-
   SHA256, which creates and verifies signatures of bundles using RSA
   asymmetric-key operations over a SHA-256 hash of the bundle.  The
   length of the SHA-256 output (32 octets) can be considered too large
   an overhead for providing simple error-detection on all but extremely
   large bundles.  The processing overhead of SHA-256 and RSA
   calculations also discourages adopting these on computationally-
   constrained embedded systems.  But the biggest problem with PIB-RSA-
   SHA256 is the bulk of code needed to support the RSA operations,
   which include math on numbers larger than that supported by common
   processors' native instruction sets and modular arithmetic libraries.
   Since error-detection and rejection is a vital and absolutely
   essential component of reliable networking protocols, and much of the
   purpose of the DTN architecture is to enable internetworking of
   devices with limited resources, e.g. motes, it would be burdensome on
   limited low-end embedded systems to require all Bundle Protocol
   implementations to include RSA code.

   The BAB-HMAC ciphersuite that uses SHA1 [RFC3174] within the HMAC
   construction (HMAC-SHA1) has been specified as mandatory for BSP
   support.  Even though the BAB is not appropriate for end-to-end

https://datatracker.ietf.org/doc/html/rfc5327
https://datatracker.ietf.org/doc/html/rfc3174
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   error-detection, it is certain that BSP implementations will include
   HMAC-SHA1 routines, and that creating another ciphersuite for PIB-
   HMAC (which does not exist in the base BSP specification) would
   impose very little additional code.  Partial support for the BSP's
   elements (at least the PIB's format and mutable canonicalization)
   could be made mandatory in a future revision of the Bundle Protocol
   along with support for the PIB-HMAC ciphersuite with NULL keys while
   retaining as optional all of the other components of the BSP (BAB,
   PCB, and other ciphersuites).  Such a path seems to be desirable in
   that it allows re-use of existing code along with re-use of existing
   specifications, but does not significantly burden lightweight
   implementations or deployments unconcerned with overlay-layer
   security.  This approach is followed in Section 3 within this
   document.

   There are disadvantages to reusing the existing Bundle Security
   Protocol for reliability-only purposes.  Some deployments on limited
   hardware within closed networks will not desire to run heavyweight
   security protocols, nor include the full BSP and its mandatory
   ciphersuites within their code footprints, decreasing
   interoperability and adoption of the BSP.  There is a desire to avoid
   creating a false sense of security by using a mechanism labelled the
   Bundle _Security_ Protocol with either a ciphersuite or NULL key that
   provides absolutely no security services.  For instance, if an
   implementation allowed this to be configured using the same
   mechanisms or policy directive configuration files, formats, etc.
   that are normally used to configure BSP mechanisms providing real
   security, then a misconfiguration or misunderstanding could have a
   negative security impact to an operational system.

   In order to allay these concerns, it was decided to define simple
   error-detection ciphersuites with the string "INSECURE" in their
   mnemonics and draw a line as to which portions of the BSP security
   framework become mandatory and which remain optional.  This allows
   implementation of error-detection capabilities either with or without
   the majority of the BSP, and with reduced potential for misleading
   users with regards to security.

   Implementations that provide both the full BSP and simple error-
   detection ciphersuites SHOULD ensure that their configuration by
   users is sufficiently dissimilar from the normal BSP configuration.
   Implementations MUST NOT implement the "INSECURE" ciphersuites in
   such a way that leads to their being construed as security
   mechanisms, e.g. in logging output or configuration directives.
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3.  INSECURE Ciphersuites

   Any PIB ciphersuite providing only integrity checking for error-
   detection and using published (or "null") keys MUST contain the
   string "INSECURE" in its mnemonic.  PIBs that use these ciphersuites
   are otherwise indistinguishable from PIBs used to implement security
   services.  PIB-HMAC is keyed, and so does not use "INSECURE" in its
   name.  When used with a secret key, PIB-HMAC is useful for security,
   although this is not the case when it is used with a NULL key, we
   assume that the presence of a NULL key in the configuration
   significantly alerts users to the fact that it is not providing
   security.

   To provide the desired functionality, three new ciphersuites are
   defined in this document (PIB-HMAC used with either real or NULL
   keys, PIB-INSECURE-MD5, and PIB-INSECURE-CRC32).  The motivations
   behind defining all three of these ciphersuites are outlined below in
   the more detailed description of each ciphersuite.  All of the
   ciphersuites defined here use the mutable canonicalization algorithm
   that is defined in the BSP and compute their checksums over the
   canonical forms of bundles.  If error-detection support is considered
   essential for use of the bundle protocol, this means that the minimal
   BSP elements that all Bundle Protocol implementations MUST support
   include:

   1.  Mutable Canonicalization - discussed in Appendix A.1 of this
       document.

   2.  PIB wire-format - discussed in Appendix A.2 of this document.

   3.  PIB-HMAC ciphersuite with NULL key definition, PIB-INSECURE-MD5
       and PIB-INSECURE-CRC32 ciphersuite

   The new ciphersuites are identified by the following ciphersuite IDs
   within the abstract security block:

   o  0x04 - PIB-HMAC

   o  0x05 - PIB-INSECURE-MD5

   o  0x06 - PIB-INSECURE-CRC32

   PIB-HMAC is defined to use the same HMAC-SHA1 construction as the
   BSP's BAB-HMAC ciphersuite, and can thus leverage existing code.
   Three ciphersuite parameters are needed, all of which are SDNVs.  The
   first SDNV is a key identifier.  A zero value in the key identifier
   field of a PIB using the PIB-HMAC ciphersuite indicates that the
   algorithm is keyed with the special NULL key.  The NULL key used here



Eddy, et al.            Expires November 12, 2011              [Page 12]



Internet-Draft   Reliability-only Checksum Ciphersuites         May 2011

   is defined to be 0xc37b 7e64 9258 4340 bed1 2207 8089 4115 5068 f738,
   the same fixed NULL key used with LTP's NULL ciphersuite.  The later
   two SDNVs are offsets describing the protected bits of the bundle,
   identical to the offset and length parameters describe in the BSP's
   PIB-RSA-SHA256 ciphersuite.  The first identifies the first covered
   octet and the second identifies the last covered octet.

   PIB-HMAC creates a ten-octet security result and should provide
   adequate error-detection capabilities for large bundles of at least
   several gigabytes in size.  Its advantage lies in that the NULL-keyed
   version can be implemented with minor additions to existing BSP
   codebases, and support for HMAC-SHA1 is known to only require around
   two hundred lines of portable C code for implementations that do not
   already contain BSP support.

   The existence of the PIB-INSECURE-MD5 ciphersuite is motivated by the
   fact that an MD5 hash can be computed on the order of twice as fast
   as a SHA1 hash over the same data, as demonstrated by benchmarking
   activities [RFC1810], yet still yields robust error-detection over
   fairly large inputs.  This may be desirable in environments that have
   only limited computational resources to expend on bundle generation
   or processing.  For instance, the authors have implemented generation
   of bundles of up to several hundred megabytes in size, onboard an
   imaging satellite solid-state data recorder using only a 200 MHz
   processor.  The PIB-INSECURE-MD5 parameters consist of two SDNVs, an
   offset and length, that convey the covered portion of the bundle, in
   an identical way to the corresponding PIB-HMAC and PIB-RSA-SHA256
   parameters.

   The security result included with the PIB-INSECURE-MD5 ciphersuite is
   a full 16-octet MD5 output.  The longer security result than PIB-HMAC
   may provide better error-detection for very large bundles, in
   addition to being faster to compute.  For small bundles, the lack of
   the HMAC construction's second application of the hash function also
   improves efficiency in PIB-INSECURE-MD5 compared to PIB-HMAC.
   Implementations of MD5 are known to require only around 200 lines of
   portable C code and are widely available as open-source and within
   the MD5 RFC [RFC1321].

   The PIB-INSECURE-CRC32 ciphersuite is intended for small bundles, and
   SHOULD only be used on bundles whose payload length is less than
   65535 bits, because its protection weakens for longer payloads due to
   the increased risk of collisions [Koop02].  The parameters included
   with this ciphersuite are identical to those used with PIB-INSECURE-
   MD5.  The security result is computed using the CRC-32c algorithm,
   identically to that defined for use with SCTP [RFC3309].  The
   security result is always a 4-octet quantity when PIB-INSECURE-CRC32
   is used.  The advantage of the CRC used as a checksum in this

https://datatracker.ietf.org/doc/html/rfc1810
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc3309
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   ciphersuite is that it implies a lower header overhead to in-flight
   or in-memory bundles with small payloads, in comparison to the length
   of the PIB-HMAC and PIB-INSECURE-MD5 results.  This may be highly
   desirable in environments where small messaging bundles are normal
   and only bandwidth-limited links are available.  The CRC-32c
   algorithm is known to be implementable in only a few dozen lines of
   portable C code.

3.1.  Generation and Processing Rules

   Since the INSECURE ciphersuites and NULL-keyed PIB-HMAC use the same
   block type code and format as the more secure uses of PIB, they
   inherit the existing generation and processing rules of the PIB.
   This is good from a security standpoint in two respects:

   1.  The existing PIB processing rules consider interaction with any
       BABs that might be added to a bundle and prevent interactions
       that would cause wrongful failure of MACs, signatures, and
       checksums.

   2.  The PIB and PCB processing rules remove the possibility of a MAC,
       signature, or checksum revealing information about the private
       contents of the PCB via the ordering of the applied security/
       error-detection transforms.  This is discussed within the PCB-
       RSA-AES128-PAYLOAD-PIB ciphersuite definition in the BSP
       specification.

   Although the BSP was intended as an optional suite of extensions to
   the Bundle Protocol, and only needed in cases where certain security
   services are desired at the bundle layer, a subset of its components
   is now required to implement the PIB-based error-detection mechanism.
   As (1) providing error detection at some place in the stack is needed
   by applications that require reliable delivery of payload content,
   (2) many conceivable applications require such delivery, and (3) the
   Bundle Protocol is a proposed new stack "waist in the hourglass",
   error detection is clearly very desirable in common implementations
   of the Bundle Protocol.  Supporting error-free delivery does not
   require mandatory implementation of the full BSP and accompanying
   security ciphersuites, but only requires the PIB block format, and
   the mutable canonicalization rules.  These two portions of the BSP
   are fully described in the BSP specification
   [I-D.irtf-dtnrg-bundle-security] with some commentary regarding their
   use for error-detection in Appendix A of this document.

   When non-error-tolerant applications request custody transfer, it is
   extremely desirable to use an unkeyed or NULL-keyed PIB ciphersuite
   defined in this document between the source and destination bundle
   agents, to ensure that the custodian now has a correct copy of the
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   bundle.  Use of ciphersuites with secret keys shared only by end-
   hosts cannot assist in reliable hop-by-hop delivery, increasing the
   time to error detection at the end nodes and the time required for
   resends.  For other bundles, not requiring custody transfer, an
   unkeyed or NULL-keyed PIB ciphersuite SHOULD be used.

   Checking of unkeyed or NULL-keyed PIBs at intermediate bundle agents
   SHOULD be performed, when possible, and an agent which fails to match
   the PIB security result within a bundle SHOULD immediately discard
   the bundle.  This limits the wasted resources involved in propagating
   data now known to be errored.  It is desirable that PIB hashes or
   checksums are recalculated whenever fragmented bundles are
   reassembled, to ensure that no damage was introduced by the
   fragmentation process.  A future version of the Bundle Protocol might
   include a bundle processing flag that signals that errored-delivery
   is acceptable to a receiving application.  However, the current
   version does not define such a flag.  A future version of the Bundle
   Protocol specification might also define an administrative record
   that signals when a bundle has been dropped due to a corruption event
   detected via an unkeyed or NULL-keyed PIB check; that has not been
   defined in the current Bundle Protocol.  The IRTF Delay-Tolerant
   Networking Research Group (DTNRG) has not achieved consensus on
   either of these possibilities at time of writing.

4.  Performance Considerations

   The normal method for handling error detection with security is to
   cover the encrypted payload with an outer error-detecting checksum
   wrapper.  Use of an end-to-end secret key without a separate end-to-
   end outer error-detecting checksum prevents determination of the
   bundle's fidelity by any in-path forwarding nodes lacking that secret
   key.  This discourages interoperability between parties that do not
   share keys, and consumes more network resources in relaying an
   errored bundle to the receiving destination end node, and in
   resending the bundle across its entire path once the error is finally
   detected at the destination on decryption.  Custody transfer
   guaranteeing error-free receipt at intermediate nodes is not possible
   with secret keys in the mechanism outlined above.  When secret keys
   are in use, errors introduced into bundles can only be detected at
   the decoding endpoint, rather than at intermediate nodes, meaning
   that resends across the entire network are requested far later when
   security is in use.  This means that applications using unencrypted
   traffic can be expected to outperform applications using secret keys
   in DTN networks, thanks to their ability to detect errors earlier,
   their smaller resend control loops to get replacement bundles, and
   adding the capability for content verification to the use of custody
   transfer.
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   Again, an outer error-detecting checksum around the encrypted or
   unencrypted bundle prevents these problems, and allows custody
   transfer to be meaningful and indicate truly reliable receipt even
   for encrypted traffic where the encryption keys are not known by the
   custody agent.  Having an error-detecting checksum cover a previously
   encrypted block allows the reliability of that block to be checked at
   intermediate nodes without requiring decryption key, leading to
   earlier detection of errors and earlier resends.  This enables the
   intermediate network to help with increasing the throughput and
   performance of the applications at the end nodes.  A worked example
   of this is given in [WEH09].

   When secret keys are used for security, a second reliability-only
   insecure ciphersuite SHOULD be used across the encrypted payloads, to
   allow verification of correct delivery at intermediate nodes, to
   allow custody transfer to indicate reliable receipt of the encrypted
   content, and to increase the forwarding performance and efficiency of
   the overall network.

5.  Security Considerations

   This document has attempted to assuage any security concerns that
   would result from applying non-security-providing algorithms within a
   mechanism intended for security.  This is accomplished through
   semantic overloading of the PIB, reusing its structure to hold a
   simple checksum when it is not intended to provide security services.

   The potential leakage of information if checksums are not covered by
   some BSP confidentiality transform that is applied later in the
   transmission path is eliminated by the fact that the existing PIB
   block type code is used, and the BSP itself already contains rules
   for ensuring that confidentiality transforms applied by the PCB
   protect the security result fields within PIB instances.

   This design decision to reuse a security block for error-detection
   may seem bizarre to both security and networking experts.  However,
   this decision was necessitated by the late addition of checksum
   support to the Bundle Protocol.  By the time interest in this subject
   arose within the DTNRG, the Bundle Protocol itself was in final
   review phases and had been implemented multiple times.  When we began
   this work, the group did not have consensus that block validation and
   payload error detection even belonged in the Bundle Protocol itself.
   The Bundle Security Protocol was also no longer malleable enough to
   ensure compatibility with checksum support, as it had obtained a
   level of relative stability in its specification and there were
   existing implementation efforts based on these which could have
   required modification in order to not pass checksums carried in a
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   non-BSP block as unprotected after performing a confidentiality
   transform of the payload.

   In the authors' opinion, ideally, the error-detection functions would
   be implemented within the basic networking portions of the Bundle
   Protocol, and not as a subset of the security framework.  However,
   the existing Bundle Protocol design was too well-established for the
   current definition of the Bundle Protocol to be affected.  At this
   time, the Bundle Protocol has only been proposed as Experimental with
   some disclaimers.  It is felt by some that future revisions of the
   Bundle Protocol need to provide mechanisms ensuring error detection
   for reliable delivery.  In order to limit overhead, shorter
   checksums, e.g.  CRC-16, could be used for small blocks, with longer
   checksums, e.g.  MD5, reserved for large payload blocks.  This would
   allow checksums to cover and provide confident processing of even
   blocks with mutable fields, and retain efficient updating in-network
   as a mutable field changes, without the recomputation also covering
   large unchanging payload blocks.  This might also constrain the
   damage caused by errors to the functions provided by an individual
   block, rather than affecting the whole bundle and causing the whole
   bundle to be discarded, although the overall value of this is
   currently unknown.

   The need to conserve limited network resources by detecting and
   avoiding further propagating errored bundles in-transit means that
   Bundle Agents SHOULD always validate checksums of in-flight bundles,
   even if the Agents are not the ultimate destination.  This opens the
   door for a potential denial-of-service attack on DTN Bundle Agents by
   forcing them to expend computational cycles on bundles with large
   payloads.  In this case, the attacker would also have to send these
   bundles over some link towards the target Bundle Agent, which will
   often be more constrained in bandwidth or availability than the
   Bundle Agent is in computational cycles, so this threat may be
   unrealistic, or better combatted through access-control on links.  If
   this threat does turn out to be realistic in some set of
   circumstances, intermediary validation of PIBs was intentionally left
   as a SHOULD-level activity rather than a MUST, and could be
   dynamically disabled at some threshold of CPU use.

   Using the same protocol mechanism to provide (1) error-detection
   without security claims, (2) error-detection using a security
   protocol insecurely-keyed with a known NULL key, and (3) actual
   security protection using the same protocol but with secret keys, any
   of which can defined and used in the same "Payload Integrity Block",
   is confusing at best, and not a good clean-sheet approach to helping
   ensure secure configurations, interoperable implementations, or
   efficient handling of errored bundles.
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   Use of a NULL key is inferior to separately handling the security
   concerns of sender-authentication and integrity-protection from that
   of error-checking, as it opens the door to secret keys that prevent
   standalone error-detection, and should be discouraged.  Also, the
   NULL key cannot provide error-detection needed for the mutable parts
   of the bundle.  Providing any error detection for the mutable parts
   of the bundle has not been done here, and reliance on the fidelity of
   mutable fields and payloads should be avoided for this reason.

6.  IANA Considerations

   This document has no considerations for IANA.
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Appendix A.  Mandatory BSP Elements Needed to Implement Error-Detection

   This document makes some BSP components mandatory to Bundle Protocol
   implementations, in that while their use is optional they must be
   supported for interoperability reasons.  Previously, the BSP was
   previously entirely optional, meaning that bundle protocol
   implementations could have no internal integrity mechanisms.  This
   appendix discusses these elements in greater detail, and highlights
   some further drawbacks of basing error detection and protocol
   reliability upon these elements.

A.1.  Discussion of Mutable Canonicalization

   Mutable Canonicalisation is defined by the Bundle Security Protocol.

   While impressively named, the mutable canonicalization procedure
   should actually be quite simple to understand.  The requirement for
   mutable canonicalization stems from the Bundle Protocol's forwarding
   design that allows several "mutable" fields (e.g. the "dictionary",
   custodian, and some flags and length fields), to change in-transit at
   intermediate nodes.  In order for the checksum, MAC, or signature
   computed and placed in the security result of a sent PIB to match the
   result computed over the received bundle, the sender and receiver
   need to leave mutable fields out of these computations.  The format
   of a bundle that is input to the PIB algorithms thus differs from its
   wire-format, and is called its "mutable canonicalization".

   Using mutable canonicalization implies either using an incrementally-

https://datatracker.ietf.org/doc/html/rfc5327
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   updatable checksum algorithm and feeding many small pieces of data to
   it, or entirely rewriting a bundle block-by-block based on mutable
   canonicalization rules before feeding it to the checksum function.
   (The mutable fields still require protection against errors; a hop-
   by-hop checksum over only the mutable fields could be used to provide
   this.  Hop-by-hop checksum coverage could be provided by a
   convergence layer or BAB, but this would likely cover the entire
   bundle or fragment.)

   Several problems are known to plague mutable canonicalization:

   1.  [EDITOR'S NOTE: This concern may be easily fixed in updates to
       the BSP document.]  The Bundle Protocol specification describes
       the bundle processing control flags as a single variable-length
       SDNV whose bits are sub-divided in-order by function into "SRR"
       (Status Report Request), "COS" (Class of Service), and "General".
       The BSP's mutable canonicalization description shows three
       separate fields, with only slightly differing names, but in
       totally opposite order: "Proc.  Flags", "COS Flags", and "SRR
       Flags", instead of one single SDNV, yet has text that describes
       operating on these as a single 64-bit value and applying a fixed-
       length mask to them.  This is unclear at best, and feared to be
       uninteroperable in implementations.

   2.  Many bits within the bundle processing control flags are masked
       out (i.e. forced to zero within) the mutable canonicalization
       format.  This includes all of the reserved class of service (COS)
       bits that are highly likely to be needed to overcome the
       limitation of having only three defined priority levels in the
       Bundle Specification (compare to DiffServ, CLNP's priority field,
       Aeronautical Mobile Radio Service message priorities, or
       mechanisms in other networking stacks that provide many more
       bits).  This means that these bits, and any other bundle
       processing control bits, will be unprotected by the end-to-end
       checksum and may change in-transit, potentially causing mis-
       treatment or mal-delivery of bundles.

   3.  The existing "bundle is a fragment" bit is unprotected in mutable
       canonicalization.  Errors in this bit itself can probably be
       caught through other means, such as careful length and bound
       checking in processing the rest of the bundle.

   4.  The entire mutable canonicalization procedure of parsing and re-
       formatting bundles in order to perform a checksum validation is
       significantly more complex than is typical in most existing
       protocols that are designed to be capable of simply computing a
       validation over a frame either without modifications [RFC1662],
       with only a small fixed-length and position field masked

https://datatracker.ietf.org/doc/html/rfc1662
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       [RFC0791], or with only a simple fixed-size pseudoheader
       [RFC0793].  The significant additional complexity of mutable
       canonicalization prevents high performance in forwarding nodes
       that follow the guideline of verifying unkeyed or NULL-keyed
       PIBs.

A.2.  Discussion of the PIB Format

   The PIB is defined by the Bundle Security Protocol.

   PIBs follow the format of the abstract security block with a block
   type code that identifies them as PIBs.  Some of the processing rules
   for PIBs that make the PIB less than ideal for error-detection
   purposes include:

   1.  If a PCB is placed into a bundle that already has a PSB, then
       another PCB is created that hides the PIB.  This means that for
       end-to-end error-detection PIBs, any in-network security proxies
       that add PCB blocks also prevent the checksum in the PIB from
       being verifiable before the PCB's security destination recovers
       the cleartext PIB.  If the PCB security destination is never
       reached, the bundle cannot be checked for errors.  Errored
       bundles will consume resources between these two security
       gateways, since the errors cannot be detected and the bundles
       discarded en route.  The RSA signature of such an errored bundle
       will only fail at the security destination, and the bundle will
       only be discarded at that end point, but there may be significant
       resources expended in delivering the useless bundle to that
       point.

   2.  A previously-generated PIB's security result cannot be retained
       outside a PCB in the clear, because an observer could correlate
       the value to some known probable plaintext payload value.  It
       might be better to reverse the order of operations and always
       generate rewritten PIB ciphersuite checksums after generating
       PCBs that encrypt the payload, so that the PIB security result
       covers the PCB's encrypted form of the payload rather than the
       unencrypted form, and uses the same security destination as the
       PCB.  Upon reaching this security destination, another PIB
       destined for the receiver, covering the payload revealed at the
       security destination, could be generated.  Requiring this would
       allow detection of errored bundles between PCB security source
       and PCB security destination, but would involve adding another
       instruction to the PCB generation process within the BSP.  This
       assumes no errors are introduced during the decryption process of
       the PCB, as such errors would go undetected.  If bundles pass
       through nested security domains, this could compound the error
       rate.

https://datatracker.ietf.org/doc/html/rfc0791
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   There appears to be both benefits and drawbacks to any approach to
   PIB and PCB interaction that does not involve layering multiple PIBs
   that can be pushed and popped off of a bundle at various security
   sources and destinations.  Pushing and popping nested PSBs
   approximates the outer checksum around inner security payload used
   successfully elsewhere in networking.  By some reasonable metrics,
   the BSP-prescribed interaction that we have attempted to build on and
   fix here may be among the least desirable of all known methods for
   error detection.
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