
Network Working Group W. Eddy
Internet-Draft MTI Systems
Intended status: Experimental L. Wood
Expires: November 12, 2011 University of Surrey
 W. Ivancic
 NASA
 May 11, 2011

Reliability-only Ciphersuites for the Bundle Protocol
draft-irtf-dtnrg-bundle-checksum-09

Abstract

 The Delay-Tolerant Networking Bundle Protocol includes a custody
 transfer mechanism to provide acknowledgements of receipt for
 particular bundles. No checksum is included in the basic DTN Bundle
 Protocol, however, so at intermediate hops, it is not possible to
 verify that bundles have been either forwarded or passed through
 convergence layers without error. Without assurance that a bundle
 has been received without errors, the custody transfer receipt cannot
 guarantee that a correct copy of the bundle has been transferred, and
 errored bundles are forwarded when the destination cannot use the
 errored content, and discarding the errored bundle early would have
 been better for performance and throughput reasons. This document
 addresses that situation by defining new ciphersuites for use within
 the existing Bundle Security Protocol's Payload Integrity Block
 (formerly called the Payload Security Block [ED: remove old name
 before RFC]) to provide error-detection functions that do not require
 support for other, more complex, security-providing ciphersuites that
 protect integrity against deliberate modifications. This creates the
 checksum service needed for error-free reliability, and does so by
 separating security concerns from the few new reliability-only
 ciphersuite definitions that are introduced here. The reliability-
 only ciphersuites given here are intended to protect only against
 errors and accidental modification; not against deliberate integrity
 violations. This document discusses the advantages and disadvantages
 of this approach and the existing constraints that combined to drive
 this design.

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-

Eddy, et al. Expires November 12, 2011 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79

Internet-Draft Reliability-only Checksum Ciphersuites May 2011

 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 12, 2011.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Eddy, et al. Expires November 12, 2011 [Page 2]

Internet-Draft Reliability-only Checksum Ciphersuites May 2011

Table of Contents

1. Motivations . 4
1.1. Overview of Header and Payload Integrity 5

2. Use of the Payload Integrity Block 8
 2.1. Differences from Intended Use of the Payload Integrity
 Block . 9

3. INSECURE Ciphersuites . 12
3.1. Generation and Processing Rules 14

4. Performance Considerations 15
5. Security Considerations 16
6. IANA Considerations . 18
7. Acknowledgements . 18
8. References . 18
8.1. Normative References 18
8.2. Informative References 19

Appendix A. Mandatory BSP Elements Needed to Implement
 Error-Detection 20

A.1. Discussion of Mutable Canonicalization 20
A.2. Discussion of the PIB Format 22

 Authors' Addresses . 23

Eddy, et al. Expires November 12, 2011 [Page 3]

Internet-Draft Reliability-only Checksum Ciphersuites May 2011

1. Motivations

 Reliable transmission of information is a well-known problem for all
 protocol layers. Error-detection and correction capabilities are
 frequently found in lower layers, but are also present in many
 higher-layer protocols in order to detect residual bit errors and
 bugs that introduce errors. For example, IPv4 verifies a simple
 header checksum when processing packets, even when running over a
 data link, such as Ethernet, that already performs a stronger CRC.
 The TCP and UDP transport protocols further include a checksum
 covering their payloads as well as some IP header fields. This
 checksum is verified before the data is passed to the application.
 What may seem like paranoia is actually not unfounded, as errors in
 received data or packet corruption are known to creep into networking
 systems from many causes other than channel noise [SP00]. Although
 coding of data on the channel can reduce the impact of channel noise,
 and Cylic Redundancy Codes (CRCs) across each link in a network path
 can catch many channel-induced errors, end-to-end checksums across
 the entire network path are understood to be necessary for
 applications requiring certainty that the data received is error-free
 [SGHP98].

 The Delay/Disruption-Tolerant Networking (DTN) architecture [RFC4838]
 is founded on an overlay of Bundle Agents (BAs). These Bundle Agents
 forward data units called bundles via the Bundle Protocol [RFC5050].
 Bundles may be lost or errored both during transmission between BAs,
 or within a BA itself. Bundles belonging to applications that are
 not tolerant of lost data have a "custody transfer" flag that
 requests reliable transmission between bundle agents. The notion of
 reliability used in the basic custody transfer mechanism means that
 the Bundle Protocol itself not take the integrity of bundles into
 account, but acknowledges a bundle's receipt and transfers its
 custody without verifying its internal data integrity. In this way,
 the bundle protocol provides what has been called a "better than
 best-effort" service, which attempts through persistence to provide
 delivery of content without making claims about the end-to-end
 integrity of that content. Although [RFC4838] discusses 'reliable
 delivery', this is expected to be provided to the bundle layer, and
 is not a property of the bundle layer. The "convergence layer
 adapters" that connect BAs to each other may or may not detect and
 correct errors before presenting bundle data to the BAs themselves.
 Convergence layer error detection and correction may be adequate in
 many cases, but is not always adequate, and the lack of adequacy is
 recognised in the well-known end-to-end principle [SRC84]. It is
 possible (and even statistically likely) that either transmission
 errors will go unnoticed, or unchecked errors will be introduced
 within a BA's memory, storage, or forwarding systems. Here, each
 convergence-layer check is analogous to a data-link check, covering a

https://datatracker.ietf.org/doc/html/rfc4838
https://datatracker.ietf.org/doc/html/rfc5050
https://datatracker.ietf.org/doc/html/rfc4838

Eddy, et al. Expires November 12, 2011 [Page 4]

Internet-Draft Reliability-only Checksum Ciphersuites May 2011

 single hop between Bundle Agents, but not the entire network path
 between source and destination for the bundle.

 Within the context of DTN, even stronger convergence-layer adapter
 error detection is not sufficient. Errors within a BA's device
 drivers, errors due to memory issues within the BA's host, e.g.
 radiation-induced soft errors, and errors introduced from file-system
 corruption cannot be detected by convergence layer adapters, as these
 errors occur in gaps between successive phases of forwarding and
 convergence-layer processing. In order to ensure integrity of DTN
 bundles forwarded across a system composed of BAs and convergence
 layer adapters, end-to-end computation and verification of checksums
 is required [SRC84]. To detect errors introduced in storage, a
 checksum across the bundle could be verified before the bundle is
 sent to the next hop. Detecting errors as early as possible leads to
 performance increases and better network utiization due to the nature
 of control loop in DTNs, as described later.

 Within this document, we describe a use of the Bundle Security
 Protocol (BSP) [I-D.irtf-dtnrg-bundle-security] in order to provide
 the desired error-detection service by defining suitable BSP
 ciphersuites. The design decisions for doing this are explained in

Section 2. It should be clearly understood by readers, implementers,
 and users that we are not using the BSP in a way that provides any
 level of security, which we explain fully in Section 2.1. The
 guarantee that we attempt to provide is that specific blocks within a
 received bundle are highly likely to have been propagated across the
 overlay without errors, under the assumptions of no malicious
 activity within or between Bundle Agents and no capability to inject
 forged bundles. The actual format and use of this error-detection
 mechanism based on the BSP and requirements for support are described
 in Section 3.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119. [RFC2119]

1.1. Overview of Header and Payload Integrity

 It is worthwhile to review checksum use in the Internet that ensures
 error-free delivery, as this should provide a familiar starting point
 for the reader. This can then be used as a basis for thinking about
 error-free delivery of bundles. We must distinguish between the need
 to verify the integrity and reliability of ("protect") carried
 payloads, and the need to verify the reliability of the protocol
 carrying the payload - i.e. the need to also protect the header
 metadata surrounding the payload that the protocol tells itself.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Eddy, et al. Expires November 12, 2011 [Page 5]

Internet-Draft Reliability-only Checksum Ciphersuites May 2011

 Within the topic of payload reliability, applications have differing
 requirements. Some applications are capable of dealing with errored
 content, and desire the delivery of any sent content blocks, even if
 they are not entirely the same content blocks that were originally
 transmitted. For instance, some voice and video codecs degrade
 perceptibly under loss of content, but cope well with low levels of
 error within delivered content. To date, however, most Internet
 applications have not been tolerant of errored content - and carrying
 errored content from a noisy physical channel to the application
 requires that all underlying layers in use at the time pass through
 and accept errors in their payload data, while simultaneously
 protecting against and rejecting errors in their own header data.

 In IPv4, header and payload reliability are implemented separately,
 with the IPv4 header checksum covering the header information, while
 the TCP or UDP checksum covers the payload. The TCP/UDP checksum
 also covers certain important IP header fields - this is the 'pseudo-
 header' check. In IPv6, the header checksum was removed, to speed up
 router processing as header fields were changed. The 'pseudo-header'
 checksum of important IPv6 header fields is still there as part of
 the overall payload checksum implemented by TCP, UDP, and other
 protocols. This upper-layer pseudo-header checksum combines the
 header and payload checks efficiently at the receiving IPv6 endhost
 to prevent misdelivery of packets and protect against corrupted
 payloads. This checksum is a final end-to-end check across the
 entire IP delivery path - for both header and payload. It ensures
 that the payload has been delivered to the right place, without
 corruption being introduced.

 The TCP and UDP checksum mechanism is frequently criticised for being
 weak in that there are classes of errors it does not detect. This
 checksum is computed by summing 16-bit values within a packet. If
 two strings are swapped in position within the packet, the checksum
 can remain unchanged even though the datagram is now different from
 the original, and clearly corrupted. The UDP convergence-layer
 adapter that has been popularly implemented in DTN stacks relies on
 UDP's usual 16-bit one's-complement checksum (the same algorithm used
 for IPv4 headers and TCP segments) to validate incoming datagrams.
 The proposed TCP-based convergence layer [I-D.irtf-dtnrg-tcp-clayer]
 relies on the same checksum algorithm. This checksum algorithm is
 remarkably useful in its position covering an entire network path and
 ability to detect all errors introduced, even though its overall
 strength against errors is considered weak, and in more recent
 transport protocols has been reconsidered; for instance, SCTP uses
 the CRC-32c algorithm instead [RFC3309]. It is the ability to
 provide a check that the packet at the destination is the same at the
 source that is most useful for Internet traffic; the overall check
 mechanism strength is secondary to this. Any check is better than

https://datatracker.ietf.org/doc/html/rfc3309

Eddy, et al. Expires November 12, 2011 [Page 6]

Internet-Draft Reliability-only Checksum Ciphersuites May 2011

 none. The UDP- and TCP-convergence layers and their checksums are
 only useful for one 'bundle hop' between peer agents across the
 Internet, and will not cover multiple bundle hops as an end-to-end
 checksum.

 In absence of IP packet fragmentation, it would be possible for all
 intermediate routers in the terrestrial Internet to verify the upper-
 layer pseudo-header checksum at each hop rather than just checking
 data-link CRCs, but this is not normally done, as it would be
 burdensome to busy routers as well as a philosophical "layer
 violation". (Network Address Translation, where the change in
 pseudo-header addresses affects the checksum value, is an exception
 to this.) Not checking the payload at every hop takes advantage of
 the closed-loop nature of fast Internet communication; the cost of
 packet delivery is cheap, so necessary protection against corrupted
 packets or headers need only be done at the last possible moment with
 a check at the endhost, as the costs incurred in delivering the
 packet to that node, and any resent packets to that node, are
 minuscule. It is the cheap cost of resending and the tight end-to-
 end control loop which can permit reliability checks to be pushed up
 to or only done at the application layer, in accordance with the end-
 to-end principle, without adversely affecting overall communication
 efficiency.

 In challenged delay-tolerant networks, the network capacity,
 forwarding and storage costs for bundles are far higher, as are the
 costs of getting a resent bundle. This produces a longer, slower,
 control loop and alters the cost/benefit tradeoff. It becomes
 worthwhile for intermediate bundle nodes to check non-error-tolerant
 content, which includes important header fields and metadata, for
 error-free correctness before forwarding it, to prevent incurring
 unnecessary transmission costs and to also increase the possibility
 of getting the bundle from the source or from over the previous hop
 again if it needs to be resent, shortening the overall resend time.
 Due to the more open-loop nature of communication across delay-
 tolerant and disrupted networks, applications do not communicate as
 well or as easily as they do in the traditional Internet, meaning
 that the efficiency tradeoff for application-only checks is such that
 non-error-tolerant DTN application performance can be expected to
 increase with earlier detection of errors and earlier resends within
 the network. Network costs are decreased and utilization is
 increased by early discard of known 'bad' traffic. This is a concern
 that has previously led to e.g. ATM Early Packet Discard (EPD).

 This shift in costs caused by the difficulty of resending
 information, when compared to the traditional Internet, makes
 verifying the correctness of the header and non-error-tolerant
 payload content at each bundle node considerably more important, to

Eddy, et al. Expires November 12, 2011 [Page 7]

Internet-Draft Reliability-only Checksum Ciphersuites May 2011

 permit faster resends and conserve storage and transmission capacity.
 The Bundle Protocol, as specified in [RFC5050], does neither of these
 things. Nor does the Bundle Protocol protect itself end-to-end.
 There is no Bundle Protocol check on header or payload at destination
 bundle nodes; there is no end-to-end equivalent to the two checks
 that the TCP/UDP checksum so neatly combines and provides for
 Internet traffic. There is a need for a check at intermediate nodes
 in challenged networks for suitable traffic, given the cost tradeoffs
 outlined above, yet those nodes cannot take advantage of a
 precomputed end-to-end checksum unless one is first provided for
 them.

 This document lays out a way to redress this lack of robustness in
 the existing Bundle Protocol in Section 3, and carefully describes
 the drawbacks to this method in Section 4 and Section 5.

2. Use of the Payload Integrity Block

 The BSP defines three types of blocks:

 o the Bundle Authentication Block (BAB),

 o the Payload Integrity Block (PIB),

 o the Payload Confidentiality Block (PCB).

 Algorithms applied within each of these blocks could be reused to
 detect errors introduced in bundle contents. However, based on the
 different design goals motivating these three block types, the PIB is
 the only candidate that is truly suitable for supporting the type of
 checksum fields needed to yield end-to-end reliability of received
 bundles.

 The BAB is intended to operate along a single hop within a DTN
 overlay network, and due to the issues discussed in the previous
 section, even an end-to-end chain of hops using the BAB over each hop
 is not sufficient for ensuring reliability.

 The PCB is primarily concerned with the operation of privacy
 transforms over a bundle's contents, which are intended to
 significantly alter and disguise the protected data while in transit,
 rather than simply performing consistency checks over untransformed
 data.

 The PIB is intended to be used end-to-end; that is, by a set of
 endpoints, rather than hop-by-hop at each intermediate point. The
 PIB is intended to be used with sets of cryptographic algorithms

https://datatracker.ietf.org/doc/html/rfc5050

Eddy, et al. Expires November 12, 2011 [Page 8]

Internet-Draft Reliability-only Checksum Ciphersuites May 2011

 (ciphersuites) that provide Message Authentication Codes (MACs) or
 signatures over bundle or block contents. MAC and signature
 algorithms are security constructions that may allow verification of
 a legitimate sender (authentication), detection of in-transit
 tampering (integrity), and proof of a particular sender (non-
 repudiation with proof of origin). As a consequence of the integrity
 goal, which is based on the assumption of an adversary that can alter
 messages in-flight, MACs and signatures can also be effective at
 detecting errors that occur without the presence of an attacker and
 in the absence of any malicious intent, e.g. due to bit errors within
 transmission media, file system corruption, etc. Since the PIB uses
 the BSP's mutable canonicalization and covers the Primary Bundle
 Block, the EIDs and other data influencing forwarding and delivery of
 payloads are also protected by the MACs or signatures in addition to
 the payload data.

 The error-detecting and rejecting capabilities of a MAC or signature
 are similar to those of more-simple checksum algorithms that are
 intended only for error-detection. In fact, several popular MAC and
 signature constructions use checksums as primary components. For
 instance, the MD5 digest (hash) algorithm [RFC1321] is used within
 the HMAC-MD5 keyed-hash MAC construction [RFC2104]. Computationally,
 for large messages, the efficiency of a security construction
 providing integrity is similar to that of a simple checksum, although
 for short messages, it may be much worse. For instance, HMAC
 requires multiple applications of the underlying hash function, with
 the final one being over a very short input, but if the message
 itself fits within a single block, this results in twice the overhead
 compared to a simple checksum. Thus, assuming large bundles in
 relation to the block size of typical hash functions, the PIB can
 provide end-to-end error-detection capability for bundles from the
 standpoints of both reasonable effectiveness and reasonable
 computational cost.

2.1. Differences from Intended Use of the Payload Integrity Block

 The main difference between any simple error-detecting checksum and a
 security construction designed for integrity is that the security
 construction requires keying material. Key management is recognized
 as an outstanding unsolved problem within the DTNRG
 [I-D.irtf-dtnrg-sec-overview] [WEH09] and is thought to be quite
 difficult. Key management in well-connected systems, such as the
 Internet, is difficult itself, without the additional complications
 of a DTN networking environment. However, if using a keyed security
 construction for simple error-detection, the secrecy of the key is
 unimportant, and a feasible approach is to specify a hard-coded key
 that all nodes use in the error-detection mechanism. The NULL
 ciphersuite used in the Licklider Transmission Protocol (LTP) for its

https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc2104

Eddy, et al. Expires November 12, 2011 [Page 9]

Internet-Draft Reliability-only Checksum Ciphersuites May 2011

 authentication extension is one example of this [RFC5327]) that led
 directly to this approach. Using this approach, existing keyed
 ciphersuites defined for the PIB could be used with well-known keys
 to provide an error-detection mechanism, without requiring a key
 management mechanism. However, this key-based method reuses a
 security mechanism for error detection, for which it is not intended,
 and requires implementing a seucity algorithm more complex and
 processor-intensive than the minimal CRC32c approach discussed here.
 As the Bundle Protocol has no separate outer error detection covering
 this security payload, if a secret key is used, then third-party
 intermediate nodes that do not know that secret key cannot determine
 the reliability of the content, and would be unable to prevent
 unnecessary forwarding of errored bundles belonging to non-error-
 tolerant applications. This may lead to decreased performance of the
 network due to utilization of storage, bandwidth, and power for
 unusable bundles, and poor end-to-end performance due to the open
 nature of its control loop as discussed above.

 If early detection and discard of unusable bundles is done to prevent
 errors, this gives unencrypted bundle delivery a network performance
 advantage over secure bundle delivery using secret keys.
 Applications wanting both security and network performance would gain
 both by implementing their own end-to-end security within unencrypted
 bundles using the insecure ciphersuites defined in this document, or
 by applying a reliability ciphersuite after applying a security
 ciphersuite.

 The only PIB ciphersuite included in the BSP to date is PIB-RSA-
 SHA256, which creates and verifies signatures of bundles using RSA
 asymmetric-key operations over a SHA-256 hash of the bundle. The
 length of the SHA-256 output (32 octets) can be considered too large
 an overhead for providing simple error-detection on all but extremely
 large bundles. The processing overhead of SHA-256 and RSA
 calculations also discourages adopting these on computationally-
 constrained embedded systems. But the biggest problem with PIB-RSA-
 SHA256 is the bulk of code needed to support the RSA operations,
 which include math on numbers larger than that supported by common
 processors' native instruction sets and modular arithmetic libraries.
 Since error-detection and rejection is a vital and absolutely
 essential component of reliable networking protocols, and much of the
 purpose of the DTN architecture is to enable internetworking of
 devices with limited resources, e.g. motes, it would be burdensome on
 limited low-end embedded systems to require all Bundle Protocol
 implementations to include RSA code.

 The BAB-HMAC ciphersuite that uses SHA1 [RFC3174] within the HMAC
 construction (HMAC-SHA1) has been specified as mandatory for BSP
 support. Even though the BAB is not appropriate for end-to-end

https://datatracker.ietf.org/doc/html/rfc5327
https://datatracker.ietf.org/doc/html/rfc3174

Eddy, et al. Expires November 12, 2011 [Page 10]

Internet-Draft Reliability-only Checksum Ciphersuites May 2011

 error-detection, it is certain that BSP implementations will include
 HMAC-SHA1 routines, and that creating another ciphersuite for PIB-
 HMAC (which does not exist in the base BSP specification) would
 impose very little additional code. Partial support for the BSP's
 elements (at least the PIB's format and mutable canonicalization)
 could be made mandatory in a future revision of the Bundle Protocol
 along with support for the PIB-HMAC ciphersuite with NULL keys while
 retaining as optional all of the other components of the BSP (BAB,
 PCB, and other ciphersuites). Such a path seems to be desirable in
 that it allows re-use of existing code along with re-use of existing
 specifications, but does not significantly burden lightweight
 implementations or deployments unconcerned with overlay-layer
 security. This approach is followed in Section 3 within this
 document.

 There are disadvantages to reusing the existing Bundle Security
 Protocol for reliability-only purposes. Some deployments on limited
 hardware within closed networks will not desire to run heavyweight
 security protocols, nor include the full BSP and its mandatory
 ciphersuites within their code footprints, decreasing
 interoperability and adoption of the BSP. There is a desire to avoid
 creating a false sense of security by using a mechanism labelled the
 Bundle _Security_ Protocol with either a ciphersuite or NULL key that
 provides absolutely no security services. For instance, if an
 implementation allowed this to be configured using the same
 mechanisms or policy directive configuration files, formats, etc.
 that are normally used to configure BSP mechanisms providing real
 security, then a misconfiguration or misunderstanding could have a
 negative security impact to an operational system.

 In order to allay these concerns, it was decided to define simple
 error-detection ciphersuites with the string "INSECURE" in their
 mnemonics and draw a line as to which portions of the BSP security
 framework become mandatory and which remain optional. This allows
 implementation of error-detection capabilities either with or without
 the majority of the BSP, and with reduced potential for misleading
 users with regards to security.

 Implementations that provide both the full BSP and simple error-
 detection ciphersuites SHOULD ensure that their configuration by
 users is sufficiently dissimilar from the normal BSP configuration.
 Implementations MUST NOT implement the "INSECURE" ciphersuites in
 such a way that leads to their being construed as security
 mechanisms, e.g. in logging output or configuration directives.

Eddy, et al. Expires November 12, 2011 [Page 11]

Internet-Draft Reliability-only Checksum Ciphersuites May 2011

3. INSECURE Ciphersuites

 Any PIB ciphersuite providing only integrity checking for error-
 detection and using published (or "null") keys MUST contain the
 string "INSECURE" in its mnemonic. PIBs that use these ciphersuites
 are otherwise indistinguishable from PIBs used to implement security
 services. PIB-HMAC is keyed, and so does not use "INSECURE" in its
 name. When used with a secret key, PIB-HMAC is useful for security,
 although this is not the case when it is used with a NULL key, we
 assume that the presence of a NULL key in the configuration
 significantly alerts users to the fact that it is not providing
 security.

 To provide the desired functionality, three new ciphersuites are
 defined in this document (PIB-HMAC used with either real or NULL
 keys, PIB-INSECURE-MD5, and PIB-INSECURE-CRC32). The motivations
 behind defining all three of these ciphersuites are outlined below in
 the more detailed description of each ciphersuite. All of the
 ciphersuites defined here use the mutable canonicalization algorithm
 that is defined in the BSP and compute their checksums over the
 canonical forms of bundles. If error-detection support is considered
 essential for use of the bundle protocol, this means that the minimal
 BSP elements that all Bundle Protocol implementations MUST support
 include:

 1. Mutable Canonicalization - discussed in Appendix A.1 of this
 document.

 2. PIB wire-format - discussed in Appendix A.2 of this document.

 3. PIB-HMAC ciphersuite with NULL key definition, PIB-INSECURE-MD5
 and PIB-INSECURE-CRC32 ciphersuite

 The new ciphersuites are identified by the following ciphersuite IDs
 within the abstract security block:

 o 0x04 - PIB-HMAC

 o 0x05 - PIB-INSECURE-MD5

 o 0x06 - PIB-INSECURE-CRC32

 PIB-HMAC is defined to use the same HMAC-SHA1 construction as the
 BSP's BAB-HMAC ciphersuite, and can thus leverage existing code.
 Three ciphersuite parameters are needed, all of which are SDNVs. The
 first SDNV is a key identifier. A zero value in the key identifier
 field of a PIB using the PIB-HMAC ciphersuite indicates that the
 algorithm is keyed with the special NULL key. The NULL key used here

Eddy, et al. Expires November 12, 2011 [Page 12]

Internet-Draft Reliability-only Checksum Ciphersuites May 2011

 is defined to be 0xc37b 7e64 9258 4340 bed1 2207 8089 4115 5068 f738,
 the same fixed NULL key used with LTP's NULL ciphersuite. The later
 two SDNVs are offsets describing the protected bits of the bundle,
 identical to the offset and length parameters describe in the BSP's
 PIB-RSA-SHA256 ciphersuite. The first identifies the first covered
 octet and the second identifies the last covered octet.

 PIB-HMAC creates a ten-octet security result and should provide
 adequate error-detection capabilities for large bundles of at least
 several gigabytes in size. Its advantage lies in that the NULL-keyed
 version can be implemented with minor additions to existing BSP
 codebases, and support for HMAC-SHA1 is known to only require around
 two hundred lines of portable C code for implementations that do not
 already contain BSP support.

 The existence of the PIB-INSECURE-MD5 ciphersuite is motivated by the
 fact that an MD5 hash can be computed on the order of twice as fast
 as a SHA1 hash over the same data, as demonstrated by benchmarking
 activities [RFC1810], yet still yields robust error-detection over
 fairly large inputs. This may be desirable in environments that have
 only limited computational resources to expend on bundle generation
 or processing. For instance, the authors have implemented generation
 of bundles of up to several hundred megabytes in size, onboard an
 imaging satellite solid-state data recorder using only a 200 MHz
 processor. The PIB-INSECURE-MD5 parameters consist of two SDNVs, an
 offset and length, that convey the covered portion of the bundle, in
 an identical way to the corresponding PIB-HMAC and PIB-RSA-SHA256
 parameters.

 The security result included with the PIB-INSECURE-MD5 ciphersuite is
 a full 16-octet MD5 output. The longer security result than PIB-HMAC
 may provide better error-detection for very large bundles, in
 addition to being faster to compute. For small bundles, the lack of
 the HMAC construction's second application of the hash function also
 improves efficiency in PIB-INSECURE-MD5 compared to PIB-HMAC.
 Implementations of MD5 are known to require only around 200 lines of
 portable C code and are widely available as open-source and within
 the MD5 RFC [RFC1321].

 The PIB-INSECURE-CRC32 ciphersuite is intended for small bundles, and
 SHOULD only be used on bundles whose payload length is less than
 65535 bits, because its protection weakens for longer payloads due to
 the increased risk of collisions [Koop02]. The parameters included
 with this ciphersuite are identical to those used with PIB-INSECURE-
 MD5. The security result is computed using the CRC-32c algorithm,
 identically to that defined for use with SCTP [RFC3309]. The
 security result is always a 4-octet quantity when PIB-INSECURE-CRC32
 is used. The advantage of the CRC used as a checksum in this

https://datatracker.ietf.org/doc/html/rfc1810
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc3309

Eddy, et al. Expires November 12, 2011 [Page 13]

Internet-Draft Reliability-only Checksum Ciphersuites May 2011

 ciphersuite is that it implies a lower header overhead to in-flight
 or in-memory bundles with small payloads, in comparison to the length
 of the PIB-HMAC and PIB-INSECURE-MD5 results. This may be highly
 desirable in environments where small messaging bundles are normal
 and only bandwidth-limited links are available. The CRC-32c
 algorithm is known to be implementable in only a few dozen lines of
 portable C code.

3.1. Generation and Processing Rules

 Since the INSECURE ciphersuites and NULL-keyed PIB-HMAC use the same
 block type code and format as the more secure uses of PIB, they
 inherit the existing generation and processing rules of the PIB.
 This is good from a security standpoint in two respects:

 1. The existing PIB processing rules consider interaction with any
 BABs that might be added to a bundle and prevent interactions
 that would cause wrongful failure of MACs, signatures, and
 checksums.

 2. The PIB and PCB processing rules remove the possibility of a MAC,
 signature, or checksum revealing information about the private
 contents of the PCB via the ordering of the applied security/
 error-detection transforms. This is discussed within the PCB-
 RSA-AES128-PAYLOAD-PIB ciphersuite definition in the BSP
 specification.

 Although the BSP was intended as an optional suite of extensions to
 the Bundle Protocol, and only needed in cases where certain security
 services are desired at the bundle layer, a subset of its components
 is now required to implement the PIB-based error-detection mechanism.
 As (1) providing error detection at some place in the stack is needed
 by applications that require reliable delivery of payload content,
 (2) many conceivable applications require such delivery, and (3) the
 Bundle Protocol is a proposed new stack "waist in the hourglass",
 error detection is clearly very desirable in common implementations
 of the Bundle Protocol. Supporting error-free delivery does not
 require mandatory implementation of the full BSP and accompanying
 security ciphersuites, but only requires the PIB block format, and
 the mutable canonicalization rules. These two portions of the BSP
 are fully described in the BSP specification
 [I-D.irtf-dtnrg-bundle-security] with some commentary regarding their
 use for error-detection in Appendix A of this document.

 When non-error-tolerant applications request custody transfer, it is
 extremely desirable to use an unkeyed or NULL-keyed PIB ciphersuite
 defined in this document between the source and destination bundle
 agents, to ensure that the custodian now has a correct copy of the

Eddy, et al. Expires November 12, 2011 [Page 14]

Internet-Draft Reliability-only Checksum Ciphersuites May 2011

 bundle. Use of ciphersuites with secret keys shared only by end-
 hosts cannot assist in reliable hop-by-hop delivery, increasing the
 time to error detection at the end nodes and the time required for
 resends. For other bundles, not requiring custody transfer, an
 unkeyed or NULL-keyed PIB ciphersuite SHOULD be used.

 Checking of unkeyed or NULL-keyed PIBs at intermediate bundle agents
 SHOULD be performed, when possible, and an agent which fails to match
 the PIB security result within a bundle SHOULD immediately discard
 the bundle. This limits the wasted resources involved in propagating
 data now known to be errored. It is desirable that PIB hashes or
 checksums are recalculated whenever fragmented bundles are
 reassembled, to ensure that no damage was introduced by the
 fragmentation process. A future version of the Bundle Protocol might
 include a bundle processing flag that signals that errored-delivery
 is acceptable to a receiving application. However, the current
 version does not define such a flag. A future version of the Bundle
 Protocol specification might also define an administrative record
 that signals when a bundle has been dropped due to a corruption event
 detected via an unkeyed or NULL-keyed PIB check; that has not been
 defined in the current Bundle Protocol. The IRTF Delay-Tolerant
 Networking Research Group (DTNRG) has not achieved consensus on
 either of these possibilities at time of writing.

4. Performance Considerations

 The normal method for handling error detection with security is to
 cover the encrypted payload with an outer error-detecting checksum
 wrapper. Use of an end-to-end secret key without a separate end-to-
 end outer error-detecting checksum prevents determination of the
 bundle's fidelity by any in-path forwarding nodes lacking that secret
 key. This discourages interoperability between parties that do not
 share keys, and consumes more network resources in relaying an
 errored bundle to the receiving destination end node, and in
 resending the bundle across its entire path once the error is finally
 detected at the destination on decryption. Custody transfer
 guaranteeing error-free receipt at intermediate nodes is not possible
 with secret keys in the mechanism outlined above. When secret keys
 are in use, errors introduced into bundles can only be detected at
 the decoding endpoint, rather than at intermediate nodes, meaning
 that resends across the entire network are requested far later when
 security is in use. This means that applications using unencrypted
 traffic can be expected to outperform applications using secret keys
 in DTN networks, thanks to their ability to detect errors earlier,
 their smaller resend control loops to get replacement bundles, and
 adding the capability for content verification to the use of custody
 transfer.

Eddy, et al. Expires November 12, 2011 [Page 15]

Internet-Draft Reliability-only Checksum Ciphersuites May 2011

 Again, an outer error-detecting checksum around the encrypted or
 unencrypted bundle prevents these problems, and allows custody
 transfer to be meaningful and indicate truly reliable receipt even
 for encrypted traffic where the encryption keys are not known by the
 custody agent. Having an error-detecting checksum cover a previously
 encrypted block allows the reliability of that block to be checked at
 intermediate nodes without requiring decryption key, leading to
 earlier detection of errors and earlier resends. This enables the
 intermediate network to help with increasing the throughput and
 performance of the applications at the end nodes. A worked example
 of this is given in [WEH09].

 When secret keys are used for security, a second reliability-only
 insecure ciphersuite SHOULD be used across the encrypted payloads, to
 allow verification of correct delivery at intermediate nodes, to
 allow custody transfer to indicate reliable receipt of the encrypted
 content, and to increase the forwarding performance and efficiency of
 the overall network.

5. Security Considerations

 This document has attempted to assuage any security concerns that
 would result from applying non-security-providing algorithms within a
 mechanism intended for security. This is accomplished through
 semantic overloading of the PIB, reusing its structure to hold a
 simple checksum when it is not intended to provide security services.

 The potential leakage of information if checksums are not covered by
 some BSP confidentiality transform that is applied later in the
 transmission path is eliminated by the fact that the existing PIB
 block type code is used, and the BSP itself already contains rules
 for ensuring that confidentiality transforms applied by the PCB
 protect the security result fields within PIB instances.

 This design decision to reuse a security block for error-detection
 may seem bizarre to both security and networking experts. However,
 this decision was necessitated by the late addition of checksum
 support to the Bundle Protocol. By the time interest in this subject
 arose within the DTNRG, the Bundle Protocol itself was in final
 review phases and had been implemented multiple times. When we began
 this work, the group did not have consensus that block validation and
 payload error detection even belonged in the Bundle Protocol itself.
 The Bundle Security Protocol was also no longer malleable enough to
 ensure compatibility with checksum support, as it had obtained a
 level of relative stability in its specification and there were
 existing implementation efforts based on these which could have
 required modification in order to not pass checksums carried in a

Eddy, et al. Expires November 12, 2011 [Page 16]

Internet-Draft Reliability-only Checksum Ciphersuites May 2011

 non-BSP block as unprotected after performing a confidentiality
 transform of the payload.

 In the authors' opinion, ideally, the error-detection functions would
 be implemented within the basic networking portions of the Bundle
 Protocol, and not as a subset of the security framework. However,
 the existing Bundle Protocol design was too well-established for the
 current definition of the Bundle Protocol to be affected. At this
 time, the Bundle Protocol has only been proposed as Experimental with
 some disclaimers. It is felt by some that future revisions of the
 Bundle Protocol need to provide mechanisms ensuring error detection
 for reliable delivery. In order to limit overhead, shorter
 checksums, e.g. CRC-16, could be used for small blocks, with longer
 checksums, e.g. MD5, reserved for large payload blocks. This would
 allow checksums to cover and provide confident processing of even
 blocks with mutable fields, and retain efficient updating in-network
 as a mutable field changes, without the recomputation also covering
 large unchanging payload blocks. This might also constrain the
 damage caused by errors to the functions provided by an individual
 block, rather than affecting the whole bundle and causing the whole
 bundle to be discarded, although the overall value of this is
 currently unknown.

 The need to conserve limited network resources by detecting and
 avoiding further propagating errored bundles in-transit means that
 Bundle Agents SHOULD always validate checksums of in-flight bundles,
 even if the Agents are not the ultimate destination. This opens the
 door for a potential denial-of-service attack on DTN Bundle Agents by
 forcing them to expend computational cycles on bundles with large
 payloads. In this case, the attacker would also have to send these
 bundles over some link towards the target Bundle Agent, which will
 often be more constrained in bandwidth or availability than the
 Bundle Agent is in computational cycles, so this threat may be
 unrealistic, or better combatted through access-control on links. If
 this threat does turn out to be realistic in some set of
 circumstances, intermediary validation of PIBs was intentionally left
 as a SHOULD-level activity rather than a MUST, and could be
 dynamically disabled at some threshold of CPU use.

 Using the same protocol mechanism to provide (1) error-detection
 without security claims, (2) error-detection using a security
 protocol insecurely-keyed with a known NULL key, and (3) actual
 security protection using the same protocol but with secret keys, any
 of which can defined and used in the same "Payload Integrity Block",
 is confusing at best, and not a good clean-sheet approach to helping
 ensure secure configurations, interoperable implementations, or
 efficient handling of errored bundles.

Eddy, et al. Expires November 12, 2011 [Page 17]

Internet-Draft Reliability-only Checksum Ciphersuites May 2011

 Use of a NULL key is inferior to separately handling the security
 concerns of sender-authentication and integrity-protection from that
 of error-checking, as it opens the door to secret keys that prevent
 standalone error-detection, and should be discouraged. Also, the
 NULL key cannot provide error-detection needed for the mutable parts
 of the bundle. Providing any error detection for the mutable parts
 of the bundle has not been done here, and reliance on the fidelity of
 mutable fields and payloads should be avoided for this reason.

6. IANA Considerations

 This document has no considerations for IANA.

7. Acknowledgements

 Some of the work on this document was performed at NASA's Glenn
 Research Center under funding from the Earth Science Technology
 Office (ESTO) and the Space Communications Architecture Working Group
 (SCAWG).

 Discussion in the DTNRG and particular suggestions from
 (alphabetically) Mike Demmer, Kevin Fall, Stephen Farrell, Darren
 Long, Peter Lovell, and Susan Symington guided the genesis of this
 document and were crucial to adding limited error-detection
 capabilities to the Bundle Protocol within the existing pre-
 established security framework.

8. References

8.1. Normative References

 [I-D.irtf-dtnrg-bundle-security]
 Symington, S., Farrell, S., Weiss, H., and P. Lovell,
 "Bundle Security Protocol Specification",

draft-irtf-dtnrg-bundle-security-19 (work in progress),
 March 2011.

 [RFC1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
 April 1992.

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 February 1997.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

https://datatracker.ietf.org/doc/html/draft-irtf-dtnrg-bundle-security-19
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc2104

Eddy, et al. Expires November 12, 2011 [Page 18]

Internet-Draft Reliability-only Checksum Ciphersuites May 2011

 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3174] Eastlake, D. and P. Jones, "US Secure Hash Algorithm 1
 (SHA1)", RFC 3174, September 2001.

 [RFC3309] Stone, J., Stewart, R., and D. Otis, "Stream Control
 Transmission Protocol (SCTP) Checksum Change", RFC 3309,
 September 2002.

 [RFC5050] Scott, K. and S. Burleigh, "Bundle Protocol
 Specification", RFC 5050, November 2007.

8.2. Informative References

 [I-D.irtf-dtnrg-sec-overview]
 Farrell, S., Symington, S., Weiss, H., and P. Lovell,
 "Delay-Tolerant Networking Security Overview",

draft-irtf-dtnrg-sec-overview-06 (work in progress),
 March 2009.

 [I-D.irtf-dtnrg-tcp-clayer]
 Demmer, M. and J. Ott, "Delay Tolerant Networking TCP
 Convergence Layer Protocol",

draft-irtf-dtnrg-tcp-clayer-02 (work in progress),
 November 2008.

 [Koop02] Koopman, P., "32-bit cyclic redundancy codes for Internet
 applications", Proceedings of the International Conference
 on Dependable Systems and Networks (DSN), pp. 459-468 ,
 June 2002.

 [RFC0791] Postel, J., "Internet Protocol", STD 5, RFC 791,
 September 1981.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, September 1981.

 [RFC1662] Simpson, W., "PPP in HDLC-like Framing", STD 51, RFC 1662,
 July 1994.

 [RFC1810] Touch, J., "Report on MD5 Performance", RFC 1810,
 June 1995.

 [RFC4838] Cerf, V., Burleigh, S., Hooke, A., Torgerson, L., Durst,
 R., Scott, K., Fall, K., and H. Weiss, "Delay-Tolerant
 Networking Architecture", RFC 4838, April 2007.

 [RFC5327] Farrell, S., Ramadas, M., and S. Burleigh, "Licklider

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3174
https://datatracker.ietf.org/doc/html/rfc3309
https://datatracker.ietf.org/doc/html/rfc5050
https://datatracker.ietf.org/doc/html/draft-irtf-dtnrg-sec-overview-06
https://datatracker.ietf.org/doc/html/draft-irtf-dtnrg-tcp-clayer-02
https://datatracker.ietf.org/doc/html/rfc791
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc1662
https://datatracker.ietf.org/doc/html/rfc1810
https://datatracker.ietf.org/doc/html/rfc4838

Eddy, et al. Expires November 12, 2011 [Page 19]

Internet-Draft Reliability-only Checksum Ciphersuites May 2011

 Transmission Protocol - Security Extensions", RFC 5327,
 September 2008.

 [SGHP98] Stone, J., Greenwald, M., Hughes, J., and C. Partridge,
 "Performance of checksums and CRCs over real data", IEEE
 Transactions on Networks vol. 6 issue 5, pp. 529-543,
 October 1998.

 [SP00] Stone, J. and C. Partridge, "When the CRC and TCP Checksum
 Disagree", Proceedings of ACM SIGCOMM , September 2000.

 [SRC84] Saltzer, J., Reed, D., and D. Clark, "End-to-end Arguments
 in System Design", ACM Transactions on Computer Systems 2
 (4), November 1984.

 [WEH09] Wood, L., Eddy, W., and P. Holliday, "A Bundle of
 Problems", IEEE Aerospace conference, Big Sky, Montana ,
 March 2009.

Appendix A. Mandatory BSP Elements Needed to Implement Error-Detection

 This document makes some BSP components mandatory to Bundle Protocol
 implementations, in that while their use is optional they must be
 supported for interoperability reasons. Previously, the BSP was
 previously entirely optional, meaning that bundle protocol
 implementations could have no internal integrity mechanisms. This
 appendix discusses these elements in greater detail, and highlights
 some further drawbacks of basing error detection and protocol
 reliability upon these elements.

A.1. Discussion of Mutable Canonicalization

 Mutable Canonicalisation is defined by the Bundle Security Protocol.

 While impressively named, the mutable canonicalization procedure
 should actually be quite simple to understand. The requirement for
 mutable canonicalization stems from the Bundle Protocol's forwarding
 design that allows several "mutable" fields (e.g. the "dictionary",
 custodian, and some flags and length fields), to change in-transit at
 intermediate nodes. In order for the checksum, MAC, or signature
 computed and placed in the security result of a sent PIB to match the
 result computed over the received bundle, the sender and receiver
 need to leave mutable fields out of these computations. The format
 of a bundle that is input to the PIB algorithms thus differs from its
 wire-format, and is called its "mutable canonicalization".

 Using mutable canonicalization implies either using an incrementally-

https://datatracker.ietf.org/doc/html/rfc5327

Eddy, et al. Expires November 12, 2011 [Page 20]

Internet-Draft Reliability-only Checksum Ciphersuites May 2011

 updatable checksum algorithm and feeding many small pieces of data to
 it, or entirely rewriting a bundle block-by-block based on mutable
 canonicalization rules before feeding it to the checksum function.
 (The mutable fields still require protection against errors; a hop-
 by-hop checksum over only the mutable fields could be used to provide
 this. Hop-by-hop checksum coverage could be provided by a
 convergence layer or BAB, but this would likely cover the entire
 bundle or fragment.)

 Several problems are known to plague mutable canonicalization:

 1. [EDITOR'S NOTE: This concern may be easily fixed in updates to
 the BSP document.] The Bundle Protocol specification describes
 the bundle processing control flags as a single variable-length
 SDNV whose bits are sub-divided in-order by function into "SRR"
 (Status Report Request), "COS" (Class of Service), and "General".
 The BSP's mutable canonicalization description shows three
 separate fields, with only slightly differing names, but in
 totally opposite order: "Proc. Flags", "COS Flags", and "SRR
 Flags", instead of one single SDNV, yet has text that describes
 operating on these as a single 64-bit value and applying a fixed-
 length mask to them. This is unclear at best, and feared to be
 uninteroperable in implementations.

 2. Many bits within the bundle processing control flags are masked
 out (i.e. forced to zero within) the mutable canonicalization
 format. This includes all of the reserved class of service (COS)
 bits that are highly likely to be needed to overcome the
 limitation of having only three defined priority levels in the
 Bundle Specification (compare to DiffServ, CLNP's priority field,
 Aeronautical Mobile Radio Service message priorities, or
 mechanisms in other networking stacks that provide many more
 bits). This means that these bits, and any other bundle
 processing control bits, will be unprotected by the end-to-end
 checksum and may change in-transit, potentially causing mis-
 treatment or mal-delivery of bundles.

 3. The existing "bundle is a fragment" bit is unprotected in mutable
 canonicalization. Errors in this bit itself can probably be
 caught through other means, such as careful length and bound
 checking in processing the rest of the bundle.

 4. The entire mutable canonicalization procedure of parsing and re-
 formatting bundles in order to perform a checksum validation is
 significantly more complex than is typical in most existing
 protocols that are designed to be capable of simply computing a
 validation over a frame either without modifications [RFC1662],
 with only a small fixed-length and position field masked

https://datatracker.ietf.org/doc/html/rfc1662

Eddy, et al. Expires November 12, 2011 [Page 21]

Internet-Draft Reliability-only Checksum Ciphersuites May 2011

 [RFC0791], or with only a simple fixed-size pseudoheader
 [RFC0793]. The significant additional complexity of mutable
 canonicalization prevents high performance in forwarding nodes
 that follow the guideline of verifying unkeyed or NULL-keyed
 PIBs.

A.2. Discussion of the PIB Format

 The PIB is defined by the Bundle Security Protocol.

 PIBs follow the format of the abstract security block with a block
 type code that identifies them as PIBs. Some of the processing rules
 for PIBs that make the PIB less than ideal for error-detection
 purposes include:

 1. If a PCB is placed into a bundle that already has a PSB, then
 another PCB is created that hides the PIB. This means that for
 end-to-end error-detection PIBs, any in-network security proxies
 that add PCB blocks also prevent the checksum in the PIB from
 being verifiable before the PCB's security destination recovers
 the cleartext PIB. If the PCB security destination is never
 reached, the bundle cannot be checked for errors. Errored
 bundles will consume resources between these two security
 gateways, since the errors cannot be detected and the bundles
 discarded en route. The RSA signature of such an errored bundle
 will only fail at the security destination, and the bundle will
 only be discarded at that end point, but there may be significant
 resources expended in delivering the useless bundle to that
 point.

 2. A previously-generated PIB's security result cannot be retained
 outside a PCB in the clear, because an observer could correlate
 the value to some known probable plaintext payload value. It
 might be better to reverse the order of operations and always
 generate rewritten PIB ciphersuite checksums after generating
 PCBs that encrypt the payload, so that the PIB security result
 covers the PCB's encrypted form of the payload rather than the
 unencrypted form, and uses the same security destination as the
 PCB. Upon reaching this security destination, another PIB
 destined for the receiver, covering the payload revealed at the
 security destination, could be generated. Requiring this would
 allow detection of errored bundles between PCB security source
 and PCB security destination, but would involve adding another
 instruction to the PCB generation process within the BSP. This
 assumes no errors are introduced during the decryption process of
 the PCB, as such errors would go undetected. If bundles pass
 through nested security domains, this could compound the error
 rate.

https://datatracker.ietf.org/doc/html/rfc0791
https://datatracker.ietf.org/doc/html/rfc0793

Eddy, et al. Expires November 12, 2011 [Page 22]

Internet-Draft Reliability-only Checksum Ciphersuites May 2011

 There appears to be both benefits and drawbacks to any approach to
 PIB and PCB interaction that does not involve layering multiple PIBs
 that can be pushed and popped off of a bundle at various security
 sources and destinations. Pushing and popping nested PSBs
 approximates the outer checksum around inner security payload used
 successfully elsewhere in networking. By some reasonable metrics,
 the BSP-prescribed interaction that we have attempted to build on and
 fix here may be among the least desirable of all known methods for
 error detection.

Authors' Addresses

 Wesley M. Eddy
 MTI Systems
 MS 500-ASRC
 NASA Glenn Research Center
 21000 Brookpark Road
 Cleveland, Ohio 44135
 United States of America

 Phone: +1-216-433-6682
 Email: wes@mti-systems.com

 Lloyd Wood
 Centre for Communication Systems Research, University of Surrey
 Guildford, Surrey GU2 7XH
 United Kingdom

 Phone: +44-1483-689123
 Email: L.Wood@surrey.ac.uk

 Will Ivancic
 NASA Glenn Research Center
 21000 Brookpark Road
 Cleveland, Ohio 44135
 United States of America

 Phone: +1-216-433-3494
 Fax: +1-216-433-8705
 Email: William.D.Ivancic@nasa.gov

Eddy, et al. Expires November 12, 2011 [Page 23]

