
DTN Research Group S.F. Symington

Internet-Draft The MITRE Corporation

Intended status: Experimental Protocol S. Farrell

Expires: September 12, 2011 Trinity College Dublin

H. Weiss

P. Lovell

SPARTA, Inc.

March 11, 2011

Bundle Security Protocol Specification

draft-irtf-dtnrg-bundle-security-19

Abstract

This document defines the bundle security protocol, which provides data

integrity and confidentiality services for the bundle protocol.

Separate capabilities are provided to protect the bundle payload and

additional data that may be included within the bundle. We also

describe various security considerations including some policy options.

This document is a product of the Delay Tolerant Networking Research

Group and has been reviewed by that group. No objections to its

publication as an RFC were raised.

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

documents as Internet-Drafts. The list of current Internet- Drafts is

at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as "work in progress."

This Internet-Draft will expire on September 12, 2011.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted

from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided

without warranty as described in the Simplified BSD License.

This document may contain material from IETF Documents or IETF

Contributions published or made publicly available before November 10,

2008. The person(s) controlling the copyright in some of this material

may not have granted the IETF Trust the right to allow modifications of

such material outside the IETF Standards Process. Without obtaining an

adequate license from the person(s) controlling the copyright in such

materials, this document may not be modified outside the IETF Standards

Process, and derivative works of it may not be created outside the IETF

Standards Process, except to format it for publication as an RFC or to

translate it into languages other than English.

Table of Contents

1. Introduction

1.1. Related Documents

1.2. Terminology

2. Security Blocks

2.1. Abstract Security Block

2.2. Bundle Authentication Block

2.3. Payload Integrity Block

2.4. Payload Confidentiality Block

2.5. Extension Security Block

2.6. Parameters and Result Fields

2.7. Key Transport

2.8. PIB and PCB combinations

3. Security Processing

3.1. Nodes as policy enforcement points

3.2. Processing order of security blocks

3.3. Security Regions

3.4. Canonicalisation of bundles

3.4.1. Strict canonicalisation

3.4.2. Mutable canonicalisation

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

3.5. Endpoint ID confidentiality

3.6. Bundles received from other nodes

3.7. The At-Most-Once-Delivery Option

3.8. Bundle Fragmentation and Reassembly

3.9. Reactive fragmentation

3.10. Attack Model

4. Mandatory Ciphersuites

4.1. BAB-HMAC

4.2. PIB-RSA-SHA256

4.3. PCB-RSA-AES128-PAYLOAD-PIB-PCB

4.4. ESB-RSA-AES128-EXT

5. Key Management

6. Default Security Policy

7. Security Considerations

8. Conformance

9. IANA Considerations

9.1. Bundle Block Types

9.2. Ciphersuite Numbers

9.3. Ciphersuite Flags

9.4. Parameters and Results

10. References

10.1. Normative References

10.2. Informative References

Authors' Addresses

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

1. Introduction

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119].

This document defines security features for the bundle protocol [DTNBP]

intended for use in delay tolerant networks, in order to provide Delay-

Tolerant Networking (DTN) security services.

The bundle protocol is used in DTNs which overlay multiple networks,

some of which may be challenged by limitations such as intermittent and

possibly unpredictable loss of connectivity, long or variable delay,

asymmetric data rates, and high error rates. The purpose of the bundle

protocol is to support interoperability across such stressed networks.

The bundle protocol is layered on top of underlay-network-specific

convergence layers, on top of network-specific lower layers, to enable

an application in one network to communicate with an application in

another network, both of which are spanned by the DTN.

Security will be important for the bundle protocol. The stressed

environment of the underlying networks over which the bundle protocol

will operate makes it important for the DTN to be protected from

unauthorized use, and this stressed environment poses unique challenges

for the mechanisms needed to secure the bundle protocol. Furthermore,

DTNs may very likely be deployed in environments where a portion of the

network might become compromised, posing the usual security challenges

related to confidentiality, integrity and availability.

Different security processing applies to the payload and extension

blocks that may accompany it in a bundle, and different rules apply to

various extension blocks.

This document describes both the base Bundle Security Protocol (BSP)

and a set of mandatory ciphersuites. A ciphersuite is a specific

collection of various cryptographic algorithms and implementation rules

that are used together to provide certain security services.

The Bundle Security Protocol applies, by definition, only to those

nodes that implement it, known as "security-aware" nodes. There MAY be

other nodes in the DTN that do not implement BSP. All nodes can

interoperate with the exception that BSP security operations can only

happen at security-aware nodes.

1.1. Related Documents

This document is best read and understood within the context of the

following other DTN documents:

The Delay-Tolerant Network Architecture [DTNarch] defines the

architecture for delay-tolerant networks, but does not discuss

security at any length.

*

The DTN Bundle Protocol [DTNBP] defines the format and processing

of the blocks used to implement the bundle protocol, excluding

the security-specific blocks defined here.

1.2. Terminology

We introduce the following terminology for purposes of clarity:

source - the bundle node from which a bundle originates

destination - the bundle node to which a bundle is ultimately

destined

forwarder - the bundle node that forwarded the bundle on its most

recent hop

intermediate receiver or "next hop" - the neighboring bundle node

to which a forwarder forwards a bundle.

path - the ordered sequence of nodes through which a bundle

passes on its way from source to destination

In the figure below, which is adapted from figure 1 in the Bundle

Protocol Specification, four bundle nodes (denoted BN1, BN2, BN3, and

BN4) reside above some transport layer(s). Three distinct transport and

network protocols (denoted T1/N1, T2/N2, and T3/N3) are also shown.

+---------v-| +->>>>>>>>>>v-+ +->>>>>>>>>>v-+ +-^---------+

| BN1 v | | ^ BN2 v | | ^ BN3 v | | ^ BN4 |

+---------v-+ +-^---------v-+ +-^---------v-+ +-^---------+

| T1 v | + ^ T1/T2 v | + ^ T2/T3 v | | ^ T3 |

+---------v-+ +-^---------v-+ +-^---------v + +-^---------+

| N1 v | | ^ N1/N2 v | | ^ N2/N3 v | | ^ N3 |

+---------v-+ +-^---------v + +-^---------v-+ +-^---------+

| >>>>>>>>^ >>>>>>>>>>^ >>>>>>>>^ |

+-----------+ +------------+ +-------------+ +-----------+

| | | |

|<-- An Internet --->| |<--- An Internet --->|

| | | |

BN = "Bundle Node" as defined in the Bundle Protocol Specification

Bundle node BN1 originates a bundle that it forwards to BN2. BN2

forwards the bundle to BN3, and BN3 forwards the bundle to BN4. BN1 is

the source of the bundle and BN4 is the destination of the bundle. BN1

is the first forwarder, and BN2 is the first intermediate receiver; BN2

then becomes the forwarder, and BN3 the intermediate receiver; BN3 then

*

*

*

*

*

*

becomes the last forwarder, and BN4 the last intermediate receiver, as

well as the destination.

If node BN2 originates a bundle (for example, a bundle status report or

a custodial signal), which is then forwarded on to BN3, and then to

BN4, then BN2 is the source of the bundle (as well as being the first

forwarder of the bundle) and BN4 is the destination of the bundle (as

well as being the final intermediate receiver).

We introduce the following security-specific DTN terminology:

security-source - a bundle node that adds a security block to a

bundle

security-destination - a bundle node that processes a security

block of a bundle

security path - the ordered sequence of security-aware nodes

through which a bundle passes on its way from the security-source

to the security-destination

Referring to Figure 1 again:

If the bundle that originates at BN1 as source is given a security

block by BN1, then BN1 is the security-source of this bundle with

respect to that security block, as well as being the source of the

bundle.

If the bundle that originates at BN1 as source is given a security

block by BN2, then BN2 is the security-source of this bundle with

respect to that security block, even though BN1 is the source.

If the bundle that originates at BN1 as source is given a security

block by BN1 that is intended to be processed by BN3, then BN1 is the

security-source and BN3 is the security destination with respect to

this security block. The security path for this block is BN1 to BN3.

A bundle MAY have multiple security blocks. The security-source of a

bundle with respect to a given security block in the bundle MAY be the

same as or different from the security-source of the bundle with

respect to a different security block in the bundle. Similarly, the

security-destination of a bundle with respect to each of that bundle's

security blocks MAY be the same or different. Therefore the security

paths for various blocks MAY be and often will be different.

If the bundle that originates at BN1 as source is given a security

block by BN1 that is intended to be processed by BN3, and BN2 adds a

security block with security-destination BN4, the security paths for

the two blocks overlap but not completely. This problem is discussed

further in Section 3.3.

As required in [DTNBP], forwarding nodes MUST transmit blocks in a

bundle in the same order in which they were received. This requirement

applies to all DTN nodes, not just ones which implement security

processing. Blocks in a bundle MAY be added or deleted according to the

applicable specification, but those blocks which are both received and

*

*

*

transmitted MUST be transmitted in the same order that they were

received.

If a node is not security-aware then it forwards the security blocks in

the bundle unchanged unless the bundle's block processing flags specify

otherwise. If a network has some nodes that are not security-aware then

the block processing flags SHOULD be set such that security blocks are

not discarded at those nodes solely because they can not be processed

there. Except for this, the non-security-aware nodes are transparent

relay points and are invisible as far as security processing is

concerned.

The block sequence also indicates the order in which certain

significant actions have affected the bundle, and therefore the

sequence in which actions MUST occur in order to produce the bundle at

its destination.

2. Security Blocks

There are four types of security block that MAY be included in a

bundle. These are the Bundle Authentication Block (BAB), the Payload

Integrity Block (PIB), the Payload Confidentiality Block (PCB) and the

Extension Security Block (ESB).

The BAB is used to assure the authenticity and integrity of the

bundle along a single hop from forwarder to intermediate

receiver. Since security blocks are only processed at security-

aware nodes, a "single hop" from a security-aware forwarder to

the next security-aware intermediate receiver might be more than

one actual hop. This situation is discussed further below Section

2.2.

The PIB is used to assure the authenticity and integrity of the

payload from the PIB security-source, which creates the PIB, to

the PIB security-destination, which verifies the PIB

authenticator. The authentication information in the PIB MAY (if

the ciphersuite allows) be verified by any node in between the

PIB security-source and the PIB security-destination that has

access to the cryptographic keys and revocation status

information required to do so.

Since a BAB protects a bundle on a "hop-by-hop" basis and other

security blocks MAY be protecting over several hops or end-to-

end, whenever both are present the BAB MUST form the "outer"

layer of protection - that is, the BAB MUST always be calculated

and added to the bundle after all other security blocks have been

calculated and added to the bundle.

The PCB indicates that the payload has been encrypted, in whole

or in part, at the PCB security-source in order to protect the

bundle content while in transit to the PCB security-destination.

*

*

*

*

PIB and PCB protect the payload and are regarded as "payload-

related" for purposes of the security discussion in this

document. Other blocks are regarded as "non-payload" blocks. Of

course, the primary block is unique and has separate rules.

The ESB provides security for non-payload blocks in a bundle. ESB

therefore is not applied to PIB or PCBs, and of course is not

appropriate for either the payload block or primary block.

Each of the security blocks uses the Canonical Bundle Block Format as

defined in the Bundle Protocol Specification. That is, each security

block is comprised of the following elements:

- Block type code

- Block processing control flags

- Block EID reference list (OPTIONAL)

- Block data length

- Block-type-specific data fields

Since the four security blocks have most fields in common, we can

shorten the description of the Block-type-specific data fields of each

security block if we first define an abstract security block (ASB) and

then specify each of the real blocks in terms of the fields which are

present/absent in an ASB. Note that no bundle ever contains an actual

ASB, which is simply a specification artifact.

2.1. Abstract Security Block

Many of the fields below use the "SDNV" type defined in [DTNBP]. SDNV

stands for Self-Delimiting Numeric Value.

An ASB consists of the following mandatory and optional fields:

- Block-type code (one byte) - as in all bundle protocol blocks except

the primary bundle block. The block types codes for the security blocks

are:

BundleAuthenticationBlock - BAB: 0x02

PayloadIntegrityBlock - PIB: 0x03

PayloadConfidentialityBlock - PCB: 0x04

ExtensionSecurityBlock - ESB: 0x09

- Block processing control flags (SDNV) - defined as in all bundle

protocol blocks except the primary bundle block (as described in the

Bundle Protocol [DTNBP]). SDNV encoding is described in the bundle

*

*

*

*

*

*

*

*

*

*

*

protocol. There are no general constraints on the use of the block

processing flags, and some specific requirements are discussed later.

- EID references - composite field defined in [DTNBP] containing

references to one or two EIDs. Presence of the EID-reference field is

indicated by the setting of the "block contains an EID-reference field"

(EID_REF) bit of the block processing control flags. If one or more

references is present, flags in the ciphersuite ID field, described

below, specify which.

If no EID fields are present then the composite field itself MUST be

omitted entirely and the EID_REF bit MUST be unset. A count field of

zero is not permitted.

The possible EIDs are:

- (OPTIONAL) Security-source - specifies the security source for

the block. If this is omitted, then the source of the bundle is

assumed to be the security-source unless otherwise indicated.

- (OPTIONAL) Security-destination - specifies the security

destination for the block. If this is omitted, then the

destination of the bundle is assumed to be the security-

destination unless otherwise indicated.

If two EIDs are present, security-source is first and security-

destination comes second.

- Block data length (SDNV) - as in all bundle protocol blocks except

the primary bundle block. SDNV encoding is described in the bundle

protocol.

- Block-type-specific data fields as follows:

- Ciphersuite ID (SDNV)

- Ciphersuite flags (SDNV)

- (OPTIONAL) Correlator - when more than one related block is

inserted then this field MUST have the same value in each related

block instance. This is encoded as an SDNV. See note in Section

3.8 with regard to correlator values in bundle fragments.

- (OPTIONAL) Ciphersuite parameters - compound field of next two

items

- Ciphersuite parameters length - specifies the length of the

following Ciphersuite parameters data field and is encoded as

an SDNV.

- Ciphersuite parameters data - parameters to be used with the

ciphersuite in use, e.g. a key identifier or initialization

vector (IV). See Section 2.6 for a list of potential

parameters and their encoding rules. The particular set of

*

*

*

*

*

*

-

-

parameters that are included in this field are defined as part

of the ciphersuite specification.

- (OPTIONAL) Security result - compound field of next two items

- Security result length - contains the length of the next

field and is encoded as an SDNV.

- Security result data - contains the results of the

appropriate ciphersuite-specific calculation (e.g., a

signature, MAC or ciphertext block key).

Although the diagram hints at a 32-bit layout this is purely for the

purpose of exposition. Except for the "type" field, all fields are

variable in length.

+----------------+----------------+----------------+----------------+

| type | flags (SDNV) | EID ref list(comp) |

+----------------+----------------+----------------+----------------+

| length (SDNV) | ciphersuite (SDNV) |

+----------------+----------------+----------------+----------------+

| ciphersuite flags (SDNV) | correlator (SDNV) |

+----------------+----------------+----------------+----------------+

|params len(SDNV)| ciphersuite params data |

+----------------+----------------+----------------+----------------+

|res-len (SDNV) | security result data |

+----------------+----------------+----------------+----------------+

Some ciphersuites are specified in Section 4, which also specifies the

rules which MUST be satisfied by ciphersuite specifications. Additional

ciphersuites MAY be defined in separate specifications. Ciphersuite IDs

not specified are reserved. Implementations of the bundle security

protocol decide which ciphersuites to support, subject to the

requirements of Section 4. It is RECOMMENDED that implementations that

allow additional ciphersuites permit ciphersuite ID values at least up

to and including 127, and they MAY decline to allow larger ID values.

The structure of the ciphersuite flags field is shown in Figure 3. In

each case the presence of an optional field is indicated by setting the

value of the corresponding flag to one. A value of zero indicates the

corresponding optional field is missing. Presently there are five flags

defined for the field and for convenience these are shown as they would

be extracted from a single-byte SDNV. Future additions may cause the

field to grow to the left so, as with the flags fields defined in

[DTNBP], the description below numbers the bit positions from the right

rather than the standard RFC definition which numbers bits from the

left.

src - bit 4 indicates whether the EID-reference field of the ASB

contains the optional reference to the security-source.

*

-

-

*

dest - bit 3 indicates whether the EID-reference field of the ASB

contains the optional reference to the security-destination.

parm - bit 2 indicates whether the ciphersuite-parameters-length

and ciphersuite parameters data fields are present or not.

corr - bit 1 indicates whether or not the ASB contains an

optional correlator.

res - bit 0 indicates whether or not the ASB contains the

security result length and security result data fields.

bits 5-6 are reserved for future use.

Bit Bit Bit Bit Bit Bit Bit

 6 5 4 3 2 1 0

+-----+-----+-----+-----+-----+-----+-----+

| reserved | src |dest |parm |corr |res |

+-----+-----+-----+-----+-----+-----+-----+

A little bit more terminology: if the block is a PIB then when we refer

to the "PIB-source", we mean the security source for the PIB as

represented by the EID reference in the EID-references field. Similarly

we may refer to the PCB-dest, meaning the security-destination of the

PCB, again as represented by an EID reference. For example, referring

to Figure 1 again, if the bundle that originates at BN1 as source is

given a Confidentiality Block (PCB) by BN1 that is protected using a

key held by BN3 and it is given a Payload Integrity Block (PIB) by BN1,

then BN1 is both the PCB-source and the PIB-source of the bundle, and

BN3 is the PCB-dest of the bundle.

The correlator field is used to associate several related instances of

a security block. This can be used to place a BAB that contains the

ciphersuite information at the "front" of a (probably large) bundle,

and another correlated BAB that contains the security result at the

"end" of the bundle. This allows even very memory-constrained nodes to

be able to process the bundle and verify the BAB. There are similar use

cases for multiple related instances of PIB and PCB as will be seen

below.

The ciphersuite specification MUST make it clear whether or not

multiple block instances are allowed, and if so, under what conditions.

Some ciphersuites can of course leave flexibility to the

implementation, whereas others might mandate a fixed number of

instances.

For convenience, we use the term "first block" to refer to the initial

block in a group of correlated blocks, or to the single block if there

are no others in the set. Obviously there can be several unrelated

*

*

*

*

*

groups in a bundle, each containing only one block or more than one,

and each has its own "first block".

2.2. Bundle Authentication Block

In this section we describe typical BAB field values for two scenarios

- where a single instance of the BAB contains all the information and

where two related instances are used, one "up front" which contains the

ciphersuite and another following the payload which contains the

security result (e.g. a MAC).

For the case where a single BAB is used:

The block-type code field value MUST be 0x02.

The block processing control flags value can be set to whatever

values are required by local policy. Ciphersuite designers should

carefully consider the effect of setting flags that either

discard the block or delete the bundle in the event that this

block cannot be processed.

The ciphersuite ID MUST be documented as a hop-by-hop

authentication-ciphersuite which requires one instance of the

BAB.

The correlator field MUST NOT be present.

The ciphersuite parameters field MAY be present, if so specified

in the ciphersuite specification.

An EID reference to the security-source MAY be present. The

security-source can also be specified as part of key information

described in Section 2.6 or another block such as the Previous

Hop Insertion Block [PHIB]. The security-source might also be

inferred from some implementation-specific means such as the

convergence layer.

An EID reference to the security-destination MAY be present and

is useful to ensure that the bundle has been forwarded to the

correct next-hop node.

The security result MUST be present as it is effectively the

"output" from the ciphersuite calculation (e.g. the MAC or

signature) applied to the (relevant parts of) the bundle (as

specified in the ciphersuite definition).

For the case using two related BAB instances, the first instance is as

defined above, except the ciphersuite ID MUST be documented as a hop-

by-hop authentication ciphersuite that requires two instances of the

BAB. In addition, the correlator MUST be present and the security

result length and security result fields MUST be absent. The second

*

*

*

*

*

*

*

*

instance of the BAB MUST have the same correlator value present and

MUST contain security result length and security result data fields.

The other optional fields MUST NOT be present. Typically, this second

instance of a BAB will be the last block of the bundle.

The details of key transport for BAB are specified by the particular

ciphersuite. In the absence of conflicting requirements, the following

should be noted by implementors:

- the key information item Section 2.6 is OPTIONAL, and if not provided

then the key SHOULD be inferred from the source-destination tuple,

being the previous key used, a key created from a key-derivation

function, or a pre-shared key

- if all the nodes are security-aware, the capabilities of the

underlying convergence layer might be useful for identifying the

security-source

- depending upon the key mechanism used, bundles can be signed by the

sender, or authenticated for one or more recipients, or both.

2.3. Payload Integrity Block

A PIB is an ASB with the following additional restrictions:

The block type code value MUST be 0x03.

The block processing control flags value can be set to whatever

values are required by local policy. Ciphersuite designers should

carefully consider the effect of setting flags that either

discard the block or delete the bundle in the event that this

block cannot be processed.

The ciphersuite ID MUST be documented as an end-to-end

authentication-ciphersuite or as an end-to-end error-detection-

ciphersuite.

The correlator MUST be present if the ciphersuite requires more

than one related instance of a PIB be present in the bundle. The

correlator MUST NOT be present if the ciphersuite only requires

one instance of the PIB in the bundle.

The ciphersuite parameters field MAY be present.

An EID reference to the security-source MAY be present. The

security-source can also be specified as part of key information

described in Section 2.6.

An EID reference to the security-destination MAY be present.

The security result is effectively the "output" from the

ciphersuite calculation (e.g. the MAC or signature) applied to

the (relevant parts of) the bundle. As in the case of the BAB,

this field MUST be present if the correlator is absent. If more

*

*

*

*

*

*

*

*

than one related instance of the PIB is required then this is

handled in the same way as described for the BAB above.

The ciphersuite MAY process less than the entire original bundle

payload. This might be because it is defined to process some

subset of the bundle, or perhaps because the the current payload

is a fragment of an original bundle. For whatever reason, if the

ciphersuite processes less than the complete, original bundle

payload, the ciphersuite parameters of this block MUST specify

which bytes of the bundle payload are protected.

For some ciphersuites, (e.g. those using asymmetric keying to produce

signatures or those using symmetric keying with a group key), the

security information can be checked at any hop on the way to the

security destination that has access to the required keying

information. This possibility is further discussed in Section 3.6

below.

The use of a generally-available key is RECOMMENDED if custodial

transfer is employed and all nodes SHOULD verify the bundle before

accepting custody.

Most asymmetric PIB-ciphersuites will use the PIB-source to indicate

the signer and will not require the PIB-dest field because the key

needed to verify the PIB authenticator will be a public key associated

with the PIB-source.

2.4. Payload Confidentiality Block

A typical confidentiality ciphersuite will encrypt the payload using a

randomly generated bundle encrypting key (BEK) and will use a key

information item in the PCB security parameters to carry the BEK

encrypted with some long term key encryption key (KEK) or well-known

public key. If neither the destination nor security-destination

resolves the key to use for decryption, the key information item in the

ciphersuite parameters field can also be used to indicate the

decryption key with which the BEK can be recovered. If the bundle

already contains PIBs and/or PCBs these SHOULD also be encrypted using

this same BEK, as described just below for "super-encryption". The

encrypted block is encapsulated into a new PCB that replaces the

original block at the same place in the bundle.

It is strongly RECOMMENDED that a data integrity mechanism be used in

conjunction with confidentiality, and that encryption-only ciphersuites

NOT be used. AES-GCM satisfies this requirement. The "authentication

tag" or "integrity check value" is stored into security-result rather

than being appended to the payload as is common in some protocols

since, as described below, it is important that there be no change in

the size of the payload.

The payload is encrypted "in-place", that is, following encryption, the

payload block payload field contains ciphertext, not plaintext. The

payload block processing flags are unmodified.

*

The "in-place" encryption of payload bytes is to allow bundle payload

fragmentation and re-assembly, and custody transfer, to operate without

knowledge of whether or not encryption has occurred and, if so, how

many times.

Fragmentation and reassembly and custody transfer are adversely

affected by a change in size of the payload due to ambiguity about what

byte range of the original payload is actually in any particular

fragment. Ciphersuites SHOULD place any payload expansion, such as

authentication tags (integrity check values) and any padding generated

by a block-mode cipher, into an "integrity check value" item in the

security-result field (see Section 2.6) of the confidentiality block.

Payload super-encryption is allowed; that is, encrypting a payload that

has already been encrypted, perhaps more than once. Ciphersuites SHOULD

define super-encryption such that, as well as re-encrypting the

payload, it also protects the parameters of earlier encryption. Failure

to do so may represent a vulnerability in some circumstances.

Confidentiality is normally applied to the payload, and possibly to

additional blocks. It is RECOMMENDED to apply a Payload Confidentiality

ciphersuite to non-payload blocks only if these SHOULD be super-

encrypted with the payload. If super-encryption of the block is not

desired then protection of the block SHOULD be done using the Extension

Security Block mechanism rather than PCB.

Multiple related PCB instances are required if both the payload and

PIBs and PCBs in the bundle are to be encrypted. These multiple PCB

instances require correlators to associate them with each other since

the key information is provided only in the first PCB.

There are situations where more than one PCB instance is required but

the instances are not "related" in the sense which requires

correlators. One example is where a payload is encrypted for more than

one security-destination so as to be robust in the face of routing

uncertainties. In this scenario the payload is encrypted using a BEK.

Several PCBs contain the BEK encrypted using different KEKs, one for

each destination. These multiple PCB instances, are not "related" and

SHOULD NOT contain correlators.

The ciphersuite MAY apply different rules to confidentiality for non-

payload blocks.

A PCB is an ASB with the following additional restrictions:

The block type code value MUST be 0x04.

The block processing control flags value can be set to whatever

values are required by local policy, except that a PCB "first

block" MUST have the "replicate in every fragment" flag set. This

flag SHOULD NOT be set otherwise. Ciphersuite designers should

carefully consider the effect of setting flags that either

discard the block or delete the bundle in the event that this

block cannot be processed.

*

*

The ciphersuite ID MUST be documented as a confidentiality-

ciphersuite.

The correlator MUST be present if there is more than one related

PCB instance. The correlator MUST NOT be present if there are no

related PCB instances.

If a correlator is present, the key information MUST be placed in

the PCB "first block".

Any additional bytes generated as a result of encryption and/or

authentication processing of the payload SHOULD be placed in an

"integrity check value" field (see Section 2.6) in the security-

result of the first PCB.

The ciphersuite parameters field MAY be present.

An EID reference to the security-source MAY be present. The

security-source can also be specified as part of key information

described in Section 2.6.

An EID reference to the security-destination MAY be present.

The security result MAY be present and normally contains fields

such as an encrypted bundle encryption key, authentication tag or

the encrypted versions of bundle blocks other than the payload

block.

The ciphersuite MAY process less than the entire original bundle

payload, either because the current payload is a fragment of the

original bundle or just because it is defined to process some subset.

For whatever reason, if the ciphersuite processes less than the

complete, original bundle payload the "first" PCB MUST specify, as part

of the ciphersuite parameters, which bytes of the bundle payload are

protected.

PCB ciphersuites MUST specify which blocks are to be encrypted. The

specification MAY be flexible and be dependent upon block type,

security policy, various data values and other inputs but it MUST be

deterministic. The determination of whether a block is to be encrypted

or not MUST NOT be ambiguous.

As was the case for the BAB and PIB, if the ciphersuite requires more

than one instance of the PCB, then the "first block" MUST contain any

optional fields (e.g., security destination etc.) that apply to all

instances with this correlator. These MUST be contained in the first

instance and MUST NOT be repeated in other correlated blocks. Fields

that are specific to a particular instance of the PCB MAY appear in

that PCB. For example, security result fields MAY (and probably will)

be included in multiple related PCB instances, with each result being

specific to that particular block. Similarly, several PCBs might each

*

*

*

*

*

*

*

*

contain a ciphersuite parameters field with an IV specific to that PCB

instance.

Put another way: when confidentiality will generate multiple blocks, it

MUST create a "first" PCB with the required ciphersuite ID, parameters

etc. as specified above. Typically, this PCB will appear early in the

bundle. This "first" PCB contains the parameters that apply to the

payload and also to the other correlated PCBs. The correlated PCBs

follow the "first" PCB and MUST NOT repeat the ciphersuite parameters,

security-source, or security-destination fields from the first PCB.

These correlated PCBs need not follow immediately after the "first"

PCB, and probably will not do so. Each correlated block, encapsulating

an encrypted PIB or PCB, is at the same place in the bundle as the

original PIB or PCB.

A ciphersuite MUST NOT mix payload data and a non-payload block in a

single PCB.

Even if a to-be-encrypted block has the "discard" flag set, whether or

not the PCB's "discard" flag is set is an implementation/policy

decision for the encrypting node. (The "discard" flag is more properly

called the "discard if block cannot be processed" flag.)

Any existing EID-list in the to-be-encapsulated original block remains

exactly as-is, and is copied to become the EID-list for the replacing

block. The encapsulation process MUST NOT replace or remove the

existing EID-list entries. This is critically important for correct

updating of entries at the security-destination.

At the security-destination, either specific destination or the bundle

destination, the processes described above are reversed. The payload is

decrypted in-place using the salt, IV and key values in the first PCB,

including verification using the ICV. These values are described below

in Section 2.6. Each correlated PCB is also processed at the same

destination, using the salt and key values from the first PCB and the

block-specific IV item. The "encapsulated block" item in the security-

result is decrypted and validated, using also the tag which SHOULD have

been appended to the ciphertext of the original block data. Assuming

the validation succeeds, the resultant plaintext, which is the entire

content of the original block, replaces the PCB at the same place in

the bundle. The block type reverts to that of the original block prior

to encapsulation, and the other block-specific data fields also return

to their original values. Implementors are cautioned that this

"replacement" process requires delicate stitchery, as the EID-list

contents in the decapsulated block are invalid. As noted above, the

EID-list references in the original block were preserved in the

replacing PCB, and will have been updated as necessary as the bundle

has toured the dtn. The references from the PCB MUST replace the

references within the EID-list of the newly-decapsulated block. Caveat

implementor.

2.5. Extension Security Block

Extension security blocks provide protection for non-payload-related

portions of a bundle. ESBs MUST NOT be used for the primary block or

payload, including payload-related security blocks (PIBs and PCBs).

It is sometimes desirable to protect certain parts of a bundle in ways

other than those applied to the bundle payload. One such example is

bundle metadata that might specify the kind of data in the payload but

not the actual payload detail, as described in [DTNMD].

ESBs are typically used to apply confidentiality protection. While it

is possible to create an integrity-only ciphersuite, the block

protection is not transparent and makes access to the data more

difficult. For simplicity, this discussion describes use of a

confidentiality ciphersuite.

The protection mechanisms in ESBs are similar to other security blocks

with two important differences:

- different key values are used (using same key as for payload

would defeat the purpose)

- the block is not encrypted or super-encrypted with the payload

A typical ESB ciphersuite will encrypt the extension block using a

randomly generated ephemeral key and will use the key information item

in the security parameters field to carry the key encrypted with some

long term key encryption key (KEK) or well-known public key. If neither

the destination nor security-destination resolves the key to use for

decryption, the key information item in the ciphersuite parameters

field can be used also to indicate the decryption key with which the

BEK can be recovered.

It is strongly RECOMMENDED that a data integrity mechanism be used in

conjunction with confidentiality, and that encryption-only ciphersuites

NOT be used. AES-GCM satisfies this requirement.

The ESB is placed in the bundle in the same position as the block being

protected. That is, the entire original block is processed (encrypted,

etc) and encapsulated in a "replacing" ESB-type block, and this appears

in the bundle at the same sequential position as the original block.

The processed data is placed in the security-result field.

The process is reversed at the security destination with the recovered

plaintext block replacing the ESB that had encapsulated it. Processing

of EID-list entries, if any, is described above in Section 2.4 and this

MUST be followed in order to correctly recover EIDs.

An ESB is an ASB with the following additional restrictions:

Block type is 0x09.

Ciphersuite flags indicate which fields are present in this

block. Ciphersuite designers should carefully consider the effect

*

*

*

*

of setting flags that either discard the block or delete the

bundle in the event that this block cannot be processed.

EID references MUST be stored in the EID reference list.

Security-source MAY be present. The security-source can also be

specified as part of key information described in Section 2.6. If

neither is present then the bundle-source is used as the

security-source.

Security-destination MAY be present. If not present, then the

bundle-destination is used as the security-destination.

The security-parameters MAY optionally contain a block-type field to

indicate the type of the encapsulated block. Since this replicates a

field in the encrypted portion of the block, it is a slight security

risk and its use is therefore OPTIONAL.

2.6. Parameters and Result Fields

Various ciphersuites include several items in the security-parameters

and/or security-result fields. Which items MAY appear is defined by the

particular ciphersuite description. A ciphersuite MAY support several

instances of the same type within a single block.

Each item is represented as type-length-value. Type is a single byte

indicating which item this is. Length is the count of data bytes to

follow, and is an SDNV-encoded integer. Value is the data content of

the item.

Item types are

0: reserved

1: initialization vector (IV)

2: reserved

3: key information

4: fragment range (offset and length as a pair of SDNVs)

5: integrity signature

6: reserved

7: salt

8: PCB integrity check value (ICV)

9: reserved

*

*

*

*

*

*

*

*

*

*

*

*

*

10: encapsulated block

11: block type of encapsulated block

12 - 191: reserved

192 - 250: private use

251 - 255: reserved

The folowing descriptions apply to usage of these items for all

ciphersuites. Additional characteristics are noted in the discussion

for specific suites.

- initialization vector(IV): random value, typically eight to

sixteen bytes

- key information: key material encoded or protected by the key

management system, and used to transport an ephemeral key

protected by a long-term key. This item is discussed further

below in Section 2.7

- fragment range: pair of SDNV values (offset then length)

specifying the range of payload bytes to which a particular

operation applies. This is termed "fragment range" since that is

its typical use, even though sometimes it describes a subset

range that is not a fragment. The offset value MUST be the offset

within the original bundle, which might not be the offset within

the current bundle if the current bundle is already a fragment

- integrity signature: result of BAB or PIB digest or signing

operation. This item is discussed further below in Section 2.7

- salt: an IV-like value used by certain confidentiality suites

- PCB integrity check value(ICV): output from certain

confidentiality ciphersuite operations to be used at the

destination to verify that the protected data has not been

modified

- encapsulated block: result of confidentiality operation on

certain blocks, contains the ciphertext of the block and MAY also

contain an integrity check value appended to the ciphertext; MAY

also contain padding if required by the encryption mode; used for

non-payload blocks only

- block type of encapsulated block: block type code for a block

that has been encapsulated in ESB

*

*

*

*

*

*

*

*

*

*

*

*

*

2.7. Key Transport

This specification endeavours to maintain separation between the

security protocol and key management. However, these two interact in

the transfer of key information, etc., from security-source to

security-destination. The intent of the separation is to facilitate use

of a variety of key management systems without a necessity to tailor a

ciphersuite to each individually.

The key management process deals with such things as long-term keys,

specifiers for long-term keys, certificates for long-term keys and

integrity signatures using long-term keys. The ciphersuite itself

SHOULD NOT require a knowledge of these, and separation is improved if

it treats these as opaque entities, to be handled by the key management

process.

The key management process deals specifically with the content of two

of the items defined above in Section 2.6:- key information (item type

3) and integrity signature (item type 5). The ciphersuite MUST define

the details and format for these items. To facilitate interoperability,

it is strongly RECOMMENDED that the implementations use the appropriate

definitions from Cryptographic Message Syntax (CMS) [RFC5652] and

related RFCs.

Many situations will require several pieces of key information. Again,

ciphersuites MUST define whether they accept these packed into a single

key information item and/or separated into multiple instances of key

information. For interoperability, it is RECOMMENDED that ciphersuites

accept these packed into a single key-information item, and that they

MAY additionally choose to accept them sent as separate items.

2.8. PIB and PCB combinations

Given the above definitions, nodes are free to combine applications of

PIB and PCB in any way they wish - the correlator value allows for

multiple applications of security services to be handled separately.

Since PIB and PCB apply to the payload and ESB to non-payload blocks,

combinations of ESB with PIB and/or PCB are not considered.

There are some obvious security problems that could arise when applying

multiple services. For example, if we encrypted a payload but left a

PIB security result containing a signature in the clear, payload

guesses could be confirmed.

We cannot, in general, prevent all such problems since we cannot assume

that every ciphersuite definition takes account of every other

ciphersuite definition. However, we can limit the potential for such

problems by requiring that any ciphersuite which applies to one

instance of a PIB or PCB, MUST be applied to all instances with the

same correlator.

We now list the PIB and PCB combinations which we envisage as being

useful to support:

Encrypted tunnels - a single bundle MAY be encrypted many times

en-route to its destination. Clearly it has to be decrypted an

equal number of times, but we can imagine each encryption as

representing the entry into yet another layer of tunnel. This is

supported by using multiple instances of PCB, but with the

payload encrypted multiple times, "in-place". Depending upon the

ciphersuite defintion, other blocks can and should be encrypted,

as discussed above and in Section 2.4 to ensure that parameters

are protected in the case of super-encryption.

Multiple parallel authenticators - a single security source might

wish to protect the integrity of a bundle in multiple ways. This

could be required if the bundle's path is unpredictable, and if

various nodes might be involved as security destinations.

Similarly, if the security source cannot determine in advance

which algorithms to use, then using all might be reasonable. This

would result in uses of PIB which presumably all protect the

payload, and which cannot in general protect one another. Note

that this logic can also apply to a BAB, if the unpredictable

routing happens in the convergence layer, so we also envisage

support for multiple parallel uses of BAB.

Multiple sequential authenticators - if some security destination

requires assurance about the route that bundles have taken, then

it might insist that each forwarding node add its own PIB. More

likely, however would be that outbound "bastion" nodes would be

configured to sign bundles as a way of allowing the sending

"domain" to take accountability for the bundle. In this case, the

various PIBs will likely be layered, so that each protects the

earlier applications of PIB.

Authenticated and encrypted bundles - a single bundle MAY require

both authentication and confidentiality. Some specifications

first apply the authenticator and follow this by encrypting the

payload and authenticator. As noted previously in the case where

the authenticator is a signature, there are security reasons for

this ordering. (See the PCB-RSA-AES128-PAYLOAD-PIB-PCB

ciphersuite defined later in Section 4.3.) Others apply the

authenticator after encryption, that is, to the ciphertext. This

ordering is generally RECOMMENDED and minimizes attacks which, in

some cases, can lead to recovery of the encryption key.

There are no doubt other valid ways to combine PIB and PCB instances,

but these are the "core" set supported in this specification. Having

said that, as will be seen, the mandatory ciphersuites defined here are

quite specific and restrictive in terms of limiting the flexibility

*

*

*

*

offered by the correlator mechanism. This is primarily designed to keep

this specification as simple as possible, while at the same time

supporting the above scenarios.

3. Security Processing

This section describes the security aspects of bundle processing.

3.1. Nodes as policy enforcement points

All nodes are REQUIRED to have and enforce their own configurable

security policies, whether these policies be explicit or default, as

defined in Section 6.

All nodes serve as Policy Enforcement Points (PEP) insofar as they

enforce polices that MAY restrict the permissions of bundle nodes to

inject traffic into the network. Policies MAY apply to traffic

originating at the current node, traffic terminating at the current

node and traffic to be forwarded by the current node to other nodes. If

a particular transmission request, originating either locally or

remotely, satisfies the node's policy or policies and is therefore

accepted, then an outbound bundle can be created and dispatched. If

not, then in its role as a PEP, the node will not create or forward a

bundle. Error handling for such cases is currently considered out of

scope of this document.

Policy enforcing code MAY override all other processing steps described

here and elsewhere in this document. For example, it is valid to

implement a node which always attempts to attach a PIB. Similarly it is

also valid to implement a node which always rejects all requests which

imply the use of a PIB.

Nodes MUST consult their security policy to determine the criteria that

a received bundle ought to meet before it will be forwarded. These

criteria MUST include a determination of whether or not the received

bundle MUST include a valid BAB, PIB, PCB or ESB. If the bundle does

not meet the node's policy criteria, then the bundle MUST be discarded

and processed no further; in this case, a bundle status report

indicating the failure MAY be generated.

The node's policy MAY call for the node to add or subtract some

security blocks. For example, it might require the node attempt to

encrypt (parts of) the bundle for some security-destination, or that it

add a PIB. If the node's policy requires a BAB to be added to the

bundle, it MUST be added last so that the calculation of its security

result MAY take into consideration the values of all other blocks in

the bundle.

3.2. Processing order of security blocks

The processing order of security actions for a bundle is critically

important for the actions to complete successfully. In general, the

actions performed at the originating node MUST be executed in the

reverse sequence at the destination. There are variations and

exceptions, and these are noted below.

The sequence is maintained in the ordering of security blocks in the

bundle. It is for this reason that blocks MUST NOT be rearranged at

forwarding nodes, whether they support the security protocols or not.

The only blocks that participate in this ordering are the primary and

payload blocks, and the PIB and PCB security blocks themselves. All

other extension blocks, including ESBs, are ignored for purposes of

determining the processing order.

The security blocks are added to and removed from a bundle in a last-

in-first-out (LIFO) manner, with the top of the stack immediately after

the primary block. A newly-created bundle has just the primary and

payload blocks, and the stack is empty. As security actions are

requested for the bundle, security blocks are pushed onto the stack

immediately after the primary block. The early actions have security

blocks close to the payload, later actions have blocks nearer to the

primary block. The actions deal with only those blocks in the bundle at

the time so, for example, the first to be added processes only the

payload and primary blocks, the next might process the first if it

chooses and the payload and primary, and so on. The last block to be

added can process all the blocks.

When the bundle is received, this process is reversed and security

processing begins at the top of the stack, immediately after the

primary block. The security actions are performed and the block is

popped from the stack. Processing continues with the next security

block until finally only the payload and primary blocks remain.

The simplicity of this description is undermined by various real-world

requirements. Nonetheless it serves as a helpful initial framework for

understanding the bundle security process.

The first issue is a very common one and easy to handle. The bundle may

be sent indirectly to its destination, requiring several forwarding

hops to finally arrive there. Security processing happens at each node,

assuming that the node supports bundle security. For the following

discussion, we assume that a bundle is created and that

confidentiality, then payload integrity and finally bundle

authentication are applied to it. The block sequence would therefore be

primary-BAB-PIB-PCB-payload. Traveling from source to destination

requires going through one intermediate node, so the trip consists of

two hops.

When the bundle is received at the intermediate node, the receive

processing validates the BAB and pops it from the stack. However the

PIBs and PCBs have the final destination as their security destination,

so these can't be processed and removed. The intermediate node then

begins the send process with the four remaining blocks in the bundle.

The outbound processing adds any security blocks required by local

policy, and these are pushed on the stack immediately after the primary

block, ahead of the PIB. In this example, the intermediate node adds a

PIB as a signature that the bundle has passed through the node.

The receive processing at the destination first handles the

intermediate node's PIB and pops it, next is the originator's PIB, also

popped, and finally the originator's confidentiality block which allows

the payload to be decrypted and the bundle handled for delivery.

DTNs in practice are likely to be more complex. The security policy for

a node specifies the security requirements for a bundle. The policy

will possibly cause one or more security operations to be applied to

the bundle at the current node, each with its own security-destination.

Application of policy at subsequent nodes might cause additional

security operations, each with a security-destination. The list of

security-destinations in the security blocks (BAB, PIB and PCB, not

ESB) creates a partial-ordering of nodes that MUST be visited en route

to the bundle destination.

The bundle security scheme does not deal with security paths that

overlap partially but not completely. The security policy for a node

MUST avoid specifying for a bundle a security-destination that causes a

conflict with any existing security-destination in that bundle. This is

discussed further below in Section 3.3.

The second issue relates to the reversibility of certain security

process actions. In general, the actions fall into two categories:

those which do not affect other parts of the bundle, and those which

are fully reversible. Creating a bundle signature, for example, does

not change the bundle content except for the result. The encryption

performed as part of the confidentiality processing does change the

bundle, but the reverse processing at the destination restores the

original content.

The third category is the one where the bundle content has changed

slightly and in a non-destructive way, but there is no mechanism to

reverse the change. The simplest example is the addition of an EID-

reference to a security block. The addition of the reference causes the

text to be added to the bundle's dictionary. The text may be used also

by other references so removal of the block and this specific EID-

reference does not cause removal of the text from the dictionary. This

shortcoming is of no impact to the "sequential" or "wrapping" security

schemes described above, but does cause failures with "parallel"

authentication mechanisms. Solutions for this problem are

implementation-specific and typically involve multi-pass processing

such that blocks are added at one stage and the security results

calculated at a later stage of the overall process.

Certain ciphersuites have sequence requirements for their correct

operation, most notably the bundle authentication ciphersuites.

Processing for bundle authentication is required to happen after all

other sending operations, and prior to any receive operations at the

next hop node. It follows therefore that BABs MUST always be pushed

onto the stack after all others.

Although we describe the security block list as a stack, there are some

blocks which are placed after the payload and therefore are not part of

the stack. The BundleAuthentication ciphersuite #1 ("BA1") requires a

second, correlated block to contain the security-result and this block

is placed after the payload, usually as the last block in the bundle.

We can apply the stack rules even to these blocks by specifying that

they be added to the end of the bundle at the same time that their

"owner" or "parent" block is pushed on the stack. In fact, they form a

stack beginning at the payload but growing in the other direction.

Also, not all blocks in the main stack have a corresponding entry in

the trailing stack. The only blocks which MUST follow the payload are

those mandated by ciphersuites as correlated blocks for holding a

security-result. No other blocks are required to follow the payload

block and it is NOT RECOMMENDED that they do so.

ESBs are effectively placeholders for the blocks they encapsulate and,

since those do not form part of the processing sequence described

above, ESBs themselves do not either. ESBs MAY be correlated, however,

so the "no reordering" requirement applies to them as well.

3.3. Security Regions

Each security block has a security path, as described in the discussion

for Figure 1, and the paths for various blocks are often different.

BABs are always for a single hop and these restricted paths never cause

conflict.

The paths for PIBs and PCBs are often from bundle source to bundle

destination, to provide end-to-end protection. A bundle-source-to-

bundle-destination path likewise never causes a problem.

Another common scenario is for gateway-to-gateway protection of traffic

between two sub-networks ("tunnel-mode").

Looking at Figure 1 and the simplified version shown in Figure 4, we

can regard BN2 and BN3 as gateways connecting the two subnetworks

labeled "An internet". As long as they provide security for the BN2-BN3

path, all is well. Problems begin, for example, when BN2 adds blocks

with BN4 as the security-destination, and originating node BN1 has

created blocks with BN3 as security-destination. We now have two paths

and neither is a subset of the other.

This scenario should be prevented by node BN2's security policy being

aware of the already-existing block with BN3 as the security

destination. This policy SHOULD NOT specify a security-dest that is

further distant than any existing security-dest.

+---------v-| +->>>>>>>>>>v-+ +->>>>>>>>>>v-+ +-^---------+

| BN1 v | | ^ BN2 v | | ^ BN3 v | | ^ BN4 |

+---------v-+ +-^---------v-+ +-^---------v-+ +-^---------+

 >>>>>>>>^ >>>>>>>>>>^ >>>>>>>>^

 <------------- BN1 to BN3 path ------------>

 <------------- BN2 to BN4 path ------------>

primary - PIb - PIa - payload

Consider the case where the security concern is for data integrity, so

the blocks are PIBs. BN1 creates one ("PIa") along with the new bundle,

and BN2 pushes its own PIB "PIb" on the stack, with security-

destination BN4. When this bundle arrives at BN3, the bundle blocks are

The situation would be worse if the security concern is

confidentiality, and PCBs are employed, using the confidentiality

ciphersuite #3 ("PC3") described in Section 4.3. In this scenario, BN1

would encrypt the bundle with BN3 as security-destination, BN2 would

create an overlapping security path by super-encrypting the payload and

encapsulating the PC3 block for security-destination BN4. BN3 forwards

all the blocks without change. BN4 decrypts the payload from its super-

encryption and decapsulates the PC3 block, only to find that it should

have been processed earlier. Assuming that BN4 has no access to BN3's

key store, BN4 has no way to decrypt the bundle and recover the

original content.

As mentioned above, authors of security policy need to use care to

ensure that their policies do not cause overlaps. These guidelines

should prove helpful:

the originator of a bundle can always specify the bundle-dest as

the security-dest, and should be cautious about doing otherwise

in the "tunnel-mode" scenario where two sub-networks are

connected by a tunnel through a network, the gateways can each

specify the other as security-dest, and should be cautious about

doing otherwise

BAB is never a problem because it is always only a single hop

PIB for a bundle without PCB will usually specify the bundle

destination as security-dest

PIB for a bundle containing a PCB should specify as its security-

dest the security-dest of the PCB (outermost PCB if there are

more than one)

3.4. Canonicalisation of bundles

In order to verify a signature or MAC on a bundle the exact same bits,

in the exact same order, MUST be input to the calculation upon

verification as were input upon initial computation of the original

signature or MAC value. Consequently, a node MUST NOT change the

encoding of any URI [RFC3986] in the dictionary field, e.g., changing

the DNS part of some HTTP URL from lower case to upper case. Because

bundles MAY be modified while in transit (either correctly or due to

implementation errors), a canonical form of any given bundle (that

contains a BAB or PIB) MUST be defined.

*

*

*

*

*

This section defines bundle canonicalisation algorithms used in the

Section 4.1 and Section 4.2 ciphersuites. Other ciphersuites can use

these or define their own canonicalization procedures.

3.4.1. Strict canonicalisation

The first algorithm that can be used permits no changes at all to the

bundle between the security-source and the security-destination. It is

mainly intended for use in BAB ciphersuites. This algorithm

conceptually catenates all blocks in the order presented, but omits all

security result data fields in blocks of this ciphersuite type. That

is, when a BAB ciphersuite specifies this algorithm then we omit all

BAB security results for all BAB ciphersuites, when a PIB ciphersuite

specifies this algorithm then we omit all PIB security results for all

PIB ciphersuites. All security result length fields are included, even

though their corresponding security result data fields are omitted.

Notes:

- In the above we specify that security result data is omitted.

This means that no bytes of the security result data are input.

We do not set the security result length to zero. Rather, we

assume that the security result length will be known to the

module that implements the ciphersuite before the security result

is calculated, and require that this value be in the security

result length field even though the security result data itself

will be omitted.

- The 'res' bit of the ciphersuite ID, which indicates whether or

not the security result length and security result data field are

present, is part of the canonical form.

- The value of the block data length field, which indicates the

length of the block, is also part of the canonical form. Its

value indicates the length of the entire bundle when the bundle

includes the security result data field.

- BABs are always added to bundles after PIBs, so when a PIB

ciphersuite specifies this strict canonicalisation algorithm and

the PIB is received with a bundle that also includes one or more

BABs, application of strict canonicalisation as part of the PIB

security result verification process requires that all BABs in

the bundle be ignored entirely.

3.4.2. Mutable canonicalisation

This algorithm is intended to protect parts of the bundle which SHOULD

NOT be changed in-transit. Hence it omits the mutable parts of the

bundle.

The basic approach is to define a canonical form of the primary block

and catenate it with the security (PIBs and PCBs only) and payload

*

*

*

*

blocks in the order that they will be transmitted. This algorithm

ignores all other blocks, including ESBs, because it cannot be

determined whether or not they will change as the bundle transits the

network. In short, this canonicalization protects the payload, payload-

related security blocks and parts of the primary block.

Many fields in various blocks are stored as variable-length SDNVs.

These are canonicalized in unpacked form, as eight-byte fixed-width

fields in network byte order. The size of eight bytes is chosen because

implementations MAY handle larger values as invalid, as noted in

[DTNBP].

The canonical form of the primary block is shown in Figure 6.

Essentially, it de-references the dictionary block, adjusts lengths

where necessary and ignores flags that MAY change in transit.

+----------------+----------------+----------------+----------------+

| Version | Processing flags (incl. COS and SRR) |

+----------------+----------------+---------------------------------+

| Canonical primary block length |

+----------------+----------------+---------------------------------+

| Destination endpoint ID length |

+----------------+----------------+---------------------------------+

| |

| Destination endpoint ID |

| |

+----------------+----------------+---------------------------------+

| Source endpoint ID length |

+----------------+----------------+----------------+----------------+

| |

| Source endpoint ID |

| |

+----------------+----------------+---------------------------------+

| Report-to endpoint ID length |

+----------------+----------------+----------------+----------------+

| |

| Report-to endpoint ID |

| |

+----------------+----------------+----------------+----------------+

| |

+ Creation Timestamp (2 x SDNV) +

| |

+---------------------------------+---------------------------------+

| Lifetime |

+----------------+----------------+----------------+----------------+

The fields shown in Figure 6 are:

Version is the single-byte value in the primary block.*

Processing flags in the primary block is an SDNV, and includes

the class-of-service (COS) and status report request (SRR)

fields. For purposes of canonicalization, the SDNV is unpacked

into a fixed-width field and some bits are masked out. The

unpacked field is ANDed with mask 0x0000 0000 0007 C1BE to set to

zero all reserved bits and the "bundle is a fragment" bit.

Length - a four-byte value containing the length (in bytes) of

this structure, in network byte order.

Destination endpoint ID length and value - are the length (as a

four byte value in network byte order) and value of the

destination endpoint ID from the primary bundle block. The URI is

simply copied from the relevant part(s) of the dictionary block

and is not itself canonicalised. Although the dictionary entries

contain null-terminators, the null-terminators are not included

in the length or the canonicalization.

Source endpoint ID length and value are handled similarly to the

destination.

Report-to endpoint ID length and value are handled similarly to

the destination.

Creation time (2 x SDNV) and Lifetime (SDNV) are simply copied

from the primary block, with the SDNV values being represented as

eight-byte unpacked values.

Fragment offset and Total application data unit length are

ignored, as is the case for the "bundle is a fragment" bit

mentioned above. If the payload data to be canonicalized is less

than the complete, original bundle payload, the offset and length

are specified in the security-parameters.

For non-primary blocks being included in the canonicalization, the

block processing flags value used for canonicalization is the unpacked

SDNV value with reserved and mutable bits masked to zero. The unpacked

value is ANDed with mask 0x0000 0000 0000 0077 to zero reserved bits

and the "last block" flag. The "last block" flag is ignored because

BABs and other security blocks MAY be added for some parts of the

journey but not others so the setting of this bit might change from hop

to hop.

Endpoint ID references in security blocks are canonicalized using the

de-referenced text form in place of the reference pair. The reference

count is not included, nor is the length of the endpoint ID text.

The block-length is canonicalized as an eight-byte unpacked value in

network byte order. If the payload data to be canonicalized is less

than the complete, original bundle payload, this field contain the size

*

*

*

*

*

*

*

of the data being canonicalized (the "effective block") rather that the

actual size of the block.

Payload blocks are generally canonicalized as-is with the exception

that in some instances only a portion of the payload data is to be

protected. In such a case, only those bytes are included in the

canonical form, and additional ciphersuite parameters are required to

specify which part of the payload is protected, as discussed further

below.

Security blocks are handled likewise, except that the ciphersuite will

likely specify that the "current" security block security result field

not be considered part of the canonical form. This differs from the

strict canonicalisation case since we might use the mutable

canonicalisation algorithm to handle sequential signatures such that

signatures cover earlier ones.

ESBs MUST NOT be included in the canonicalization.

Notes:

- The canonical form of the bundle is not transmitted. It is

simply an artifact used as input to digesting.

- We omit the reserved flags because we cannot determine if they

will change in transit. The masks specified above will have to be

revised if additional flags are defined and they need to be

protected.

- Our URI encoding does not preserve the "null-termination"

convention from the dictionary field, nor do we separate the

scheme and the scheme-specific part (SSP) as is done there.

- The URI encoding will cause errors if any node rewrites the

dictionary content (e.g. changing the DNS part of an HTTP URL

from lower-case to upper case). This could happen transparently

when a bundle is synched to disk using one set of software and

then read from disk and forwarded by a second set of software.

Because there are no general rules for canonicalising URIs (or

IRIs), this problem may be an unavoidable source of integrity

failures.

- All SDNV fields here are canonicalized as eight-byte unpacked

values in network byte order. Length fields are canonicalized as

four-byte values in network byte order. Encoding does not need

optimization since the values are never sent over the network.

If a bundle is fragmented before the PIB is applied then the PIB

applies to a fragment and not the entire bundle. However, the

protected fragment could be subsequently further fragmented,

which would leave the verifier unable to know which bytes were

protected by the PIB. Even in the absence of fragmentation the

*

*

*

*

*

*

same situation applies if the ciphersuite is defined to allow

protection of less than the entire, original bundle payload.

For this reason, PIB ciphersuites which support applying a PIB to

less than the complete, original bundle payload MUST specify, as

part of the ciphersuite parameters, which bytes of the bundle

payload are protected. When verification occurs, only the

specified range of the payload bytes are input to PIB

verification. It is valid for a ciphersuite to be specified so as

to only apply to entire bundles and not to fragments. A

ciphersuite MAY be specified to apply to only a portion of the

payload, regardless of whether the payload is a fragment or the

complete original bundle payload.

The same fragmentation issue applies equally to PCB ciphersuites.

Ciphersuites which support applying confidentiality to fragments

MUST specify, as part of the ciphersuite parameters, which bytes

of the bundle payload are protected. When decrypting a fragment,

only the specified bytes are processed. It is also valid for a

confidentiality ciphersuite to be specified so as to only apply

to entire bundles and not to fragments.

This definition of mutable canonicalization assumes that endpoint IDs

themselves are immutable and is unsuitable for use in environments

where that assumption might be violated.

The canonicalization applies to a specific bundle and not a specific

payload. If a bundle is forwarded in some way, the recipient is not

able to verify the original integrity signature since the the source

EID will be different, and possibly other fields.

The solution for either of these issues is to define and use a PIB

ciphersuite having an alternate version of mutable canonicalization any

fields from the primary block.

3.5. Endpoint ID confidentiality

Every bundle MUST contain a primary block that contains the source and

destinations endpoint IDs, and others, and that cannot be encrypted. If

endpoint ID confidentiality is required, then bundle-in-bundle

encapsulation can solve this problem in some instances.

Similarly, confidentiality requirements MAY also apply to other parts

of the primary block (e.g. the current-custodian) and that is supported

in the same manner.

3.6. Bundles received from other nodes

Nodes implementing this specification SHALL consult their security

policy to determine whether or not a received bundle is required by

policy to include a BAB. If the bundle has no BAB and one is not

required then BAB processing on the received bundle is complete and the

*

*

bundle is ready to be further processed for PIB/PCB/ESB handling or

delivery or forwarding.

If the bundle is required to have a BAB but does not, then the bundle

MUST be discarded and processed no further. If the bundle is required

to have a BAB but all of its BABs identify a different node other than

the receiving node as the BAB security destination, then the bundle

MUST be discarded and processed no further.

If the bundle is required to have a BAB and has one or more BABs that

identify the receiving node as the BAB security destination, or for

which there is no security destination, then the value in the security

result field(s) of the BAB(s) MUST be verified according to the

ciphersuite specification. If for all such BABs in the bundle either

the BAB security source cannot be determined or the security result

value check fails, the bundle has failed to authenticate and the bundle

MUST be discarded and processed no further. If any of the BABs present

verify, or if a BAB is not required, the bundle is ready for further

processing as determined by extension blocks and/or policy.

BABs received in a bundle MUST be stripped before the bundle is

forwarded. New BABs MAY be added as required by policy. This MAY

require correcting the "last block" field of the to-be-forwarded

bundle.

Further processing of the bundle MUST take place in the order indicated

by the various blocks from the primary block to the payload block,

except as defined by an applicable specification.

If the bundle has a PCB and the receiving node is the PCB destination

for the bundle (either because the node is listed as the bundle's PCB-

dest or because the node is listed as the bundle's destination and

there is no PCB-dest), the node MUST decrypt the relevant parts of the

bundle in accordance with the ciphersuite specification. The PCB SHALL

be deleted. If the relevant parts of the bundle cannot be decrypted

(i.e. the decryption key cannot be deduced or decryption fails), then

the bundle MUST be discarded and processed no further; in this case a

bundle deletion status report (see the Bundle Protocol [DTNBP])

indicating the decryption failure MAY be generated. If the PCB security

result included the ciphertext of a block other than the payload block,

the recovered plaintext block MUST be placed in the bundle at the

location from which the PCB was deleted.

If the bundle has one or more PIBs for which the receiving node is the

bundle's PIB destination (either because the node is listed in the

bundle's PIB-dest or because the node is listed as the bundle's

destination and there is no PIB-dest), the node MUST verify the value

in the PIB security result field(s) in accordance with the ciphersuite

specification. If all the checks fail, the bundle has failed to

authenticate and the bundle SHALL be processed according to the

security policy. A bundle status report indicating the failure MAY be

generated. Otherwise, if the PIB verifies, the bundle is ready to be

processed for either delivery or forwarding. Before forwarding the

bundle, the node SHOULD remove the PIB from the bundle, subject to the

requirements of Section 3.2, unless it is likely that some downstream

node will also be able to verify the PIB.

If the bundle has a PIB and the receiving node is not the bundle's PIB-

dest the receiving node MAY attempt to verify the value in the security

result field. If it is able to check and the check fails, the node

SHALL discard the bundle and it MAY send a bundle status report

indicating the failure.

If the bundle has an ESB and the receiving node is the ESB destination

for the bundle (either because the node is listed as the bundle's ESB-

dest or because the node is listed as the bundle's destination and

there is no ESB-dest), the node MUST decrypt and/or decapsulate the

encapsulated block in accordance with the ciphersuite specification.

The decapsulated block replaces the ESB in the bundle block sequence,

and the ESB is thereby deleted. If the content cannot be decrypted

(i.e., the decryption key cannot be deduced or decryption fails), then

the bundle MAY be discarded and processed no further unless the

security policy specifies otherwise. In this case a bundle deletion

status report (see the Bundle Protocol [DTNBP]) indicating the

decryption failure MAY be generated.

3.7. The At-Most-Once-Delivery Option

An application MAY request (in an implementation specific manner) that

a node be registered as a member of an endpoint and that received

bundles destined for that endpoint be delivered to that application.

An option for use in such cases is known as "at-most-once-delivery". If

this option is chosen, the application indicates that it wants the node

to check for duplicate bundles, discard duplicates, and deliver at most

one copy of each received bundle to the application. If this option is

not chosen, the application indicates that it wants the node to deliver

all received bundle copies to the application. If this option is

chosen, the node SHALL deliver at most one copy of each received bundle

to the application. If the option is not chosen, the node SHOULD,

subject to policy, deliver all bundles.

To enforce this the node MUST look at the source/timestamp pair value

of each complete (reassembled, if necessary) bundle received and

determine if this pair, which uniquely identifies a bundle, has been

previously received. If it has, then the bundle is a duplicate. If it

has not, then the bundle is not a duplicate. The source/timestamp pair

SHALL be added to the list of pair values already received by that

node.

Each node implementation MAY decide how long to maintain a table of

pair value state.

3.8. Bundle Fragmentation and Reassembly

If it is necessary for a node to fragment a bundle and security

services have been applied to that bundle, the fragmentation rules

described in [DTNBP] MUST be followed. As defined there and repeated

here for completeness, only the payload MAY be fragmented; security

blocks, like all extension blocks, can never be fragmented. In

addition, the following security-specific processing is REQUIRED:

The security policy requirements for a bundle MUST be applied

individually to all the bundles resulting from a fragmentation event.

If the original bundle contained a PIB, then each of the PIB instances

MUST be included in some fragment.

If the original bundle contained one or more PCBs, then any PCB

instances containing a key information item MUST have the "replicate in

every fragment" flag set, and thereby be replicated in every fragment.

This is to ensure that the canonical block-sequence can be recovered

during reassembly.

If the original bundle contained one or more correlated PCBs not

containing a key information item, then each of these MUST be included

in some fragment, but SHOULD NOT be sent more than once. They MUST be

placed in a fragment in accordance with the fragmentation rules

described in [DTNBP].

Note: various fragments MAY have additional security blocks added at

this or later stages and it is possible that correlators will collide.

In order to facilitate uniqueness, ciphersuites SHOULD include the

fragment-offset of the fragment as a high-order component of the

correlator.

3.9. Reactive fragmentation

When a partial bundle has been received, the receiving node SHALL

consult its security policy to determine if it MAY fragment the bundle,

converting the received portion into a bundle fragment for further

forwarding. Whether or not reactive fragmentation is permitted SHALL

depend on the security policy and the ciphersuite used to calculate the

BAB authentication information, if required. (Some BAB ciphersuites,

i.e., the mandatory BAB-HMAC ciphersuite defined in Section 4.1, do not

accommodate reactive fragmentation because the security result in the

BAB requires that the entire bundle be signed. It is conceivable,

however, that a BAB ciphersuite could be defined such that multiple

security results are calculated, each on a different segment of a

bundle, and that these security results could be interspersed between

bundle payload segments such that reactive fragmentation could be

accommodated.)

If the bundle is reactively fragmented by the intermediate receiver and

the BAB-ciphersuite is of an appropriate type (e.g. with multiple

security results embedded in the payload), the bundle MUST be

fragmented immediately after the last security result value in the

partial payload that is received. Any data received after the last

security result value MUST be dropped.

If a partial bundle is received at the intermediate receiver and is

reactively fragmented and forwarded, only the part of the bundle that

was not received MUST be retransmitted, though more of the bundle MAY

be retransmitted. Before retransmitting a portion of the bundle, it

SHALL be changed into a fragment and, if the original bundle included a

BAB, the fragmented bundle MUST also, and its BAB SHALL be

recalculated.

This specification does not currently define any ciphersuite which can

handle this reactive fragmentation case.

An interesting possibility is a ciphersuite definition such that the

transmission of a follow-up fragment would be accompanied by the

signature for the payload up to the restart point.

3.10. Attack Model

An evaluation of resilience to cryptographic attack necessarily depends

upon the algorithms chosen for bulk data protection and for key

transport. The mandatory ciphersuites described in the following

section use AES, RSA and SHA algorithms in ways that are believed to be

reasonably secure against ciphertext-only, chosen-ciphertext, known-

plaintext and chosen-plaintext attacks.

The design has been careful to preserve the resilience of the

algorithms against attack. For example, if a message is encrypted then

any message integrity signature is also encrypted so that guesses

cannot be confirmed.

4. Mandatory Ciphersuites

This section defines the mandatory ciphersuites for this specification.

There is currently one mandatory ciphersuite for use with each of the

security block types BAB, PIB, PCB and ESB. The BAB ciphersuite is

based on shared secrets using HMAC. The PIB ciphersuite is based on

digital signatures using RSA with SHA-256. The PCB and ESB ciphersuites

are based on using RSA for key transport and AES for bulk encryption.

In all uses of CMS eContent in this specification the relevant

eContentType to be used is id-data as specified in [RFC5652] .

The ciphersuites use the mechanisms defined in Cryptographic Message

Syntax (CMS) [RFC5652] for packaging the keys, signatures, etc for

transport in the appropriate security block. The data in the CMS object

is not the bundle data, as would be the typical usage for CMS. Rather,

the "message data" packaged by CMS is the ephemeral key, message

digest, etc used in the core code of the ciphersuite.

In all cases where we use CMS, implementations SHOULD NOT include

additional attributes whether signed or unsigned, authenticated or

unauthenticated.

4.1. BAB-HMAC

The BAB-HMAC ciphersuite has ciphersuite ID value 0x001.

BAB-HMAC uses the strict canonicalisation algorithm in Section 3.4.1.

Strict canonicalization supports digesting of a fragment-bundle. It

does not permit the digesting of only a subset of the payload, but only

the complete contents of the payload of the current bundle, which might

be a fragment. The "fragment range" item for security-parameters is not

used to indicate a fragment, as this information is digested within the

primary block.

The variant of HMAC to be used is HMAC-SHA1 as defined in [RFC2104].

This ciphersuite requires the use of two related instances of the BAB.

It involves placing the first BAB instance (as defined in Section 2.2)

just after the primary block. The second (correlated) instance of the

BAB MUST be placed after all other blocks (except possibly other BAB

blocks) in the bundle.

This means that normally, the BAB will be the second and last blocks of

the bundle. If a forwarder wishes to apply more than one correlated BAB

pair, then this can be done. There is no requirement that each

application "wrap" the others, but the forwarder MUST insert all the

"up front" BABs, and their "at back" "partners" (without any security

result), before canonicalising.

Inserting more than one correlated BAB pair would be useful if the

bundle could be routed to more than one potential "next-hop" or if both

an old or a new key were valid at sending time, with no certainty about

the situation that will obtain at reception time.

The security result is the output of the HMAC-SHA1 calculation with

input being the result of running the entire bundle through the strict

canonicalisation algorithm. Both required BAB instances MUST be

included in the bundle before canonicalisation.

Security parameters are OPTIONAL with this scheme, but if used then the

only field that can be present is key information (see Section 2.6).

In the absence of key information the receiver is expected to be able

to find the correct key based on the sending identity. The sending

identity MAY be known from the security-source field or the content of

a previous-hop block in the bundle. It MAY also be determined using

implementation-specific means such as the convergence layer.

4.2. PIB-RSA-SHA256

The PIB-RSA-SHA256 ciphersuite has ciphersuite ID value 0x02.

PIB-RSA-SHA256 uses the mutable canonicalisation algorithm Section

3.4.2, with the security-result data field for only the "current" block

being excluded from the canonical form. The resulting canonical form of

the bundle is the input to the signing process. This ciphersuite

requires the use of a single instance of the PIB.

Because the signature field in SignedData SignatureValue is a security-

result field, the entire key information item MUST be placed in the

block's security-result field, rather than security-parameters.

If the bundle being signed has been fragmented before signing, then we

have to specify which bytes were signed in case the signed bundle is

subsequently fragmented for a second time. If the bundle is a fragment,

then the ciphersuite parameters MUST include a fragment-range field, as

described in Section 2.6, specifying the offset and length of the

signed fragment. If the entire bundle is signed then these numbers MUST

be omitted.

Implementations MUST support use of "SignedData" type as defined in

[RFC5652] section 5.1, with SignerInfo type SignerIdentifier containing

the issuer and serial number of a suitable certificate. The data to be

signed is the output of the SHA256 mutable canonicalization process.

RSA is used with SHA256 as specified for the id-sha256 signature scheme

in [RFC4055] Section 5. The output of the signing process is the

SignatureValue field for the PIB.

"Commensurate strength" cryptography is generally held to be a good

idea. A combination of RSA with SHA-256 is reckoned to require a 3076

bit RSA key according to this logic. Few implementations will choose

this length by default (and probably some just won't support such long

keys). Since this is an experimental protocol, we expect that 1024 or

2048 bit RSA keys will be used in many cases, and that that will be

fine since we also expect that the hash function "issues" will be

resolved before any standard would be derived from this protocol.

4.3. PCB-RSA-AES128-PAYLOAD-PIB-PCB

The PCB-RSA-AES128-PAYLOAD-PIB-PCB ciphersuite has ciphersuite ID value

0x003.

This scheme encrypts PIBs, PCBs and the payload. The key size for this

ciphersuite is 128 bits.

Encryption is done using the AES algorithm in Galois/Counter Mode (GCM)

as described in [RFC5084] Note: parts of the following description are

borrowed from [RFC4106].

The choice of GCM avoids expansion of the payload, which causes

problems with fragmentation/reassembly and custody transfer. GCM also

includes authentication, essential in preventing attacks that can alter

the decrypted plaintext or even recover the encryption key.

GCM is a block cipher mode of operation providing both confidentiality

and data integrity. The GCM encryption operation has four inputs: a

secret key, an initialization vector (IV), a plaintext, and an input

for additional authenticated data (AAD) which is not used here. It has

two outputs, a ciphertext whose length is identical to the plaintext,

and an authentication tag, also known as the Integrity Check Value

(ICV).

For consistency with the description in [RFC5084], we refer to the GCM

IV as a nonce. The same key and nonce combination MUST NOT be used more

than once. The nonce has the following layout

+----------------+----------------+----------------+----------------+

| salt |

+----------------+----------------+----------------+----------------+

| |

| initialization vector |

| |

+----------------+----------------+----------------+----------------+

The salt field is a four-octet value, usually chosen at random. It MUST

be the same for all PCBs which have the same correlator value. The salt

need not be kept secret.

The initialization vector (IV) is an eight-octet value, usually chosen

at random. It MUST be different for all PCBs which have the same

correlator value. The value need not be kept secret.

The key (bundle encryption key, BEK) is a sixteen-octet (128 bits)

value, usually chosen at random. The value MUST be kept secret, as

described below.

The integrity check value is a sixteen-octet value used to verify that

the protected data has not been altered. The value need not be kept

secret.

This ciphersuite requires the use of a single PCB instance to deal with

payload confidentiality. If the bundle already contains PIBs or PCBs

then the ciphersuite will create additional correlated blocks to

protect these PIBs and PCBs. These "additional" blocks replace the

original blocks on a one-for-one basis, so the number of blocks remains

unchanged. All these related blocks MUST have the same correlator

value. The term "first PCB" in this section refers to the single PCB if

there is only one or, if there are several, then to the one containing

the key information. This MUST be the first of the set.

First PCB - the first PCB MAY contain a correlator value, and MAY

specify security-source and/or security-destination in the EID-list. If

not specified, the bundle-source and bundle-destination respectively

are used for these values, as with other ciphersuites. The block MUST

contain security-parameters and security-result fields. Each field MAY

contain several items formatted as described in Section 2.6.

Security-parameters

key information

salt

IV (this instance applies only to payload)

fragment offset and length, if bundle is a fragment

Security-result

ICV

Subsequent PCBs MUST contain a correlator value to link them to the

first PCB. Security-source and security-destination are implied from

the first PCB, however see the discussion in Section 2.4 concerning

EID-list entries. They MUST contain security-parameters and security-

result fields as follows:

Security-parameters

IV for this specific block

*

*

*

*

*

*

Security-result

encapsulated block

The security-parameters and security-result fields in the subsequent

PCBs MUST NOT contain any items other than these two. Items such as key

and salt are supplied in the first PCB and MUST NOT be repeated.

Implementations MUST support use of "Enveloped-data" type as defined in

[RFC5652] section 6, with RecipientInfo type KeyTransRecipientInfo

containing the issuer and serial number of a suitable certificate. They

MAY support additional RecipientInfo types. The "encryptedContent"

field in EncryptedContentInfo contains the encrypted BEK that protects

the payload and certain security blocks of the bundle.

The Integrity Check Value from the AES-GCM encryption of the payload is

placed in the security-result field of the first PCB.

If the bundle being encrypted is a fragment-bundle we have to specify

which bytes are encrypted in case the bundle is subsequently fragmented

again. If the bundle is a fragment the ciphersuite parameters MUST

include a fragment-range field, as described in Section 2.6, specifying

the offset and length of the encrypted fragment. Note that this is not

the same pair of fields which appear in the primary block as "offset

and length". The "length" in this case is the length of the fragment,

not the original length. If the bundle is not a fragment then this

field MUST be omitted.

The confidentiality processing for payload and other blocks is

different, mainly because the payload might be fragmented later at some

other node.

For the payload, only the bytes of the bundle payload field are

affected, being replaced by ciphertext. The salt, IV and key values

specified in the first PCB are used to encrypt the payload, and the

resultant authentication tag (ICV) is placed in an ICV item in the

security-result field of that first PCB. The other bytes of the payload

block, such as type, flags and length, are not modified.

For each PIB or PCB to be protected, the entire original block is

encapsulated in a "replacing" PCB. This replacing PCB is placed in the

outgoing bundle in the same position as the original block, PIB or PCB.

As mentioned above, this is one-for-one replacement and there is no

consolidation of blocks or mixing of data in any way.

The encryption process uses AES-GCM with the salt and key values from

the first PCB, and an IV unique to this PCB. The process creates

ciphertext for the entire original block, and an authentication tag for

validation at the security destination. For this encapsulation process,

unlike the processing of the bundle payload, the authentication tag is

appended to the ciphertext for the block and the combination is stored

into the "encapsulated block" item in security-result.

The replacing block, of course, also has the same correlator value as

the first PCB with which it is associated. It also contains the block-

specific IV in security-parameters, and the combination of original-

*

block-ciphertext and authentication tag, stored as an "encapsulated

block" item in security-result.

If the payload was fragmented after encryption then all those fragments

MUST be present and reassembled before decryption. This process might

be repeated several times at different destinations if multiple

fragmentation actions have occurred.

The size of the GCM counter field limits the payload size to 2^39 - 256

bytes, about half a terabyte. A future revision of this specification

will address the issue of handling payloads in excess of this size.

4.4. ESB-RSA-AES128-EXT

The ESB-RSA-AES128-EXT ciphersuite has ciphersuite ID value 0x004.

This scheme encrypts non-payload-related blocks. It MUST NOT be used to

encrypt PIBs, PCBs or primary or payload blocks. The key size for this

ciphersuite is 128 bits.

Encryption is done using the AES algorithm in Galois/Counter Mode (GCM)

as described in [RFC5084] Note: parts of the following description are

borrowed from [RFC4106].

GCM is a block cipher mode of operation providing both confidentiality

and data origin authentication. The GCM authenticated encryption

operation has four inputs: a secret key, an initialization vector (IV),

a plaintext, and an input for additional authenticated data (AAD) which

is not used here. It has two outputs, a ciphertext whose length is

identical to the plaintext, and an authentication tag, also known as

the Integrity Check Value (ICV).

For consistency with the description in [RFC5084], we refer to the GCM

IV as a nonce. The same key and nonce combination MUST NOT be used more

than once. The nonce has the following layout

+----------------+----------------+---------------------------------+

| salt |

+----------------+----------------+---------------------------------+

| |

| initialization vector |

| |

+----------------+----------------+---------------------------------+

The salt field is a four-octet value, usually chosen at random. It MUST

be the same for all ESBs which have the same correlator value. The salt

need not be kept secret.

The initialization vector (IV) is an eight-octet value, usually chosen

at random. It MUST be different for all ESBs which have the same

correlator value. The value need not be kept secret.

The data encryption key is a sixteen-octet (128 bits) value, usually

chosen at random. The value MUST be kept secret, as described below.

The integrity check value is a sixteen-octet value used to verify that

the protected data has not been altered. The value need not be kept

secret.

This ciphersuite replaces each BP extension block to be protected with

a "replacing" ESB, and each can be individually specified.

If a number of related BP extension blocks are to be protected they can

be grouped as a correlated set and protected using a single key. These

blocks replace the original blocks on a one-for-one basis, so the

number of blocks remains unchanged. All these related blocks MUST have

the same correlator value. The term "first ESB" in this section refers

to the single ESB if there is only one or, if there are several, then

to the one containing the key or key-identifier. This MUST be the first

of the set. If the blocks are individually specified then there is no

correlated set and each block is its own "first ESB".

First ESB - the first ESB MAY contain a correlator value, and MAY

specify security-source and/or security-destination in the EID-list. If

not specified, the bundle-source and bundle-destination respectively

are used for these values, as with other ciphersuites. The block MUST

contain security-parameters and security-result fields. Each field MAY

contain several items formatted as described in Section 2.6.

Security-parameters

key information

salt

IV for this specific block

block type of encapsulated block (OPTIONAL)

Security-result

encapsulated block

Subsequent ESBs MUST contain a correlator value to link them to the

first ESB. Security-source and security-destination are implied from

the first ESB, however see the discussion in Section 2.4 concerning

EID-list entries. Subsequent ESBs MUST contain security-parameters and

security-result fields as follows:

Security-parameters

IV for this specific block

block type of encapsulated block (OPTIONAL)

Security-result

encapsulated block

*

*

*

*

*

*

*

*

The security-parameters and security-result fields in the subsequent

ESBs MUST NOT contain any items other than those listed. Items such as

key and salt are supplied in the first ESB and MUST NOT be repeated.

Implementations MUST support use of "Enveloped-data" type as defined in

[RFC5652] section 6, with RecipientInfo type KeyTransRecipientInfo

containing the issuer and serial number of a suitable certificate. They

MAY support additional RecipientInfo types. The "encryptedContent"

field in EncryptedContentInfo contains the encrypted BEK used to

encrypt the content of the block being protected.

For each block to be protected, the entire original block is

encapsulated in a "replacing" ESB. This replacing ESB is placed in the

outgoing bundle in the same position as the original block. As

mentioned above, this is one-for-one replacement and there is no

consolidation of blocks or mixing of data in any way.

The encryption process uses AES-GCM with the salt and key values from

the first ESB, and an IV unique to this ESB. The process creates

ciphertext for the entire original block, and an authentication tag for

validation at the security destination. The authentication tag is

appended to the ciphertext for the block and the combination is stored

into the "encapsulated block" item in security-result.

The replacing block, of course, also has the same correlator value as

the first ESB with which it is associated. It also contains the block-

specific IV in security-parameters, and the combination of original-

block-ciphertext and authentication tag, stored as an "encapsulated

block" item in security-result.

5. Key Management

Key management in delay tolerant networks is recognized as a difficult

topic and is one that this specification does not attempt to solve.

However, solely in order to support implementation and testing,

implementations SHOULD support:

- The use of well-known RSA public keys for all ciphersuites.

- Long-term pre-shared-symmetric keys for the BAB-HMAC

ciphersuite.

Since endpoint IDs are URIs and URIs can be placed in X.509 [RFC5280]

public key certificates (in the subjectAltName extension)

implementations SHOULD support this way of distributing public keys.

RFC 5280 does not insist that implementations include revocation

checking. In the context of a DTN, it is reasonably likely that some

nodes would not be able to use revocation checking services (either

CRLs or OCSP) and deployments SHOULD take this into account when

planning any public key infrastructure to support this specification.

*

*

6. Default Security Policy

Every node serves as a Policy Enforcement Point insofar as it enforces

some policy that controls the forwarding and delivery of bundles via

one or more convergence layer protocol implementation. Consequently,

every node SHALL have and operate according to its own configurable

security policy, whether the policy be explicit or default. The policy

SHALL specify:

Under what conditions received bundles SHALL be forwarded.

Under what conditions received bundles SHALL be required to

include valid BABs.

Under what conditions the authentication information provided in

a bundle's BAB SHALL be deemed adequate to authenticate the

bundle.

Under what conditions received bundles SHALL be required to have

valid PIBs and/or PCBs.

Under what conditions the authentication information provided in

a bundle's PIB SHALL be deemed adequate to authenticate the

bundle.

Under what conditions a BAB SHALL be added to a received bundle

before that bundle is forwarded.

Under what conditions a PIB SHALL be added to a received bundle

before that bundle is forwarded.

Under what conditions a PCB SHALL be added to a received bundle

before that bundle is forwarded.

Under what conditions an ESB SHALL be applied to one or more

blocks in a received bundle before that bundle is forwarded.

The actions that SHALL be taken in the event that a received

bundle does not meet the receiving node's security policy

criteria.

This specification does not address how security policies get

distributed to nodes. It only REQUIRES that nodes have and enforce

security policies.

If no security policy is specified at a given node, or if a security

policy is only partially specified, that node's default policy

regarding unspecified criteria SHALL consist of the following:

Bundles that are not well-formed do not meet the security policy

criteria.

*

*

*

*

*

*

*

*

*

*

*

The mandatory ciphersuites MUST be used.

All bundles received MUST have a BAB which MUST be verified to

contain a valid security result. If the bundle does not have a

BAB, then the bundle MUST be discarded and processed no further;

a bundle status report indicating the authentication failure MAY

be generated.

No received bundles SHALL be required to have a PIB; if a

received bundle does have a PIB, however, the PIB can be ignored

unless the receiving node is the PIB-dest, in which case the PIB

MUST be verified.

No received bundles SHALL be required to have a PCB; if a

received bundle does have a PCB, however, the PCB can be ignored

unless the receiving node is the PCB-dest, in which case the PCB

MUST be processed. If processing of a PCB yields a PIB, that PIB

SHALL be processed by the node according to the node's security

policy.

A PIB SHALL NOT be added to a bundle before sourcing or

forwarding it.

A PCB SHALL NOT be added to a bundle before sourcing or

forwarding it.

A BAB MUST always be added to a bundle before that bundle is

forwarded.

If a destination node receives a bundle that has a PIB-dest but

the value in that PIB-dest is not the EID of the destination

node, the bundle SHALL be delivered at that destination node.

If a destination node receives a bundle that has an ESB-dest but

the value in that ESB-dest is not the EID of the destination

node, the bundle SHALL be delivered at that destination node.

If a received bundle does not satisfy the node's security policy

for any reason, then the bundle MUST be discarded and processed

no further; in this case, a bundle deletion status report (see

the Bundle Protocol [DTNBP]) indicating the failure MAY be

generated.

7. Security Considerations

The Bundle Security Protocol builds upon much work of others, in

particular the Cryptographic Message Syntax (CMS) [RFC5652] and

Internet X.509 Public Key Infrastructure Certificate and Certificate

Revocation List (CRL) Profile [RFC5280]. The security considerations in

these two documents apply here as well.

*

*

*

*

*

*

*

*

*

*

Several documents specifically consider the use of Galois/Counter

Mode(GCM) and of AES and are important to consider when building

ciphersuites. These are The Use of Galois/Counter Mode (GCM) in IPsec

Encapsulating Security Payload (ESP) [RFC4106] and Using AES-CCM and

AES-GCM Authenticated Encryption in the Cryptographic Message Syntax

(CMS) [RFC5084]. Although the BSP is not identical, many of the

security issues considered in these documents also apply here.

Certain applications of DTN need to both sign and encrypt a message and

there are security issues to consider with this.

If the intent is to provide an assurance that a message did in fact

come from a specific source and has not been changed then it should be

signed first and then encrypted. A signature on an encrypted message

does not establish any relationship between the signer and the original

plaintext message.

On the other hand, if the intent is reduce the threat of denial-of-

service attacks then signing the encrypted message is appropriate. A

message that fails the signature check will not be processed through

the computationally-intensive decryption pass. A more extensive

discussion of these points is in S/MIME 3.2 Message Specification

[RFC5751], especially in section 3.6.

Additional details relating to these combinations can be found at

Section 2.8 where it is RECOMMENDED that the encrypt-then-sign

combination is usually appropriate for usage in a DTN.

In a DTN encrypt-then-sign potentially allows intermediate nodes to

verify a signature (over the ciphertext) and thereby apply policy to

manage possibly scarce storage or other resources at intermediate nodes

in the path the bundle takes from source to destination EID.

An encrypt-then-sign scheme doesn't further expose identity in most

cases since the BP mandates that the source EID (which is commonly

expected to be the security-source) is already exposed in the primary

block of the bundle. Should either exposure of the source EID or

signerInfo be considered an interesting vulnerability, then some form

of bundle-in-bundle encapsulation would be required as a mitigation.

If a BAB ciphersuite uses digital signatures but doesn't include the

security destination (which for a BAB is the next host), then this

allows the bundle to be sent to some node other than the intended

adjacent node. Because the BAB will still authenticate, the receiving

node might erroneously accept and forward the bundle. When asymmetric

BAB ciphersuites are used, the security destination field SHOULD

therefore be included in the BAB.

If a bundle's PIB-dest is not the same as its destination, then some

node other than the destination (the node identified as the PIB-dest)

is expected to validate the PIB security result while the bundle is en

route. However, if for some reason the PIB is not validated, there is

no way for the destination to become aware of this. Typically, a PIB-

dest will remove the PIB from the bundle after verifying the PIB and

before forwarding it. However, if there is a possibility that the PIB

will also be verified at a downstream node, the PIB-dest will leave the

PIB in the bundle. Therefore, if a destination receives a bundle with a

PIB that has a PIB-dest (which isn't the destination), this might, but

does not necessarily, indicate a possible problem.

If a bundle is fragmented after being forwarded by its PIB-source but

before being received by its PIB-dest, the payload in the bundle MUST

be reassembled before validating the PIB security result in order for

the security result to validate correctly. Therefore, if the PIB-dest

is not capable of performing payload reassembly, its utility as a PIB-

dest will be limited to validating only those bundles that have not

been fragmented since being forwarded from the PIB-source. Similarly,

if a bundle is fragmented after being forwarded by its PIB-source but

before being received by its PIB-dest, all fragments MUST be received

at that PIB-dest in order for the bundle payload to be able to be

reassembled. If not all fragments are received at the PIB-dest node,

the bundle will not be able to be authenticated, and will therefore

never be forwarded by this PIB-dest node.

Specification of a security-destination other than the bundle

destination creates a routing requirement that the bundle somehow be

directed to the security-destination node on its way to the final

destination. This requirement is presently private to the ciphersuite,

since routing nodes are not required to implement security processing.

If a security target were to generate reports in the event that some

security validation step fails, then that might leak information about

the internal structure or policies of the DTN containing the security

target. This is sometimes considered bad security practice so SHOULD

only be done with care.

8. Conformance

As indicated above, this document describes both BSP and ciphersuites.

A conformant implementation MUST implement both BSP support and the

four ciphersuites described in Section 4. It MAY also support other

ciphersuites.

Implementations that support BSP but not all four mandatory

ciphersuites MUST claim only "restricted compliance" with this

specification, even if they provide other ciphersuites.

All implementations are strongly RECOMMENDED to provide at least a BAB

ciphersuite. A relay node, for example, might not deal with end-to-end

confidentiality and data integrity but it SHOULD exclude unauthorized

traffic and perform hop-by-hop bundle verification.

9. IANA Considerations

This protocol has fields requiring registries managed by IANA.

9.1. Bundle Block Types

This specification allocates four codepoints from the existing Bundle

Block Type Codes registry defined in [I-D.irtf-dtnrg-iana-bp-

registries].

 Additional Entries for the Bundle Block Type Codes Registry:

 +-------+--------------------------------------+----------------+

 | Value | Description | Reference |

 +-------+--------------------------------------+----------------+

 | 2 | Bundle Authentication Block | This document |

 | 3 | Payload Integrity Block | This document |

 | 4 | Payload Confidentiality Block | This document |

 | 9 | Extension Security Block | This document |

 +-------+--------------------------------------+----------------+

9.2. Ciphersuite Numbers

This Protocol has a ciphersuite number field and certain ciphersuites

are defined. An IANA registry shall be set up as follows.

The registration policy for this registry is: Specification Required

The Value range is: Variable Length

 Ciphersuite Numbers Registry:

 +-------+--------------------------------------+----------------+

 | Value | Description | Reference |

 +-------+--------------------------------------+----------------+

 | 0 | unassigned | This document |

 | 1 | BAB-HMAC | This document |

 | 2 | PIB-RSA-SHA256 | This document |

 | 3 | PCB-RSA-AES128-PAYLOAD-PIB-PCB | This document |

 | 4 | ESB-RSA-AES128-EXT | This document |

 | >4 | Reserved | This document |

 +-------+--------------------------------------+----------------+

9.3. Ciphersuite Flags

This Protocol has a ciphersuite flags field and certain flags are

defined. An IANA registry shall be set up as follows.

The registration policy for this registry is: Specification Required

The Value range is: Variable Length

 Ciphersuite Flags Registry:

 +-----------------+----------------------------+----------------+

 | Bit Position | Description | Reference |

 | (right to left) | | |

 +-----------------+----------------------------+----------------+

 | 0 | Block contains result | This document |

 | 1 | Block contains correlator | This document |

 | 2 | Block contains parameters | This document |

 | 3 | Destination EIDref present | This document |

 | 4 | Source EIDref present | This document |

 | all others | Reserved | This document |

 +-----------------+----------------------------+----------------+

9.4. Parameters and Results

This Protocol has fields for ciphersuite parameters and results. The

field is a type-length-value triple and a registry is required for the

"type" sub-field. The values for "type" apply to both the ciphersuite

parameters and the ciphersuite results fields. Certain values are

defined. An IANA registry shall be set up as follows.

The registration policy for this registry is: Specification Required

The Value range is: 8-bit unsigned integer

 Ciphersuite Parameters and Results Type Registry:

 +---------+------------------------------------+----------------+

 | Value | Description | Reference |

 +---------+------------------------------------+----------------+

 | 0 | reserved | This document |

 | 1 | initialization vector (IV) | This document |

 | 2 | reserved | This document |

 | 3 | key-information | This document |

 | 4 | fragment range (pair of SDNVs) | This document |

 | 5 | integrity signature | This document |

 | 6 | unassigned | This document |

 | 7 | salt | This document |

 | 8 | PCB integrity check value (ICV) | This document |

 | 9 | reserved | This document |

 | 10 | encapsulated block | This document |

 | 11 | block type of encapsulated block | This document |

 | 12-191 | reserved | This document |

 | 192-250 | private use | This document |

 | 251-255 | reserved | This document |

 +-------+--------------------------------------+----------------+

10. References

10.1. Normative References

[RFC2119]

Bradner, S. and J. Reynolds, "Key words for use in

RFCs to Indicate Requirement Levels", RFC 2119,

October 1997.

[DTNBP]
Scott, K. and S. Burleigh, "Bundle Protocol

Specification", RFC 5050, November 2007.

[DTNMD]

Symington, S.F., "Delay-Tolerant Networking

Metadata Extension Block", draft-irtf-dtnrg-

bundle-metadata-block-00.txt , June 2007.

[RFC2104]

Krawczyk, H., Bellare, M. and R. Canetti, "HMAC:

Keyed-Hashing for Message Authentication", RFC

2104, February 1997.

[RFC4055]

Schaad, J., Kaliski, B. and R. Housley,

"Additional Algorithms and Identifiers for RSA

Cryptography for use in the Internet X.509 Public

Key Infrastructure Certificate and Certificate

Revocation List (CRL) Profile", RFC 4055, June

2005.

[RFC5280]

Cooper, D., Santesson, S., Farrell, S., Polk, W.

and W. Ford, "Internet X.509 Public Key

Infrastructure Certificate and Certificate

Revocation List (CRL) Profile", RFC 5280, May

2008.

[RFC5652]
Housley, R., "Cryptographic Message Syntax (CMS)",

RFC 5652, July 2004.

[RFC4106]

Viega, J. and D. McGrew, "The Use of Galois/

Counter Mode (GCM) in IPsec Encapsulating Security

Payload (ESP)", RFC 4106, June 2005.

[I-D.irtf-

dtnrg-iana-bp-

registries]

Blanchet, M., "Delay-Tolerant Networks (DTN)

Bundle Protocol IANA Registries", draft-irtf-

dtnrg-iana-bp-registries-00.txt, work-in-progress,

April 2010.

10.2. Informative References

[DTNarch]

Cerf, V., Burleigh, S., Durst, R., Fall, K., Hooke, A.,

Scott, K., Torgerson, L. and H. Weiss, "Delay-Tolerant

Network Architecture", RFC 4838, April 2007.

[PHIB]

Symington, S., "Delay-Tolerant Networking Previous Hop

Insertion Block", draft-irtf-dtnrg-bundle-previous-hop-

block-11.txt, work-in-progress, February 2010.

[RFC5084]

Housley, R., "Using AES-CCM and AES-GCM Authenticated

Encryption in the Cryptographic Message Syntax (CMS)",

RFC 5084, November 2007.

[RFC5751]

mailto:sob@harvard.edu
mailto:jkrey@isi.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
mailto:kscott@mitre.org
http://tools.ietf.org/html/rfc5050
http://tools.ietf.org/html/rfc5050
mailto:susan@mitre.org
mailto:hugo@watson.ibm.com
mailto:mihir@cs.ucsd.edu
mailto:canetti@watson.ibm.com
http://tools.ietf.org/html/rfc2104
http://tools.ietf.org/html/rfc2104
http://tools.ietf.org/html/rfc4055
http://tools.ietf.org/html/rfc4055
http://tools.ietf.org/html/rfc4055
http://tools.ietf.org/html/rfc4055
http://tools.ietf.org/html/rfc5280
http://tools.ietf.org/html/rfc5280
http://tools.ietf.org/html/rfc5280
http://tools.ietf.org/html/rfc5652
http://tools.ietf.org/html/rfc4106
http://tools.ietf.org/html/rfc4106
http://tools.ietf.org/html/rfc4106
mailto:vint@google.com
http://tools.ietf.org/html/rfc4838
http://tools.ietf.org/html/rfc4838
mailto:susan@mitre.org
http://tools.ietf.org/html/rfc5084
http://tools.ietf.org/html/rfc5084

Ramsdell, B. and S. Turner, "Secure/Multipurpose

Internet Mail Extensions (S/MIME) Version 3.2 Message

Specification", RFC 5751, January 2010.

[RFC3986]

Berners-Lee, T., Fielding, R. and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", RFC 3986,

January 2005.

Authors' Addresses

Susan Flynn Symington Symington The MITRE Corporation 7515 Colshire

Drive McLean, VA 22102 US Phone: +1 (703) 983-7209 EMail:

susan@mitre.org URI: http://mitre.org/

Stephen Farrell Farrell Trinity College Dublin Distributed Systems

Group Department of Computer Science Trinity College Dublin, 2

Ireland Phone: +353-1-608-1539 EMail: stephen.farrell@cs.tcd.ie

Howard Weiss Weiss SPARTA, Inc. 7110 Samuel Morse Drive

Columbia, MD 21046 US Phone: +1-443-430-8089 EMail:

howard.weiss@sparta.com

Peter Lovell Lovell SPARTA, Inc. 7110 Samuel Morse Drive Columbia,

MD 21046 US Phone: +1-443-430-8052 EMail: dtnbsp@gmail.com

http://tools.ietf.org/html/rfc5751
http://tools.ietf.org/html/rfc5751
http://tools.ietf.org/html/rfc5751
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986
mailto:susan@mitre.org
http://mitre.org/
mailto:stephen.farrell@cs.tcd.ie
mailto:howard.weiss@sparta.com
mailto:dtnbsp@gmail.com

	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Related Documents
	1.2. Terminology
	2. Security Blocks
	2.1. Abstract Security Block
	2.2. Bundle Authentication Block
	2.3. Payload Integrity Block
	2.4. Payload Confidentiality Block
	2.5. Extension Security Block
	2.6. Parameters and Result Fields
	2.7. Key Transport
	2.8. PIB and PCB combinations
	3. Security Processing
	3.1. Nodes as policy enforcement points
	3.2. Processing order of security blocks
	3.3. Security Regions
	3.4. Canonicalisation of bundles
	3.4.1. Strict canonicalisation
	3.4.2. Mutable canonicalisation
	3.5. Endpoint ID confidentiality
	3.6. Bundles received from other nodes
	3.7. The At-Most-Once-Delivery Option
	3.8. Bundle Fragmentation and Reassembly
	3.9. Reactive fragmentation
	3.10. Attack Model
	4. Mandatory Ciphersuites
	4.1. BAB-HMAC
	4.2. PIB-RSA-SHA256
	4.3. PCB-RSA-AES128-PAYLOAD-PIB-PCB
	4.4. ESB-RSA-AES128-EXT
	5. Key Management
	6. Default Security Policy
	7. Security Considerations
	8. Conformance
	9. IANA Considerations
	9.1. Bundle Block Types
	9.2. Ciphersuite Numbers
	9.3. Ciphersuite Flags
	9.4. Parameters and Results
	10. References
	10.1. Normative References
	10.2. Informative References
	Authors' Addresses

