
Network Working Group J. Zinky
Internet-Draft A. Caro
Intended status: Experimental Raytheon BBN Technologies
Expires: February 21, 2013 G. Stein
 Laboratory for
 Telecommunications Sciences
 August 20, 2012

Bundle Protocol Erasure Coding Extension
draft-irtf-dtnrg-zinky-erasure-coding-extension-00

Abstract

 This document describes an extension to the Delay and Disruption
 Tolerant Networking (DTN) Bundle Protocol specification [RFC5050]
 which describes a protocol that enables the transfer of relatively
 large Data Objects over disrupted networks. The Erasure Coding
 Extension is a mechanism that extends the ability of the existing DTN
 bundle fragmentation mechanism to handle situations where bundles
 have a high probability of being dropped. An example use case is a
 situation where no communication contact period will ever be long
 enough to send the whole Data Object. In this case the object must
 be partitioned into smaller chunks and these chunks are sent in
 multiple bundles. The Erasure Coding Extension provides a recovery
 mechanism that allows many of these bundles to be dropped and still
 allow the whole Data Object to be successfully sent.

 This document describes an Erasure Coding Extension Block and a
 framework for integrating Forward Error Correction (FEC) into the
 bundle protocol. The Erasure Coding Extension is designed to support
 multiple FEC schemes and content object types. This is the framework
 document for a series of documents about erasure coding for DTN.
 Companion documents describe specific FEC schemes [RandBinary] and
 specific Data Object types [EcObjects].

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any

Zinky, et al. Expires February 21, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/rfc5050
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft DTN-EC-Arch August 2012

 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on February 21, 2013.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Zinky, et al. Expires February 21, 2013 [Page 2]

Internet-Draft DTN-EC-Arch August 2012

Table of Contents

1. Introduction . 4
2. Terminology . 6
2.1. Definitions . 6
2.1.1. Delay and Disruption Tolerant Network Terms 6
2.1.2. Forward Error Correcting Terms 6
2.1.3. Erasure Coding Protocol Terms 7

2.2. Abbreviations . 8
2.3. Requirements Notation 8

3. Erasure Coding Architecture 9
3.1. Erasure Coding Process 9
3.2. Erasure Coding Functions 11
3.3. Erasure Coding Component Configurations 12

4. Data Object Content Layer 14
4.1. Data Object Transfer Specification 15
4.2. Creating Chunks . 18

5. Coding Layer . 19
5.1. Erasure Coding Extension Block 19

6. Intermediate Regulating Layer 23
6.1. Traffic Shaping . 23
6.2. Handling Specification 24
6.3. Feedback Messages . 25
6.4. Intermediate Recoder 26

7. Bundle Forwarding Layer 28
8. Security Considerations 29
9. Refinement of the Erasure Coding Extension 30
10. IANA Considerations . 31
11. References . 32
11.1. Normative References 32
11.2. Informative References 32

 Authors' Addresses . 34

Zinky, et al. Expires February 21, 2013 [Page 3]

Internet-Draft DTN-EC-Arch August 2012

1. Introduction

 Delay and Disruption Tolerant Networks (DTNs) [RFC4838] have extreme
 communication constraints. DTNs can include high link delays, such
 as hours to reach another planet, or no guarantee of a
 contemporaneous end-to-end path between source-destination pairs,
 such as a bus with a DTN Bundle Protocol Agent ferrying data to a
 remote village. These constraints limit the timeliness of feedback
 that can be sent from the receiver back to the sender to acknowledge
 receipt or to control the data flow. Forward Error Correction (FEC)
 techniques are a potentially important mechanism for DTN networks,
 especially if a large Data Object must be partitioned into multiple
 bundles [Erasure_Wang]. While the base Bundle Protocol [RFC5050] has
 a fragmentation feature to partition a large bundle into multiple
 smaller bundles, there is no support for FEC, i.e. all bundle
 fragments must be received to reconstruct the original bundle.

 To correct for this lack, this document describes an extension to the
 Bundle Protocol to support FEC mechanisms. The extension allows for
 large Data Objects to be partitioned into smaller Chunks. A FEC
 coding scheme is used to encode the Chunks into Encoding Bundles.
 Redundant Encoding Bundles are transmitted to allow recovery of
 Bundles that where dropped. The specification allows for different
 tradeoffs in the level of protection, overhead, and computation
 needed to encode and decode large Data Objects, based on the kind of
 FEC coding scheme, the network characteristics, and the type of Data
 Object.

 This document describes a FEC framework for the encoding, decoding,
 forwarding, and recoding within a DTN network. A Bundle Protocol
 Extension Block is defined to send the parameters needed for several
 FEC coding schemes. The Erasure Coding extension is flexible and
 supports multiple FEC coding schemes and Data Object types. Separate
 documents define how specific FEC coding schemes [RandBinary] and
 Data Object formats [EcObjects] support this extension. Future
 documents will describe protocols for erasure coding flow control,
 routing, and recoding.

 This document assumes familiarity with Forward Error Control
 techniques and the FEC framework described in "Forward Error
 Correction (FEC) Building Blocks" [RFC5052], this paper uses the
 Bundle Protocol as a "Content Delivery Protocol" that will use FEC
 schemes to insure reliable delivery of Data Objects. Many FEC coding
 schemes MAY be supported, such as Random Binary Codes [RandBinary],
 block-oriented parity [RFC5445], Raptor Codes [RFC5053], Reed-Solomon
 [RFC5510], and Low Density Parity Check (LDPC) [RFC5170]. The exact
 coding scheme used depends on the DTN network environment, as no one
 coding scheme works optimally in all situations. The Erasure Coding

https://datatracker.ietf.org/doc/html/rfc4838
https://datatracker.ietf.org/doc/html/rfc5050
https://datatracker.ietf.org/doc/html/rfc5052
https://datatracker.ietf.org/doc/html/rfc5445
https://datatracker.ietf.org/doc/html/rfc5053
https://datatracker.ietf.org/doc/html/rfc5510
https://datatracker.ietf.org/doc/html/rfc5170

Zinky, et al. Expires February 21, 2013 [Page 4]

Internet-Draft DTN-EC-Arch August 2012

 extension could also support Network Coding techniques.

Zinky, et al. Expires February 21, 2013 [Page 5]

Internet-Draft DTN-EC-Arch August 2012

2. Terminology

 The following definitions describe terms used in the Bundle Protocol
 Erasure Coding Extension. The terminology for Delay and Disruption
 Tolerant Networks (DTNs) follows [RFC4838],[RFC5050], and Forward
 Error Coding (FEC) terminology follows [RFC5052].

2.1. Definitions

 Terms are grouped by a common domain. Terms within a domain have
 relationships with other terms in that domain and not with other
 domains.

2.1.1. Delay and Disruption Tolerant Network Terms

 Delay and Disruption Tolerant Networks (DTNs) use the bundle
 protocol suite [RFC5050] to send data over networks with extreme
 constraints, such as high-delay space channels with propagation
 delays in hours or networks with no contemporaneous end-to-end
 path.

 Bundle is a DTN protocol data unit (PDU) as defined in [RFC5050].

 Bundle Node is any entity that can send and/or receive bundles as
 defined in [RFC5050]. In the context of this document, a Bundle
 Node may be either a DTN Application or a Bundle Protocol Agent.

 Bundle Protocol Agent (BPA) offers DTN services and executes the
 procedures of the bundle protocol. A BPA performs a store and
 forward function, receives, processes, and sends bundles as
 defined in [RFC5050]. A BPA may have any Erasure Coding process,
 e.g. Encoder, Decoder, Intermediary Regulator or an Intermediary
 Recoder.

 DTN Application generates and receives bundles in order to create an
 end-user application. A DTN application may have only an Erasure
 Coding Encoder or Decoder process.

2.1.2. Forward Error Correcting Terms

 Data Object is an ordered sequence of octets that is transferred as
 a single unit as defined in the FEC Framework [RFC5052]. The
 object has a defined format, such as a file, a large bundle, a
 stream, or a mime type. A Data Object has a UUID, which marks all
 Encodings that belong to the same Data Object.

https://datatracker.ietf.org/doc/html/rfc4838
https://datatracker.ietf.org/doc/html/rfc5050
https://datatracker.ietf.org/doc/html/rfc5052
https://datatracker.ietf.org/doc/html/rfc5050
https://datatracker.ietf.org/doc/html/rfc5050
https://datatracker.ietf.org/doc/html/rfc5050
https://datatracker.ietf.org/doc/html/rfc5050
https://datatracker.ietf.org/doc/html/rfc5052

Zinky, et al. Expires February 21, 2013 [Page 6]

Internet-Draft DTN-EC-Arch August 2012

 Chunks are ordered pieces of a Data Object before it is encoded.
 All Chunks are the same length with the last Chunk being padded
 when necessary. A Chunk is called a Source Symbol in the FEC
 Framework[RFC5052] .

 Encoding Vector is the coefficients for the coding formula used to
 create an Encoding. An Encoding Vector carries the FEC Payload ID
 as defined in the FEC framework [RFC5052].

 Encoding Data is the result of applying a coding formula to the
 Chunks of a Data Object. The Encoding Data is the same length as
 the Chunks. An Encoding Data may carry either a Source Symbol or
 a Repair Symbol as defined in the FEC framework [RFC5052].

 Encoding contains the corresponding Encoding Vector and Encoding
 Data, with a Transfer Specification.

 Encoding Set is a group of Encodings that all belong to the same
 Data Object (same UUID). The Encodings in an Encoding Set
 represent a set of linear equations. When the rank of the
 Encoding Set is equal to the number of Chunks in the Data Object,
 the Encoding Set linear equations can be solved to decode ALL of
 the Chunks for the Object.

 Innovative Encoding: When an Encoding is added to an Encoding Set,
 the Encoding is said to be "Innovative" relative to the Encoding
 Set, if the new Encoding adds new information to the Encoding Set
 (i.e., increases the Encoding Set's rank).

 Redundant Encoding: When an Encoding is added to an Encoding Set,
 the Encoding is said to be "Redundant" relative to the Encoding
 Set if the new Encoding does not add new information to the
 Encoding Set (i.e., the Encoding Set's rank stays the same).

 Duplicate Encoding: Two Encodings are equivalent or duplicate, if
 they belong to the same Data Object (same UUID) and have the same
 Encoding Vector and hence the same Encoding Data.

2.1.3. Erasure Coding Protocol Terms

 Encoding Bundle contains the information necessary to send an
 Encoding using the Bundle Protocol. Some information is put in
 the bundle primary block, such as the Data Object's Transfer
 Specification. Some information is put in the Erasure Coding
 Extension Block, such as the Encoding Vector. Some information is
 put in the Bundle payload, such as the Encoding Data.

https://datatracker.ietf.org/doc/html/rfc5052
https://datatracker.ietf.org/doc/html/rfc5052

Zinky, et al. Expires February 21, 2013 [Page 7]

Internet-Draft DTN-EC-Arch August 2012

 Erasure Coding Extension Block exposes Encoding information that is
 needed by Intermediate Regulators. Specifically, it includes the
 Encoding Vector and Handling Specification.

 Erasure Payload stores the part of an Encoding that is not exposed
 to Intermediate Regulators. Specifically, it includes the
 Encoding Data.

 Handling Specification defines the importance of forwarding Encoding
 Bundles relative to its Encoding Set or other Encoding Sets. The
 Handling Specification MAY change the order, priority, or rate for
 sending Encoding Bundles.

2.2. Abbreviations

 BPA: Bundle Protocol Agent, see [RFC5050]

 DTN: Delay and Disruption Tolerant Network, see [RFC5050]

 EID: End-point Identifier, see [RFC5050]

 FEC: Forward Error Correction, see [RFC5052]

 UUID: Universally Unique Identifier, see [RFC4122]

 SDNV: Self-Delimiting Numeric Values, see [RFC6256]

2.3. Requirements Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

https://datatracker.ietf.org/doc/html/rfc5050
https://datatracker.ietf.org/doc/html/rfc5050
https://datatracker.ietf.org/doc/html/rfc5050
https://datatracker.ietf.org/doc/html/rfc5052
https://datatracker.ietf.org/doc/html/rfc4122
https://datatracker.ietf.org/doc/html/rfc6256
https://datatracker.ietf.org/doc/html/rfc2119

Zinky, et al. Expires February 21, 2013 [Page 8]

Internet-Draft DTN-EC-Arch August 2012

3. Erasure Coding Architecture

 The goal of the Erasure Coding extension is to enable the transfer of
 large Data Objects over disrupted links. The Erasure Coding
 Architecture defines protocol layers, protocol functions, and
 components that achieve this goal in a modular and extensible manner.
 Besides defining terms and relationships, when realized the
 architecture forms a distributed system that executes at multiple
 locations, cross cuts multiple protocol layers, and reuses services
 from external components in a DTN network.

 Erasure Coding happens at multiple locations across a DTN. At the
 end points, Data Objects are divided into Chunks, which are Encoded
 at the sender and Decoded at the receiver. Along the way between the
 sender and the receiver Intermediate Regulator, Intermediate Recoders
 and Bundle Forwarders may process the Encoding Bundles to ensure the
 end-to-end delivery of a Data Object, despite the poor communication
 channel between the sender and receiver.

 This section describes the end-to-end Erasure Coding process,
 including the functions that need to be performed and the layers at
 which they are performed. This section also describes several
 configuration use cases and how the components carry out their roles.
 Subsequent sections describe each of the protocol layers: Data Object
 Content Layer, the Coding Layer, the Intermediate Regulating Layer,
 and the Bundle Forwarding Layer.

3.1. Erasure Coding Process

 A Data Object goes through a series of transformations as it is
 transmitted using the Erasure Coding protocol: from a Data Object to
 Encodings to Bundles and back again from Bundles, to Encodings, to a
 copy of the Data Object at the receiver. The transmission process
 has the following steps:

 Step 1: A Data Object has content that needs to be transferred
 across a DTN as a single whole. If any part of the content
 is missing the Data Object is not considered transferred.

 Step 2: The Data Object's list of Octets is divided into Chunks of
 equal length. The last Chunk MUST be padded so that it is
 the same length as the other Chunks. The order of the
 Chunks MUST be preserved to retain the ordering of the Data
 Object octets. The ordered list of Chunks that represent
 the Data Object is given an unique identifier (UUID).

Zinky, et al. Expires February 21, 2013 [Page 9]

Internet-Draft DTN-EC-Arch August 2012

 Step 3: Chunks are coded into an Encoding. Some Combination of
 Chucks are combined using one of serval possible FEC
 schemes. The coefficients of the coding formula are stored
 in an Encoding Vector. The results of the combination are
 stored in an Encoding Data, which is an ordered list of
 octets that is the same length as a Chunk. Together the
 Encoding Data, Encoding Vector, the coding scheme, and the
 Data Object UUID form an Encoding. All Bundle FEC coding
 schemes MUST create Encodings with this structure.

 Step 4: All the Encodings generated for a Data Object share the same
 UUID and may be grouped into an Encoding Set. A Full
 Encoding Set has enough Encodings to extract the Data
 Object. Note that an Encoding Set may have Redundant
 Encodings so that not all the Encodings in the set need to
 be received. The level of redundancy is determined by the
 FEC scheme, the application Quality of Service requirements,
 and the expected transmission characteristic across the DTN.

 Step 5: Each Encoding is placed in an Encoding Bundle. The Encoding
 Vector, UUID, and FEC Scheme are formatted into the Erasure
 Coding Extension Block defined in this document. The
 Encoding Data is formatted into the Bundle Payload.

 Step 6: Transfer specification is added to the Encoding Bundle to
 help resolve trade offs in the transfer of this Encoding
 Bundle relative to other bundles. The transfer
 specification cross cuts multiple layers by adding
 parameters to the bundle header, extension blocks, and Data
 Object's internal metadata.

 Step 7: When Encoding Bundles arrive at a destination, they are
 added to a Encoding Set based on their UUID. Duplicate
 Encodings have the same Encoding Vector as an Encoding
 already in the set and should be dropped. Redundant
 Encodings do not add any new information to the Encoding Set
 and may be dropped by the Decoder, but may be used by
 Recoders.

 Step 8: The Data Object is reconstructed at a destination as an
 array of octets from the decoded Chunks. When an Encoding
 Set has enough Encodings to decode some of the Chunks. The
 Chunks are extracted and sent to the application. Some FEC
 schemes may decode some Chunks as Encodings arrive, but
 other FEC schemes may not be able to decode any Chunks until
 nearly all Encodings have arrived. For some FEC schemes,
 the decode operation may consume substantial cpu and memory
 resources.

Zinky, et al. Expires February 21, 2013 [Page 10]

Internet-Draft DTN-EC-Arch August 2012

3.2. Erasure Coding Functions

 The Erasure Coding process performs several functions that happen at
 different protocol layers and may happen at different locations
 within the DTN network.

 Encoder converts a Data Object into Encodings Bundles and sends the
 bundles into the DTN. The Encoder is responsible for converting
 the Data Object into Chunks, coding the Chunks into Encodings,
 packing the Encoding into a Bundle, and setting the Bundle header
 parameters, to meet the transfer specification requirement. The
 Encoder MUST send enough Encodings to allow a Decoder to
 reconstruct the Data Object.

 Decoder receives Encodings Bundles, extracts Encodings, and stores
 the Encodings into an Encoding Set. The Decoder solves the coding
 equations to reconstruct Chunks for the Data Object. When enough
 Encodings arrive to solve the Encoding Set, the resulting Chunks
 are given to the consumer of the Data Object. Note, some FEC
 schemes may allow solving for some Chunks before solving for all
 Chunks. In this case, the Chunks MAY be delivered as they are
 solved or as a complete Data Object.

 Intermediate Regulator is a process on the path between the Encoder
 and Decoder. It may change the order of Encoding Bundles to give
 one Data Object priority over other Data Objects. It may
 manipulate how Encoding Bundles are sent between BPAs, based on
 fields in the Encoding Extension Block, such as UUID, handling
 spec, and Encoding Vector. Also, it may round-robin through
 Encoding Bundles in a Encoding Set to increase the diversity of
 Encodings being forwarded during different contacts. Some
 forwarding rules may depend on not sending Redundant Encodings to
 neighbors that have been met on previous contacts.

 Intermediate Recoder is a source of Redundant Encodings that may be
 manipulated and forwarded by the Intermediate Regulator. The
 Intermediate Recoder creates new Encodings from an Encoding Set
 held within the Intermediate Node. The new Encodings are
 redundant, but not duplicate to the other Encodings in the
 Encoding Set. The Intermediate Regulator MAY send these Redundant
 Encodings across different paths to the destination. Note that
 the Intermediate Recoder does not have to solve the Encoding Set.
 A generated Encoding is created by just combining multiple
 Encodings from the Encoding Set.

Zinky, et al. Expires February 21, 2013 [Page 11]

Internet-Draft DTN-EC-Arch August 2012

 Bundle Forwarder is a legacy DTN BPA that does not understand the
 Erasure Coding Extension. It routes and forwards Bundles based on
 fields in the standard Bundle primary block header.

 These functions are grouped into four layers. The Data Object
 Content layer is the external consumer of the DTN services and is
 concerned with transferring a Data Object from the source to the
 destination(s). The Coding Layer encodes and decodes the Data Object
 into Encodings Bundles. The Intermediate Regulating Layer regulates
 the Encoding Bundle flows across the DTN. The Bundle Forwarding
 Layer routes and forwards the Bundles along the path from the source
 to the destination(s).

3.3. Erasure Coding Component Configurations

 Erasure Coding architectural components are locations that execute
 the Erasure Coding functions. The architectural components are
 contained inside either DTN Applications or DTN Bundle Protocol
 Agents (BPAs). The end-to-end Encoders and Decoders may be located
 in either DTN Applications or DTN BPAs. Intermediate Regulators and
 Intermediate Recoders may only be located in DTN BPAs. The links
 between components are either through internal interfaces or across a
 DTN.

 Different configurations of the Erasure Coding Components allow for
 the creation of distributed systems that meet different end-user
 application requirements, within the constraints of the DTN. These
 configurations help integrate legacy DTN applications and BPAs with
 Erasure Coding Components, selectively adding or removing
 functionality depending on availability.

 Erasure Coding-aware DTN Applications preform the Encoding and
 Decoding functions with in the application itself. The
 application has knowledge of the end-to-end transfer specification
 and sets the fields in the Bundle primary block and Handling
 Specification to best meet the requirements. Also, if the FEC
 scheme allows for decoding some Chunks before all Chunks are
 ready, these early Chunks may be consumed by the application.

 Legacy DTN Applications that send large bundles, the Encoding
 functions may be located in the BPA. In this case, a large Bundle
 is encapsulated as a Data Object and sent to the destination BPA
 where the large Bundle is decoded and reinserted into the DTN
 routing layer.

Zinky, et al. Expires February 21, 2013 [Page 12]

Internet-Draft DTN-EC-Arch August 2012

 Erasure Coding-aware BPAs The use of Intermediate Regulators and
 Intermediate Recoders enables traffic shaping based on the UUID,
 detection of Redundant Encodings, and changing the order of Bundle
 transmission. The use of intermediate Recoders allows sending
 more diverse Encodings, substantially reducing the number of
 Encoding Bundles that need to be received before the Encoding Set
 can be solved for a Data Object.

 Legacy BPAs are not aware of the Erasure Coding Extension, but they
 may still forward bundles. No Erasure Coding specific processing
 may be done along the path to improve the importance and urgency
 of the transfer. Only the existing Bundle-layer Quality of
 Service mechanisms may be used, such as lifetime, priority, and
 duplicate detection.

 All combinations are possible including running Erasure Coding-aware
 Applications over Erasure Coding Aware BPAs with Encoders and
 Decoders. In this case, the BPA MUST check for the Erasure Encoding
 Extension Block on all Bundles inserted by the application. The BPA
 MUST NOT attempt to encode an Bundle that has already been encoded by
 the application.

Zinky, et al. Expires February 21, 2013 [Page 13]

Internet-Draft DTN-EC-Arch August 2012

4. Data Object Content Layer

 The goal of the Data Object Content Layer is to transfer a Data
 Object from a source to a destination within some application
 specific Quality of Service requirements. It uses the DTN Bundle
 protocol with Erasure Coding Extension to accomplish the transfer.

 The Data Object Content Layer is concerned with Data Objects and a
 Transfer Specification for that Data Object. The Erasure Coding
 Extension expects to transfer an ordered array of octets across a
 DTN. The job of the Data Object layer is to map the Data Object and
 its Transfer Specification into the mechanisms available from the
 Erasure Coding Extension. This mapping is complex and very
 application and Data Object type specific, but mappings share some
 common features described in this section.

 The Data Object type defines the internal representation of a Data
 Object's content and meta data as an ordered array of bytes. Many
 Data Object types are supported. A companion document [EcObjects]
 defines the Data Object types for files and large bundles.

 The Data Object layer has to interact with all three other layers.

 For the Bundle Forwarding Layer, the Data Object layer MUST set
 Bundle service delivery parameters, such as lifetime and priority, so
 that all Encoding Bundles for a Data Object have the same value. We
 do not recommend requesting delivery notifications, especially
 custody notification as these administrative services generate
 feedback traffic at the Bundle Layer and not at the Coding Layer.
 The destination is specified in the form of an DTN EID. The transfer
 specification may require multiple destinations, which may be
 satisfied by some configurations of the DTN BPAs routing protocols.
 For example epidemic routing attempts to flood Bundles to all nodes
 in the DTN or alternatively Geo-role routing forwards Bundles to all
 nodes playing a role within a geographic region. The Bundle
 Destination EID is used to specify the routing protocol and its
 parameters. Features from other DTN extensions may be used by the
 Data Object Layer. For example, the Bundle Security Protocol MAY be
 used to protect the authenticity of the Bundle extension blocks and
 payload.

 For the Coding Layer, the Data Object and its meta data MUST be
 converted into an ordered array of octets. The Transfer
 Specification MAY have meta data that needs to be sent end-to-end
 with the Data Object. The representation of the meta data depends on
 the Data Object type. Likewise, some Data Object types may want
 control over how Chunks are made and whether Chunks are delivered
 early. For example, a video Data Object may want to align Chunks on

Zinky, et al. Expires February 21, 2013 [Page 14]

Internet-Draft DTN-EC-Arch August 2012

 video frame boundaries and may want to have the key frames delivered
 early. These Data Object format issues are addressed by companion
 documents for each Data Object Type, such as [EcObjects]

 For the Intermediate Regulating Layer, the Data Object Layer SHOULD
 set parameter values to the Handling Specification. Intermediate
 Regulators MAY use the parameters to tradeoff resource consumption
 and delivered service among competing Data Objects.

4.1. Data Object Transfer Specification

 The transfer specification is an abstract representation for _how_ a
 Data Object should be transferred from the source to the destination.
 It gives hints to the Erasure Coding architectural components on how
 to create, combine, transfer, and decode Encoding Bundles. The
 transfer specification takes end-to-end quality of service
 requirements and translates them into the Bundle Protocol mechanisms
 necessary to meet those requirements. A transfer specification MAY
 be manifested physically in an Erasure Coding implementation, but its
 main role is to illustrate the control points available at each
 protocol layer and how they interact.

 The transfer specification is not monolithic. It cross cuts
 different protocol layers and its content is spread among different
 fields in the bundle header, extension block, and the bundle payload.
 At the bundle layer, it specifies how Encoding Bundles are handled
 relative to other DTN traffic. At the Regulating layer, it specifies
 how Encoding Bundles are handled relative to other Encodings Bundles
 for the same Data Object UUID or relative to other Data Object UUIDs.
 Finally at the Data Object layer, it specifies the properties of a
 copy of the Data Object at the destination.

 In the current state of the Bundle Protocol, the BPA has no means for
 advertising its constraints to the Erasure Coding components and the
 components can not make active measurements of these constraints
 because the poor quality of the communication channel makes any
 measurements obsolete before enough samples can be collected. The
 process of choosing transfer parameters, such as Chunk Size, is thus
 an open loop process and depends on external oracles to predict the
 transfer constraints. As the Bundle Protocol evolves and adds
 capabilities for detecting and advertising its environmental
 constraints, the transfer specification will become more powerful and
 more formal. For example, the Bundle Security Protocol [RFC6257]
 should be used to meet the Erasure Coding requirement to authenticate
 the creator of Encoding Bundles. The functionality should be reused
 by the Erasure Coding extension and their is no need to redefine it
 here.

https://datatracker.ietf.org/doc/html/rfc6257

Zinky, et al. Expires February 21, 2013 [Page 15]

Internet-Draft DTN-EC-Arch August 2012

 The following table lists some transfer specification parameters that
 are actionable in the context of the current Bundle Protocol
 [RFC5050] and the Erasure Coding extension.

 +----------------+-------+-----------+-------------+----------------+
 | Parameter | Type | Header | Field | Description |
 +----------------+-------+-----------+-------------+----------------+
Destination	EID	Bundle	Destination	DTN endpoint
				destination(s)
				for Data
				Object. The
				endpoint may
				be a singleton
				or have
				multiple
				destinations.
Class of	Flags	Bundle	Priority	Priority
Service				relative to
				other Data
				Objects
Life Time	SDNV	Bundle	Life Time	Time when the
				Data Object
				should be
				deleted, if
				not delivered
Report	Flags	Bundle	Processing	Quality of
Progress			Control	Service
				feedback for
				Data Object
UUID	Id	Extension	Unique Id	A Universally
				Unique
				Identifier
				that is
				associated
				with the Data
				Object
				transfer.

https://datatracker.ietf.org/doc/html/rfc5050

Zinky, et al. Expires February 21, 2013 [Page 16]

Internet-Draft DTN-EC-Arch August 2012

Number of	SDNV	Extension	Number of	The number of
Chunks			Chunks	Chunks that
				the Data
				Object was
				divided into.
				Fewer Chunks
				reduce the
				reassembly
				time at
				destination.
Chunk Length	SDNV	Payload	Length	The size of
				the Chunks
				that the Data
				Object was
				divided into.
				Smaller Chunks
				reduce chance
				of
				bundle-layer
				fragmentation.
Handling Spec	Flags	Extension	Handling	Handling hints
			Spec	for
				Intermediate
				Regulators for
				this bundle
				relative to
				other Encoding
				Bundles with
				same Data
				Object UUID
Authentication	ID	Bundle	Signing	The level of
		Security		trust in the
		Extension		Encoding
				components.
Data Object	Flags	Payload	Data Object	Meta Data
Metadata			Header in	about Data
			first Chunk	Object's
				systemic
				properties,
				such as
				authenticity,
				validity, and
				permissions
 +----------------+-------+-----------+-------------+----------------+

Zinky, et al. Expires February 21, 2013 [Page 17]

Internet-Draft DTN-EC-Arch August 2012

 Table 1: Transfer Specification

4.2. Creating Chunks

 The Data Object Layer formats the Data Object and meta data as an
 octet array that is used as input to the Coding Layer. The Data
 Object octet array is divided into an ordered array of equal length
 Chunks. Chunks are identified with an index. The Chunk with the
 index of '0' contains the octet with index '0'.

 The Data Object Layer must add padding octets to the last Chunk, so
 that all Chunks are the same length. The Data Object Layer is
 responsable for storing the exact length of the Data Object without
 padding, because the Coding Layer does not have a field for the Data
 Object Length.

 The exact number_of_chunks is determined at transfer time and is
 based on the Data Object Layer Transfer Specification and path
 characteristics of the DTN network. Decoders SHALL handle any
 number_of_chunks, but practical limits MAY be in the 1000's of
 Chunks. The chunk_length SHOULD be a multiple of 8. This will allow
 efficient octet array operations to be performed when encoding and
 decoding Chunks and Encoding Data.

Zinky, et al. Expires February 21, 2013 [Page 18]

Internet-Draft DTN-EC-Arch August 2012

5. Coding Layer

 The goal of the Coding Layer is to divide a Data Object that is
 formated as an ordered array of octets into a group of Encodings.
 The Encodings MUST form a full Encoding Set and MAY have Redundant
 Encodings. The Erasure Coding Process (Section 3.1) is followed to
 encode Data Objects into Encodings and to decode an Encoding Set back
 into a Data Object. In this process, a FEC scheme is applied to the
 Chunks of a Data Object to form an Encoding. The FEC scheme uses a
 coding formula to convert the Chunks to an Encoding Data. The
 coefficients for the coding formula are stored in the Encoding
 Vector. The Encoding Vector and Encoding Data together form the
 Encoding. The exact format of the Encoding Vector and Encoding Data
 is defined by the FEC scheme. The Erasure Coding Extension supports
 multiple FEC schemes, such as the Random Binary FEC scheme defined in
 the companion document [RandBinary].

 An Encoding is packed into an Encoding Bundle. In order for
 Intermediate Regulators to detect Redundant Encodings and group
 Encoding Bundles into Encodings Sets, some Encoding parameters are
 exposed in the Erasure Coding Extension Block (Section 5.1), such as
 the Encoding Vector and Data Object UUID. The Encoding Data is not
 needed by Intermediate Regulators and is put into the Bundle Payload.
 Intermediate Recoders need access to the content of both the Erasure
 Coding Extension Block and the Bundle Payload in order to generate
 new Encodings.

5.1. Erasure Coding Extension Block

 The Erasure Coding Extension Block marks the Bundle containing an
 Encoding. The format of the Erasure Coding Extension Block is as
 follows:

Zinky, et al. Expires February 21, 2013 [Page 19]

Internet-Draft DTN-EC-Arch August 2012

 +---------------+------------+--------------------------------------+
 | Field | Type | Description |
 +---------------+------------+--------------------------------------+
Block Type	Octet=0xEC	Bundle Protocol Extension Block Type
		is the constant 0xEC.
Block	SDNV	See Section 4.3 of [RFC5050] for bit
Processing		settings
Flags		
Block Length	SDNV	Length of extension block data, not
		including the padding.
Version	SDNV	Erasure Coding Extension Block
		version that increments with newer
		versions
Data Object	SDNV	Type number for the format of Data
Format Type		Object. Defines format for decoded
		Chunks, see [EcObjects].
Data Object	UUID	Universally Unique ID for a specific
UUID	(128bits)	Data Object transfer. The UUID
		SHOULD be in the format specified in
		[RFC4122]. The Data Object Format
		specification MAY define a hash
		function to map the Data Object's
		name to a UUID. [NOTE: The reference
		implementation uses two SVDN fields
		to pack the upper and lower 64
		bits.]
Handling	SDNV	Number of SDNV Parameters in the
Specification		Handling Specification. As the
Length		Erasure Protocol matures, parameters
		will be added to the Handling
		Specification. Version 1 of the
		Erasure Coding Extension does not
		define any Handling Specification
		parameters, so this field value is
		0. Version 1 implementations MUST
		treat this field as a length of the
		next field, even though the content
		SHOULD be ignored.

https://datatracker.ietf.org/doc/html/rfc5050#section-4.3
https://datatracker.ietf.org/doc/html/rfc4122

Zinky, et al. Expires February 21, 2013 [Page 20]

Internet-Draft DTN-EC-Arch August 2012

Handling	SDNV List	Hints on how Intermediate Regulators
Specification		should order, prioritize, limit
Parameters		rate, or drop this Encoding relative
		to other Encoding bundles with the
		same Data Object UUID. No Handling
		Specification Parameters are defined
		for Version 1, so this field is
		null.
Number of	SDNV	Number of Chunks that the Data
Chunks		Object was divided into.
FEC Scheme	SDNV	The type number of the FEC Scheme
Type		used to interpret Coding Scheme
		Parameters, for example see
		[RandBinary].
FEC Scheme	Octets	Format of the octet array is
Parameters		determined by FEC Scheme. This field
		ends at the Block Length of the
		extension block data.
Padding	Octets	Extra octets so that the total
		length the whole extension block is
		a multiple of 4 octets.
 +---------------+------------+--------------------------------------+

 Table 2: Erasure Coding Extension Block

 The Data Object UUID field identifies the Data Object for the
 Encoding Bundle. The UUID MUST be unique in the DTN network over the
 life time of the bundle. While the UUID is treated just as a number,
 the UUID SHOULD be in the format specified in [RFC4122]. All the
 received Encoding Bundles with the same UUID form an Encoding Set for
 a Data Object.

 The Data Object Format Type specifies the format used at the Data
 Object Layer. A Data Object format MUST define the headers and
 padding for the decoded Data Object. A Data Object format MAY define
 a format for the bundle payload, but by default the bundle payload
 contains just the Encoding Data. Several Data Object formats are
 defined in [EcObjects] and future documents.

 The Handling Specification gives hints on how Intermediate Coders
 SHOULD process this bundle relative to other bundles in the same
 Encoding Set. For example, how many Redundant Encoding Bundles should
 be forwarded or what order to send Encoding Bundles across multiple
 contact points. The values of Handling Specification depend on both

https://datatracker.ietf.org/doc/html/rfc4122

Zinky, et al. Expires February 21, 2013 [Page 21]

Internet-Draft DTN-EC-Arch August 2012

 the type of FEC scheme and the characteristics of the expected DTN
 communication path. The parameters (flags) of the Handling
 Specification MUST be actionable by Intermediate Regulators. For
 Version #1 of the Erasure Coding Extension Block, this handling
 parameters are undefined and Handling Specification Length MUST be
 zero (0).

 The Encoding Vector is part of the extension block because
 Intermediate Regulators MAY want to determine the rank of an Encoding
 Set to detect Redundant Encodings. Calculating the rank is a less
 computationally expensive operation than decoding the Encoding Set
 for its Chunks. Calculating the rank only needs the Encoding Vector
 sand not the Encoding Data. Decoding needs to XOR multiple Encoding
 Datas together to decode each Chunk, a computationally expensive
 operation. The format of the Encoding Vector depends on the type of
 FEC scheme used. The common field among all FEC schemes is the
 Number of Chunks in the Data Object. The other two fields specify
 the type of FEC scheme and the bytes for the Encoding Vector itself.
 Several FEC schemes are defined in [RandBinary] and future documents.

 More than one Erasure Coding Extension Block MAY be present in the
 same bundle. The interpretation of multiple extension blocks is to
 treat them as a composite formula that are merging Chunks from
 multiple Data Objects. The merged Encoding Vector adds the
 coefficients from the component Encoding Vectors. The merged
 Encoding Data (bundle payload) is the XOR of the composite Encoding
 Data. Intermediate Regulators MAY use the handling specification
 from either extension block to determine the handling procedures.
 The Handling Specification SHOULD be equivalent for all Erasure
 Coding Extension blocks in the bundle. The multiple extension block
 option supports experimentation in Network Coding.

Zinky, et al. Expires February 21, 2013 [Page 22]

Internet-Draft DTN-EC-Arch August 2012

6. Intermediate Regulating Layer

 The goal of the Intermediate Regulating layer is to control the flow
 of Encoding Bundles as they move from the source to the destination.
 Intermediate Regulators decide on which Encoding Bundles should be
 sent next during a contact period with a neighbor BPA. Given the
 dynamic and complex nature of DTN topologies and the tradeoffs
 between competing DTN traffic flows, the traditional first come first
 serve queueing discipline is rarely adequate. Also, in the most
 general case the traffic shaping function in the Intermediate
 Regulators needs to work without feedback from neighbors or the end-
 to-end destinations.

 Note: No reference implementation of the Intermediate Regulator
 have been completed at the time of this document publication. More
 research is necessary to determine the functionality of the Handling
 Specification and the policies used by Intermediate Regulators. This
 section is a place holder and lays out the issues. A future version
 of this section will capture the conclusions of the future research
 results.

6.1. Traffic Shaping

 Traffic Shaping MAY improve the efficiency of resource consumption
 and the fairness between DTN traffic flows in the case where feedback
 is impractical between neighbors or between the destination and the
 source. Traffic shaping may determine when to stop forwarding
 Encoding Bundles from a Data Object, limit the rate, redundancy, or
 the order between bundles. The traffic shaping parameters may be
 calculated per Data Object UUID, per neighbor, or per contact.

 A basic no feedback traffic shaper MAY be based on the following
 policy and parameters. During a contact the candidate Data Objects
 are ordered by importance (priority field in Bundle Primary Block)
 and urgency (lifetime in Bundle Primary Block). The highest priority
 with the earliest expiration is sent first. Sending a Data Object is
 divided into two phases; an Innovative Send Phase and a Redundant
 Send Phase. The Innovative Send phase sends only enough Encodings to
 form a full Encoding Set at the Receiver, while the Redundant Send
 Phase sends extra Redundant Encodings for FEC purposes.

 Each phase has a limit on the number of Encodings in that phase and a
 limit on the rate for which Encodings are sent during that phase.
 Encoding Bundles are sent in Data Object order, sending all the
 Innovative Encoding Bundles for _all_ the Data Objects and then
 starting the redundant phase. While sending a Data Object during a
 phase, the next Data Object will start when the Max Number of
 Encodings for that phase is exceeded or the rate is exceeded. When

Zinky, et al. Expires February 21, 2013 [Page 23]

Internet-Draft DTN-EC-Arch August 2012

 all the Redundant Encoding Bundles have been sent for all Data
 Objects, transmission stops.

 The following are basic traffic shaping parameters that MAY be put
 into the Handling Specification. Version 1 of the Handling
 Specification does not allow these parameters to be specified
 dynamically, but defines a default Handling Specification based on
 these parameters.

 Encoding Order defines the order to send Encodings for the same Data
 Object. The order may be changed based on the requirements of the
 transmission specification. The order MAY be Oldest First, Oldest
 Last, Round-Robin, or Random.

 Send State defines the level of detail for sending a Data Object
 across contacts. For example, the encoding order MAY be be
 maintained for each time a Data Object is sent to a unique
 neighbor, or for each contact regardless of the neighbor, or no
 send state is maintained at all (Random).

 Max Number of Innovative Encodings defines the number of Encodings
 in the Innovative Phase. For example, this limit MAY be greater
 than the Number of Chunks, if some Redundant Encodings should be
 included in the Innovative Send Phase. Conversely, the limit MAY
 be lower, if the contact periods are very short and Data Objects
 are expected to be sent over multiple contacts.

 Max Number of Redundant Encodings defines the number of Encoding
 Bundles in the Redundant Phase.

 Rate Limit for Innovative Encoding defines a limit on how quickly
 Encodings are sent rate limit during the Innovative phase. The
 rate MAY be specified using leaky bucket parameters, such as input
 period and initial fullness. Alternatively, a processor sharing
 model parameter MAY limit the maximum number Encodings to send
 before moving to the next Data Object with the same priority.

 Rate Limit for Redundant Encodings defines a rate limit during the
 Redundant phase.

6.2. Handling Specification

 The Handling Specification is a field in the Erasure Coding Extension
 Block that defines the parameters for traffic shaping and feedback
 messages. The format of this field is that of a length followed by a
 list of parameters with 'length' entries. The length and parameters
 are SDNV values, making the entire Handling Specification field have
 variable length. As Version #1 of the Erasure Coding Extension does

Zinky, et al. Expires February 21, 2013 [Page 24]

Internet-Draft DTN-EC-Arch August 2012

 not define any Handling Specification Parameters, the length MUST
 currently be zero (0) for Version #1 and the parameter list null. As
 the Erasure Coding Extension matures, parameters will be added to the
 Handling Specification. The Handling Specification Length has the
 dual role of determining the number of parameters and as version
 indicator for the meaning of each parameter.

 When the Handling Specification Length is zero (0), then the
 Intermediate Regulator and Recoder MAY use the following default
 policy. The order of sending Data Objects is based on the Priority
 and Lifetime fields in the Bundle Primary Block, with the highest
 priority first, then the earliest expiration. The order of sending
 Encodings within a specific Data Object is Round-Robin between
 contacts. The send state for a Data Object is saved for the whole
 Data Object regardless of neighbors. The maximum number of Encodings
 in the Innovative Phase is equal to the Number of Chunks. The
 maximum number of Encodings in the Redundant Phase should be the
 maximum of 10 and the square root of the Number of Chunks. There is
 no rate limit for sending Innovative Encodings or Redundant
 Encodings.

6.3. Feedback Messages

 Feedback messages MAY be defined to increase the efficiency of
 resource usage for the case where feedback is possible between
 neighbors or between the destination and the source. The following
 types of feedback messages would enhance the exchange protocol.

 Stop or End-to-End Acknowledgement messages that are sent back from
 the Destination Decoder to the Source Encoder to indicate that the
 Data Object has been received. The Source Encoder may use this
 acknowledgement to stop sending Redundant Encodings. Also, this
 could prompt the sending of a PURGE message, that is signed by the
 Encoder. The Stop message MUST expire no later than the original
 Data Object.

 Purge messages to indicate that intermediate routers may remove all
 Encoding Bundles for a Data Object UUID. Encoding Bundles are
 valid until the Lifetime of the Bundle expires. The Purge
 mechanism allows for the early removal of Encoding Bundles to save
 storage and transmission resources in Intermediate Regulators.
 Purge messages MAY be ignored by Intermediate Routers, without
 loss of correct transmission. Purge messages may be initiated
 either by the Encoder or Decoder and travel along the path from
 the message sender to the message destination. Because the DTN
 path form the Encoder to Decoder may be different than the path
 from Decoder to Encoder, initiating Purge messages only from the
 Decoder may not be adequate to reach all the Intermediate Encoders

Zinky, et al. Expires February 21, 2013 [Page 25]

Internet-Draft DTN-EC-Arch August 2012

 that have a copy of the Encoding Bundles for a Data Object. Purge
 messages MUST be authenticated before triggering the removal of
 Encoding Bundles, in order to avoid denial of service attacks.
 The Purge message MUST expire not later than the original Data
 Object.

 Data Object Status messages that are exchanged between neighbors to
 indicate the availability of Encoding Bundles for Data Objects.
 During a contact in an opportunistic DTN network topology,
 neighbors must quickly determine which Bundles to exchange.
 Erasure Encoding helps this process, by allowing reasoning about a
 group of bundles based on Data Object UUID. The existence of a
 Data Object, rank of it's Encoding Set, and level of redundancy
 may be exchanged between neighbors. This information may be used
 to increase the efficiency of the exchange. For example, the
 following exchange policies MAY be enacted. If the neighbor
 already has the full Data Object, no bundles from that group need
 to be exchanged. Likewise, if the rank of the Encoding Set is
 almost full, then only missing Encoding Bundles need to be sent
 during the Innovative Send Phase. Redundant Encoding Bundles may
 be delayed until after other Data Objects are completed their
 Innovative Send Phase.

6.4. Intermediate Recoder

 Early research suggests that sending Encodings that are Redundant but
 not Duplicates will increase the probability of receiving a full
 Encoding Set at the destination. In the case where the DTN topology
 is highly dynamic with contact transmissions much smaller than a
 whole Data Object, the interactions along the intermediate path mixes
 and copies Encodings in flight so that receiving Duplicates is
 common. The overall receive process can be similar to a random draw
 from the senders Encoding Set with replacement. Avoiding Duplicates
 being propagated on alternate paths avoids the "coupon collector
 problem" at the receiver. That is, there is a low probability of
 getting the last missing coupon that is not a duplicate of a previous
 coupon. If Duplicates are allowed to propagate on intermediate
 paths, many Encodings must be received before the Encoding Set can be
 solved, thus wasting bandwidth. The goal of the Intermediate Recoder
 is to introduce Redundant Encodings on the intermediate paths that
 are not Duplicates.

 An Intermediate Recoder includes all of the functionality of an
 Intermediate Regulator. The Recoder adds the functionality of
 generating additional Encoding Bundles for Data Objects.
 Intermediate Recoders do not directly forward Encodings that they
 receive, but would produce a new Encoding from all of the previously
 received Encodings for the same Data Object. This new Encoding would

Zinky, et al. Expires February 21, 2013 [Page 26]

Internet-Draft DTN-EC-Arch August 2012

 be Redundant relative to the previously received Encoding Set, but it
 would not be a Duplicate of any Encoding in the Encoding Set. Thus as
 the Encodings for a Data Object are propagated over the DTN, few if
 any Duplicates would be present over the whole DTN. In other words,
 if Intermediate BPAs transmitted copies of received Encoding Bundles,
 then Bundles that took different paths might be Duplicates. If two
 Duplicates are received, then at least one will be Redundant. But if
 two Recoded Encodings are receive, even if they come from the same
 partial Encoding Set, there is a chance that both will be Innovative.

 Some FEC schemes allow the generation of Redundant Encodings from
 previously received Encodings. The exact mechanism for the
 generation is FEC scheme dependent, but the basic mechanism is to
 linearly combine multiple Encodings to form a new Recoded Encoding.
 The Recoded Encoding will always be Redundant relative to the
 Encoding Set. It adds no innovative information about the Data
 Object's Chunks. Instead the Recoded Encoding is not a Duplicate of
 previous Encodings.

 More research is necessary to determine the mechanisms for Recoding.
 The Erasure Coding Extension supports this research by defining the
 architectural functions and basic policies for Recoding. Some issues
 to be addressed include: how to recode without raising the hamming
 weight; how to reduce the number of Encoding Data XORs during
 generation of a new Encoding; how to reduce the XORs during solving
 the Encoding Set; and how to generate a new Encoding that can be
 authenticated as if it is coming from the original Encoder.

Zinky, et al. Expires February 21, 2013 [Page 27]

Internet-Draft DTN-EC-Arch August 2012

7. Bundle Forwarding Layer

 The goal of the Bundle Forwarding Layer is to transfer Bundles using
 all the DTN features and services available to the BPA. Legacy BPAs
 that are not aware of the Erasure Coding Extension MUST still forward
 Bundles between components, ignoring the Erasure Coding Extension,
 but adhering to Bundle forwarding procedures. DTN Bundle Forwarding
 is adequately defined and characterized in other documents and does
 not have too be defined here.

 In order to meet the Transfer Specification at the Data Object layer,
 the special characteristics of the particular DTN network must be
 taken into account. DTN can support networks that have extreme
 communication models, including the following: Besides the high
 delay-bandwidth products found in space networks and the non-
 contemporaneous end-to-end paths found in opportunistic mobile
 networks, DTN can support transmission to selective destinations.
 The DTN transmission links between coding components can be either
 unicast or multicast. DTN supports bundles being delivered to
 multiple destinations. DTN also supports multiple routing protocols,
 that can flood bundles through out the DTN network. These DTN
 features may be used by Erasure Coding to support a wide variety of
 end-user applications. For example, reliable multicast of large Data
 Objects over a DTN is an illustrative use case for Erasure Coding,
 because FEC is an effective technique for overcoming the difficulty
 of feedback between the multiple receivers and the sender, and FEC
 may exploit the ability of the DTN to deliver Encoding Bundles among
 peers.

Zinky, et al. Expires February 21, 2013 [Page 28]

Internet-Draft DTN-EC-Arch August 2012

8. Security Considerations

 The basic Erasure Coding protocol does not provide authentication for
 the Encoding Vector or the Encoding Data. This means that a rogue
 entity on the path between the sender and the receiver could view,
 delete, reorder, copy, modify, and inject new Encoding Bundles into
 the bundle flow. In this section we describe how to overcome this
 issue using the Bundle Security Protocol (BSP) [RFC6257].

 The Encoding Vector is stored in the Erasure Coding Extension Block
 and the Encoding Data is stored in the Payload Block. The only
 method available in BSP to authenticate both the Payload Block and an
 Extension Block is through the use of a Bundle Authentication Block
 (BAB). This is a symmetric key-based algorithm, meaning both parties
 must share a secret bit-string that is not known to any other
 entities. BSP does not specify the method in which this secret bit-
 string should be established.

 It should be noted that the Extension Security Block (ESB) option in
 BSP does not provide authentication of an Extension Block. Since ESB
 utilizes AES in Galois/Counter Mode (GCM), it does provide data
 integrity. If the AES-GCM key was the output of a key agreement
 protocol that authenticated the sender of the bundle, then AES-GCM
 encryption may provide implicit authentication. However, the ESB-
 RSA-AES128-EXT cipher suite that ESB utilizes does not provide this
 authentication.

 Another issue is guaranteeing the authenticity of feedback messages
 (Section 6.3) generated in by the destination. This issue is not
 resolved because the actual need and format of the feedback messages
 is not defined in this document.

https://datatracker.ietf.org/doc/html/rfc6257

Zinky, et al. Expires February 21, 2013 [Page 29]

Internet-Draft DTN-EC-Arch August 2012

9. Refinement of the Erasure Coding Extension

 This document defines the framework for an Erasure Coding Extension
 for DTN. The document defines the terms, function, architectural
 components, and the extension block format. Some details of some
 features have be purposely left out, because we expect that the
 Erasure Coding Extension will have multiple options for these
 features. Specifically, a FEC scheme has not been defined in this
 document. The companion document [RandBinary] defines the
 specification for the Random Binary Forward Error Correcting Scheme.
 Other FEC schemes will be added in the future. Also, the format for
 Data Objects has not been defined in this document. The companion
 document [EcObjects] defines the specification of File and Large
 Bundle Data Objects. Other Data Object formats will be added in the
 future and each will have its own document. We also anticipate a
 refinement of the Handling Specification and the forwarding and
 traffic shaping policies of Intermediate Regulators. While this
 document recommends default policies, other Handling Specification
 definition will be added in the future and each will have their own
 document.

Zinky, et al. Expires February 21, 2013 [Page 30]

Internet-Draft DTN-EC-Arch August 2012

10. IANA Considerations

 Erasure Coding extension defines the following well known numbers:

 Bundle Protocol extension block number is the constant 0xEC.

 Identifier numbers for FEC schemes in extension block are defined
 in [RandBinary] and future FEC scheme documents.

 Identifier numbers for Data Object Format type in extension block
 are defined in [EcObjects] and future Data Object Format
 documents.

Zinky, et al. Expires February 21, 2013 [Page 31]

Internet-Draft DTN-EC-Arch August 2012

11. References

11.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC4838] Cerf, V., Burleigh, S., Hooke, A., Torgerson, L., Durst,
 R., Scott, K., Fall, K., and H. Weiss, "Delay-Tolerant
 Networking Architecture", RFC 4838, April 2007.

 [RFC5050] Scott, K. and S. Burleigh, "Bundle Protocol
 Specification", RFC 5050, November 2007.

 [RFC5052] Watson, M., Luby, M., and L. Vicisano, "Forward Error
 Correction (FEC) Building Block", RFC 5052, August 2007.

 [RFC6256] Eddy, W. and E. Davies, "Using Self-Delimiting Numeric
 Values in Protocols", RFC 6256, May 2011.

11.2. Informative References

 [EcObjects]
 Zinky, J., Caro, A., and G. Stein, "Bundle Protocol
 Erasure Coding Basic Objects",

draft-irtf-dtnrg-zinky-erasure-coding-objects-00 (work in
 progress), Aug 2012.

 [Erasure_Wang]
 Wang, Y., Jain, S., Martonosi, M., and K. Fall, "Erasure-
 coding based routing for opportunistic networks", ACM
 SIGCOM Workshop on Delay-tolerant networking (WDTN 05),
 Aug 2005.

 [RFC4122] Leach, P., Mealling, M., and R. Salz, "A Universally
 Unique IDentifier (UUID) URN Namespace", RFC 4122,
 July 2005.

 [RFC5053] Luby, M., Shokrollahi, A., Watson, M., and T. Stockhammer,
 "Raptor Forward Error Correction Scheme for Object
 Delivery", RFC 5053, October 2007.

 [RFC5170] Roca, V., Neumann, C., and D. Furodet, "Low Density Parity
 Check (LDPC) Staircase and Triangle Forward Error
 Correction (FEC) Schemes", RFC 5170, June 2008.

 [RFC5445] Watson, M., "Basic Forward Error Correction (FEC)
 Schemes", RFC 5445, March 2009.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4838
https://datatracker.ietf.org/doc/html/rfc5050
https://datatracker.ietf.org/doc/html/rfc5052
https://datatracker.ietf.org/doc/html/rfc6256
https://datatracker.ietf.org/doc/html/draft-irtf-dtnrg-zinky-erasure-coding-objects-00
https://datatracker.ietf.org/doc/html/rfc4122
https://datatracker.ietf.org/doc/html/rfc5053
https://datatracker.ietf.org/doc/html/rfc5170
https://datatracker.ietf.org/doc/html/rfc5445

Zinky, et al. Expires February 21, 2013 [Page 32]

Internet-Draft DTN-EC-Arch August 2012

 [RFC5510] Lacan, J., Roca, V., Peltotalo, J., and S. Peltotalo,
 "Reed-Solomon Forward Error Correction (FEC) Schemes",

RFC 5510, April 2009.

 [RFC6257] Symington, S., Farrell, S., Weiss, H., and P. Lovell,
 "Bundle Security Protocol Specification", RFC 6257,
 May 2011.

 [RandBinary]
 Zinky, J., Caro, A., and G. Stein, "Random Binary Coding
 Scheme for Bundle Protocol",

draft-irtf-dtnrg-zinky-random-binary-fec-scheme-00 (work
 in progress), Aug 2012.

https://datatracker.ietf.org/doc/html/rfc5510
https://datatracker.ietf.org/doc/html/rfc6257
https://datatracker.ietf.org/doc/html/draft-irtf-dtnrg-zinky-random-binary-fec-scheme-00

Zinky, et al. Expires February 21, 2013 [Page 33]

Internet-Draft DTN-EC-Arch August 2012

Authors' Addresses

 John Zinky
 Raytheon BBN Technologies
 10 Moulton St.
 Cambridge, MA 02138
 US

 Email: jzinky@bbn.com

 Armando Caro
 Raytheon BBN Technologies
 10 Moulton St.
 Cambridge, MA 02138
 US

 Email: acaro@bbn.com

 Gregory Stein
 Laboratory for Telecommunications Sciences
 8080 Greenmead Drive
 College Park, MD 20740
 US

 Email: gstein@ece.umd.edu

Zinky, et al. Expires February 21, 2013 [Page 34]

