
Workgroup: Network Working Group

Internet-Draft: draft-irtf-iccrg-rledbat-04

Published: 4 June 2023

Intended Status: Experimental

Expires: 6 December 2023

Authors: M. Bagnulo

UC3M

A. Garcia-Martinez

UC3M

G. Montenegro

Unaffiliated

P. Balasubramanian

Microsoft

rLEDBAT: receiver-driven Low Extra Delay Background Transport for TCP

Abstract

This document specifies the rLEDBAT, a set of mechanisms that enable

the execution of a less-than-best-effort congestion control

algorithm for TCP at the receiver end.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 6 December 2023.

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

2. Motivations for rLEDBAT

3. rLEDBAT mechanisms

3.1. Controlling the receive window

3.1.1. Avoiding window shrinking

3.1.2. Window Scale Option

3.2. Measuring delays

3.2.1. Measuring the RTT to estimate the queueing delay

3.2.2. Measuring one way delay to estimate the queueing delay

3.3. Detecting packet losses and retransmissions

4. Security Considerations

5. IANA Considerations

6. Acknowledgements

7. Informative References

Authors' Addresses

1. Introduction

LEDBAT (Low Extra Delay Background Transport) [RFC6817] is a

congestion-control algorithm that implements a less-than-best-effort

(LBE) traffic class.

When LEDBAT traffic shares a bottleneck with one or more TCP

connections using standard congestion control algorithms such as

Cubic [RFC8312] (hereafter standard-TCP for short), it reduces its

sending rate earlier and more aggressively than standard-TCP

congestion control, allowing standard-TCP traffic to use more of the

available capacity. In the absence of competing standard-TCP

traffic, LEDBAT aims to make an efficient use of the available

capacity, while keeping the queuing delay within predefined bounds.

LEDBAT reacts both to packet loss and to variations in delay.

Regarding to packet loss, LEDBAT reacts with a multiplicative

decrease, similar to most TCP congestion controllers. Regarding

delay, LEDBAT aims for a target queueing delay. When the measured

current queueing delay is below the target, LEDBAT increases the

sending rate and when the delay is above the target, it reduces the

sending rate. LEDBAT estimates the queuing delay by subtracting the

measured current one-way delay from the estimated base one-way delay

(i.e. the one-way delay in the absence of queues).

The LEDBAT specification [RFC6817] defines the LEDBAT congestion-

control algorithm, implemented in the sender to control its sending

rate. LEDBAT is specified in a protocol and layer agnostic manner.

LEDBAT++ [I-D.irtf-iccrg-ledbat-plus-plus] is also an LBE congestion

control algorithm which is inspired in LEDBAT while addressing

¶

¶

¶

¶

several problems identified with the original LEDBAT specification.

In particular the differences between LEDBAT and LEDBAT++ include:

i) LEDBAT++ uses the round-trip-time (RTT) (as opposed to the one

way delay used in LEDBAT) to estimate the queuing delay; ii) LEDBAT+

+ uses an Additive Increase/Multiplicative Decrease algorithm to

achieve inter-LEDBAT++ fairness and avoid the late-comer advantage

observed in LEDBAT; iii) LEDBAT++ performs periodic slowdowns to

improve the measurement of the base delay; iv) LEDBAT++ is defined

for TCP.

In this note, we describe rLEDBAT, a set of mechanisms that enable

the execution of an LBE delay-based congestion control algorithm

such as LEDBAT or LEDBAT++ in the receiver end of a TCP connection.

2. Motivations for rLEDBAT

rLEDBAT enables new use cases and new deployment models, fostering

the use of LBE traffic and benefitting the global Internet by

improving overall allocation of resources. The following scenarios

are enabled by rLEDBAT:

Content Delivery Networks and more sophisticated file

distribution scenarios: Consider the case where the source of a

file to be distributed (e.g., a software developer that wishes to

distribute a software update) would prefer to use LBE and it

enables LEDBAT/LEDBAT++ in the servers containing the source

file. However, because the file is being distributed through a

CDN which surrogates do not support LBE congestion control, the

result is that the file transfers, originated from CDN surrogates

will not be using LBE. Interestingly enough, in the case of the

software update, the developer may also control the software

performing the download in the client, the receiver of the file,

but because current LEDBAT/LEDBAT++ are sender-based algorithms,

controlling the client is not enough to enable LBE congestion

control in the communication. rLEDBAT would enable the use of LBE

traffic class for file distribution in this setup.

Interference from proxies and other middleboxes: Proxies and

other middleboxes are a commonplace in the Internet. For

instance, in the case of mobile networks, proxies are frequently

used. In the case of enterprise networks, it is common to deploy

corporate proxies for filtering and firewalling. In the case of

satellite links, Performance Enhancement Proxies (PEPs) are

deployed to mitigate the effect of the long delay in TCP

connection. These proxies terminate the TCP connection on both

ends and prevent the use of LBE congestion control in the segment

between the proxy and the sink of the content, the client. By

enabling rLEDBAT, clients would be able to enable LBE traffic

between them and the proxy.

¶

¶

¶

¶

¶

Receiver-defined preferences. It is frequent that the bottleneck

of the communication is the access link. This is particularly

true in the case of mobile devices. It is then especially

relevant for mobile devices to properly manage the capacity of

the access link. With current technologies, it is possible for

the mobile device to use different congestion control algorithms

expressing different preferences for the traffic. For instance, a

device can choose to use standard-TCP for some traffic and to use

LEDBAT/LEDBAT++ for other traffic. However, this would only

affect the outgoing traffic since both standard-TCP and LEDBAT/

LEDBAT++ are sender-driven. The mobile device has no means to

manage the traffic in the down-link, which is in most cases, the

communication bottleneck for a typical eye-ball end-user. rLEDBAT

enables the mobile device to selectively use LBE traffic class

for some of the incoming traffic. For instance, by using rLEDBAT,

a user can use regular standard-TCP/UDP for video stream (e.g.,

Youtube) and use rLEDBAT for other background file download.

3. rLEDBAT mechanisms

rLEDBAT provides the mechanisms to implement an LBE congestion

control algorithm at the receiver-end of a TCP connection. The

rLEDBAT receiver controls the sender's rate through the Receive

Window announced to the receiver in the TCP header.

rLEDBAT assumes that the sender is a standard TCP sender. rLEDBAT

does not require any rLEDBAT-specific modifications to the TCP

sender. The envisioned deployment model for rLEDBAT is that the

clients implement rLEDBAT and this enable rLEDBAT in communications

with existent standard TCP senders. In particular, the sender MUST

implement [I-D.ietf-tcpm-rfc793bis] and it also MUST implement the

Time Stamp Option as defined in [RFC7323]. Also, the sender SHOULD

implement some of the standard congestion control mechanisms, such

as Cubic [RFC8312] or New Reno [RFC5681].

rLEDBAT does not defines a new congestion control algorithm. The LBE

congestion control algorithm executed in the rLEDBAT receiver is

defined in other documents. The rLEDBAT receiver MUST use an LBE

congestion control algorithm. Because rLEDBAT assumes a standard TCP

sender, the sender will be using a "best effort" congestion control

algorithm (such as Cubic or New Reno). Since rLEDBAT uses the

Receive Window to control the sender's rate and the sender

calculates the sender's window as the minimum of the Receive window

and the congestion window, rLEDBAT will only be effective as long as

the congestion control algorithm executed in the receiver yields a

smaller window than the one calculated by the sender. This is

normally the case when the receiver is using an LBE congestion

control algorithm. The rLEDBAT receiver SHOULD use the LEDBAT

congestion control algorithm [RFC6817] or the LEDBAT++ congestion

¶

¶

¶

control algorithm [I-D.irtf-iccrg-ledbat-plus-plus]. The rLEDBAT MAY

use other LBE congestion control algorithms defined elsewhere.

Irrespectively of which congestion control algorithm is executed in

the receiver, an rLEDBAT connection will never be more aggressive

than standard TCP since it is always bounded by the congestion

control algorithm executed at the sender.

rLEDBAT is essentially composed of three types of mechanisms,

namely, those that provide the means to measure the packet delay

(either the round trip time or the one way delay, depending on the

selected algorithm), mechanisms to detect packet loss and the means

to manipulate the Receive Window to control the sender's rate. The

former provide input to the LBE congestion control algorithm while

the latter uses the congestion window computed by the LBE congestion

control algorithm to manipulate the Receive window, as depicted in

the figure.

Figure 1: The rLEDBAT architecture.

We describe each of the rLEDBAT components next.

¶

¶

+--+

| TCP receiver |

| +-----------------+ |

| | +------------+ | |

| +---------------------| RTT | | |

| | | | Estimation | | |

| | | +------------+ | |

| | | | |

| | | +------------+ | |

| | +--------------| Loss, RTX | | |

| | | | | Detection | | |

| | | | +------------+ | |

| v v | | |

| +----------------+ | | |

| | LBE Congestion | | rLEDBAT | |

| | Control | | | |

| +----------------+ | | |

| | | +------------+ | |

| | | | RCV-WND | | |

| +---------------->| Control | | |

| | +------------+ | |

| +-----------------+ |

+--+

¶

¶

¶

3.1. Controlling the receive window

rLEDBAT uses the Receive Window (RCV.WND) of TCP to enable the

receiver to control the sender's rate. [I-D.ietf-tcpm-rfc793bis]

defines that the RCV.WND is used to announce the available receive

buffer to the sender for flow control purposes. In order to avoid

confusion, we will call fc.WND the value that a standard RFC793bis

TCP receiver calculates to set in the receive window for flow

control purposes. We call rl.WND the window value calculated by

rLEDBAT algorithm and we call RCV.WND the value actually included in

the Receive Window field of the TCP header. For a RFC793bis

receiver, RCV.WND == fc.WND.

In the case of rLEDBAT receiver, the rLEDBAT receiver MUST NOT set

the RCV.WND to a value larger than fc.WND and it SHOULD set the

RCV.WND to the minimum of rl.WND and fc.WND, honoring both.

When using rLEDBAT, two congestion controllers are in action in the

flow of data from the sender to the receiver, namely, the congestion

control algorithm of TCP in the sender side and the LBE congestion

control algorithm executed in the receiver and conveyed to the

sender through the RCV.WND. In the normal TCP operation, the sender

uses the minimum of the congestion window cwnd and the receiver

window RCV.WND to calculate the sender's window SND.WND. This is

also true for rLEDBAT, as the sender is a regular TCP sender. This

guarantees that the rLEDBAT flow will never transmit more

aggressively than a TCP flow, as the sender's congestion window

limits the sending rate. Moreover, because a LBE congestion control

algorithm such as LEDBAT/LEDBAT++ is designed to react earlier and

more aggressively to congestion than regular TCP congestion control,

the rl.WND contained in the RCV.WND field of TCP will be in general

smaller than the congestion window calculated by the TCP sender,

implying that the rLEDBAT congestion control algorithm will be

effectively controlling the sender's window.

In summary, the sender's window is: SND.WND = min(cwnd, rl.WND,

fc.WND)

3.1.1. Avoiding window shrinking

The LEDBAT/LEDBAT++ algorithm executed in a rLEDBAT receiver

increases or decreases the rl.WND according to congestion signals

(variations on the estimations of the queueing delay and packet

loss). If the new congestion window is smaller than the current one

then directly announcing it in the RCV.WND may result in shrinking

the window, i.e., moving the right window edge to the left.

Shrinking the window is discouraged as per

[I-D.ietf-tcpm-rfc793bis], as it may cause unnecessary packet loss

and performance penalty. To be consistent with

¶

¶

¶

¶

[I-D.ietf-tcpm-rfc793bis], the rLEDBAT receiver SHOULD NOT shrink

the receive window.

In order to avoid window shrinking, upon the reception of a data

packet, the announced window can be reduced in the number of bytes

contained in the packet at most. This may fall short to honor the

new calculated value of the rl.WND. So, in order to reduce the

window as dictated by the rLEDBAT algorithm, the receiver will

progressively reduce the advertised RCV.WND, always honoring that

the reduction is less or equal than the received bytes, until the

target window determined by the rLEDBAT algorithm is reached. This

implies that it may take up to one RTT for the rLEDBAT receiver to

drain enough in-flight bytes to completely close its receive window

without shrinking it. This is more than sufficient to honor the

window output from the LEDBAT/LEDBAT++ algorithms since they only

allows to perform at most one multiplicative decrease per RTT.

3.1.2. Window Scale Option

The Window Scale (WS) option [RFC7323] is a mean to increase the

maximum window size permitted by the Receive Window. The use of the

WS option implies that the changes in the window are expressed in

the units resulting of the WS option used in the TCP connection.

This means that the rLEDBAT client will have to accumulate the

increases resulting from the different received packets, and only

convey a change in the window when the accumulated sum of increases

is equal or higher than one unit used to express the receive window

according to the WS option in place for the TCP connection.

Changes in the receive window that are smaller than 1 MSS are

unlikely to have any immediate impact on the sender's rate, as usual

TCP segmentation practice results in sending full segments (i.e.,

segments of size equal to the MSS). So, accumulating changes in the

receive window until completing a full MSS in the sender or in the

receiver makes little difference.

Current WS option specification [RFC7323] defines that allowed

values for the WS option are between 0 and 14. Assuming a MSS around

1500 bytes, WS option values between 0 and 11 result in the receive

window being expressed in units that are about 1 MSS or smaller. So,

WS option values between 0 and 11 have no impact in rLEDBAT.

WS option values higher than 11 can affect the dynamics of rLEDBAT,

since control may become too coarse (e.g., with WS of 14, a change

in one unit of the receive window implies a change of 10 MSS in the

effective window).

¶

¶

¶

¶

¶

¶

For the above reasons, the rLEDBAT client SHOULD set WS option

values lower than 12. Additional experimentation is required to

explore the impact of larger WS values in rLEDBAT dynamics.

Note that the recommendation for rLEDBAT to set the WS option value

to lower values does not precludes the communication with servers

that set the WS option values to larger values, since the WS option

value used is set independently for each direction of the TCP

connection.

3.2. Measuring delays

Both LEDBAT and LEDBAT++ measure base and current delays to estimate

the queueing delay. LEDBAT uses the one way delay while LEDBAT++

uses the round trip time. In the next sections we describe how

rLEDBAt mechanisms enable the receiver to measure the one way delay

or the round trip time, whatever needed depending on the congestion

control algorithm used.

3.2.1. Measuring the RTT to estimate the queueing delay

LEDBAT++ uses the round trip time (RTT) to estimate the queueing

delay. In order to estimate the queueing delay using the RTT, the

rLEDBAT receiver estimates the base RTT (i.e., the constant

components of the RTT) and also measures the current RTT. By

subtracting these two values, we obtain the queuing delay to be used

by the rLEDBAT controller.

LEDBAT++ discovers the base RTT (RTTb) by taking the minimum value

of the measured RTTs over a period of time. The current RTT (RTTc)

is estimated using a number of recent samples and applying a filter,

such as the minimum (or the mean) of the last k samples. Using the

RTT to estimate the queueing delay has a number of shortcomings and

difficulties that we discuss next.

The queuing delay measured using the RTT includes also the queueing

delay experienced by the return packets in the direction from the

rLEDBAT receiver to the sender. This is a fundamental limitation of

this approach. The impact of this error is that the rLEDBAT

controller will also react to congestion in the reverse path

direction which results in an even more conservative mechanism.

In order to measure the RTT, the rLEDBAT client MUST enable the Time

Stamp (TS) option [RFC7323]. By matching the TSVal value carried in

outgoing packets with the TSecr value observed in incoming packets,

it is possible to measure the RTT. This allows the rLEDBAT receiver

to measure the RTT even if it is acting as a pure receiver. In a

pure receiver there is no data flowing from the rLEDBAT receiver to

the sender, making impossible to match data packets with

¶

¶

¶

¶

¶

¶

acknowledgements packets to measure the RTT, as it is usually done

in TCP for other purposes.

Depending on the frequency of the local clock used to generate the

values included in the TS option, several packets may carry the same

TSVal value. If that happens, the rLEDBAT receiver will be unable to

match the different outgoing packets carrying the same TSVal value

with the different incoming packets carrying also the same TSecr

value. However, it is not necessary for rLEDBAT to use all packets

to estimate the RTT and sampling a subset of in-flight packets per

RTT is enough to properly assess the queueing delay. The RTT MUST

then be calculated as the time since the first packet with a given

TSVal was sent and the first packet that was received with the same

value contained in the TSecr. Other packets with repeated TS values

SHOULD NOT be used for the RTT calculation.

Several issues must be addressed in order to avoid an artificial

increase of the observed RTT. Different issues emerge depending

whether the rLEDBAT capable host is sending data packets or pure

ACKs to measure the RTT. We next consider the issues separately.

3.2.1.1. Measuring RTT sending pure ACKs

In this scenario, the rLEDBAT node (node A) sends a pure ACK to the

other endpoint of the TCP connection (node B), including the TS

option. Upon the reception of the TS Option, host B will copy the

value of the TSVal into the TSecr field of the TS option and include

that option into the next data packet towards host A. However, there

are two reasons why B may not send a packet immediately back to A,

artificially increasing the measured RTT. The first reason is when A

has no data to send. The second is when A has no available window to

put more packets in-flight. We describe next how each of these cases

is addressed.

The case where the host B has no data to send when it receives the

pure Acknowledgement is expected to be rare in the rLEDBAT use

cases. rLEDBAT will be used mostly for background file transfers so

the expected common case is that the sender will have data to send

throughout the lifetime of the communication. However, if, for

example, the file is structured in blocks of data, it may be the

case that seldom, the sender will have to wait until the next block

is available to proceed with the data transfer and momentarily lack

of data to send. To address this situation, the filter used by the

congestion control algorithm executed in the receiver SHOULD discard

the larger samples (e.g. a min filter would achieve this) when

measuring the RTT using pure ACK packets.

The limitation of available sender's window to send more packets can

come either from the TCP congestion window in host B or from the

¶

¶

¶

¶

¶

announced receive window from the rLEDBAT in host A. Normally, the

receive window will be the one to limit the sender's transmission

rate, since the LBE congestion control algorithm used by the rLEDBAT

node is designed to be more restrictive on the sender's rate than

standard-TCP. If the limiting factor is the congestion window in the

sender, it is less relevant if rLEDBAT further reduces the receive

window due to a bloated RTT measurement, since the rLEDBAT is not

actively controlling the sender's rate. Nevertheless, the proposed

approach to discard larger samples would also address this issue.

To address the case in which the limiting factor is the receive

window announced by rLEDBAT, the congestion control algorithm at the

receiver SHOULD discard the RTT measurements done using pure ACK

packets while reducing the window and avoid including bloated

samples in the queueing delay estimation. The rLEDBAT receiver is

aware whether a given TSVal value was sent in a pure ACK packet

where the window was reduced, and if so, it can discard the

corresponding RTT measurement.

3.2.1.2. Measuring the RTT sending data packets

In the case that the rLEDBAT node is sending data packets and

matching them with pure ACKs to measure the RTT, a factor that can

artificially increase the RTT measured is the presence of delayed

Acknowledgements. According to the TS option generation rules

[RFC7323], the value included in the TSecr for a delayed ACK is the

one in the TSVal field of the earliest unacknowledged segment. This

may artificially increase the measured RTT.

If both endpoints of the connection are sending data packets,

Acknowledgments are piggybacked into the data packets and they are

not delayed. Delayed ACKs only increase the RTT measurement in the

case that the sender has no data to send. Since the expected use

case for rLEDBAT is that the sender will be sending background

traffic to the rLEDBAT receiver, the cases where delayed ACKs

increase the measured RTT are expected to be rare.

Nevertheless, for those measurements done using data packets sent by

the rLEDBAT node matching pure ACKs sent from the other endpoint of

the connection, they will result in an increased RTT. The additional

increase in the measured RTT will range between the transmission

delay of on packet and 500 ms. The reason for this is that delayed

ACKs are generated every second data packet received and not delayed

more than 500 ms according to [I-D.ietf-tcpm-rfc793bis]. The rLEDBAT

receiver MAY discard the RTT measurements done using data packets

from the rLEBDAT receiver and matching pure ACKs, especially if it

has recent measurements done using other packet combinations.Also,

applying a filter that discard larger samples would also address

this issue (e.g. a min filter).

¶

¶

¶

¶

¶

3.2.2. Measuring one way delay to estimate the queueing delay

The LEDBAT algorithm uses the one-way delay of packets as input. A

TCP receiver can measure the delay of incoming packets directly (as

opposed to the sender-based LEDBAT, where the receiver measures the

one-way delay and needs to convey it to the sender).

In the case of TCP, the receiver can use the Time Stamp option to

measure the one way delay by subtracting the time stamp contained in

the incoming packet from the local time at which the packet has

arrived. As noted in [RFC6817] the clock offset between the clock of

the sender and the clock in the receiver does not affect the LEDBAT

operation, since LEDBAT uses the difference between the base one way

delay and the current one way delay to estimate the queuing delay,

effectively canceling the clock offset error in the queueing delay

estimation. There are however two other issues that the rLEDBAT

receiver needs to take into account in order to properly estimate

the one way delay, namely, the units in which the received

timestamps are expressed and the clock skew. We address them next.

In order to measure the one way delay using TCP timestamps, the

rLEDBAT receiver needs to discover the units in which the values of

the TS option are expressed and second, to account for the skew

between the two clocks of the endpoints of the TCP connection. Note

that a mismatch of 100 ppm (parts per million) in the estimation at

the receiver of the clock rate of the sender accounts for 6 ms of

variation per minute in the measured delay for a communication, just

one order of magnitude below the target set for controlling the rate

by rLEDBAT. Typical skew for untrained clocks is reported to be

around 100-200 ppm [RFC6817].

In order to learn both the TS units and the clock skew, the rLEDBAT

receiver compares how much local time has elapsed between the sender

has issued two packets with different TS values. By comparing the

local time difference and the TS value difference, the receiver can

assess the TS units and relative clock skews. In order for this to

be accurate, the packets carrying the different TS values should

experience equal (or at least similar delay) when traveling from the

sender to the receiver, as any difference in the experienced delays

would introduce error in the unit/skew estimation. One possible

approach is to select packets that experienced the minimum delay

(i.e. close to zero queueing delay) to make the estimations.

An additional difficulty regarding the estimation of the TS units

and clock skew in the context of (r)LEDBAT is that the LEDBAT

congestion controller actions directly affect the (queueing) delay

experienced by packets. In particular, if there is an error in the

estimation of the TS units/skew, the LEDBAT controller will attempt

to compensate it by reducing/increasing the load. The result is that

¶

¶

¶

¶

the LEDBAT operation interferes with the TS units/clock skew

measurements. Because of this, measurements are more accurate when

there is no traffic in the connection (in addition to the packets

used for the measurements). The problem is that the receiver is

unaware if the sender is injecting traffic at any point in time, and

opportunistically seize quiet intervals to preform measurements. The

receiver can however, force periodic slowdowns, reducing the

announced receive window to a few packets and perform the

measurements then.

It is possible for the rLEDBAT receiver to perform multiple

measurements to assess both the TS units and the relative clock skew

during the lifetime of the connection, in order to obtain more

accurate results. Clock skew measurements are more accurate if the

time period used to discover the skew is larger, as the impact of

the skew becomes more apparent. Due to the same logic, accurately

learning the clock skew is more pressing as the time separating the

two delays to compare increases. It is a reasonable approach for the

rLEDBAT receiver to perform an early discovery of the TS units (and

the clock skew) using the first few packets of the TCP connection

and then improve the accuracy of the TS units/clock skew estimation

using periodic measurements later in the lifetime of the connection.

3.3. Detecting packet losses and retransmissions

The rLEDBAT receiver is capable of detecting retransmitted packets

in the following way. We call RCV.HGH the highest sequence number

correspondent to a received byte of data (not assuming that all

bytes with smaller sequence numbers have been received already,

there may be holes) and we call TSV.HGH the TSVal value

corresponding to the segment in which that byte was carried. SEG.SEQ

stands for the sequence number of a newly received segment and we

call TSV.SEQ the TSVal value of the newly received segment.

If SEG.SEQ < RCV.HGH and TSV.SEQ > TSV.HGH then the newly received

segment is a retransmission. This is so because the newly received

segment was generated later than another already received segment

which contained data with a larger sequence number. This means that

this segment was lost and was retransmitted.

The proposed mechanism to detect retransmissions at the receiver

fails when there are window tail drops. If all packets in the tail

of the window are lost, the receiver will not be able to detect a

mismatch between the sequence numbers of the packets and the order

of the timestamps. In this case, rLEDBAT will not react to losses

but the TCP congestion controller at the sender will, most likely

reducing its window to 1MSS and take over the control of the sending

rate, until slow start ramps up and catches the current value of the

rLEDBAT window.

¶

¶

¶

¶

¶

[I-D.ietf-tcpm-rfc793bis]

[I-D.irtf-iccrg-ledbat-plus-plus]

[RFC5681]

[RFC6817]

[RFC7323]

[RFC8312]

4. Security Considerations

5. IANA Considerations

6. Acknowledgements

This work was supported by the EU through the StandICT CCI project,

the StandICT CEL6 project, the NGI Pointer RIM project and the H2020

5G-RANGE project and by the Spanish Ministry of Economy and

Competitiveness through the 5G-City project (TEC2016-76795-C6-3-R).

7. Informative References

Eddy, W., "Transmission Control Protocol (TCP)", Work in

Progress, Internet-Draft, draft-ietf-tcpm-rfc793bis-28, 7

March 2022, <https://datatracker.ietf.org/doc/html/draft-

ietf-tcpm-rfc793bis-28>.

Balasubramanian, P., Ertugay, O.,

and D. Havey, "LEDBAT++: Congestion Control for

Background Traffic", Work in Progress, Internet-Draft,

draft-irtf-iccrg-ledbat-plus-plus-01, 25 August 2020,

<https://datatracker.ietf.org/doc/html/draft-irtf-iccrg-

ledbat-plus-plus-01>.

Allman, M., Paxson, V., and E. Blanton, "TCP Congestion

Control", RFC 5681, DOI 10.17487/RFC5681, September 2009,

<https://www.rfc-editor.org/info/rfc5681>.

Shalunov, S., Hazel, G., Iyengar, J., and M. Kuehlewind,

"Low Extra Delay Background Transport (LEDBAT)", RFC

6817, DOI 10.17487/RFC6817, December 2012, <https://

www.rfc-editor.org/info/rfc6817>.

Borman, D., Braden, B., Jacobson, V., and R.

Scheffenegger, Ed., "TCP Extensions for High

Performance", RFC 7323, DOI 10.17487/RFC7323, September

2014, <https://www.rfc-editor.org/info/rfc7323>.

Rhee, I., Xu, L., Ha, S., Zimmermann, A., Eggert, L.,

and R. Scheffenegger, "CUBIC for Fast Long-Distance

Networks", RFC 8312, DOI 10.17487/RFC8312, February 2018,

<https://www.rfc-editor.org/info/rfc8312>.

Authors' Addresses

Marcelo Bagnulo

UC3M

¶

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-rfc793bis-28
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-rfc793bis-28
https://datatracker.ietf.org/doc/html/draft-irtf-iccrg-ledbat-plus-plus-01
https://datatracker.ietf.org/doc/html/draft-irtf-iccrg-ledbat-plus-plus-01
https://www.rfc-editor.org/info/rfc5681
https://www.rfc-editor.org/info/rfc6817
https://www.rfc-editor.org/info/rfc6817
https://www.rfc-editor.org/info/rfc7323
https://www.rfc-editor.org/info/rfc8312

Email: marcelo@it.uc3m.es

Alberto Garcia-Martinez

UC3M

Email: alberto@it.uc3m.es

Gabriel Montenegro

Unaffiliated

Email: g.e.montenegro@hotmail.com

Praveen Balasubramanian

Microsoft

Email: pravb@microsoft.com

mailto:marcelo@it.uc3m.es
mailto:alberto@it.uc3m.es
mailto:g.e.montenegro@hotmail.com
mailto:pravb@microsoft.com

	rLEDBAT: receiver-driven Low Extra Delay Background Transport for TCP
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Motivations for rLEDBAT
	3. rLEDBAT mechanisms
	3.1. Controlling the receive window
	3.1.1. Avoiding window shrinking
	3.1.2. Window Scale Option

	3.2. Measuring delays
	3.2.1. Measuring the RTT to estimate the queueing delay
	3.2.1.1. Measuring RTT sending pure ACKs
	3.2.1.2. Measuring the RTT sending data packets

	3.2.2. Measuring one way delay to estimate the queueing delay

	3.3. Detecting packet losses and retransmissions

	4. Security Considerations
	5. IANA Considerations
	6. Acknowledgements
	7. Informative References
	Authors' Addresses

