
Workgroup: ICN Research Group

Internet-Draft: draft-irtf-icnrg-ccninfo-15

Published: 28 December 2022

Intended Status: Experimental

Expires: 1 July 2023

Authors: H. Asaeda

NICT

A. Ooka

NICT

X. Shao

Toyohashi University of Technology

CCNinfo: Discovering Content and Network Information in Content-Centric

Networks

Abstract

This document describes a mechanism named "CCNinfo" that discovers

information about the network topology and in-network cache in

Content-Centric Networks (CCN). CCNinfo investigates: 1) the CCN

routing path information per name prefix, 2) the Round-Trip Time

(RTT) between the content forwarder and consumer, and 3) the states

of in-network cache per name prefix. CCNinfo is useful to understand

and debug the behavior of testbed networks and other experimental

deployments of CCN systems.

This document is a product of the IRTF Information-Centric

Networking Research Group (ICNRG). This document represents the

consensus view of ICNRG and has been reviewed extensively by several

members of the ICN community and the RG. The authors and RG chairs

approve of the contents. The document is sponsored under the IRTF

and is not issued by the IETF and is not an IETF standard. This is

an experimental protocol and the specification may change in the

future.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 1 July 2023.

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. CCNinfo as an Experimental Tool

2. Terminology

2.1. Definitions

3. CCNinfo Message Formats

3.1. Request Message

3.1.1. Request Header Block and Request Block

3.1.2. Report Block TLV

3.1.3. Content Name Specification

3.2. Reply Message

3.2.1. Reply Block TLV

3.2.1.1. Reply Sub-Block TLV

4. CCNinfo User Behavior

4.1. Sending CCNinfo Request

4.1.1. Routing Path Information

4.1.2. In-Network Cache Information

4.2. Receiving CCNinfo Reply

5. Router Behavior

5.1. User and Neighbor Verification

5.2. Receiving CCNinfo Request

5.3. Forwarding CCNinfo Request

5.3.1. Regular Request

5.3.2. Full Discovery Request

5.4. Sending CCNinfo Reply

5.5. Forwarding CCNinfo Reply

5.6. PIT Entry Management for Multipath Support

6. CCNinfo Termination

6.1. Arriving at First-hop Router

6.2. Arriving at Router Having Cache

6.3. Arriving at Last Router

6.4. Invalid Request

6.5. No Route

¶

¶

https://trustee.ietf.org/license-info

6.6. No Information

6.7. No Space

6.8. Fatal Error

6.9. CCNinfo Reply Timeout

6.10. Non-Supported Node

6.11. Administratively Prohibited

7. Configurations

7.1. CCNinfo Reply Timeout

7.2. HopLimit in Fixed Header

7.3. Access Control

8. Diagnosis and Analysis

8.1. Number of Hops and RTT

8.2. Caching Router Identification

8.3. TTL or Hop Limit

8.4. Time Delay

8.5. Path Stretch

8.6. Cache Hit Probability

9. IANA Considerations

9.1. Packet Type Registry

9.2. Top-Level Type Registry

9.3. Hop-by-Hop Type Registry

9.4. Message Type Registry

9.5. Reply Type Registry

10. Security Considerations

10.1. Policy-Based Information Provisioning for Request

10.2. Filtering CCNinfo Users Located in Invalid Networks

10.3. Topology Discovery

10.4. Characteristics of Content

10.5. Computational Attacks

10.6. Longer or Shorter CCNinfo Reply Timeout

10.7. Limiting Request Rates

10.8. Limiting Reply Rates

10.9. Adjacency Verification

11. Acknowledgements

12. References

12.1. Normative References

12.2. Informative References

Appendix A. ccninfo Command and Options

Authors' Addresses

1. Introduction

In Content-Centric Networks (CCN), publishers provide the content

through the network, and receivers retrieve it by name. In this

network architecture, routers forward content requests through their

Forwarding Information Bases (FIBs), which are populated by name-

based routing protocols. CCN also enables receivers to retrieve

content from an in-network cache.¶

In CCN, while consumers do not generally need to know the content

forwarder that is transmitting the content to them, the operators

and developers may want to identify the content forwarder and

observe the routing path information per name prefix for

troubleshooting or investigating the network conditions.

IP traceroute is a useful tool for discovering the routing

conditions in IP networks because it provides intermediate router

addresses along the path between the source and destination and the

Round-Trip Time (RTT) for the path. However, this IP-based network

tool cannot trace the name prefix paths used in CCN. Moreover, such

IP-based network tools do not obtain the states of the in-network

cache to be discovered.

Contrace [7] enables end users (i.e., consumers) to investigate path

and in-network cache conditions in CCN. Contrace is implemented as

an external daemon process running over TCP/IP that can interact

with a previous CCNx forwarding daemon (CCNx-0.8.2) to retrieve the

caching information on the forwarding daemon. This solution is

flexible, but it requires defining the common APIs used for global

deployment in TCP/IP networks. ICN ping [8] and traceroute [9] are

lightweight operational tools that enable a user to explore the

path(s) that reach a publisher or a cache storing the named content.

ICN ping and traceroute, however, do not expose detailed information

about the forwarders deployed by a network operator.

This document describes the specifications of "CCNinfo", an active

networking tool for discovering the path and content caching

information in CCN. CCNinfo defines the protocol messages to

investigate path and in-network cache conditions in CCN. It is

embedded in the CCNx forwarding process and can facilitate with non-

IP networks as with the basic CCN concept.

The two message types, Request and Reply messages, are encoded in

the CCNx TLV format [1]. The request-reply message flow, walking up

the tree from a consumer toward a publisher, is similar to the

behavior of the IP multicast traceroute facility [10].

CCNinfo facilitates the tracing of a routing path and provides: 1)

the RTT between the content forwarder (i.e., caching router or

first-hop router) and consumer, 2) the states of the in-network

cache per name prefix, and 3) the routing path information per name

prefix.

In addition, CCNinfo identifies the states of the cache, such as the

following metrics for Content Store (CS) in the content forwarder:

1) size of cached content objects, 2) number of cached content

objects, 3) number of accesses (i.e., received Interests) per

¶

¶

¶

¶

¶

¶

content, and 4) elapsed cache time and remaining cache lifetime of

content.

CCNinfo supports multipath forwarding. The Request messages can be

forwarded to multiple neighbor routers. When the Request messages

are forwarded to multiple routers, the different Reply messages are

forwarded from different routers or publishers.

Furthermore, CCNinfo implements policy-based information

provisioning that enables administrators to "hide" secure or private

information but does not disrupt message forwarding. This policy-

based information provisioning reduces the deployment barrier faced

by operators in installing and running CCNinfo on their routers.

The document represents the consensus of the Information-Centric

Networking Research Group (ICNRG). This document was read and

reviewed by the active research group members. It is not an IETF

product and is not a standard.

1.1. CCNinfo as an Experimental Tool

In order to carry out meaningful experimentation with CCNx

protocols, comprehensive instrumentation and management information

is needed to take measurements and explore both the performance and

robustness characteristics of the protocols and of the applications

using them. CCNinfo's primary goal is to gather and report this

information. As experience is gained with both the CCNx protocols

and CCNinfo itself, we can refine the instrumentation capabilities

and discover what additional capabilities might be needed in CCNinfo

and conversely which features wind up not being of sufficient value

to justify the implementation complexity and execution overhead.

CCNinfo is intended as a comprehensive experimental tool for CCNx-

based networks. It provides a wealth of information from forwarders,

including on-path in-network cache conditions as well as forwarding

path instrumentation of multiple paths toward content forwarders. As

an experimental capability that exposes detailed information about

the forwarders deployed by a network operator, CCNinfo employs more

granular authorization policies than those required of ICN ping or

ICN traceroute.

CCNinfo uses two message types: Request and Reply. A CCNinfo user,

e.g., consumer, initiates a CCNinfo Request message when s/he wants

to obtain routing path and cache information. When an adjacent

neighbor router receives the Request message, it examines its own

cache information. If the router does not cache the specified

content, it inserts its Report block into the hop-by-hop header of

the Request message and forwards the message to its upstream

neighbor router(s) decided by its FIB. In Figure 1, CCNinfo user and

¶

¶

¶

¶

¶

¶

routers (Router A, B, C) insert their own Report blocks into the

Request message and forward the message toward the content

forwarder.

Figure 1: Request message invoked by CCNinfo user and forwarded by

routers.

When the Request message reaches the content forwarder, the content

forwarder forms the Reply message; it inserts its own Reply block

TLV and Reply sub-block TLV(s) to the Request message. The Reply

message is then forwarded back toward the user in a hop-by-hop

manner along the Pending Interest Table (PIT) entries. In Figure 2,

each router (Router C, B, and A) forwards the Reply message along

its PIT entry and finally, the CCNinfo user receives a Reply message

from Router C, which is the first-hop router for the Publisher.

Another Reply message from the Caching router (i.e., Reply(C)) is

discarded at Router B if the other Reply message (i.e., Reply(P))

was already forwarded by Router B.

¶

 1. Request 2. Request 3. Request

 (U) (U+A) (U+A+B)

 +----+ +----+ +----+

 | | | | | |

 | v | v | v

+--------+ +--------+ +--------+ +--------+ +---------+

| CCNinfo|----| Router |----| Router |----| Router |----|Publisher|

| user | | A | | B | | C | | |

+--------+ +--------+ +--------+ +--------+ +---------+

 \

 \ +-------+

 3. Request \ | Cache |

 (U+A+B) \ +---------+ |

 v| Caching |----+

 | router |

 +---------+

¶

Figure 2: Reply messages forwarded by routers, and one Reply message is

received by CCNinfo user.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 (RFC2119 [3] and RFC8174 [4]) when, and only when, they

appear in all capitals, as shown here.

2.1. Definitions

This document follows the basic terminologies and definitions

described in [1]. Although CCNinfo requests flow in the opposite

direction to the data flow, we refer to "upstream" and "downstream"

with respect to data, unless explicitly specified.

 3. Reply(P) 2. Reply(P) 1. Reply(P)

 +----+ +----+ +----+

 | | | | | |

 v | v | v |

+--------+ +--------+ +--------+ +--------+ +---------+

| CCNinfo|----| Router |----| Router |----| Router |----|Publisher|

| user | | A | | B | | C | | |

+--------+ +--------+ +--------+ +--------+ +---------+

 ^

 \ +-------+

 1. Reply(C) \ | Cache |

 \ +---------+ |

 \| Caching |----+

 | router |

 +---------+

¶

¶

Scheme name

Prefix name

Exact name

Node

Consumer

Publisher

Router

Caching router

Content forwarder

CCNinfo user

It indicates a URI and protocol. This document only considers

"ccnx:/" as the scheme name.

A prefix name, which is defined in [2], is a name that does not

uniquely identify a single content object, but rather a namespace

or prefix of an existing content object name.

An exact name, which is defined in [2], is one that uniquely

identifies the name of a content object.

A node within a CCN network can fulfill the role of a data

publisher, a data consumer, and/or a forwarder for interest and

content object as given in [6].

A node that requests content objects by generating and sending

out interests. It is a same definition of ICN Consumer as given

in [6].

A node that creates content objects and makes them available for

retrieval. It is a same definition of ICN Producer as given in

[6].

A node that implements stateful forwarding in the path between

consumer and publisher.

A node that temporarily stores and potentially carries interests

or content objects before forwarding it to next node.

It is either a caching router or a first-hop router that forwards

content objects to consumers.

A node that initiates the CCNinfo Request, which is consumer or

router that invokes the CCNinfo user program with the name prefix

of the content. The CCNinfo user program, such as "ccninfo"

command described in Appendix A or other similar commands,

¶

¶

¶

¶

¶

¶

¶

¶

¶

Incoming face

Outgoing face

Upstream router

Downstream router

First-hop router (FHR)

Last-hop router (LHR)

initiates the Request message to obtain routing path and cache

information.

The face on which data are expected to arrive from the specified

name prefix.

The face to which data from the publisher or router are expected

to transmit for the specified name prefix. It is also the face on

which the Request messages are received.

The router that connects to an Incoming face of a router.

The router that connects to an Outgoing face of a router.

The router that matches a FIB entry with an Outgoing face

referring to a local application or a publisher.

The router that is directly connected to a consumer.

3. CCNinfo Message Formats

CCNinfo Request and Reply messages are encoded in the CCNx TLV

format ([1], Figure 3). The Request message consists of a fixed

header, Request block TLV (Figure 7), and Report block TLV(s)

(Figure 12). The Reply message consists of a fixed header, Request

block TLV, Report block TLV(s), Reply block TLV (Figure 14), and

Reply sub-block TLV(s) (Figure 15).

¶

¶

¶

¶

¶

¶

¶

¶

 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+---------------+---------------+---------------+---------------+

| Version | PacketType | PacketLength |

+---------------+---------------+---------------+---------------+

| PacketType specific fields | HeaderLength |

+---------------+---------------+---------------+---------------+

/ Optional Hop-by-hop header TLVs /

+---------------+---------------+---------------+---------------+

/ PacketPayload TLVs /

+---------------+---------------+---------------+---------------+

/ Optional CCNx ValidationAlgorithm TLV /

+---------------+---------------+---------------+---------------+

/ Optional CCNx ValidationPayload TLV (ValidationAlg required) /

+---------------+---------------+---------------+---------------+

Figure 3: Packet format [1]

The PacketType values in the fixed header shown in Figure 3 are

PT_CCNINFO_REQUEST and PT_CCNINFO_REPLY, respectively (Figure 4).

CCNinfo Request and Reply messages are forwarded in a hop-by-hop

manner. When the Request message reaches the content forwarder, the

content forwarder turns it into a Reply message by changing the Type

field value in the fixed header from PT_CCNINFO_REQUEST to

PT_CCNINFO_REPLY and forwards it back toward the node that initiated

the Request message.

Figure 4: Packet Type Namespace

Following a fixed header, there can be a sequence of optional hop-

by-hop header TLV(s) for a Request message. In the case of a Request

message, it is followed by a sequence of Report blocks, each from a

router on the path toward the publisher or caching router.

At the beginning of PacketPayload TLVs, a top-level TLV type,

T_DISCOVERY (Figure 5), exists at the outermost level of a CCNx

protocol message. This TLV indicates that the Name segment TLV(s)

and Reply block TLV(s) would follow in the Request or Reply message.

Figure 5: Top-Level Type Namespace

3.1. Request Message

When a CCNinfo user initiates a discovery request (e.g., via the

ccninfo command described in Appendix A), a CCNinfo Request message

is created and forwarded to its upstream router through the Incoming

face(s) determined by its FIB.

¶

 Code Type name

======== =====================

 %x00 PT_INTEREST [1]

 %x01 PT_CONTENT [1]

 %x02 PT_RETURN [1]

 %x03 PT_CCNINFO_REQUEST

 %x04 PT_CCNINFO_REPLY

¶

¶

 Code Type name

============= =========================

 %x0000 Reserved [1]

 %x0001 T_INTEREST [1]

 %x0002 T_OBJECT [1]

 %x0003 T_VALIDATION_ALG [1]

 %x0004 T_VALIDATION_PAYLOAD [1]

 %x0005 T_DISCOVERY

¶

The Request message format is shown in Figure 6. It consists of a

fixed header, Request header block TLV (Figure 7), Report block

TLV(s) (Figure 12), Name TLV, and Request block TLV. Request header

block TLV and Report block TLV(s) are contained in the hop-by-hop

header, as those might change from hop to hop. Request block TLV is

encoded in the PacketPayload TLV by content forwarder as the

protocol message itself. The PacketType value of the Request message

is PT_CCNINFO_REQUEST (Figure 4). The Type value of the Top-Level

type namespace is T_DISCOVERY (Figure 5).

Figure 6: Request message consists of a fixed header, Request block

TLV, Report block TLV(s), and Name TLV

HopLimit: 8 bits

HopLimit is a counter that is decremented with each hop whenever

a Request packet is forwarded. It is specified by the CCNinfo

¶

 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+---------------+---------------+---------------+---------------+

| Version | PacketType | PacketLength |

+---------------+---------------+---------------+---------------+

| HopLimit | ReturnCode | Reserved(MBZ) | HeaderLength |

+===============+===============+===============+===============+

/ Request header block TLV /

+---------------+---------------+---------------+---------------+

/ Report block TLV 1 /

+---------------+---------------+---------------+---------------+

/ Report block TLV 2 /

+---------------+---------------+---------------+---------------+

/ . /

/ . /

+---------------+---------------+---------------+---------------+

/ Report block TLV n /

+===============+===============+===============+===============+

| Type (=T_DISCOVERY) | MessageLength |

+---------------+---------------+---------------+---------------+

| T_NAME | Length |

+---------------+---------------+---------------+---------------+

/ Name segment TLVs (name prefix specified by CCNinfo user) /

+---------------+---------------+---------------+---------------+

/ Request block TLV /

+---------------+---------------+---------------+---------------+

/ Optional CCNx ValidationAlgorithm TLV /

+---------------+---------------+---------------+---------------+

/ Optional CCNx ValidationPayload TLV (ValidationAlg required) /

+---------------+---------------+---------------+---------------+

¶

user program. The HopLimit value MUST be decremented by 1 prior

to forwarding the Request packet. The packet is discarded if

HopLimit is decremented to zero. HopLimit limits the distance

that a Request may travel on the network. Only the specified

number of hops from the CCNinfo user traces the Request. The last

router stops the trace and sends the Reply message back to the

CCNinfo user.

ReturnCode: 8 bits

ReturnCode is used for the Reply message. This value is replaced

by the content forwarder when the Request message is returned as

the Reply message (see Section 3.2). Until then, this field MUST

be transmitted as zeros and ignored on receipt.

Reserved (MBZ): 8 bits

The reserved fields in the Value field MUST be transmitted as

zeros and ignored on receipt.

3.1.1. Request Header Block and Request Block

When a CCNinfo user transmits the Request message, s/he MUST insert

her/his Request header block TLV (Figure 7) into the hop-by-hop

¶

¶

¶

Value Name Description

----- --------------- --

%x00 NO_ERROR No error

%x01 WRONG_IF CCNinfo Request arrived on an interface

 to which this router would not forward for

 the specified name/function toward the

 publisher.

%x02 INVALID_REQUEST Invalid CCNinfo Request is received.

%x03 NO_ROUTE This router has no route for the name prefix

 and no way to determine a route.

%x04 NO_INFO This router has no cache information for the

 specified name prefix.

%x05 NO_SPACE There was not enough room to insert another

 Report block in the packet.

%x06 INFO_HIDDEN Information is hidden from this discovery

 owing to some policy.

%x0E ADMIN_PROHIB CCNinfo Request is administratively

 prohibited.

%x0F UNKNOWN_REQUEST This router does not support/recognize the

 Request message.

%x80 FATAL_ERROR In a fatal error, the router may know the

 upstream router but cannot forward the

 message to it.

¶

¶

¶

header and Request block TLV (Figure 10) into the message before

sending it through the Incoming face(s).

Figure 7: Request header block TLV (hop-by-hop header)

Figure 8: Hop-by-Hop Type Namespace

Type: 16 bits

Format of the Value field. For the type value of the Request

block TLV MUST be T_DISC_REQHDR.

Length: 16 bits

Length of Value field in octets.

Request ID: 16 bits

This field is used as a unique identifier for the CCNinfo Request

so that the duplicate or delayed Reply messages can be detected.

SkipHop (Skip Hop Count): 4 bits

Number of skipped routers for a Request. It is specified by the

CCNinfo user program. The number of routers corresponding to the

value specified in this field are skipped and the CCNinfo Request

messages are forwarded to the next router without the addition of

Report blocks; the next upstream router then starts the trace.

¶

 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+---------------+---------------+---------------+---------------+

| Type (=T_DISC_REQHDR) | Length |

+---------------+---------------+-------+-------+-------+-+-+-+-+

| Request ID |SkipHop| Flags |V|F|O|C|

+---------------+---------------+-------+-------+-------+-+-+-+-+

 Code Type name

============= =========================

 %x0000 Reserved [1]

 %x0001 T_INTLIFE [1]

 %x0002 T_CACHETIME [1]

 %x0003 T_MSGHASH [1]

%x0004-%x0007 Reserved [1]

 %x0008 T_DISC_REQHDR

 %x0009 T_DISC_REPORT

 %x0FFE T_PAD [1]

 %x0FFF T_ORG [1]

%x1000-%x1FFF Reserved [1]

¶

¶

¶

¶

¶

¶

¶

The maximum value of this parameter is 15. This value MUST be

lower than that of HopLimit at the fixed header.

Flags: 12 bits

The Flags field is used to indicate the types of the content or

path discoveries. Currently, as shown in Figure 9, four bits,

"C", "O", "F", and "V" are assigned, and the other 8 bits are

reserved (MBZ) for the future use. Each flag can be mutually

specified with other flags. These flags are set by the CCNinfo

user program when they initiate Requests (see Appendix A), and

the routers that receive the Requests deal with the flags and

change the behaviors (see Section 5 for details). The Flag values

defined in this Flags field correspond to the Reply sub-blocks.

Figure 9: Codes and types specified in Flags field

Figure 10: Request block TLV (packet payload)

¶

¶

¶

Flag Value Description

----- ----- ---

 C 0 Path discovery (i.e., no cache information retrieved)

 (default)

 C 1 Path and cache information retrieval

 O 0 Request to any content forwarder (default)

 O 1 Publisher discovery (i.e., only FHR can reply)

 F 0 Request based on FIB's forwarding strategy (default)

 F 1 Full discovery request. Request to possible multiple

 upstream routers specified in FIB simultaneously

 V 0 No reply validation (default)

 V 1 Reply sender validates Reply message

 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+---------------+---------------+---------------+---------------+

| Type (=T_DISC_REQ) | Length |

+---------------+---------------+---------------+---------------+

| Request Arrival Time |

+---------------+---------------+---------------+---------------+

/ Node Identifier /

+---------------+---------------+---------------+---------------+

Request Arrival Time: 32 bits

Figure 11: CCNx Message Type Namespace

Type: 16 bits

Format of the Value field. For the Request block TLV, the type

value(s) MUST be T_DISC_REQ (see Figure 11) in the current

specification.

Length: 16 bits

Length of Value field in octets.

The Request Arrival Time is a 32-bit NTP timestamp specifying the

arrival time of the CCNinfo Request message at the router. The

32-bit form of an NTP timestamp consists of the middle 32 bits of

the full 64-bit form; that is, the low 16 bits of the integer

part and the high 16 bits of the fractional part.

The following formula converts from a timespec (fractional part

in nanoseconds) to a 32-bit NTP timestamp:

The constant 32384 is the number of seconds from Jan 1, 1900 to

Jan 1, 1970 truncated to 16 bits. ((tv.tv_nsec << 7) / 1953125)

is a reduction of ((tv.tv_nsec / 1000000000) << 16), where "<<"

denotes a logical left shift.

Note that it is RECOMMENDED for all the routers on the path to

have synchronized clocks to measure one-way latency per hop;

however, even if they do not have synchronized clocks, CCNinfo

measures the RTT between the content forwarder and consumer.

 Code Type name

============== ===================

 %x0000 T_NAME [1]

 %x0001 T_PAYLOAD [1]

 %x0002 T_KEYIDRESTR [1]

 %x0003 T_OBJHASHRESTR [1]

 %x0005 T_PAYLDTYPE [1]

 %x0006 T_EXPIRY [1]

%x0007-%x000C Reserved [1]

 %x000D T_DISC_REQ

 %x000E T_DISC_REPLY

 %x0FFE T_PAD [1]

 %x0FFF T_ORG [1]

%x1000-%x1FFF Reserved [1]

¶

¶

¶

¶

¶

¶

 request_arrival_time

 = ((tv.tv_sec + 32384) << 16) + ((tv.tv_nsec << 7) / 1953125)

¶

¶

¶

Node Identifier: variable length

This field specifies the node identifier (e.g., node name or

hash-based self-certifying name [11]) or all-zeros if unknown.

This document assumes that the Name TLV defined in the CCNx TLV

format [1] can be used for this field and the node identifier is

specified in it.

3.1.2. Report Block TLV

A CCNinfo user and each upstream router along the path would insert

their own Report block TLV without changing the Type field of the

fixed header of the Request message until one of these routers is

ready to send a Reply. In the Report block TLV (Figure 12), the

Request Arrival Time and Node Identifier MUST be inserted.

Figure 12: Report block TLV (hop-by-hop header)

Type: 16 bits

Format of the Value field. For the Report block TLV, the type

value(s) MUST be T_DISC_REPORT in the current specification. For

all the available types for hop-by-hop type namespace, please see

Figure 8.

Length: 16 bits

Length of Value field in octets.

Request Arrival Time: 32 bits

Same definition as given in Section 3.1.1.

Node Identifier: variable length

Same definition as given in Section 3.1.1.

¶

¶

¶

 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+---------------+---------------+---------------+---------------+

| Type (=T_DISC_REPORT) | Length |

+---------------+---------------+---------------+---------------+

| Request Arrival Time |

+---------------+---------------+---------------+---------------+

/ Node Identifier /

+---------------+---------------+---------------+---------------+

¶

¶

¶

¶

¶

¶

¶

¶

3.1.3. Content Name Specification

Specifications of the Name TLV (whose type value is T_NAME) and the

Name Segment TLVs are described in [1], which are followed by

CCNinfo. CCNinfo enables to specification of the content name either

with a prefix name without chunk number (such as "ccnx:/news/today")

or an exact name (such as "ccnx:/news/today/Chunk=10"). When a

CCNinfo user specifies a prefix name, s/he will obtain the summary

information of the matched content objects in the content forwarder.

In contrast, when a CCNinfo user specifies an exact name, s/he will

obtain only about the specified content object in the content

forwarder. A CCNinfo Request message MUST NOT be sent only with a

scheme name, ccnx:/. It will be rejected and discarded by routers.

3.2. Reply Message

When a content forwarder receives a CCNinfo Request message from an

appropriate adjacent neighbor router, it inserts its own Reply block

TLV and Reply sub-block TLV(s) to the Request message and turns the

Request into the Reply by changing the Type field of the fixed

header of the Request message from PT_CCNINFO_REQUEST to

PT_CCNINFO_REPLY. The Reply message (see Figure 13) is then

forwarded back toward the CCNinfo user in a hop-by-hop manner.

¶

¶

Figure 13: Reply message consists of a fixed header, Request block TLV,

Report block TLV(s), Name TLV, and Reply block/sub-block TLV(s)

3.2.1. Reply Block TLV

The Reply block TLV is an envelope for the Reply sub-block TLV(s)

(explained from the next section).

 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+---------------+---------------+---------------+---------------+

| Version | PacketType | PacketLength |

+---------------+---------------+-------------+-+---------------+

| HopLimit | ReturnCode | Reserved(MBZ) | HeaderLength |

+===============+===============+=============+=+===============+

/ Request header block TLV /

+---------------+---------------+---------------+---------------+

/ . /

/ . /

/ n Report block TLVs /

/ . /

/ . /

+===============+===============+===============+===============+

| Type (=T_DISCOVERY) | MessageLength |

+---------------+---------------+---------------+---------------+

| T_NAME | Length |

+---------------+---------------+---------------+---------------+

/ Name segment TLVs (name prefix specified by CCNinfo user) /

+---------------+---------------+---------------+---------------+

/ Request block TLV /

+---------------+---------------+---------------+---------------+

/ Reply block TLV /

+---------------+---------------+---------------+---------------+

/ Reply sub-block TLV 1 /

+---------------+---------------+---------------+---------------+

/ . /

/ . /

+---------------+---------------+---------------+---------------+

/ Reply sub-block TLV k /

+---------------+---------------+---------------+---------------+

/ Optional CCNx ValidationAlgorithm TLV /

+---------------+---------------+---------------+---------------+

/ Optional CCNx ValidationPayload TLV (ValidationAlg required) /

+---------------+---------------+---------------+---------------+

¶

Figure 14: Reply block TLV (packet payload)

Type: 16 bits

Format of the Value field. For the Reply block TLV, the type

value MUST be T_DISC_REPLY shown in Figure 11 in the current

specification.

Length: 16 bits

Length of the Value field in octets. This length is the total

length of Reply sub-block(s).

Request Arrival Time: 32 bits

Same definition as given in Section 3.1.1.

Node Identifier: variable length

Same definition as given in Section 3.1.1.

3.2.1.1. Reply Sub-Block TLV

The router on the traced path will add one or multiple Reply sub-

blocks followed by the Reply block TLV before sending the Reply to

its neighbor router. This section describes the Reply sub-block TLV

for informing various cache states and conditions as shown in

Figure 15. (Other Reply sub-block TLVs will be discussed in separate

document(s).)

Note that some routers may not be capable of reporting the following

values, such as Object Size, Object Count, # Received Interest,

First Seqnum, Last Seqnum, Elapsed Cache Time, and Remain Cache

Lifetime, shown in Figure 15, or do not report these values due to

their policy. In that case, the routers set these fields to a value

of all ones (i.e., %xFFFFFFFF). The value of each field will be also

all-one when the value is equal to or bigger than the maximum size

expressed by the 32-bit field. The CCNinfo user program MUST inform

that these values are not valid if the fields received are set to

the value of all ones.

 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+---------------+---------------+---------------+---------------+

| Type (=T_DISC_REPLY) | Length |

+---------------+---------------+---------------+---------------+

| Request Arrival Time |

+---------------+---------------+---------------+---------------+

/ Node Identifier /

+---------------+---------------+---------------+---------------+

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

If the cache is refreshed after reboot, the value in each field MUST

be refreshed (i.e., MUST be set to 0). If the cache remains after

reboot, the value MUST NOT be refreshed (i.e., MUST be reflected as

it is).

Figure 15: Reply sub-block TLV for T_DISC_CONTENT and

T_DISC_CONTENT_PUBLISHER (packet payload)

Figure 16: CCNinfo Reply Type Namespace

Type: 16 bits

Format of the Value field. For the Reply sub-block TLV, the type

value MUST be either T_DISC_CONTENT or T_DISC_CONTENT_PUBLISHER

defined in the CCNinfo Reply Type Namespace (Figure 16).

T_DISC_CONTENT is specified when the cache information is replied

from a caching router. T_DISC_CONTENT_PUBLISHER is specified when

¶

 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+---------------+---------------+---------------+---------------+

| Type | Length |

+---------------+---------------+---------------+---------------+

| Object Size |

+---------------+---------------+---------------+---------------+

| Object Count |

+---------------+---------------+---------------+---------------+

| # Received Interest |

+---------------+---------------+---------------+---------------+

| First Seqnum |

+---------------+---------------+---------------+---------------+

| Last Seqnum |

+---------------+---------------+---------------+---------------+

| Elapsed Cache Time |

+---------------+---------------+---------------+---------------+

| Remain Cache Lifetime |

+---------------+---------------+---------------+---------------+

| T_NAME | Length |

+---------------+---------------+---------------+---------------+

/ Name Segment TLVs /

+---------------+---------------+---------------+---------------+

 Code Type name

============= ===========================

 %x0000 T_DISC_CONTENT

 %x0001 T_DISC_CONTENT_PUBLISHER

 %x0FFF T_ORG

%x1000-%x1FFF Reserved (Experimental Use)

¶

the content information is replied from a FHR attached to a

publisher.

Length: 16 bits

Length of the Value field in octets.

Object Size: 32 bits

The total size (KB) of the unexpired content objects. Values less

than 1 KB are truncated. Note that the maximum size expressed by

the 32-bit field is approximately 4.29 TB.

Object Count: 32 bits

The number of the unexpired content objects. Note that the

maximum count expressed by the 32-bit field is approximately 4.29

billion.

Received Interest: 32 bits

The total number of the received Interest messages to retrieve

the cached content objects.

First Seqnum: 32 bits

The first sequential number of the unexpired content objects.

Last Seqnum: 32 bits

The last sequential number of the unexpired content objects. The

First Seqnum and Last Seqnum do not guarantee the consecutiveness

of the cached content objects; however, knowing these values may

help in the analysis of consecutive or discontinuous chunks such

as [12].

Elapsed Cache Time: 32 bits

The elapsed time (seconds) after the oldest content object of the

content is cached.

Remain Cache Lifetime: 32 bits

The lifetime (seconds) of a content object, which is lastly

cached.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

4. CCNinfo User Behavior

4.1. Sending CCNinfo Request

A CCNinfo user invokes a CCNinfo user program (e.g., ccninfo

command) that initiates a CCNinfo Request message and sends it to

the user's adjacent neighbor router(s) of interest. The user later

obtains both the routing path information and in-network cache

information in the single Reply.

When the CCNinfo user program initiates a Request message, it MUST

insert the necessary values, i.e., the "Request ID" and the "Node

Identifier", in the Request block. The Request ID MUST be unique for

the CCNinfo user until s/he receives the corresponding Reply

message(s) or the Request is timed out.

Owing to some policies, a router may want to validate the CCNinfo

Requests using the CCNx ValidationPayload TLV (whether it accepts

the Request or not) especially when the router receives the "full

discovery request" (see Section 5.3.2). Accordingly, the CCNinfo

user program MAY require validating the Request message and

appending the user's signature into the CCNx ValidationPayload TLV.

The router then forwards the Request message. If the router does not

approve the Request, it rejects the Request message as described in

Section 6.11.

After the CCNinfo user program sends the Request message, until the

Reply is timed out or the expected numbers of Replies or a Reply

message with a non-zero ReturnCode in the fixed header is received,

the CCNinfo user program MUST keep the following information:

HopLimit, specified in the fixed header, Request ID, Flags, Node

Identifier, and Request Arrival Time, specified in the Request

block.

4.1.1. Routing Path Information

A CCNinfo user can send a CCNinfo Request for investigating the

routing path information for the specified named content. Using the

Request, a legitimate user can obtain 1) the node identifiers of the

intermediate routers, 2) node identifier of the content forwarder,

3) number of hops between the content forwarder and consumer, and 4)

RTT between the content forwarder and consumer, per name prefix.

This CCNinfo Request is terminated when it reaches the content

forwarder.

4.1.2. In-Network Cache Information

A CCNinfo user can send a CCNinfo Request for investigating in-

network cache information. Using the Request, a legitimate user can

obtain 1) the size of cached content objects, 2) number of cached

¶

¶

¶

¶

¶

content objects, 3) number of accesses (i.e., received Interests)

per content, and 4) lifetime and expiration time of the cached

content objects, for Content Store (CS) in the content forwarder,

unless the content forwarder is capable of reporting them (see

Section 3.2.1.1). This CCNinfo Request is terminated when it reaches

the content forwarder.

4.2. Receiving CCNinfo Reply

A CCNinfo user program will receive one or multiple CCNinfo Reply

messages from the adjacent neighbor router(s). When the program

receives the Reply, it MUST compare the kept Request ID and Node

Identifier to identify the Request and Reply pair. If they do not

match, the Reply message MUST be silently discarded.

If the number of Report blocks in the received Reply is more than

the initial HopLimit value (which was inserted in the original

Request), the Reply MUST be silently ignored.

After the CCNinfo user has determined that s/he has traced the whole

path or the maximum path that s/he can be expected to, s/he might

collect statistics by waiting for a timeout. Useful statistics

provided by CCNinfo are stated in Section 8.

5. Router Behavior

5.1. User and Neighbor Verification

Upon receiving a CCNinfo Request message, a router MAY examine

whether a valid CCNinfo user has sent the message. If the router

recognizes that the Request sender's signature specified in the

Request is invalid, it SHOULD terminate the Request, as defined in

Section 6.4.

Upon receiving a CCNinfo Request/Reply message, a router MAY examine

whether the message comes from a valid adjacent neighbor node. If

the router recognizes that the Request/Reply sender is invalid, it

SHOULD silently ignore the Request/Reply message, as specified in

Section 10.9.

5.2. Receiving CCNinfo Request

After a router accepts the CCNinfo Request message, it performs the

following steps.

The value of "HopLimit" in the fixed header and that of

"SkipHop (Skip Hop Count)" in the Request block are counters

that are decremented with each hop. If the HopLimit value is

zero, the router terminates the Request, as defined in

Section 6.5. If the SkipHop value is equal to or more than the

¶

¶

¶

¶

¶

¶

¶

1.

HopLimit value, the router terminates the Request, as defined

in Section 6.4. Otherwise, until the SkipHop value becomes

zero, the router forwards the Request message to the upstream

router(s) without adding its own Report block and without

replying to the Request. If the router does not know the

upstream router(s) regarding the specified name prefix, it

terminates the Request, as defined in Section 6.5. It should be

noted that the Request messages are terminated at the FHR;

therefore, although the maximum value for the HopLimit is 255

and that for SkipHop is 15, if the Request messages reach the

FHR before the HopLimit or SkipHop value becomes 0, the FHR

silently discards the Request message and the Request is timed

out.

The router examines the Flags field (specified in Figure 9) in

the Request block of the received CCNinfo Request. If the "C"

flag is not set, it is categorized as the "routing path

information discovery". If the "C" flag is set, it is the

"cache information discovery". If the "O" flag is set, it is

the "publisher discovery".

If the Request is either "cache information discovery" or

"routing path information discovery", the router examines its

FIB and CS. If the router caches the specified content, it

sends the Reply message with its own Reply block and sub-

block(s). If the router cannot insert its own Reply block or

sub-block(s) because of no space, it terminates the Request, as

specified in Section 6.7. If the router does not cache the

specified content but knows the upstream neighbor router(s) for

the specified name prefix, it creates the PIT entry, and

inserts its own Report block in the hop-by-hop header and

forwards the Request to the upstream neighbor(s). If the router

cannot insert its own Report block because of no space, or if

the router does not cache the specified content and does not

know the upstream neighbor router(s) for the specified name

prefix, it terminates the Request, as defined in Section 6.5.

If the Request is the "publisher discovery", the router

examines whether it is the FHR for the requested content. If

the router is the FHR, it sends the Reply message with its own

Report block and sub-blocks (in the case of cache information

discovery) or the Reply message with its own Report block

without adding any Reply sub-blocks (in the case of routing

path information discovery). If the router is not the FHR but

knows the upstream neighbor router(s) for the specified name

prefix, it creates the PIT entry, and inserts its own Report

block and forwards the Request to the upstream neighbor(s). If

the router cannot insert its own Report block in the hop-by-hop

header because of no space, it terminates the Request, as

¶

2.

¶

3.

¶

4.

specified in Section 6.7. If the router is not the FHR and does

not know the upstream neighbor router(s) for the specified name

prefix, it terminates the Request, as defined in Section 6.5.

Note that in Cefore [14], there is an API by which a publisher

informs the application prefix to the FHR and the FHR registers

it into the FIB. The prefix entry then can be statically

configured on other routers or announced by a routing protocol.

5.3. Forwarding CCNinfo Request

5.3.1. Regular Request

When a router decides to forward a Request message with its Report

block to its upstream router(s), it specifies the Request Arrival

Time and Node Identifier in the Report block of the Request message.

The router then forwards the Request message upstream toward the

publisher or caching router based on the FIB entry like the ordinary

Interest-Data exchanges in CCN.

When the router forwards the Request message, it MUST record the F

flag and Request ID in the Request block of the Request message and

exploiting path labels (specified in Section 1) at the corresponding

PIT entry. The router can later check the PIT entry to correctly

forward the Reply message(s) back.

CCNinfo supports multipath forwarding. The Request messages can be

forwarded to multiple neighbor routers. Some routers may have a

strategy for multipath forwarding; when a router sends Interest

messages to multiple neighbor routers, it may delay or prioritize to

send the message to the upstream routers. The CCNinfo Request, as

the default, complies with such strategies; a CCNinfo user could

trace the actual forwarding path based on the forwarding strategy

and will receive a single Reply message such as a content object.

5.3.2. Full Discovery Request

There may be a case wherein a CCNinfo user wants to discover all

possible forwarding paths and content forwarders based on the

routers' FIBs. The "full discovery request" enables this

functionality. If a CCNinfo user sets the F flag in the Request

block of the Request message (as seen in Figure 9) to request the

full discovery, the upstream routers simultaneously forward the

Requests to all multiple upstream routers based on the FIBs. Then,

the CCNinfo user can trace all possible forwarding paths. As seen in

Figure 17, each router forwards the Reply message along its PIT

entry and finally, the CCNinfo user receives two Reply messages: one

from the FHR (Router C) and the other from the Caching router.

¶

¶

¶

¶

¶

Figure 17: Full discovery request. Reply messages forwarded by

publisher and routers.

To receive different Reply messages forwarded from different

routers, the PIT entries initiated by CCNinfo remain until the

configured CCNinfo Reply Timeout (Section 7.1) is expired. In other

words, unlike the ordinary Interest-Data exchanges in CCN, if

routers that accept the full discovery request receive the full

discovery request, the routers SHOULD NOT remove the PIT entry

created by the full discovery request until the CCNinfo Reply

Timeout value expires.

Note that the full discovery request is an OPTIONAL implementation

of CCNinfo; it may not be implemented on routers. Even if it is

implemented on a router, it may not accept the full discovery

request from non-validated CCNinfo users or routers or because of

its policy. If a router does not accept the full discovery request,

it rejects the full discovery request as described in Section 6.11.

Routers that enable the full discovery request MAY rate-limit

Replies, as described in Section 10.8 as well.

5.4. Sending CCNinfo Reply

If there is a caching router or FHR for the specified content within

the specified hop count along the path, the caching router or FHR

sends back the Reply message toward the CCNinfo user and terminates

the Request.

When a router decides to send a Reply message to its downstream

neighbor router or the CCNinfo user with NO_ERROR return code, it

inserts a Report block with the Request Arrival Time and Node

Identifier to the Request message. Then, the router inserts the

 3. Reply(C) 2. Reply(C)

 3. Reply(P) 2. Reply(P) 1. Reply(P)

 +----+ +----+ +----+

 | | | | | |

 v | v | v |

+--------+ +--------+ +--------+ +--------+ +---------+

| CCNinfo|----| Router |----| Router |----| Router |----|Publisher|

| user | | A | | B | | C | | |

+--------+ +--------+ +--------+ +--------+ +---------+

 ^

 \ +-------+

 1. Reply(C) \ | Cache |

 \ +---------+ |

 \| Caching |----+

 | router |

 +---------+

¶

¶

¶

corresponding Reply sub-block(s) (Figure 15) to the payload. The

router finally changes the Type field in the fixed header from

PT_CCNINFO_REQUEST to PT_CCNINFO_REPLY and forwards the message back

as the Reply toward the CCNinfo user in a hop-by-hop manner.

If a router cannot continue the Request, the router MUST put an

appropriate ReturnCode in the Request message, change the Type field

value in the fixed header from PT_CCNINFO_REQUEST to

PT_CCNINFO_REPLY, and forward the Reply message back toward the

CCNinfo user to terminate the Request (see Section 6).

5.5. Forwarding CCNinfo Reply

When a router receives a CCNinfo Reply whose Request ID and Node

Identifier match those in the PIT entry, sent from a valid adjacent

neighbor router, it forwards the CCNinfo Reply back toward the

CCNinfo user. If the router does not receive the corresponding Reply

within the [CCNinfo Reply Timeout] period, then it removes the

corresponding PIT entry and terminates the trace.

The Flags field in the Request block TLV is used to indicate whether

the router keeps the PIT entry during the CCNinfo Reply Timeout even

after one or more corresponding Reply messages are forwarded. When

the CCNinfo user does not set the F flag (i.e., "0"), the

intermediate routers immediately remove the PIT entry whenever they

forward the corresponding Reply message. When the CCNinfo user sets

the F flag (i.e., "1"), which means the CCNinfo user chooses the

"full discovery request" (see Section 5.3.2), the intermediate

routers keep the PIT entry within the [CCNinfo Reply Timeout]

period. After this timeout, the PIT entry is removed.

CCNinfo Replies MUST NOT be cached in routers upon the transmission

of Reply messages.

5.6. PIT Entry Management for Multipath Support

Within a network with multipath condition, there is a case

(Figure 18) wherein a single CCNinfo Request is split into multiple

Requests (e.g., at Router A), which are injected into a single

router (Router D). In this case, multiple Replies with the same

Request ID and Node Identifier including different Report blocks are

received by the router (Router D).

¶

¶

¶

¶

¶

¶

Figure 18

To recognize different CCNinfo Reply messages, the routers MUST

distinguish the PIT entries by the Request ID and exploiting path

labels, which could be a hash value of the concatenation information

of the cumulate Node Identifiers in the hop-by-hop header and the

specified content name. For example, when Router D in Figure 18

receives a CCNinfo Request from Router B, its PIT includes the

Request ID and value such as H((Router_A|Router_B)|content_name),

where "H" indicates some hash function and "|" indicates

concatenation. When Router D receives a CCNinfo Request from Router

C, its PIT includes the same Request ID and value of H((Router_A|

Router_C)|content_name). Two different Replies are later received on

Router D and each Reply is appropriately forwarded to Router B and

Router C, respectively. Note that two Reply messages coming from

Router B and Router C are reached at Router A, but the CCNinfo user

can only receive the first Reply message either from Router B or

Router C as Router A removes the corresponding PIT entry after it

forwards the first Reply.

To avoid routing loops, when a router seeks the cumulate Node

Identifiers of the Report blocks in the hop-by-hop header, it MUST

examine whether its own Node Identifier is not previously inserted.

If a router detects its own Node Identifier in the hop-by-hop

header, the router inserts its Report block and terminates the

Request as will be described in Section 6.8.

6. CCNinfo Termination

When performing a hop-by-hop trace, it is necessary to determine

when to stop the trace. There are several cases when an intermediate

 +--------+

 | Router |

 | B |

 +--------+

 / \

 / \

+--------+ +--------+ +--------+ +---------+

| CCNinfo|----| Router | | Router | ... |Publisher|

| user | | A | | D | | |

+--------+ +--------+ +--------+ +---------+

 \ /

 \ /

 +--------+

 | Router |

 | C |

 +--------+

¶

¶

router might return a Reply before a Request reaches the caching

router or the FHR.

6.1. Arriving at First-hop Router

A CCNinfo Request can be determined to have arrived at the FHR. To

ensure that a router recognizes that it is the FHR for the specified

content, it needs to have a FIB entry (or attach) to the

corresponding publisher or the content.

6.2. Arriving at Router Having Cache

A CCNinfo Request can be determined to have arrived at the router

having the specified content cache within the specified HopLimit.

6.3. Arriving at Last Router

A CCNinfo Request can be determined to have arrived at the last

router of the specified HopLimit. If the last router does not have

the corresponding cache, it MUST insert its Report block and send

the Reply message with NO_INFO return code without appending any

Reply (sub-)block TLVs.

6.4. Invalid Request

If the router does not validate the Request or the Reply even it is

required, the router MUST note a ReturnCode of INVALID_REQUEST in

the fixed header of the message, insert its Report block, and

forward the message as the Reply back to the CCNinfo user. The

router MAY, however, randomly ignore the received invalid messages.

(See Section 10.7.)

6.5. No Route

If the router cannot determine the routing paths or neighbor routers

for the specified name prefix within the specified HopLimit, it MUST

note a ReturnCode of NO_ROUTE in the fixed header of the message,

insert its Report block, and forward the message as the Reply back

to the CCNinfo user.

6.6. No Information

If the router does not have any information about the specified name

prefix within the specified HopLimit, it MUST note a ReturnCode of

NO_INFO in the fixed header of the message, insert its Report block,

and forward the message as the Reply back to the CCNinfo user.

¶

¶

¶

¶

¶

¶

¶

6.7. No Space

If appending the Report block or the Reply (sub-)block would make

the hop-by-hop header longer than 247 bytes or the Request packet

longer than the MTU of the Incoming face, the router MUST note a

ReturnCode of NO_SPACE in the fixed header of the message and

forward the message as the Reply back to the CCNinfo user.

6.8. Fatal Error

If a CCNinfo Request has encountered a fatal error, the router MUST

note a ReturnCode of FATAL_ERROR in the fixed header of the message

and forward the message as the Reply back to the CCNinfo user. This

may happen, for example, when the router detects some routing loop

in the Request blocks (see Section 1). The fatal error can be

encoded with another error: if a router detects routing loop but

cannot insert its Report block, it MUST note NO_SPACE and

FATAL_ERROR ReturnCodes (i.e., %x85) in the fixed header and forward

the message back to the CCNinfo user.

6.9. CCNinfo Reply Timeout

If a router receives the Request or Reply message that expires its

own [CCNinfo Reply Timeout] value (Section 7.1), the router will

silently discard the Request or Reply message.

6.10. Non-Supported Node

Cases will arise in which a router or a FHR along the path does not

support CCNinfo. In such cases, a CCNinfo user and routers that

forward the CCNinfo Request will time out the CCNinfo request.

6.11. Administratively Prohibited

If CCNinfo is administratively prohibited, the router rejects the

Request message and MUST send the CCNinfo Reply with the ReturnCode

of ADMIN_PROHIB. The router MAY, however, randomly ignore the

Request messages to be rejected (see Section 10.7).

7. Configurations

7.1. CCNinfo Reply Timeout

The [CCNinfo Reply Timeout] value is used to time out a CCNinfo

Reply. The value for a router can be statically configured by the

router's administrators/operators. The default value is 3 (seconds).

The [CCNinfo Reply Timeout] value SHOULD NOT be larger than 4

(seconds) and SHOULD NOT be lower than 2 (seconds).

¶

¶

¶

¶

¶

¶

7.2. HopLimit in Fixed Header

If a CCNinfo user does not specify the HopLimit value in the fixed

header for a Request message as the HopLimit, the HopLimit is set to

32. Note that 0 HopLimit is an invalid Request; hence, the router in

this case follows the way defined in Section 6.4.

7.3. Access Control

A router MAY configure the valid or invalid networks to enable an

access control. The access control MAY be defined per name prefix,

such as "who can retrieve which name prefix" (see Section 10.2).

8. Diagnosis and Analysis

8.1. Number of Hops and RTT

A CCNinfo Request message is forwarded in a hop-by-hop manner and

each forwarding router appends its own Report block. We can then

verify the number of hops to reach the content forwarder or

publisher and the RTT between the content forwarder or publisher.

8.2. Caching Router Identification

While some routers may hide their node identifiers with all-zeros in

the Report blocks (as seen in Section 10.1), the routers in the path

from the CCNinfo user to the content forwarder can be identified.

8.3. TTL or Hop Limit

By taking the HopLimit from the content forwarder and forwarding the

TTL threshold over all hops, it is possible to discover the TTL or

hop limit required for the content forwarder to reach the CCNinfo

user.

8.4. Time Delay

If the routers have synchronized clocks, it is possible to estimate

the propagation and queuing delays from the differences between the

timestamps at the successive hops. However, this delay includes the

control processing overhead; therefore, it is not necessarily

indicative of the delay that would be experienced by the data

traffic.

8.5. Path Stretch

By obtaining the path stretch "d / P", where "d" is the hop count of

the data and "P" is the hop count from the consumer to the

publisher, we can measure the improvements in path stretch in

various cases, such as in different caching and routing algorithms.

¶

¶

¶

¶

¶

¶

We can then facilitate the investigation of the performance of the

protocol.

8.6. Cache Hit Probability

CCNinfo can show the number of received interests per cache or chunk

on a router. Accordingly, CCNinfo measures the content popularity

(i.e., the number of accesses for each content/cache), thereby

enabling the investigation of the routing/caching strategy in

networks.

9. IANA Considerations

This section details each kind of CCNx protocol value that can be

registered. As per [5], this section makes assignments in four

existing registries and creates a new Reply Type registry in the

"Content-Centric Networking (CCNx)" registry group. The registration

procedure is "RFC Required", which requires only that this document

be published as an RFC.

9.1. Packet Type Registry

As shown in Figure 4, CCNinfo defines two packet types,

PT_CCNINFO_REQUEST and PT_CCNINFO_REPLY, whose suggested values are

%x03 and %x04, respectively.

9.2. Top-Level Type Registry

As shown in Figure 5, CCNinfo defines one top-level type,

T_DISCOVERY, whose suggested value is %x0005.

9.3. Hop-by-Hop Type Registry

As shown in Figure 8, CCNinfo defines two hop-by-hop types,

T_DISC_REQHDR and T_DISC_REPORT, whose suggested values are %x0008

and %x0009, respectively.

9.4. Message Type Registry

As shown in Figure 11, CCNinfo defines two message types, T_DISC_REQ

and T_DISC_REPLY, whose suggested values are %x000D and %x000E,

respectively.

9.5. Reply Type Registry

IANA has created the "CCNx Reply Types" registry and allocated the

reply types. The Type value is 2 octets. The range is %x0000-%xFFFF.

As shown in Figure 16, CCNinfo defines three reply types,

T_DISC_CONTENT, T_DISC_CONTENT_PUBLISHER, and T_ORG, whose suggested

values are %x0000, %x0001, and %x0FFF, respectively.

¶

¶

¶

¶

¶

¶

¶

¶

10. Security Considerations

This section addresses some of the security considerations.

10.1. Policy-Based Information Provisioning for Request

Although CCNinfo gives excellent troubleshooting cues, some network

administrators or operators may not want to disclose everything

about their network to the public or may wish to securely transmit

private information to specific members of their networks. CCNinfo

provides policy-based information provisioning, thereby allowing

network administrators to specify their response policy for each

router.

The access policy regarding "who is allowed to retrieve" and/or

"what kind of cache information" can be defined for each router. For

the former type of access policy, routers with the specified content

MAY examine the signature enclosed in the Request message and decide

whether they should notify the content information in the Reply. If

the routers decide to not notify the content information, they MUST

send the CCNinfo Reply with the ReturnCode of ADMIN_PROHIB without

appending any Reply (sub-)block TLVs. For the latter type of policy,

the permission, whether (1) All (all cache information is

disclosed), (2) Partial (cache information with a particular name

prefix can (or cannot) be disclosed), or (3) Deny (no cache

information is disclosed), is defined at the routers.

In contrast, we entail that each router does not disrupt the

forwarding of CCNinfo Request and Reply messages. When a Request

message is received, the router SHOULD insert the Report block if

the ReturnCode is NO_ERROR. Here, according to the policy

configuration, the Node Identifier field in the Report block MAY be

null (i.e., all-zeros), but the Request Arrival Time field SHOULD

NOT be null. Finally, the router SHOULD forward the Request message

to the upstream router toward the content forwarder if the

ReturnCode is kept with NO_ERROR.

10.2. Filtering CCNinfo Users Located in Invalid Networks

A router MAY support an access control mechanism to filter out

Requests from invalid CCNinfo users. To accomplish this, invalid

networks (or domains) could, for example, be configured via a list

of allowed/disallowed networks (as observed in Section 7.3). If a

Request is received from a disallowed network (according to the Node

Identifier in the Request block), the Request MUST NOT be processed

and the Reply with the ReturnCode of INFO_HIDDEN SHOULD be used to

note that. The router MAY, however, perform rate limited logging of

such events.

¶

¶

¶

¶

¶

10.3. Topology Discovery

CCNinfo can be used to discover actively used topologies. If a

network topology is not disclosed, CCNinfo Requests SHOULD be

restricted at the border of the domain using the ADMIN_PROHIB return

code.

10.4. Characteristics of Content

CCNinfo can be used to discover the type of content being sent by

publishers. If this information is a secret, CCNinfo Requests SHOULD

be restricted at the border of the domain, using the ADMIN_PROHIB

return code.

10.5. Computational Attacks

CCNinfo may impose heavy tasks at content forwarders because it

makes content forwarders seek their internal cache states reported

in the Reply messages whenever they form the Reply messages. The

current CCNinfo specification allows to return null values for

several fields, such as First/Last Seqnum or Elapsed Cache Time

fields in the Reply sub-block. As mentioned in Section 3.2.1.1,

these values MAY be null. This means that the content forwarder can

not only hide these values owing to privacy/security policies, but

also skip the implementations of the complex functions to report

these values.

10.6. Longer or Shorter CCNinfo Reply Timeout

Routers can configure CCNinfo Reply Timeout (Section 7.1), which is

the allowable timeout value to keep the PIT entry. If routers

configure a longer timeout value, there may be an attractive attack

vector against the PIT memory. Moreover, especially when the full

discovery request option (Section 5.3) is specified for the CCNinfo

Request, several Reply messages may be returned and cause a response

storm. (See Section 10.8 for rate-limiting to avoid the storm). To

avoid DoS attacks, routers MAY configure the timeout value, which is

shorter than the user-configured CCNinfo timeout value. However, if

it is too short, the Request may be timed out and the CCNinfo user

does not receive all Replies; s/he only retrieves the partial path

information (i.e., information about a part of the tree).

There may be a way to enable incremental exploration (i.e., to

explore the part of the tree that was not explored by the previous

operation); however, discussing such mechanisms is out of scope of

this document.

¶

¶

¶

¶

¶

[1]

[2]

[3]

10.7. Limiting Request Rates

A router MAY rate-limit CCNinfo Requests by ignoring some of the

consecutive messages. The router MAY randomly ignore the received

messages to minimize the processing overhead, i.e., to keep fairness

in processing requests, or prevent traffic amplification. In such a

case, no error message is returned. The rate limit function is left

to the router's implementation.

10.8. Limiting Reply Rates

CCNinfo supporting multipath forwarding may result in one Request

returning multiple Reply messages. To prevent abuse, the routers in

the traced path MAY need to rate-limit the Replies. In such a case,

no error message is returned. The rate limit function is left to the

router's implementation.

10.9. Adjacency Verification

It is assumed that the CCNinfo Request and Reply messages are

forwarded by adjacent neighbor nodes or routers. The CCNx message

format or semantics do not define a secure way to verify the node/

router adjacency, while HopAuth [11] provides a possible method for

an adjacency verification and defines the corresponding message

format for adjacency verification as well as the router behaviors.

CCNinfo MAY use a similar method for node adjacency verification.

11. Acknowledgements

The authors would like to thank Jerome Francois, Erik Kline,

Spyridon Mastorakis, Paulo Mendes, Ilya Moiseenko, David Oran, and

Thierry Turletti for their valuable comments and suggestions on this

document.

12. References

12.1. Normative References

Mosko, M., Solis, I., and C. Wood, "CCNx Messages in TLV

Format", RFC 8609, July 2019, <https://www.rfc-

editor.org/rfc/rfc8609>.

Mosko, M., Solis, I., and C. Wood, "CCNx Semantics", RFC

8569, July 2019, <https://www.rfc-editor.org/rfc/

rfc8569>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc8609
https://www.rfc-editor.org/rfc/rfc8609
https://www.rfc-editor.org/rfc/rfc8569
https://www.rfc-editor.org/rfc/rfc8569
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", May 2017, <https://www.rfc-editor.org/

info/rfc8174>.

Cotton, M., Leiba, B., and T. Narten, "Guidelines for

Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017, <https://

www.rfc-editor.org/info/rfc8126>.

12.2. Informative References

Wood, C., Afanasyev, A., Zhang, L., Oran, D., and C.

Tschudin, "Information-Centric Networking (ICN): Content-

Centric Networking (CCNx) and Named Data Networking (NDN)

Terminology", RFC 8793, June 2020, <https://www.rfc-

editor.org/rfc/rfc8793>.

Asaeda, H., Matsuzono, K., and T. Turletti, "Contrace: A

Tool for Measuring and Tracing Content-Centric Networks",

IEEE Communications Magazine, Vol.53, No.3, pp.182-188,

March 2015.

Mastorakis, S., Gibson, J., Moiseenko, I., Droms, R.,

and D. Oran, "ICN Ping Protocol Specification", draft-

irtf-icnrg-icnping-06 (work in progress), May 2022.

Mastorakis, S., Gibson, J., Moiseenko, I., Droms, R.,

and D. Oran, "ICN Traceroute Protocol Specification",

draft-irtf-icnrg-icntraceroute-06 (work in progress), May

2022.

Asaeda, H., Mayer, K., and W. Lee, "Mtrace Version 2:

Traceroute Facility for IP Multicast", RFC 8487, October

2018, <https://www.rfc-editor.org/rfc/rfc8487>.

Li, R. and H. Asaeda, "Hop-by-Hop Authentication in

Content-Centric Networking/Named Data Networking", draft-

li-icnrg-hopauth-02 (work in progress), February 2020.

Li, R., Matsuzono, K., Asaeda, H., and X. Fu,

"Consecutive Caching and Adaptive Retrieval for In-

Network Big Data Sharing", Proc. IEEE ICC, Kansas City,

USA, May 2018.

Asaeda, H., Ooka, A., Matsuzono, K., and R. Li, "Cefore:

Software Platform Enabling Content-Centric Networking and

Beyond", IEICE Transaction on Communications, Vol.E102-B,

No.9, pp.1792-1803, September 2019.

https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/rfc/rfc8793
https://www.rfc-editor.org/rfc/rfc8793
https://www.rfc-editor.org/rfc/rfc8487

[14]

name_prefix

c option

f option

o option

V option

"Cefore Home Page", <https://cefore.net/>.

Appendix A. ccninfo Command and Options

CCNinfo is implemented in Cefore [13][14]. The command invoked by

the CCNinfo user (e.g., consumer) is named "ccninfo". The ccninfo

command sends the Request message and receives the Reply message(s).

There are several options that can be specified with ccninfo, while

the content name prefix (e.g., ccnx:/news/today) is the mandatory

parameter.

The usage of ccninfo command is as follows:

Prefix name of content (e.g., ccnx:/news/today) or exact name of

content (e.g., ccnx:/news/today/Chunk=10) the CCNinfo user wants

to trace.

This option can be specified if a CCNinfo user needs the cache

information as well as the routing path information for the

specified content/cache and RTT between the CCNinfo user and

content forwarder.

This option enables the "full discovery request"; routers send

CCNinfo Requests to multiple upstream faces based on their FIBs

simultaneously. The CCNinfo user can then trace all possible

forwarding paths.

This option enables to trace the path to the content publisher.

Each router along the path to the publisher inserts each Report

block and forwards the Request message. It does not send Reply

even if it caches the specified content. FHR that attaches the

publisher (who has the complete set of content and is not a

caching router) sends the Reply message.

This option requests the Reply sender to validate the Reply

message with the Reply sender's signature. The Reply message will

¶

¶

Usage: ccninfo [-c] [-f] [-o] [-V] [-r hop_count] [-s hop_count] [-v

 algo] name_prefix

¶

¶

¶

¶

¶

https://cefore.net/

r option

s option

v option

then include the CCNx ValidationPayload TLV. The validation

algorithm is selected by the Reply sender.

Number of traced routers. This value is set in the "HopLimit"

field located in the fixed header of the Request. For example,

when the CCNinfo user invokes the CCNinfo command with this

option, such as "-r 3", only three routers along the path examine

their path and cache information.

Number of skipped routers. This value is set in the "SkipHop"

field located in the Request block TLV. For example, when the

CCNinfo user invokes the CCNinfo command with this option, such

as "-s 3", three upstream routers along the path only forward the

Request message but do not append their Report blocks in the hop-

by-hop header and do not send Reply messages despite having the

corresponding cache.

This option enables the CCNinfo user to validate the Request

message with his/her signature. The Request message will include

the CCNx ValidationPayload TLV. The validation algorithm is

specified by the CCNinfo user.

Authors' Addresses

Hitoshi Asaeda

National Institute of Information and Communications Technology

4-2-1 Nukui-Kitamachi, Koganei,

Tokyo 184-8795

Japan

Email: asaeda@nict.go.jp

Atsushi Ooka

National Institute of Information and Communications Technology

4-2-1 Nukui-Kitamachi, Koganei,

Tokyo 184-8795

Japan

Email: a-ooka@nict.go.jp

Xun Shao

Toyohashi University of Technology

1-1 Hibarigaoka Tempaku-cho, Toyohashi,

Aichi 441-8580

Japan

Email: shao.xun.ls@tut.jp

¶

¶

¶

¶

mailto:asaeda@nict.go.jp
mailto:a-ooka@nict.go.jp
mailto:shao.xun.ls@tut.jp

	CCNinfo: Discovering Content and Network Information in Content-Centric Networks
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. CCNinfo as an Experimental Tool

	2. Terminology
	2.1. Definitions

	3. CCNinfo Message Formats
	3.1. Request Message
	3.1.1. Request Header Block and Request Block
	3.1.2. Report Block TLV
	3.1.3. Content Name Specification

	3.2. Reply Message
	3.2.1. Reply Block TLV
	3.2.1.1. Reply Sub-Block TLV

	4. CCNinfo User Behavior
	4.1. Sending CCNinfo Request
	4.1.1. Routing Path Information
	4.1.2. In-Network Cache Information

	4.2. Receiving CCNinfo Reply

	5. Router Behavior
	5.1. User and Neighbor Verification
	5.2. Receiving CCNinfo Request
	5.3. Forwarding CCNinfo Request
	5.3.1. Regular Request
	5.3.2. Full Discovery Request

	5.4. Sending CCNinfo Reply
	5.5. Forwarding CCNinfo Reply
	5.6. PIT Entry Management for Multipath Support

	6. CCNinfo Termination
	6.1. Arriving at First-hop Router
	6.2. Arriving at Router Having Cache
	6.3. Arriving at Last Router
	6.4. Invalid Request
	6.5. No Route
	6.6. No Information
	6.7. No Space
	6.8. Fatal Error
	6.9. CCNinfo Reply Timeout
	6.10. Non-Supported Node
	6.11. Administratively Prohibited

	7. Configurations
	7.1. CCNinfo Reply Timeout
	7.2. HopLimit in Fixed Header
	7.3. Access Control

	8. Diagnosis and Analysis
	8.1. Number of Hops and RTT
	8.2. Caching Router Identification
	8.3. TTL or Hop Limit
	8.4. Time Delay
	8.5. Path Stretch
	8.6. Cache Hit Probability

	9. IANA Considerations
	9.1. Packet Type Registry
	9.2. Top-Level Type Registry
	9.3. Hop-by-Hop Type Registry
	9.4. Message Type Registry
	9.5. Reply Type Registry

	10. Security Considerations
	10.1. Policy-Based Information Provisioning for Request
	10.2. Filtering CCNinfo Users Located in Invalid Networks
	10.3. Topology Discovery
	10.4. Characteristics of Content
	10.5. Computational Attacks
	10.6. Longer or Shorter CCNinfo Reply Timeout
	10.7. Limiting Request Rates
	10.8. Limiting Reply Rates
	10.9. Adjacency Verification

	11. Acknowledgements
	12. References
	12.1. Normative References
	12.2. Informative References

	Appendix A. ccninfo Command and Options
	Authors' Addresses

