
Workgroup: ICNRG

Internet-Draft:

draft-irtf-icnrg-ccnx-timetlv-01

Published: 7 October 2022

Intended Status: Experimental

Expires: 10 April 2023

Authors: C. Gündoğan

Huawei Technologies

TC. Schmidt

HAW Hamburg

D. Oran

Network Systems Research and Design

M. Waehlisch

link-lab & FU Berlin

Alternative Delta Time Encoding for CCNx Using Compact Floating-Point

Arithmetic

Abstract

CCNx utilizes delta time for a number of functions. When using CCNx

in environments with constrained nodes or bandwidth constrained

networks, it is valuable to have a compressed representation of

delta time. In order to do so, either accuracy or dynamic range has

to be sacrificed. Since the current uses of delta time do not

require both simultaneously, one can consider a logarithmic encoding

such as that specified in [RFC5497] and [IEEE.754.2019]. This

document updates CCNx messages in TLV Format [RFC8609] to specify

this alternative encoding.

This document is a product of the IRTF Information-Centric

Networking Research Group (ICNRG).

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 10 April 2023.

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Terminology

3. Usage of Time Values in CCNx

3.1. Relative Time in CCNx

3.2. Absolute Time in CCNx

4. A Compact Time Representation with Logarithmic Range

5. Protocol Integration of the Compact Time Representation

5.1. Interest Lifetime

5.2. Recommended Cache Time

6. IANA Considerations

7. Security Considerations

8. References

8.1. Normative References

8.2. Informative References

Appendix A. Test Vectors

Appendix B. Efficient Time Value Approximation

Acknowledgments

Authors' Addresses

1. Introduction

CCNx utilizes time values for a number of functions. Some of these

are expressed as absolute time, others as delta time. CCNx is well

suited for Internet of Things (IoT) applications [RFC7927]. When

using CCNx in environments with constrained nodes or bandwidth

constrained networks, it is valuable to have a compact

representation of time values. For example [RFC9139] and [ICNLOWPAN]

specify a compression scheme useful over IEEE 802.15.4 networks.

However, any compact time representation has to sacrifice accuracy

or dynamic range. For some time uses this is relatively

straightforward to achieve, for other uses, it is not. This document

¶

¶

https://trustee.ietf.org/license-info

byte:

time value:

time code:

discusses the various cases, and proposes a compact encoding that is

easily accommodated for delta times.

This document has received fruitful reviews by the members of the

research group (see the Acknowledgments section). It is the

consensus of ICNRG that this document should be published in the

IRTF Stream of the RFC series. This document does not constitute an

IETF standard.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in RFC 2119 [RFC2119].

This document uses the terminology of [RFC8569] and [RFC8609] for

CCNx entities.

The following terms are used in the document and defined as follows:

synonym for octet

a time offset measured in seconds

an 8-bit encoded time value

3. Usage of Time Values in CCNx

3.1. Relative Time in CCNx

CCNx, as currently specified in [RFC8569], utilizes delta time for

only the lifetime of an Interest message (see sections 2.1, 2.2,

2.4.2, 10.3 of [RFC8569]). It is a hop-by-hop header value, and is

currently encoded via the T_INTLIFE TLV as a 64-bit integer

([RFC8609] section 3.4.1). While formally an optional TLV, in all

but some corner cases every Interest message is expected to carry

the Interest Lifetime TLV, and hence having compact encoding is

particularly valuable for keeping Interest messages short.

Since the current uses of delta time do not require both accuracy

and dynamic range simultaneously, one can consider a logarithmic

encoding such as that specified in [IEEE.754.2019] and outlined in

Section 4. This document updates CCNx messages in TLV Format

[RFC8609] to permit this alternative encoding for selected time

values. See Section 6 for the specific actions needed to register

this alternative compact representation of Interest Lifetime.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

3.2. Absolute Time in CCNx

CCNx, as currently specified in [RFC8569], utilizes absolute time

for various important functions. Each of these absolute time usages

poses a different challenge for a compact representation. These are

discussed in the following subsections.

3.2.1. Signature Time and Expiry Time

Signature Time is the time the signature of a content object was

generated (sections 8.2-8.4 [RFC8569]). Expiry Time indicates the

expiry time of a content object (section 4 [RFC8569]). Both values

are content message TLVs and represent absolute timestamps in

milliseconds since the UTC epoch (i.e., an NTP timestamp). They are

currently encoded via the T_SIGTIME and T_EXPIRY TLVs as 64-bit

unsigned integers (see section 3.6.4.1.4.5 and 3.6.2.2.2 [RFC8609]).

Both time values could be in the past, or in the future, potentially

by a large delta. They are also included in the security envelope of

the message. Therefore, it seems there is no practical way to define

an alternative compact encoding that preserves its semantics and

security properties; hence we don't consider it further as a

candidate.

3.2.2. Recommended Cache Time

Recommended Cache Time (RCT) for a content object (see section 4

[RFC8569]) is a hop-by-hop header stating the expiration time for a

cached content object in milliseconds since the UTC epoch (i.e., an

NTP timestamp). It is currently encoded via the T_CACHETIME TLV as a

64-bit unsigned integer (see section 3.4.2 [RFC8609]).

A recommended cache time could be far in the future, but cannot be

in the past and is likely to be a reasonably short offset from the

current time. Therefore, this document allows the recommended cache

time to be interpreted as a relative time value rather than an

absolute time, since the semantics associated with an absolute time

value do not seem to be critical to the utility of this value. This

document therefore updates the recommended cache time with the

following rule set:

Use absolute time as per [RFC8609]

Use relative time, if the compact time representation is used

(see Section 4 and Section 5)

4. A Compact Time Representation with Logarithmic Range

This document uses the compact time representation of ICNLoWPAN (see

section 7 of [RFC9139]) that is inspired by [RFC5497] and [IEEE.

¶

¶

¶

¶

¶

* ¶

*

¶

Subnormal (b == 0):

Normalized (b > 0):

754.2019]. Its logarithmic encoding supports a representation

ranging from milliseconds to years. Figure 1 depicts the logarithmic

nature of this time representation.

Figure 1: A logarithmic range representation allows for higher

precision in the smaller time ranges and still supports large time

deltas.

Time codes encode exponent and mantissa values in a single byte, but

in contrast to the representation in [IEEE.754.2019], time codes

only encode positive numbers and hence do not include an extra sign

bit. Figure 2 shows the configuration of a time code: an exponent

width of 5 bits, and a mantissa width of 3 bits.

Figure 2: A time code with exponent and mantissa to encode a

logarithmic range time representation.

The base unit for time values are seconds. A time value is

calculated using the following formula (adopted from [RFC5497] and

[RFC9139]), where (a) represents the mantissa, (b) the exponent, and

(C) a constant factor set to C := 1/32.

(0 + a/8) * 2 * C

(1 + a/8) * 2^b * C

The subnormal form provides a gradual underflow between zero and the

smallest normalized number. Eight time values exist in the subnormal

range [0s,~0.054688s] with a step size of ~0.007812s between each

time value. This configuration also encodes the following convenient

numbers in seconds: [1, 2, 4, 8, 16, 32, 64, ...]. Appendix A

further includes test vectors to illustrate the logarithmic range.

An example algorithm to encode a time value into the corresponding

exponent and mantissa is given as pseudo code in Figure 3. Not all

time values can be represented by a time code. For these instances,

the closest time code is chosen that is smaller than the value to

encode.

¶

|| | | | | | | | | | |

+---+

milliseconds years

¶

<--- one byte wide --->

+----+----+----+----+----+----+----+----+

| exponent (b) | mantissa (a) |

+----+----+----+----+----+----+----+----+

 0 1 2 3 4 5 6 7

¶

¶

¶

¶

¶

Figure 3: Algorithm in pseudo code.

As an example: No specific time code for 0.063 exists, but this

algorithm maps to the closest valid time code that is smaller, i.e.,

exponent 1 and mantissa 0 (the same as for time value 0.0625).

5. Protocol Integration of the Compact Time Representation

A straightforward way to accommodate the compact time approach is to

use a 1-byte length field to indicate this alternative encoding

while retaining the existing TLV registry entries. This approach has

backward compatibility problems, but may still be considered for the

following reasons:

Both CCNx RFCs are experimental and not Standards Track, hence

expectations for forward and backward compatibility are not as

stringent. "Flag day" upgrades of deployed CCNx networks, while

inconvenient, are still feasible.

The major use case for these compressed encodings are smaller-

scale IoT and/or sensor networks where the population of

consumers, producers, and forwarders is reasonably small.

Since the current TLVs have hop-by-hop semantics, they are not

covered by any signed hash and hence may be freely re-encoded by

any forwarder. That means a forwarder supporting the new encoding

can translate freely between the two encodings.

The alternative of assigning new TLV registry values does not

substantially mitigate the interoperability problems anyway.

 input: float v // time value

output: int a, b // mantissa, exponent of time code

(a, b) encode (v):

 if (v == 0)

 return (0, 0)

 if (v < 2 * C) // subnormal

 a = floor (v * 4 / C) // round down

 return (a, 0)

 else // normalized

 if (v > (1 + 7/8) * 2^31 * C) // check bounds

 return (7, 31) // return maximum

 else

 b = floor (log2(v / C)) // round down

 a = floor ((v / (2^b * C) - 1) * 8) // round down

 return (a, b)

¶

¶

*

¶

*

¶

*

¶

*

¶

The following lists alternative approaches of integrating the

compact time representation for time offsets in CCNx messages. A

further analysis, discussion, and decision on the best suited

approach will be added as the document progresses.

Relative time TLVs (e.g., T_INTLIFETIME) include nested TLVs to

hint at the used encoding. This approach allows for versatility

in defining new time encodings, but adds a TLV overhead that

negates the benefits of the compact time representation.

A new TLV type for the compact time representation is defined

(T_INTLIFETIME_COMPACT). The packet header grammar from

[RFC8609] is updated to allow for T_INTLIFETIME_COMPACT at the

same level of the currently defined T_INTLIFETIME.

5.1. Interest Lifetime

The Interest Lifetime definition in [RFC8609] allows for a variable-

length lifetime representation, where a length of 1 encodes the

linear range [0,255] in milliseconds. This document changes the

definition to always encode 1-byte Interest lifetime values in the

compact time value representation (Figure 4).

Figure 4: Changes to the definition of the Interest Lifetime TLV.

A note on legacy forwarders: A forwarder that does not support this

compact time representation will interpret the time value as an

Interest lifetime between 0 and 255 milliseconds. This may lead to a

degradation of network performance, since Pending Interest Table

(PIT) entries timeout quicker than expected.

¶

1.

¶

2.

¶

¶

 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+---------------+---------------+---------------+---------------+

| T_INTLIFE | Length = 1 |

+---------------+---------------+---------------+---------------+

| COMPACT_TIME |

+---------------+

 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+---------------+---------------+---------------+---------------+

| T_INTLIFE | Length > 1 |

+---------------+---------------+---------------+---------------+

/ /

/ Lifetime (Length octets) /

/ /

+---------------+---------------+---------------+---------------+

¶

5.2. Recommended Cache Time

The Recommended Cache Time definition in [RFC8609] specifies an

absolute time representation that is of a length fixed to 8 bytes.

This document changes the definition to always encode 1-byte

Recommended Cache Time values in the compact relative time value

representation (Figure 5).

Figure 5: Changes to the definition of the Recommended Cache Time TLV.

The packet processing is adapted to calculate an absolute time from

the relative time code based on the absolute reception time. On

transmission, a new relative time code is calculated based on the

current system time.

A note on legacy forwarders: A forwarder that does not support this

compact time representation is expected to consider a Recommended

Cache Time with length 1 as a structural or syntactical error and

discard the packet. Otherwise, a forwarder interprets the compact 1-

byte time value as an absolute time far in the past, which impacts

cache utilization.

6. IANA Considerations

Based on the approach of integration, certain TLV registries from

[RFC8609] need to be updated.

7. Security Considerations

This document makes no semantic changes to [RFC8569], nor to any of

the security properties of the message encodings of [RFC8609], and

¶

 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+---------------+---------------+---------------+---------------+

| T_CACHETIME | Length = 1 |

+---------------+---------------+---------------+---------------+

| COMPACT_TIME |

+---------------+

 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+---------------+---------------+---------------+---------------+

| T_CACHETIME | Length = 8 |

+---------------+---------------+---------------+---------------+

/ /

/ Recommended Cache Time /

/ /

+---------------+---------------+---------------+---------------+

¶

¶

¶

[RFC2119]

[ICNLOWPAN]

[IEEE.754.2019]

[RFC5497]

[RFC7927]

[RFC8569]

[RFC8609]

hence has the same security considerations as those two existing

documents.

8. References

8.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

8.2. Informative References

Gündoğan, C., Kietzmann, P., Schmidt, T., and M.

Wählisch, "Designing a LoWPAN convergence layer for the

Information Centric Internet of Things", Computer

Communications, Vol. 164, No. 1, p. 114–123, Elsevier,

December 2020, <https://doi.org/10.1016/j.comcom.

2020.10.002>.

Institute of Electrical and Electronics Engineers,

C/MSC - Microprocessor Standards Committee, "Standard for

Floating-Point Arithmetic", June 2019, <https://

standards.ieee.org/content/ieee-standards/en/standard/

754-2019.html>.

Clausen, T. and C. Dearlove, "Representing Multi-Value

Time in Mobile Ad Hoc Networks (MANETs)", RFC 5497, DOI

10.17487/RFC5497, March 2009, <https://www.rfc-

editor.org/info/rfc5497>.

Kutscher, D., Ed., Eum, S., Pentikousis, K., Psaras, I.,

Corujo, D., Saucez, D., Schmidt, T., and M. Waehlisch,

"Information-Centric Networking (ICN) Research

Challenges", RFC 7927, DOI 10.17487/RFC7927, July 2016,

<https://www.rfc-editor.org/info/rfc7927>.

Mosko, M., Solis, I., and C. Wood, "Content-Centric

Networking (CCNx) Semantics", RFC 8569, DOI 10.17487/

RFC8569, July 2019, <https://www.rfc-editor.org/info/

rfc8569>.

Mosko, M., Solis, I., and C. Wood, "Content-Centric

Networking (CCNx) Messages in TLV Format", RFC 8609, DOI

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://doi.org/10.1016/j.comcom.2020.10.002
https://doi.org/10.1016/j.comcom.2020.10.002
https://standards.ieee.org/content/ieee-standards/en/standard/754-2019.html
https://standards.ieee.org/content/ieee-standards/en/standard/754-2019.html
https://standards.ieee.org/content/ieee-standards/en/standard/754-2019.html
https://www.rfc-editor.org/info/rfc5497
https://www.rfc-editor.org/info/rfc5497
https://www.rfc-editor.org/info/rfc7927
https://www.rfc-editor.org/info/rfc8569
https://www.rfc-editor.org/info/rfc8569

[RFC9139]

b == 0:

b > 0:

10.17487/RFC8609, July 2019, <https://www.rfc-editor.org/

info/rfc8609>.

Gündoğan, C., Schmidt, T., Wählisch, M., Scherb, C.,

Marxer, C., and C. Tschudin, "Information-Centric

Networking (ICN) Adaptation to Low-Power Wireless

Personal Area Networks (LoWPANs)", RFC 9139, DOI

10.17487/RFC9139, November 2021, <https://www.rfc-

editor.org/info/rfc9139>.

Appendix A. Test Vectors

The test vectors in Table 1 show sample time codes and their

corresponding time values according to the algorithm outlined in

Section 4.

Time Code Time Value (seconds)

0x00 0.000000

0x01 0.007812

0x04 0.031250

0x08 0.062500

0x15 0.203125

0x28 1.000000

0x30 2.000000

0xF8 67108864.000000

0xFF 125829120.000000

Table 1: Test Vectors

Appendix B. Efficient Time Value Approximation

A forwarder frequently converts compact time into milliseconds to

compare Interest lifetimes and the duration of cache entries. On

many architectures, multiplication and division perform slower than

addition, subtraction, and bit shifts. The following equations

approximate the formulas in Section 4, and scale from seconds into

the milliseconds range by applying a factor of 2^10 instead of 10^3.

This results in an error of 2.4%.

2^10 * a * 2^-3 * 2^1 * 2^-5

= a << 3

(2^10 + a * 2^-3 * 2^10) * 2^b * 2^-5

= (1 << 5 + a << 2) << b

Acknowledgments

We would like to thank the active members of the ICNRG research

group for constructive thoughts. In particular, we thank Marc Mosko

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc8609
https://www.rfc-editor.org/info/rfc8609
https://www.rfc-editor.org/info/rfc9139
https://www.rfc-editor.org/info/rfc9139

and Ken Calvert for their valuable feedback on the encoding scheme

and the protocol integration.

Authors' Addresses

Cenk Gündoğan

Huawei Technologies

Riesstrasse 25

D-80992 Munich

Germany

Email: cenk.gundogan@huawei.com

Thomas C. Schmidt

HAW Hamburg

Berliner Tor 7

D-20099 Hamburg

Germany

Email: t.schmidt@haw-hamburg.de

URI: http://inet.haw-hamburg.de/members/schmidt

Dave Oran

Network Systems Research and Design

4 Shady Hill Square

Cambridge, MA 02138

United States of America

Email: daveoran@orandom.net

Matthias Waehlisch

link-lab & FU Berlin

Hoenower Str. 35

D-10318 Berlin

Germany

Email: mw@link-lab.net

URI: http://www.inf.fu-berlin.de/~waehl

¶

mailto:cenk.gundogan@huawei.com
mailto:t.schmidt@haw-hamburg.de
http://inet.haw-hamburg.de/members/schmidt
mailto:daveoran@orandom.net
mailto:mw@link-lab.net
http://www.inf.fu-berlin.de/~waehl

	Alternative Delta Time Encoding for CCNx Using Compact Floating-Point Arithmetic
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Usage of Time Values in CCNx
	3.1. Relative Time in CCNx
	3.2. Absolute Time in CCNx
	3.2.1. Signature Time and Expiry Time
	3.2.2. Recommended Cache Time

	4. A Compact Time Representation with Logarithmic Range
	5. Protocol Integration of the Compact Time Representation
	5.1. Interest Lifetime
	5.2. Recommended Cache Time

	6. IANA Considerations
	7. Security Considerations
	8. References
	8.1. Normative References
	8.2. Informative References

	Appendix A. Test Vectors
	Appendix B. Efficient Time Value Approximation
	Acknowledgments
	Authors' Addresses

