
ICNRG M. Mosko
Internet-Draft I. Solis
Intended status: Experimental PARC, Inc.
Expires: December 31, 2015 June 29, 2015

CCNx Messages in TLV Format
draft-irtf-icnrg-ccnxmessages-00

Abstract

 This document specifies the encoding of CCNx messages using a TLV
 Packet specification. CCNx messages follow the CCNx Semantics
 specification. This document defines the TLV types used by each
 message element and the encoding of each value.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 31, 2015.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Mosko & Solis Expires December 31, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft CCNx TLV June 2015

Table of Contents

1. Introduction . 3
1.1. Requirements Language 4

2. Definitions . 5
3. Type-Length-Value (TLV) Packets 6
3.1. Overall packet format 6
3.2. Fixed Headers . 7
3.2.1. Interest Fixed Header 8
3.2.1.1. Interest HopLimit 9

3.2.2. Content Object Fixed Header 9
3.2.3. InterestReturn Fixed Header 9
3.2.3.1. InterestReturn HopLimit 10
3.2.3.2. InterestReturn Flags 10
3.2.3.3. Return Code 10

3.3. Hop-by-hop TLV headers 11
3.3.1. Interest Lifetime 11
3.3.2. Recommended Cache Time 11

3.4. Top-Level Types . 12
3.5. Global Formats . 13
3.5.1. Pad . 13
3.5.2. Organization Specific TLVs 13
3.5.3. Link . 14

3.6. CCNx Message . 15
3.6.1. Name . 15
3.6.1.1. Name Segments 17
3.6.1.2. Interest Payload ID 17

3.6.2. Message TLVs . 18
3.6.2.1. Interest Message TLVs 18
3.6.2.2. Content Object Message TLVs 20

3.6.3. Payload . 22
3.6.4. Validation . 22
3.6.4.1. Validation Algorithm 22
3.6.4.2. Validation Payload 28

4. Acknowledgements . 29
5. IANA Considerations . 30
6. Security Considerations 31
7. References . 32
7.1. Normative References 32
7.2. Informative References 32

 Authors' Addresses . 33

Mosko & Solis Expires December 31, 2015 [Page 2]

Internet-Draft CCNx TLV June 2015

1. Introduction

 This document specifies a Type-Length-Value (TLV) packet format and
 the TLV type and value encodings for the CCNx network protocol as
 specified in [CCNSemantics]. This draft describes the mandatory and
 common optional fields of Interests and Content Objects. Several
 additional protocols specified in their own documents are in use that
 extend this specification.

 A full description of the semantics of CCNx messages, providing an
 encoding-free description of CCNx messages and message elements, may
 be found in [CCNSemantics]

 This document specifies:

 o The TLV packet format.

 o The overall packet format for CCNx messages.

 o The TLV types used by CCNx messages.

 o The encoding of values for each type.

 o Top level types that exist at the outermost containment.

 o Interest TLVs that exist within Interest containment.

 o Content Object TLVs that exist within Content Object containment.

 This document is supplemented by this document:

 o Message semantics: see [CCNSemantics] for the protocol operation
 regarding Interest and Content Object, including the Interest
 Return protocol.

 In the final draft, the type values will be assigned to be compact.
 All type values are relative to their parent containers. It is
 possible for a TLV to redefine a type value defined by its parent.
 For example, each level of a nested TLV structure might define a
 "type = 1" with a completely different meaning.

 Packets are represented as 32-bit wide words using ASCII art. Due to
 the nested levels of TLV encoding and the presence of optional fields
 and variable sizes, there is no concise way to represent all
 possibilities. We use the convention that ASCII art fields enclosed
 by vertical bars "|" represent exact bit widths. Fields with a
 forward slash "/" are variable bit widths, which we typically pad out
 to word alignment for picture readability.

Mosko & Solis Expires December 31, 2015 [Page 3]

Internet-Draft CCNx TLV June 2015

 TODO -- we have not adopted the Requirements Language yet.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Mosko & Solis Expires December 31, 2015 [Page 4]

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Internet-Draft CCNx TLV June 2015

2. Definitions

 o HSVLI: Hierarchically structured variable length identifier, also
 called a Name. It is an ordered list of path segments, which may
 be variable length octet strings. In human-readable form, it is
 represented in URI format as lci:/path/part. There is no host or
 query string.

 o Name: see HSVLI

 o Interest: A message requesting a Content Object with a matching
 Name and other optional selectors to choose from multiple objects
 with the same Name. Any Content Object with a Name and optional
 selectors that matches the Name and optional selectors of the
 Interest is said to satisfy the Interest.

 o Content Object: A data object sent in response to an Interest
 request. It has an HSVLI Name and a content payload that are
 bound together via cryptographic means.

Mosko & Solis Expires December 31, 2015 [Page 5]

Internet-Draft CCNx TLV June 2015

3. Type-Length-Value (TLV) Packets

 We use 16-bit Type and 16-bit Length fields to encode TLV based
 packets. This provides 64K different possible types and value field
 lengths of up to 64KiB. With 64K possible types, there should be
 sufficient space for basic protocol types, while also allowing ample
 room for experimentation, application use, and growth. Specifically,
 the TLV types in the range 0x1000 - 0x1FFF are reserved for
 experimental use. These type values are reserved in all TLV
 container contexts.In the event that more space is needed, either for
 types or for length, a new version of the protocol would be needed.

 1 2
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | Type | Length |
 +---------------+---------------+---------------+---------------+

 The Length field contains the length of the Value field in octets.
 It does not include the length of the Type and Length fields. A zero
 length TLV is permissible.

 TLV structures are nestable, allowing the Value field of one TLV
 structure to contain additional TLV structures. The enclosing TLV
 structure is called the container of the enclosed TLV.

 Type values are context-dependent. Within a TLV container, one may
 re-use previous type values for new context-dependent purposes.

3.1. Overall packet format

 Each packet includes the 8 byte fixed header described below,
 followed by a set of TLV fields. These fields are optional hop-by-
 hop headers and the Packet Payload.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | Version | PacketType | PacketLength |
 +---------------+---------------+---------------+---------------+
 | PacketType specific fields | HeaderLength |
 +---------------+---------------+---------------+---------------+
 / Optional Hop-by-hop header TLVs /
 +---------------+---------------+---------------+---------------+
 / PacketPayload TLVs /
 +---------------+---------------+---------------+---------------+

 The packet payload is a TLV encoding of the CCNx message, followed by

Mosko & Solis Expires December 31, 2015 [Page 6]

Internet-Draft CCNx TLV June 2015

 optional Validation TLVs.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | CCNx Message TLV /
 +---------------+---------------+---------------+---------------+
 / Optional CCNx ValidationAlgorithm TLV /
 +---------------+---------------+---------------+---------------+
 / Optional CCNx ValidationPayload TLV (ValidationAlg required) /
 +---------------+---------------+---------------+---------------+

 This document describes the Version "1" TLV encoding.

 After discarding the fixed and hop-by-hop headers the remaining
 PacketPayload should be a valid protocol message. Therefore, the
 PacketPayload always begins with a 4 byte TLV defining the protocol
 message (whether it is an Interest, Content Object, or other message
 type) and its total length. The embedding of a self-sufficient
 protocol data unit inside the fixed and hop-by-hop headers allows a
 network stack to discard the headers and operate only on the embedded
 message.

 The range of bytes protected by the Validation includes the CCNx
 Message and the ValidationAlgorithm.

 The ContentObjectHash begins with the CCNx Message and ends at the
 tail of the packet.

3.2. Fixed Headers

 CCNx messages begin with an 8 byte fixed header (non-TLV format).
 The HeaderLength field represents the combined length of the Fixed
 and Hop-by-hop headers. The PacketLength field represents the entire
 Packet length.

 A specific PacketType may assign meaning to the reserved bytes.

 The PacketPayload of a CCNx packet is the protocol message itself.
 The Content Object Hash is computed over the PacketPayload only,
 excluding the fixed and hop-by-hop headers as those might change from
 hop to hop. Signed information or Similarity Hashes should not
 include any of the fixed or hop-by-hop headers. The PacketPayload
 should be self-sufficient in the event that the fixed and hop-by-hop
 headers are removed.

Mosko & Solis Expires December 31, 2015 [Page 7]

Internet-Draft CCNx TLV June 2015

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | Version | PacketType | PacketLength |
 +---------------+---------------+---------------+---------------+
 | PacketType specific fields | HeaderLength |
 +---------------+---------------+---------------+---------------+

 o Version: defines the version of the packet.

 o HeaderLength: The length of the fixed header (8 bytes) and hop-by-
 hop headers. The minimum value is "8".

 o PacketType: describes forwarder actions to take on the packet.

 o PacketLength: Total octets of packet including all headers (fixed
 header plus hop-by-hop headers) and protocol message.

 o PacketType Specific Fields: specific PacketTypes define the use of
 these bits.

 The PacketType field indicates how the forwarder should process the
 packet. A Request Packet (Interest) has PacketType 0, a Response
 (Content Object) has PacketType 1, and an InterestReturn Packet has
 PacketType 2.

 HeaderLength is the number of octets from the start of the packet
 (Version) to the end of the hop-by-hop headers. PacketLength is the
 number of octets from the start of the packet to the end of the
 packet.

 The PacketType specific fields are reserved bits whose use depends on
 the PacketType. They are used for network-level signaling.

3.2.1. Interest Fixed Header

 If the PacketType in the Fixed Header is "0", it indicates that the
 PacketPayload should be processed as an Interest message. For this
 type of packet, the Fixed Header includes a field for a HopLimit as
 well as Reserved and Flags fields. The Reserved field must be set to
 0 in an Interest - this field will be set to a return code in the
 case of an Interest Return. There are currently no Flags defined, so
 this field must also be set to 0.

Mosko & Solis Expires December 31, 2015 [Page 8]

Internet-Draft CCNx TLV June 2015

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | Version | 0 | PacketLength |
 +---------------+---------------+---------------+---------------+
 | HopLimit | Reserved | Flags | HeaderLength |
 +---------------+---------------+---------------+---------------+

3.2.1.1. Interest HopLimit

 For an Interest message, the HopLimit is a counter that is
 decremented with each hop. It limits the distance an Interest may
 travel on the network. The node originating the Interest may put in
 any value - up to the maximum of 255. Each node that receives an
 Interest with a HopLimit decrements the value upon reception. If the
 value is 0 after the decrement, the Interest cannot be forwarded off
 the node.

 It is an error to receive an Interest with a 0 hop-limit from a
 remote node.

3.2.2. Content Object Fixed Header

 If the PacketType in the Fixed Header is "1", it indicates that the
 PacketPayload should be processed as a Content Object message. A
 Content Object defines a Flags field, however there are currently no
 flags defined, so the Flags field must be set to 0.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | Version | 1 | PacketLength |
 +---------------+---------------+---------------+---------------+
 | Reserved | Flags | HeaderLength |
 +---------------+---------------+---------------+---------------+

3.2.3. InterestReturn Fixed Header

 If the PacketType in the Fixed Header is "2", it indicates that the
 PacketPayload should be processed as a returned Interest message.
 The only difference between this InterestReturn message and the
 original Interest is that the PacketType is changed to "2" and a
 ReturnCode is is put into the Reserved octet. All other fields are
 unchanged. The purpose of this encoding is to prevent packet length
 changes so no additional bytes are needed to return an Interest to
 the previous hop. See [CCNSemantics] for a protocol description of
 this packet type.

Mosko & Solis Expires December 31, 2015 [Page 9]

Internet-Draft CCNx TLV June 2015

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | Version | 2 | PacketLength |
 +---------------+---------------+---------------+---------------+
 | HopLimit | ReturnCode | Flags | HeaderLength |
 +---------------+---------------+---------------+---------------+

3.2.3.1. InterestReturn HopLimit

 This is the original Interest's HopLimit, as received. It is the
 value before being decremented at the current node.

3.2.3.2. InterestReturn Flags

 These are the original Flags as set in the Interest.

3.2.3.3. Return Code

 The numeric value assigned to the return types is defined below.
 This value is set by the node creating the Interest Return.

 A return code of "0" is not allowed, as it indicates that the
 returning system did not modify the Return Code field.

 +-------+--------------------+
 | Value | Return Type |
 +-------+--------------------+
 | 1 | No Route |
 | | |
 | 2 | Hop Limit Exceeded |
 | | |
 | 3 | No Resources |
 | | |
 | 4 | Path Error |
 | | |
 | 5 | Prohibited |
 | | |
 | 6 | Congested |
 | | |
 | 7 | MTU too large |
 +-------+--------------------+

 Table 1: Return Codes

Mosko & Solis Expires December 31, 2015 [Page 10]

Internet-Draft CCNx TLV June 2015

3.3. Hop-by-hop TLV headers

 Hop-by-hop TLV headers are unordered and no meaning should be
 attached to their ordering. Four hop-by-hop headers are described in
 this document:

 +--------+-------------+-----------------+--------------------------+
 | Type | Abbrev | Name | Description |
 +--------+-------------+-----------------+--------------------------+
%x0001	T_INTLIFE	Interest	The time an Interest
		Lifetime	should stay pending at
		(Section 3.3.1)	an intermediate node.
%x0002	T_CACHETIME	Recommended	The Recommended Cache
		Cache Time	Time for Content
		(Section 3.3.2)	Objects.
 +--------+-------------+-----------------+--------------------------+

 Table 2: Hop-by-hop Header Types

 Additional hop-by-hop headers are defined in higher level
 specifications such as the fragmentation specification.

3.3.1. Interest Lifetime

 The Interest Lifetime is the time that an Interest should stay
 pending at an intermediate node. It is expressed in milliseconds as
 an unsigned, network byte order integer.

 A value of 0 (encoded as 1 byte %x00) indicates the Interest does not
 elicit a Content Object response. It should still be forwarded, but
 no reply is expected.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | T_INTLIFE | Length |
 +---------------+---------------+---------------+---------------+
 / /
 / Lifetime (length octets) /
 / /
 +---------------+---------------+---------------+---------------+

3.3.2. Recommended Cache Time

 The Recommended Cache Time (RCT) is a measure of the useful lifetime
 of a Content Object as assigned by a content producer or upstream
 node. It serves as a guideline to the Content Store cache in

Mosko & Solis Expires December 31, 2015 [Page 11]

Internet-Draft CCNx TLV June 2015

 determining how long to keep the Content Object. It is a
 recommendation only and may be ignored by the cache. This is in
 contrast to the ExpiryTime (described in Section 3.6.2.2.2)which
 takes precedence over the RCT and must be obeyed.

 Because the Recommended Cache Time is an optional hop-by-hop header
 and not a part of the signed message, a content producer may re-issue
 a previously signed Content Object with an updated RCT without
 needing to re-sign the message. There is little ill effect from an
 attacker changing the RCT as the RCT serves as a guideline only.

 The Recommended Cache Time (a millisecond timestamp) is a network
 byte ordered unsigned integer of the number of milliseconds since the
 epoch in UTC of when the payload expires. It is a 64-bit field.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | T_CACHETIME | 8 |
 +---------------+---------------+---------------+---------------+
 / /
 / Recommended Cache Time /
 / /
 +---------------+---------------+---------------+---------------+

3.4. Top-Level Types

 The top-level TLV types listed below exist at the outermost level of
 a CCNx protocol message.

 +-------+----------------------+-------------------+----------------+
 | Type | Abbrev | Name | Description |
 +-------+----------------------+-------------------+----------------+
%x000	T_INTEREST	Interest	An Interest
1		(Section 3.6)	MessageType.
%x000	T_OBJECT	Content Object	A Content
2		(Section 3.6)	Object
			MessageType

Mosko & Solis Expires December 31, 2015 [Page 12]

Internet-Draft CCNx TLV June 2015

%x000	T_VALIDATION_ALG	Validation	The method of
3		Algorithm	message
		(Section 3.6.4.1)	verification
			such as
			Message
			Integrity
			Check (MIC), a
			Message
			Authentication
			Code (MAC), or
			a
			cryptographic
			signature.
%x000	T_VALIDATION_PAYLOAD	Validation	The validation
4		Payload	output, such
		(Section 3.6.4.2)	as the CRC32C
			code or the
			RSA signature.
 +-------+----------------------+-------------------+----------------+

 Table 3: CCNx Top Level Types

3.5. Global Formats

3.5.1. Pad

 The pad type may be used by protocols that prefer word-aligned data.
 The size of the word may be defined by the protocol. Padding 4-byte
 words, for example, would use a 1-byte, 2-byte, and 3-byte Length.
 Padding 8-byte words would use a (0, 1, 2, 3, 5, 6, 7)-byte Length.

 A pad may be inserted after any TLV except within a Name TLV. In the
 remainder of this document, we will not show optional pad TLVs.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | T_PAD | Length |
 +---------------+---------------+---------------+---------------+
 / variable length pad MUST be zeros /
 +---------------+---------------+---------------+---------------+

3.5.2. Organization Specific TLVs

 Organizations may request proprietary TLV types in the Hop-By-Hop
 headers section or other TLV containers. The organization then has
 control of the contents of the Value, which may be its own binary

Mosko & Solis Expires December 31, 2015 [Page 13]

Internet-Draft CCNx TLV June 2015

 field or an encapsulated set of TLVs. The inner TLVs, because we use
 a context-dependent TLV scheme, may be fully defined by the
 organization.

 Organization specific TLVs MUST use the T_ORG type. The Length field
 is the length of the organization specific information plus 3. The
 Value begins with the 3 byte organization number derived from the
 last three digits of the IANA Private Enterprise
 Numbers([CCNSemantics]), followed by the organization specific
 information.

 +--------+--------+------------------+------------------------------+
 | Type | Abbrev | Name | Description |
 +--------+--------+------------------+------------------------------+
 | %x0FFF | T_ORG | Vendor Specific | Information specific to a |
 | | | Information | vendor implementation. |
 +--------+--------+------------------+------------------------------+

 Table 4: Additional CCNx Message Types

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | (T_ORG) | Length (3+value length) |
 +---------------+---------------+---------------+---------------+
 | PEN[0] | PEN[1] | PEN[2] | /
 +---------------+---------------+---------------+ +
 / Vendor Specific Value /
 +---------------+---------------+---------------+---------------+

3.5.3. Link

 A Link is the tuple: {CCNx Name, KeyId, ContentObjectHash}. It is a
 general encoding that is used in both the payload of a Content Object
 with PayloadType = "Link" and in the KeyName field in a KeyLocator.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------------------------------+
 / Mandatory CCNx Name /
 +---------------+---------------+-------------------------------+
 / Optional KeyId /
 +---+
 / Optional ContentObjectHash /
 +---+

Mosko & Solis Expires December 31, 2015 [Page 14]

Internet-Draft CCNx TLV June 2015

3.6. CCNx Message

 This is the format for the CCNx protocol message itself. The CCNx
 message is the portion of the packet between the hop-by-hop headers
 and the Validation TLVs. The figure below is an expansion of the
 "CCNx Message TLV" depicted in the beginning of Section 3. The CCNx
 message begins with MessageType and runs through the optional
 Payload. The same general format is used for both Interest and
 Content Object messages which are differentiated by the MessageType
 field. The first enclosed TLV of a CCNx Message is always the Name
 TLV. This is followed by an optional Message TLVs and an optional
 Payload TLV.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | MessageType | MessageLength |
 +---------------+---------------+---------------+---------------+
 | Name TLV (Type = T_NAME) |
 +---------------+---------------+---------------+---------------+
 / Optional Message TLVs (Various Types) /
 +---------------+---------------+---------------+---------------+
 / Optional Payload TLV (Type = T_PAYLOAD) /
 +---------------+---------------+---------------+---------------+

 +--------+-----------+-----------------+----------------------------+
 | Type | Abbrev | Name | Description |
 +--------+-----------+-----------------+----------------------------+
%x0000	T_NAME	Name	The CCNx Name requested in
		(Section 3.6.1)	an Interest or published
			in a Content Object.
%x0001	T_PAYLOAD	Payload	The message payload.
		(Section 3.6.3)	
 +--------+-----------+-----------------+----------------------------+

 Table 5: CCNx Message Types

3.6.1. Name

 A Name is a TLV encoded sequence of segments. The table below lists
 the type values appropriate for these Name segments. A Name MUST NOT
 include PAD TLVs.

Mosko & Solis Expires December 31, 2015 [Page 15]

Internet-Draft CCNx TLV June 2015

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | T_NAME | Length |
 +---------------+---------------+---------------+---------------+
 / Name segment TLVs /
 +---------------+---------------+---------------+---------------+

 +--------+---------------+-------------------+----------------------+
 | Type | Symbolic Name | Name | Description |
 +--------+---------------+-------------------+----------------------+
%x0001	T_NAMESEGMENT	Name segment	A generic name
		(Section 3.6.1.1)	Segment.
%x0002	T_IPID	Interest Payload	An identifier that
		ID	represents the
		(Section 3.6.1.2)	Interest Payload
			field. As an
			example, the Payload
			ID might be a hash
			of the Interest
			Payload. This
			provides a way to
			differentiate
			between Interests
			based on their
			payloads without
			having to parse all
			the bytes of the
			payload itself;
			instead using only
			this Payload ID Name
			segment
%x1000	T_APP:00 -	Application	Application-specific
-	T_APP:4096	Components	payload in a name
%x1FFF		(Section 3.6.1.1)	segment. An
			application may
			apply its own
			semantics to the
			4096 reserved types.
 +--------+---------------+-------------------+----------------------+

 Table 6: CCNx Name Types

Mosko & Solis Expires December 31, 2015 [Page 16]

Internet-Draft CCNx TLV June 2015

3.6.1.1. Name Segments

 Special application payload name segments are in the range %x1000 -
 %1FFF. These have application semantics applied to them. A good
 convention is to put the application's identity in the name prior to
 using these name segments.

 For example, a name like "lci:/foo/bar/yo" would be encoded as:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | (T_NAME) | %x14 (20) |
 +---------------+---------------+---------------+---------------+
 | (T_NAME_SEGMENT) | %x03 (3) |
 +---------------+---------------+---------------+---------------+
 | f o o |(T_NAME_SEGMENT)
 +---------------+---------------+---------------+---------------+
 | | %x03 (3) | b |
 +---------------+---------------+---------------+---------------+
 | a r | (T_NAME_SEGMENT) |
 +---------------+---------------+---------------+---------------+
 | %x02 (2) | y | o |
 +---------------+---------------+---------------+---------------+

3.6.1.2. Interest Payload ID

 The InterestPayloadID is a name segment created by the origin of an
 Interest to represent the Interest Payload. This allows the proper
 multiplexing of Interests based on their name if they have different
 payloads. A common representation is to use a hash of the Interest
 Payload as the InterestPayloadID.

 As part of the TLV 'value', the InterestPayloadID contains a one
 identifier of method used to create the InterestPayloadID followed by
 a variable length octet string. An implementation is not required to
 implement any of the methods to receive an Interest; the
 InterestPayloadID may be treated only as an opaque octet string for
 purposes of multiplexing Interests with different payloads. Only a
 device creating an InterestPayloadID name segment or a device
 verifying such a segment need to implement the algorithms. Because
 we allow application-specific algorithms and nonces, a device may not
 be able to verify the name segment. We use the same encoding as RFC

6920 [RFC6920] Binary Format. If the InterestPayloadID is created
 via a hash, it is encoded exactly as in RFC 6920 Section 6 Binary
 Format. If the ID is created via application specific means, then we
 set the high-order Reserved bit (0x80) and use the following table
 for methods, which are not part of the RFC6920 suite.

https://datatracker.ietf.org/doc/html/rfc6920
https://datatracker.ietf.org/doc/html/rfc6920
https://datatracker.ietf.org/doc/html/rfc6920
https://datatracker.ietf.org/doc/html/rfc6920#section-6
https://datatracker.ietf.org/doc/html/rfc6920

Mosko & Solis Expires December 31, 2015 [Page 17]

Internet-Draft CCNx TLV June 2015

 0: Application Specific (0x80)

 1: Nonce (0x81)

 In normal operations, we recommend displaying the InterestPayloadID
 as an opaque octet string in an LCI scheme, as this is the common
 denominator for implementation parsing. The InterestPayloadID name
 segment may be displayed using the RFC6920 format NI scheme, for
 example as "lci:/name=foo/name=bar/ipid=sha-256-32;f4OxZQ".

 The InterestPayloadID, even if it is a hash, should not convey any
 security context. If a system requires confirmation that a specific
 entity created the InterestPayload, it should use a cryptographic
 signature on the Interest via the ValidationAlgorithm and
 ValidationPayload or use its own methods inside the Interest Payload.

3.6.2. Message TLVs

 Each message type (Interest or Content Object) is associated with a
 set of optional Message TLVs. Additional specification documents may
 extend the types associated with each.

3.6.2.1. Interest Message TLVs

 There are two Message TLVs currently associated with an Interest
 message: the KeyIdRestriction selector and the
 ContentObjectHashRestriction selector are used to narrow the universe
 of acceptable Content Objects that would satisfy the Interest.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | MessageType | MessageLength |
 +---------------+---------------+---------------+---------------+
 | Name TLV |
 +---------------+---------------+---------------+---------------+
 / Optional KeyIdRestriction TLV /
 +---+
 / Optional ContentObjectHashRestriction TLV /
 +---+

https://datatracker.ietf.org/doc/html/rfc6920

Mosko & Solis Expires December 31, 2015 [Page 18]

Internet-Draft CCNx TLV June 2015

 +-------+---------------+-----------------------------+-------------+
 | Type | Abbrev | Name | Description |
 +-------+---------------+-----------------------------+-------------+
%x000	T_KEYIDRESTR	KeyIdRestriction	An octet
2		(Section 3.6.2.1.1)	string
			identifying
			the
			specific
			publisher
			signing key
			that would
			satisfy the
			Interest.
%x000	T_OBJHASHREST	ContentObjectHashRestrictio	The SHA-256
3	R	n (Section 3.6.2.1.2)	hash of the
			specific
			Content
			Object that
			would
			satisfy the
			Interest.
 +-------+---------------+-----------------------------+-------------+

 Table 7: CCNx Interest Message TLV Types

3.6.2.1.1. KeyIdRestriction

 An Interest may include a KeyIdRestriction selector. This ensures
 that only Content Objects with matching KeyIds will satisfy the
 Interest. See Section 3.6.4.1.4.1 for the format of a KeyId.

3.6.2.1.2. ContentObjectHashRestriction

 An Interest may also contain a ContentObjectHashRestriction selector.
 This is the SHA-256 hash of the Content Object - the self-certifying
 name restriction that must be verified in the network, if present.

 The only acceptable length is 32.

Mosko & Solis Expires December 31, 2015 [Page 19]

Internet-Draft CCNx TLV June 2015

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | T_OBJHASHRESTR | Length |
 +---------------+---------------+---------------+---------------+
 / /
 / SHA-256 digest (32 bytes) /
 / /
 / /
 +---------------+---------------+---------------+---------------+

3.6.2.2. Content Object Message TLVs

 The following message TLVs are currently defined for Content Objects:
 PayloadType (optional) and ExpiryTime (optional).

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | MessageType | MessageLength |
 +---------------+---------------+---------------+---------------+
 | Name TLV |
 +---------------+---------------+---------------+---------------+
 / Optional PayloadType TLV /
 +---+
 / Optional ExpiryTime TLV /
 +---+

 +--------+-------------+---------------------+----------------------+
 | Type | Abbrev | Name | Description |
 +--------+-------------+---------------------+----------------------+
%x0005	T_PAYLDTYPE	PayloadType	Indicates the type
		(Section 3.6.2.2.1)	of Payload contents.
%x0006	T_EXPIRY	ExpiryTime	The time at which
		(Section 3.6.2.2.2)	the Payload expires,
			as expressed in the
			number of
			milliseconds since
			the epoch in UTC.
			If missing, Content
			Object may be used
			as long as desired.
 +--------+-------------+---------------------+----------------------+

 Table 8: CCNx Content Object Message TLV Types

Mosko & Solis Expires December 31, 2015 [Page 20]

Internet-Draft CCNx TLV June 2015

3.6.2.2.1. PayloadType

 The PayloadType is a network byte order integer representing the
 general type of the Payload TLV.

 o 0: Data (possibly encrypted)

 o 1: Key

 o 2: Link

 o 3: Manifest

 The Data type indicate that the Payload of the ContentObject is
 opaque application bytes. The Key type indicates that the Payload is
 a DER encoded public key. The Link type indicates that the Payload
 is a Link (Section 3.5.3). If this field is missing, a "Data" type
 is assumed. A Manifest type indicates that the Payload is a Manifest
 (format TBD).

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | T_PAYLDTYPE | Length |
 +---------------+---------------+---------------+---------------+
 | PayloadType /
 +---------------+

3.6.2.2.2. ExpiryTime

 The ExpiryTime is the time at which the Payload expires, as expressed
 by a timestamp containing the number of milliseconds since the epoch
 in UTC. It is a network byte order unsigned integer in a 64-bit
 field. A cache or end system should not respond with a Content
 Object past its ExpiryTime. Routers forwarding a Content Object do
 not need to check the ExpiryTime. If the ExpiryTime field is
 missing, the Content Object has no expressed expiration and a cache
 or end system may use the Content Object for as long as desired.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | T_EXPIRY | 8 |
 +---------------+---------------+---------------+---------------+
 / ExpiryTime /
 / /
 +---------------+---------------+---------------+---------------+

Mosko & Solis Expires December 31, 2015 [Page 21]

Internet-Draft CCNx TLV June 2015

3.6.3. Payload

 The Payload TLV contains the content of the packet. It is
 permissible to have a "0" length. If a packet does not have any
 payload, this field may be omitted, rather than carrying a "0"
 length.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | T_PAYLOAD | Length |
 +---------------+---------------+---------------+---------------+
 / Payload Contents /
 +---------------+---------------+---------------+---------------+

3.6.4. Validation

 Both Interests and Content Objects have the option to include
 information about how to validate the CCNx message. This information
 is contained in two TLVs: the ValidationAlgorithm TLV and the
 ValidationPayload TLV. The ValidationAlgorithm TLV specifies the
 mechanism to be used to verify the CCNx message. Examples include
 verification with a Message Integrity Check (MIC), a Message
 Authentication Code (MAC), or a cryptographic signature. The
 ValidationPayload TLV contains the validation output, such as the
 CRC32C code or the RSA signature.

 An Interest would most likely only use a MIC type of validation - a
 crc, checksum, or digest.

3.6.4.1. Validation Algorithm

 The ValidationAlgorithm is a set of nested TLVs containing all of the
 information needed to verify the message. The outermost container
 has type = T_VALIDATION_ALG. The first nested TLV defines the
 specific type of validation to be performed on the message. The type
 is identified with the "ValidationType" as shown in the figure below
 and elaborated in the table below. Nested within that container are
 the TLVs for any ValidationType dependent data, for example a Key Id,
 Key Locator etc.

 Complete examples of several types may be found in Section 3.6.4.1.5

Mosko & Solis Expires December 31, 2015 [Page 22]

Internet-Draft CCNx TLV June 2015

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | T_VALIDATION_ALG | ValidationAlgLength |
 +---------------+---------------+---------------+---------------+
 | ValidationType | Length |
 +---------------+---------------+---------------+---------------+
 / ValidationType dependent data /
 +---------------+---------------+---------------+---------------+

 +--------+---------------+---------------------+--------------------+
 | Type | Abbrev | Name | Description |
 +--------+---------------+---------------------+--------------------+
%x0002	T_CRC32C	CRC32C	Castagnoli CRC32
		(Section 3.6.4.1.1)	(iSCSI, ext4,
			etc.), with normal
			form polynomial
			0x1EDC6F41.
%x0004	T_HMAC-SHA256	HMAC-SHA256	HMAC (RFC 2104)
		(Section 3.6.4.1.2)	using SHA256 hash.
%x0005	T_VMAC-128	VMAC-128	VMAC with 128bit
		(Section 3.6.4.1.2)	tags [VMAC]
%x0006	T_RSA-SHA256	RSA-SHA256	RSA public key
		(Section 3.6.4.1.3)	signature using
			SHA256 digest.
%x0007	EC-SECP-256K1	SECP-256K1	Elliptic Curve
		(Section 3.6.4.1.3)	signature with
			SECP-256K1
			parameters (see
			[ECC]).
%x0008	EC-SECP-384R1	SECP-384R1	Elliptic Curve
		(Section 3.6.4.1.3)	signature with
			SECP-384R1
			parameters (see
			[ECC]).
 +--------+---------------+---------------------+--------------------+

 Table 9: CCNx Validation Types

https://datatracker.ietf.org/doc/html/rfc2104

Mosko & Solis Expires December 31, 2015 [Page 23]

Internet-Draft CCNx TLV June 2015

3.6.4.1.1. Message Integrity Checks

 MICs do not require additional data in order to perform the
 verification. An example is CRC32C that has a "0" length value.

3.6.4.1.2. Message Authentication Checks

 MACs are useful for communication between two trusting parties who
 have already shared private keys. Examples include an RSA signature
 of a SHA256 digest or others. They rely on a KeyId. Some MACs might
 use more than a KeyId, but those would be defined in the future.

3.6.4.1.3. Signature

 Signature type Validators specify a digest mechanism and a signing
 algorithm to verify the message. Examples include RSA signature og a
 SHA256 digest, an Elliptic Curve signature with SECP-256K1
 parameters, etc. These Validators require a KeyId and a mechanism
 for locating the publishers public key (a KeyLocator) - optionally a
 PublicKey or Certificate or KeyName.

3.6.4.1.4. Validation Dependent Data

 Different Validation Algorithms require access to different pieces of
 data contained in the ValidationAlgorithm TLV. As described above,
 Key Ids, Key Locators, Public Keys, Certificates, Links and Key Names
 all play a role in different Validation Algorithms.

 Following is a table of CCNx ValidationType dependent data types:

 +--------+-------------+-----------------------+--------------------+
 | Type | Abbrev | Name | Description |
 +--------+-------------+-----------------------+--------------------+
%x0009	T_KEYID	SignerKeyId	An identifier of
		(Section 3.6.4.1.4.1)	the shared secret
			or public key
			associated with a
			MAC or Signature.
			Typically the
			SHA256 hash of the
			key.
%x000B	T_PUBLICKEY	Public Key	DER encoded public
		(Section 3.6.4.1.4.2)	key.
%x000C	T_CERT	Certificate	DER encoded X509
		(Section 3.6.4.1.4.3)	certificate.

Mosko & Solis Expires December 31, 2015 [Page 24]

Internet-Draft CCNx TLV June 2015

%x000E	T_KEYNAME	KeyName	A CCNx Link
		(Section 3.6.4.1.4.4)	object.
%x000F	T_SIGTIME	SignatureTime	A millsecond
		(Section 3.6.4.1.4.5)	timestamp
			indicating the
			time when the
			signature was
			created.
 +--------+-------------+-----------------------+--------------------+

 Table 10: CCNx Validation Dependent Data Types

3.6.4.1.4.1. KeyId

 The KeyId is the publisher key identifier. It is similar to a
 Subject Key Identifier from X509 [RFC 5280, Section 4.2.1.2]. It
 should be derived from the key used to sign, such as from the SHA-256
 hash of the key. It applies to both public/private key systems and
 to symmetric key systems.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | T_KEYID | Length |
 +---------------+---------------+---------------+---------------+
 / KeyId /
 /---------------+---------------+-------------------------------+

3.6.4.1.4.2. Public Key

 A Public Key is a DER encoded Subject Public Key Info block, as in an
 X509 certificate.

 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +---------------+---------------+---------------+---------------+
 | T_PUBLICKEY | Length |
 +---------------+---------------+---------------+---------------+
 / Public Key (DER encoded SPKI) /
 +---------------+---------------+---------------+---------------+

Mosko & Solis Expires December 31, 2015 [Page 25]

Internet-Draft CCNx TLV June 2015

3.6.4.1.4.3. Certificate

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | T_CERT | Length |
 +---------------+---------------+---------------+---------------+
 / Certificate (DER encoded X509) /
 +---------------+---------------+---------------+---------------+

3.6.4.1.4.4. KeyName

 A KeyName type KeyLocator is a Link.

 The KeyName digest is the publisher digest of the Content Object
 identified by KeyName. It may be included on an Interest's digest
 restriction. A KeyName is a mandatory Name and an optional KeyId.
 The KeyId inside the KeyLocator may be included in an Interest's
 KeyId to retrieve only the specified key.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------------------------------+
 | T_KEYNAME | Length |
 +---------------+---------------+-------------------------------+
 / Link /
 +---+

3.6.4.1.4.5. SignatureTime

 The SignatureTime is a millisecond timestamp indicating the time at
 which a signature was created. The signer sets this field to the
 current time when creating a signature. A verifier may use this time
 to determine whether or not the signature was created during the
 validity period of a key, or if it occurred in a reasonable sequence
 with other associated signatures. The SignatureTime is unrelated to
 any time associated with the actual CCNx Message, which could have
 been created long before the signature. The default behavior is to
 always include a SignatureTime when creating an authenticated message
 (e.g. HMAC or RSA).

 SignatureTime is a network byte ordered unsigned integer of the
 number of milliseconds since the epoch in UTC of when the signature
 was created. It is a fixed 64-bit field.

Mosko & Solis Expires December 31, 2015 [Page 26]

Internet-Draft CCNx TLV June 2015

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------------------------------+
 | T_SIGTIME | 8 |
 +---------------+---------------+-------------------------------+
 / SignatureTime /
 +---+

3.6.4.1.5. Validation Examples

 As an example of a MIC type validation, the encoding for CRC32
 validation would be:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | T_VALIDATION_ALG | 4 |
 +---------------+---------------+---------------+---------------+
 | T_CRC32 | 0 |
 +---------------+---------------+---------------+---------------+

 As an example of a MAC type validation, the encoding for an HMAC
 using a SHA256 hash would be:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | T_VALIDATION_ALG | 40 |
 +---------------+---------------+---------------+---------------+
 | T_HMAC-SHA256 | 36 |
 +---------------+---------------+---------------+---------------+
 | T_KEYID | 32 |
 +---------------+---------------+---------------+---------------+
 / KeyId /
 /---------------+---------------+-------------------------------+

 As an example of a Signature type validation, the encoding for an RSA
 public key signing using a SHA256 digest and Public Key would be:

Mosko & Solis Expires December 31, 2015 [Page 27]

Internet-Draft CCNx TLV June 2015

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | T_VALIDATION_ALG | 44 + Variable Length |
 +---------------+---------------+---------------+---------------+
 | T_RSA-SHA256 | 40 + Variable Length |
 +---------------+---------------+---------------+---------------+
 | T_KEYID | 32 |
 +---------------+---------------+---------------+---------------+
 / KeyId /
 /---------------+---------------+-------------------------------+
 | T_PUBLICKEY | Variable Length (~ 160) |
 +---------------+---------------+---------------+---------------+
 / Public Key (DER encoded SPKI) /
 +---------------+---------------+---------------+---------------+

3.6.4.2. Validation Payload

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | T_VALIDATION_PAYLOAD | ValidationPayloadLength |
 +---------------+---------------+---------------+---------------+
 / Type-dependent data /
 +---------------+---------------+---------------+---------------+

 The ValidationPayload contains the validation output, such as the
 CRC32C code or the RSA signature.

Mosko & Solis Expires December 31, 2015 [Page 28]

Internet-Draft CCNx TLV June 2015

4. Acknowledgements

Mosko & Solis Expires December 31, 2015 [Page 29]

Internet-Draft CCNx TLV June 2015

5. IANA Considerations

 TODO: Work with IANA to define the type space for: Top level types,
 Hop-by-hop header types, Name segment types, CCNx messages types,
 Interest message TLV types, Content Object TLV message types,
 Validation types, and Validation dependent data types.

 All drafts are required to have an IANA considerations section (see
 Guidelines for Writing an IANA Considerations Section in RFCs
 [RFC5226] for a guide). If the draft does not require IANA to do
 anything, the section contains an explicit statement that this is the
 case (as above). If there are no requirements for IANA, the section
 will be removed during conversion into an RFC by the RFC Editor.

https://datatracker.ietf.org/doc/html/rfc5226

Mosko & Solis Expires December 31, 2015 [Page 30]

Internet-Draft CCNx TLV June 2015

6. Security Considerations

 All drafts are required to have a security considerations section.
 See RFC 3552 [RFC3552] for a guide.

Mosko & Solis Expires December 31, 2015 [Page 31]

https://datatracker.ietf.org/doc/html/rfc3552
https://datatracker.ietf.org/doc/html/rfc3552

Internet-Draft CCNx TLV June 2015

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

7.2. Informative References

 [CCN] PARC, Inc., "CCNx Open Source", 2007,
 <http://www.CCNx.org>.

 [CCNSemantics]
 Mosko, M., Solis, I., and M. Stapp, "CCNx Semantics
 (Internet draft)", 2015, <http://tools.ietf.org/html/

draft-mosko-icnrg-ccnxsemantics-00>.

 [ECC] Certicom Research, "SEC 2: Recommended Elliptic Curve
 Domain Parameters", 2010,
 <http://www.secg.org/sec2-v2.pdf>.

 [EpriseNumbers]
 IANA, "IANA Private Enterprise Numbers", 2015, <http://

www.iana.org/assignments/enterprise-numbers/
enterprise-numbers>.

 [RFC3552] Rescorla, E. and B. Korver, "Guidelines for Writing RFC
 Text on Security Considerations", BCP 72, RFC 3552,
 July 2003.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, May 2008.

 [RFC6920] Farrell, S., Kutscher, D., Dannewitz, C., Ohlman, B.,
 Keranen, A., and P. Hallam-Baker, "Naming Things with
 Hashes", RFC 6920, April 2013.

 [VMAC] Krovertz, T. and W. Dai, "VMAC: Message Authentication
 Code using Universal Hashing", 2007,
 <http://www.fastcrypto.org/vmac/

draft-krovetz-vmac-01.txt>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.CCNx.org
http://tools.ietf.org/html/draft-mosko-icnrg-ccnxsemantics-00
http://tools.ietf.org/html/draft-mosko-icnrg-ccnxsemantics-00
http://www.secg.org/sec2-v2.pdf
http://www.iana.org/assignments/enterprise-numbers/enterprise-numbers
http://www.iana.org/assignments/enterprise-numbers/enterprise-numbers
http://www.iana.org/assignments/enterprise-numbers/enterprise-numbers
https://datatracker.ietf.org/doc/html/bcp72
https://datatracker.ietf.org/doc/html/rfc3552
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc6920
http://www.fastcrypto.org/vmac/draft-krovetz-vmac-01.txt
http://www.fastcrypto.org/vmac/draft-krovetz-vmac-01.txt

Mosko & Solis Expires December 31, 2015 [Page 32]

Internet-Draft CCNx TLV June 2015

Authors' Addresses

 Marc Mosko
 PARC, Inc.
 Palo Alto, California 94304
 USA

 Phone: +01 650-812-4405
 Email: marc.mosko@parc.com

 Ignacio Solis
 PARC, Inc.
 Palo Alto, California 94304
 USA

 Phone: +01 650-812-4405
 Email: marc.mosko@parc.com

Mosko & Solis Expires December 31, 2015 [Page 33]

