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Abstract

   This document describes a bare bones "index table"-approach for
   organizing a set of ICN data objects into a large, File-Like ICN
   Collection (FLIC).  At the core of this collection is a so called
   manifest which acts as the collection's root node.  The manifest
   contains an index table with pointers, each pointer being a hash
   value pointing to either a final data block or another index table
   node.
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   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
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1.  Introduction

   ICN architectures such as Content-Centric Networking (CCN)[RFC8569]
   and Named Data Networking [NDN] are well suited for static content
   distribution.  Each piece of possibly immutable) static content is
   assigned a name by its producer.  Consumers fetch this content using
   said name.  Optionally, consumers may specify the full name of
   content, which includes its name and a unique (with overwhelming
   probability) cryptographic digest of said content.  (See
   [I-D.irtf-icnrg-terminology] for a formal definition of "full name".)

   To enable requests with full names, consumers need a priori knowledge
   of content digests.  Manifests, or catalogs, are data structures
   commonly proposed to transport this information.  Typically,
   manifests are signed content objects (data) which carry a collection
   of hash digests.  However, as content objects, manifests themselves
   may be fetched by full name.  Thus, manifests may contain hash
   digests of, or pointers to, other manifests or content objects.  A
   collection of manifests and content objects represents a large piece
   of application data, e.g., one that cannot otherwise fit in a single
   content object.

   Structurally, this relationship between manifests and content objects
   is reminiscent of the UNIX inode concept with index tables and memory
   pointers.  In this document, we specify a simple, yet extensible,
   manifest data structure called FLIC - File-Like ICN Collection.  FLIC
   is suitable for ICNs such as CCN and NDN.  We describe the FLIC
   design, grammar, and various use cases, e.g., seeking, de-
   duplication, extension, and variable-sized encoding.  We also include
   FLIC encoding examples for CCN and NDN.

   The purpose of a manifest is to concisely name the constiuent pieces
   of a larger object.  A FLIC manifest does this by using a first
   manifest to name and cryptographically sign the data structure and
   then use more concise lists of hash-based names to indicate the
   constituent pieces.  This maintains strong security from a single
   signature.  A Manifest entry gives one enough information to create
   an Interest for that entry, so it must specify the name, the hash
   digest, and if needed the locators (routing hints).

   FLIC is a distributed data structure best illustrated by the
   following picture.

https://datatracker.ietf.org/doc/html/rfc8569
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                                            root manifest
    .------------------------------------.
    | optional name:                     |
    |   /icn/name/of/this/flic           |
    |                                    |
    | HashGroup (HG):                    |
    |   optional metadata:               |
    |     overall digest, locator, etc.  |    .------.
    |   hash-valued data pointer -----------> | data |
    |     ...                            |    `------'  sub manifest
    |   hash-valued manifest pointer ------.     .------------------.
    |                                    |  `--> |                ----->
    | optional additional HashGroups ..  |       |                ----->
    |                                    |       `------------------'
    | optional signature                 |
    `------------------------------------'

         Figure 1: A FLIC manifest and its directed acyclic graph

   A key question is how one names the root manifest, the application
   data, and other subsequent manifests.  The question of namespaces is
   specific to the names of each Content Object (CCNx) or Data (NDN),
   and is separate from the question of Locators.  FLIC allows one to
   use a first namespace for the manifests and a second namespace for
   the application data.  A given namespace may use one of three
   schemas: hash-based naming, single-prefix naming, or segmented
   naming.  We describe the allowed methods in Section 3.3.  There are
   also particulars of how to encode the name schema in a given ICN
   protocol, which we describe in Section 3.9.

   Locators are routing hints to find a Content Object / Data.  They
   exist in both CCNx and NDN, though the specifics differ.  A FLIC
   manifest encodes locators the same for both ICN protocols, though
   they are encoded differently in the underlying protocol.  See

Section 3.9 for encoding differences.

   We follow the CCNx [RFC8569] terminology where a Content Object is
   the data structure that holds application payload.  It is made up of
   an optional Name, a PayloadType, a Payload, and an optional
   Signature.

   FLIC has encodings for CCNx encoding (Section 3.9.1) as per RFC 8609
   [RFC8609] and for NDN (Section 3.9.2).

   An example implementation in Python may be found at
   [FLICImplementation].

https://datatracker.ietf.org/doc/html/rfc8569
https://datatracker.ietf.org/doc/html/rfc8609
https://datatracker.ietf.org/doc/html/rfc8609
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1.1.  Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

2.  Design Goals

   The preferred FLIC structure copies the proven UNIX inode concept of
   direct and indirect pointers, but without the specific structural
   forms of direct versus indirect.

   In FLIC terms, a direct pointer links to application-level data,
   which is a Content Object with application data in the Payload.  An
   indirect pointer links to a Content Object with a FLIC Manifest in
   the Payload.

   Links in FLIC use hash-based naming of Content Objects, rather than
   inode block numbers.  Both CCNx and NDN support hash-based naming,
   though the details vary.  See Section 3.9.1 and Section 3.9.2.
   Another advantage of using hash-based naming is it permits block-
   level de-duplication of application data because two blocks with the
   same payload will have the same hash name.

   Because FLIC uses hash-based naming, FLIC graphs are inherently
   acyclic.

   The preferred FLIC structure includes a root manifest with a strong
   cryptographic signature and then strong hash names to other manifests
   (e.g.  SHA256).  The advantage of this structure is the single
   signature in the root manifest covers the entire data structure no
   matter how many additional manifests are in the data structure.
   Another advantage of this structure is it removes the need to use
   chunk (CCNx) or segment (NDN) name components for the subordinate
   manifests.

   FLIC supports manifest encryption separate from application payload
   encryption.  It has a flexible encryption envelope to support various
   encryption algorithms and key discovery mechanisms.  The byte layout
   allows for in-place encryption and decryption.

   A limitation of this approach is that one cannot construct a hash-
   based name for a child until one knows the payload of that child.  In
   practical terms, this means that one must have the complete
   application payload available at the time of manifest creation.

   FLIC's design allows straightforward applications that just need to
   traverse a linear set of related objects to do so simply, but FLIC

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
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   has two extensibility mechanisms that allow for more sophisticated
   uses: manifest metadata, and pointer annotations.  These are
   described in Section 3.4 and Section 3.5 respectively.

3.  FLIC Structure

3.1.  Terminology

   Data Object:  a CCNx nameless Content Object that usually only has
      Payload.  It might also have an ExpiryTime to limit the lifetime
      of the data.

   Direct Pointer:  borrowed from inode terminology, it is a CCNx link
      using a content object hash restriction and a locator name to
      point to a Data Object.

   Indirect Pointer:  borrowed from inode terminology, it is a CCNx link
      using a content object hash restriction and a locator name to
      point to a manifest content object.

   Manifest:  a CCNx ContentObject with PayloadType 'Manifest' and a
      Payload of the encoded manifest.  A leaf manifest only has direct
      pointers.  An internal manifest has a mixture of direct and
      indirect manifests.

   Leaf Manifest:  all pointers are direct pointers.

   Internal Manifest:  some or all pointers are indirect.  The order and
      number of each is up to the manifest builder.  By convention, all
      the direct manifests come first, then the indirect.

   Manifest Waste:  a metric used to measure the amount of waste in a
      manifest tree.  Waste is the number of unused pointers.  For
      example, a leaf manifest might be able to hold 40 direct pointers,
      but only 30 of them are used, so the waste of this node is 10.
      Manifest tree waste is the sum of waste over all manifests in a
      tree.

   Root Manifest:  A signed, named, manifest that points to nameless
      manifest nodes.  This structure means that the internal tree
      structure of internal and leaf manifests have no names and thus
      may be located anywhere in a namespace, while the root manifest
      has a name to fetch it by.

   Top Manifest:  A preferred manifest structure is to use a Root
      manifest that points to a single Internal manifest called the Top
      Manifest.  The Top manifest the begins the structure used to
      organize manifests.
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   Namespace:  The prefix and object name that goes inside a Content
      Object.  It may include typed name components specifying a version
      and/or chunk/segment number.

   Locator:  A routing hint in an Interest used by forwarding to get the
      Interest to where it can be matched based on its Namespace-derived
      name.

3.2.  Locators

   Locators are routing hints used by forwarders to get an Interest to a
   node in the network that can resolve the Interest's name.  In some
   naming conventions, the name might only be a hash-based name so the
   Locator is the only available routing information.

   A manifest Node may define one or more Locator prefixes that can be
   used in the construction of Interests from the pointers in the
   manifest.  The Locators are inherited when walking a manifest tree,
   so they do not need to be defined everywhere.  It is RECOMMENDED that
   only the Root manifest contain Locators so that a single operation
   can update the locators.  One usecase when storing application
   payloads at different replicas is to replace the Root manifest with a
   new one that contains locators for the current replicas.

3.3.  Namespaces

   A FLIC manifest may define zero or more namespaces.  If none are
   defined, FLIC uses the default Hash Naming approach.  If using
   namespaces, typically there are two defined: one for the manifest
   namespace and one for the application data namespace.  If the two are
   the same, they can share a namepace.  There may be more than two
   namespaces.

   A namespace follows a naming convention.  The naming convention
   governs how FLIC creates the ICN Name that goes in an Interest's Name
   and must match a Content Object / Data Name.  The conventions are:
   (1) Hash Naming, (2) Single Prefix, and (3) Segmented Prefix.  The
   default is to use Hash Naming.  Hash Naming does not include anything
   besides a hash name in the Interest's name and relies on the Locator
   to forward the Interest.  Single Prefix uses the same name
   differntiated only by a Content Object's implicit hash.  Segmented
   Prefix keeps a counter for the namespace, starting with 0, and
   increments it after each use of the namespace.

   The namespace definitions may be inherited from the Root manifest or
   the Top manifest, or any prior manifest.  It is RECOMMENDED that the
   namespace definitions appear in the Root manifest so they can be
   updated by a single operation.  Because Segmented Prefix namespaces
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   use a counter, it is RECOMMENDED to only define them in the Root
   manifest or Top manifest and not elsewhere, as it may confuse the
   counters.

   In the NodeData, there may be zero or more NSDef contains.  Each
   NSDef defines a namespace identifier (octet string) and its naming
   convention.  For the Hash Naming convention, no further information
   is required.  For the Single Prefix and Segmented Prefix conventions,
   the NSDef specifies the ICN Name prefix used by the namespace.

   A HashGroup may have an NSRef container that indicates which
   namespace it is using, and by implication which naming convention and
   the corresponding prefix.  If there is no NSRef, the hash group uses
   Hash Naming convention.

3.4.  Manifest Metadata

   The FLIC Manifest may be extended by defining TLVs that apply to the
   Manifest as a whole, or alternatively, individually to every data
   object pointed to by the Manifest.  This basic specification does not
   specify any, but metadata TLVs may be defined through additional RFCs
   or via Vendor TLVs.  FLIC uses a Vendor TLV structure similar to
   [RFC8609] for vendor-specific annotations that require no
   standardization process.

   For example, some applications may find it useful to allow
   specialized consumers such as _repositories_ (for example
   [repository]) or enhanced forwarder caches to pre-place, or
   adaptively pre-fetch data in order to improve robustness of delay
   performance.  We note in passing that FLICs use of separate
   namespaces for the Manifest and the underlying Data allows different
   encryption keys to be used, hence giving a element like a cache or
   repository access to the Manifest data does not as a side effect
   reveal the contents of the application data itself.

3.5.  Pointer Annotations

   FLIC allows each manifest pointer to be annotated with extra data.
   Annotations allow applications to exploit metadata about each Data
   Object pointed to without having to first fetch the corresponding
   Content Object.  This specification defines one such annotation.  The
   _SizeAnnotation_ specifies the number of application layer octets
   covered by the pointer.

   An annotation may, for example, give hints about a preferred
   traversal order for fetching the data, or an importance/precedence
   indication to aid applications that do not require every content
   object pointed to in the manifest to be fetched.  This can be very

https://datatracker.ietf.org/doc/html/rfc8609
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   useful for real-time or streaming media applications that can perform
   error concealment when rendering the media.

   Additional annotations may be defined through additional RFCs or via
   Vendor TLVs.  FLIC uses a Vendor TLV structure similar to [RFC8609]
   for vendor-specific annotations that require no standardization
   process.

3.6.  Manifest Grammar (ABNF)

   The manifest grammar is mostly independent of the transport ICN
   protocol.  The TLV encoding therefore follows the corresponding ICN
   protocol, so for CCNx FLIC uses 2 octet length, 2 octet type and for
   NDN uses the 1/3/5 octet types and lengths.  There are also some
   differences in how one structures and resolves links.  [RFC8569]
   defines HashValue and Link for CCNx encodings.  The NDN
   ImplicitSha256DigestComponent defines HashValue and NDN Delegation
   (from Link Object) defines Link for NDN.  The Section 3.9 section
   below specifies these differences.

   The basic structure of a FLIC manifest is a security context, a node,
   and an authentication tag.  The security context and authentication
   tag are not needed if the node is unencrypted.  A node is made up of
   a set of metadata, the NodeData, that applies to the entire node, and
   one or more HashGroups that contain pointers.

   The NodeData element defines the namespaces used by the manifest.
   There may be multiple namespaces, depending on how one names
   subsequent manifests or data objects.  Each HashGroup may reference a
   single namespace to control how one forms Interests from the
   HashGroup.  If one is using separate namespaces for manifests and
   application data, one needs at least two HashGroups.  For a manifest
   structure of "MMMDDD," (where M means manifest (indirect pointer) and
   D means data (direct pointer)) for example, one would have a first
   hash group for the child manifests with its namespace and a second
   HashGroup for the data pointers with the other namespace.  If one
   used a structure like "MMMDDDMMM," then one would need three
   HashGroups.

TYPE = 2OCTET / {1,3,5}OCTET ; As per CCNx or NDN TLV
LENGTH = 2OCTET / {1,3,5}OCTET ; As per CCNx or NDN TLV

Manifest = TYPE LENGTH [SecurityCtx] (EncryptedNode / Node) [AuthTag]

SecurityCtx = TYPE LENGTH AlgorithmCtx
AlgorithmCtx = PresharedKeyCtx / RsaKemCtx / RsaKemDemCtx
AuthTag = TYPE LENGTH *OCTET ; e.g. AEAD authentication tag
EncryptedNode = TYPE LENGTH *OCTET ; Encrypted Node

https://datatracker.ietf.org/doc/html/rfc8609
https://datatracker.ietf.org/doc/html/rfc8569
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Node = TYPE LENGTH [NodeData] 1*HashGroup
NodeData = TYPE LENGTH [SubtreeSize] [SubtreeDigest] [Locators] 0*NSDef
SubtreeSize = TYPE LENGTH INTEGER
SubtreeDigest = TYPE LENGTH HashValue
NSDef = TYPE LENGTH NsId NsSchema
NsId = TYPE LENGTH INTEGER
NsSchema = HashSchema / SinglePrefixSchema / SegmentedPrefixSchema
HashSchema = TYPE 0
SinglePrefixSchema = TYPE LENGTH Name
SegmentedPrefixSchema = TYPE LENGTH Name

Locators = TYPE LENGTH 1*Link
HashValue = TYPE LENGTH *OCTET ; As per ICN Protocol
Link = TYPE LENGTH *OCTET ; As per ICN protocol

HashGroup = TYPE LENGTH [GroupData] (Ptrs / AnnotatedPtrs)
Ptrs = TYPE LENGTH *HashValue
AnnotatedPtrs = TYPE LENGTH *PointerBlock
PointerBlock = TYPE LENGTH *Annotation Ptr
Ptr = TYPE LENGTH HashValue

Annotation = SizeAnnotation / Vendor
SizeAnnotation = TYPE LENGTH Integer
Vendor = TYPE LENGTH PEN *OCTET

GroupData = TYPE LENGTH [LeafSize] [LeafDigest] [SubtreeSize] [SubtreeDigest] 
[NsId]
LeafSize = TYPE LENGTH INTEGER
LeafDigest = TYPE LENGTH HashValue

PresharedKeyCtx = TYPE LENGTH PresharedKeyData
PresharedKeyData = KeyNum IV Mode
KeyNum = TYPE LENGTH INTEGER
IV = TYPE LENGTH 1*OCTET
Mode = TYPE LENGTH (AES-GCM-128 / AES-GCM-256)

RsaKemCtx = 2 LENGTH RsaKemData
RsaKemData = KeyId IV Mode WrappedKey LocatorPrefix
KeyId = TYPE LENGTH HashValue; ID of Key Encryption Key
WrappedKey = TYPE LENGTH 1*OCTET
LocatorPrefix = TYPE LENGTH Link

RsaKemDemCtx = 3 LENGTH RsaKemDemData
RsaKemDemData = KeyId IV Mode WrappedKey LocatorPrefix

                          Figure 1: FLIC Grammar

   SecurityCtx:  information about how to decrypt an EncryptedNode.  The
      structure will depend on the specific encryption algorithm.
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   AlgorithmId:  The ID of the encryption method (e.g. preshared key, a
      broadcast encryption scheme, etc.)

   AlgorithmData:  The context for the encryption algorithm.

   EncryptedNode:  An opaque octet string with an optional
      authentication tag (i.e. for AEAD authentication tag)

   Node:  A plain-text manifest node.  The structure allows for in-place
      encryption/decryption.

   NodeData:  the metadata about the Manifest node

   SubtreeSize:  The size of all application data at and below the Node
      or Group

   SubtreeDigest:  The cryptographic digest of all application data at
      and below the Node or Group

   Locators:  An array of routing hints to find the manifest components

   HashGroup:  A set of child pointers and associated metadata

   Ptrs:  A list of one or more Hash Values

   GroupData:  Metadata that applies to a HashGroup

   LeafSize:  Size of all application data immediately under the Group
      (i.e. via direct pointers)

   LeafDigest:  Digest of all application data immediately under the
      Group

   Ptr:  The ContentObjectHash of a child, which may be a data
      ContentObject (i.e. with Payload) or another Manifest Node.

3.7.  Manifest Trees

3.7.1.  Traversal

   FLIC manifests use a pre-order traversal.  This means they are read
   top to bottom, left to right.  The algorithms in Figure 2 show the
   in-order forward traversal code and the reverse-oder traversal code,
   which we use below to construct such a tree.  This document does not
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   mandate how to build trees.  Appendix A provides a detailed example
   of building inode-like trees.

   If using Annotated Pointers, an annotation could influence the
   traversal order.

   preorder(node)
       if (node = null)
           return
       visit(node)
       for (i = 0, i < node.child.length, i++)
           preorder(node.child[i])

   reverse_preorder(node)
       if (node = null)
           return
       for (i = node.child.length - 1, i >= 0, i-- )
       reverse_preorder(node.child[i])
           visit(node)

                      Figure 2: Traversal Pseudocode

   In terms of the FLIC grammar, one expands a node into its hash
   groups, visiting each hash group in order.  In each hash group, one
   follows each pointer in order.  Figure Figure 3 shows how hash groups
   inside a manifest expand like virtual children in the tree.  The in-
   order traversal is M0, HG1, M1, HG3, D0, D1, D2, HG2, D3, D4.

   M0 ____
   |      \
   HG1    HG2
   | \    |  \
   M1 D2  D3  D4
   |
   HG3
   |  \
   D0 D1

                         Figure 3: Node Expansion

   Using the example manifest tree shown in Figure Figure 9, the in-
   order traversal would be: Root, M0, M1, D0, D1, D2, M2, D3, D4, D5,
   M3, D6, D7, D8.
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3.8.  Manifest Encryption

   This document specifies three encryption methods.  The first is a
   preshared key algorithm, where the parties are assumed to have the
   decryption keys already.  This is useful, for example, when using a
   key agreement protocol such as CCNxKE.  The second is an RSA key
   encapsulation mechanisms (RsaKem).  The third is a standard RSA KEM-
   DEM mechanism that uses a shared group key (RsaKemDem).

   For group key based encryption, RsaKem and RsaKemDem, this
   specification only details the pertinent aspects of the encryption.
   It does not specify aspects of a key manager which may or may not be
   used as part of key distribution and management, nor does it specify
   the protocol between a key manager and a publisher.  In it's
   simpliest form, the publisher could be the key manager, so there is
   no extra protocol needed between the publisher and key manager.  This
   specification does describe how a consumer locates the appropriate
   keys.

   While the preshared key algorithm is limited in use, the AES
   encryption mechanisms described apply to the group key mechanisms
   too.  They group key mechanisms simply facilitate distribution of the
   shared key without an on-line key agreement protocol like CCNxKE.

   A fourth encryption mechanism based on elliptic curve key
   distribution is forthcoming.

3.8.1.  Preshared Key Algorithm

   The KeyNum identifies a key on the receiver.  The key must be of the
   correct length of the Mode used.  If the key is longer, use the left
   bits.  Many receivers many have the same key with the same KeyId.  A
   publisher creates a signed root manifest with a security context.  A
   consumer must ensure that the root manifest signer is the expected
   publisher for use with the pre-shared key, which may be shared with
   many other consumers.  The publisher may use either method 8.2.1
   (deterministic IV) or 8.2.2 (RBG-based IV) [NIST 800-38D] for
   creating the IV.

   Each encrypted manifest node (root manifest or internal manifest) has
   a full security context (KeyNum, IV, Mode).  The AES-GCM decryption
   is independent for each manifest so Manifest objects can be fetched
   and decrypted in any order.  This design also ensures that if a
   manifest tree points to the same subtree repeatedly, such as for
   deduplication, the decryptions are all idempotent.
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   The functions for authenticated encryption and authenticated
   decryption are as given in Sections 7.1 and 7.2 of NIST 800-38D: GCM-
   AE_K(IV, P, A) and GCM-AD_K(IV, C, A, T).

EncryptNode(SecurityCtx, Node, K, IV) -> GCM-AE_K(IV, P, A) -> (C, T)
    Node: The wire format of the Node (P)
    SecurityCtx: The wire format of the SecurityCtx as the Additional 
Authenticated Data (A)
    K: the pre-shared key (128 or 256 bits)
    IV: The initialization vector (usually 96 or 128 bits)
    C: The cipher text
    T: The authentication tag

                      Figure 4: Preshared Key Encrypt

   The pair (C,T) is the OpaqueNode encoded as a TLV structure:
   (OpaqueNode (CipherText C) (AuthTag T)).

DecryptNode(SecurityCtx, C, T, K, IV) -> GCM-AD_K (IV, C, A, T) -> (Node, 
FailFlag)
Node: The wire format of the decrypted Node
FailFlag: Indicates authenticated decryption failure (true or false)

                      Figure 5: Preshared Key Decrypt

   If doing in-place decryption, the cipher text C will be enclosed in
   an EncryptedNode TLV value.  After decryption, change the TLV type to
   Node.  The length should be the same.  After decryption the AuthTag
   is no longer needed.  The TLV type should be changed to T_PAD and the
   value zeroed.  The SecurityCtx could be changed to T_PAD and zeroed
   or left as-is.

3.8.2.  RSA Key Encapsulation

   See also RFC 5990, NIST SP 800-56B Rev. 2 and
https://lists.w3.org/Archives/Public/public-xmlsec/2009May/att-0032/
Key_Encapsulation.pdf

   In this system, a key manager (KM) (which could be the publisher)
   creates a symmetric Content Encryption Key (CEK) and a key wrapping
   pair with a Key Encryption Key (KEK) and Key Decryption Key (KDK).
   Each publisher and consumer has its own public/private key pair, and
   the KM knows each publisher's and consumer's identity and its public
   key (PK_x).

   We do not describe the publisher-key manager protocol to request a
   CEK.  The publisher will obtain the (CEK, E_KEK(Z), KeyId, Locator),
   where each element is: the content encryption key, the CEK precursor,
   Z, encrypted with the KEK (an RSA operation), and the KeyId of the

https://datatracker.ietf.org/doc/html/rfc5990
https://lists.w3.org/Archives/Public/public-xmlsec/2009May/att-0032/Key_Encapsulation.pdf
https://lists.w3.org/Archives/Public/public-xmlsec/2009May/att-0032/Key_Encapsulation.pdf
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   the KDK (see below).  The precursor Z is chosen randomly z < n-1,
   where n is KEK's public modulus.  Note that CEK = KDF(Z).  Note that
   the publisher does not see KEK or Z.

   We use HKDF (RFC 5869) for the KDF.  CEK = HKDF-Expand(HKDF-
   Extract(0, Z), "CEK", KeyLen), where KenLen is usually 32 bytes (256
   bits).

   In the ABNF grammar, the RsaKemData includes a KeyId, IV, Mode,
   WrappedKey, and LocatorPrefix.  The KeyId is the ID (sha256) of the
   KEK.  The IV and Mode are as per preshared key, and describe how the
   manifest is encrypted with AES-GCM.  The WrappedKey is the AES key to
   decrypt the manifest.  The LocatorPrefix is used to construct an
   Interest to fetch the KDK.

   To fetch the KDK, a consumer with public key PK_c constructs an
   Interest with name /LocatorPrefix/{KeyId}/{PK_c keyid} and a
   KeyIdRestriction of the KM's KeyId (from the LocatorPrefix Link).  It
   should receive back a signed Content Object with the KDK wrapped for
   the consumer, or a NAK from the KM.  The payload of the ContentObject
   will be RsaKemWrap(PK, KDK).  The signed ContentObject must have a
   KeyLocator to the KM's public key.  The consumer will trust the KM's
   public key because the publisher, whom the consumer trusts, relayed
   that KeyId inside its own signed Manifest.

   The signed Content Object should have an ExpiryTime, which may be
   shorter than the Manifest's, but should not be substantially longer
   than the Manifest's ExpiryTime.  The KM may decide how to handle the
   Recommended Cache Time, or if caching of the response is even
   permissible.  The KM may require on-line fetching of the response via
   a CCNxKE encrypted transport tunnel.

   RsaKemWrap(PK, K, KeyLen = 256):
       choose z < n-1, where n is PK's public modulus
       encrypt c = z^e mod n
       prk = HKDF-Extract(0, Z)
       kek = HKDF-Expand(prk, "RsaKemWrap", KeyLen)
       WK = E_KEK(K) # [AES-WRAP, RFC 3394]
       output (c, WK)

                          Figure 6: RSA KEM Wrap

   A consumer must verify the signed content object's signature against
   the Key Manager's public key.  The consumer then unwraps the KDK from
   the Content Object's payload using RsaKemUnwrap().  The KeyLen is
   taken from the WrapMode parameter.

https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc3394
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   RsaKemUnwrap(SK, c, WK, KeyLen = 256):
       Using the consumers private key SK, decrypt Z from c.
       prk = HKDF-Extract(0, Z)
       kek = HKDF-Expand(prk, "RsaKemWrap", KeyLen)
       K = D_KEK(WK) # [AES-UNWRAP, RFC 33940]
       output K

                         Figure 7: RSA KEM Unwrap

   The consumer then unwraps the CEK precursor by using the KDK to
   decrypt Z.  It then derives CEK as above.  Manifest encryption and
   decryption proceed as with PresharedKey, but using the CEK.

3.8.3.  RSA KEM-DEM

   In this scheme a Key Manager (KM), who could be the publisher,
   creates a Key Encryption Key (KEK) and Key Decryption Key (KDK) key
   pair.  The publisher obtains the KEK.  The KM distributes the KDK to
   each group member by encrypting it under each member's public key.
   To encrypt data, the publisher generates a symmetric Content
   Encryption Key (CEK), wraps it with the KEK, then encrypts the
   manifest with the CEK.  It places the wrapped CEK in the manifest.

   The KM communicates the KEK to the publisher through an unspecified
   means particular to the KM.

   The KM distributes the KDK to each group member.  It uses a name
   /{km-prefix}/{publisher-prefix}/{KDK KeyId}/{member KeyId} to publish
   the encrypted KDK under a member's public key.  It uses RSA-OAEP for
   the encryption.

   The publisher creates a random symmetric CEK of an appropriate bit
   length.  It uses the KEK to wrap the CEK using RSA-OAEP.  It places
   the wrapped key in the manifest's RsaKemDemData along with the KeyId
   set to the KDK's KeyId and the KeyLocator prefix /{km-
   prefix}/{publisher-prefix}/.  Each member appends the KDK KeyId and
   their public key KeyId to the name to attemt to fetch the KDK.  When
   forming the Interest to fetch the key, a consumer should also use a
   KeyIdRestriction of the KM's KeyId, which it can retrieve from the
   KeyLocator.

3.9.  Protocol Encodings

3.9.1.  CCNx Encoding

   In CCNx, all Manifest content objects use a PayloadType of
   T_PYLDTYPE_MANIFEST, while all application data content objects use a
   PayloadType of T_PYLDTYPE_DATA.

https://datatracker.ietf.org/doc/html/rfc33940
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ManifestContentObject = TYPE LENGTH [Name] [ExpiryTime] PayloadType Payload
Name = TYPE LENGTH *OCTET ; As per RFC8569
ExpiryTime = TYPE LENGTH *OCTET ; As per RFC8569
PayloadType = TYPE LENGTH T_PYLDTYPE_MANIFEST ; Value TBD
Payload : TYPE LENGTH *OCTET ; the serialized Manifest object

                     Figure 8: CCNx Embedding Grammar

3.9.1.1.  CCNx Hash Naming

   The Hash Naming namespace uses CCNx nameless content objects.

   It proceeds as follows:

   o  The Root Manifest content object has a name used to fetch the
      manifest.  It is signed by the publisher.  It has a set of
      Locators used to fetch the remainder of the manifest.  It has a
      single HashPointer that points to the Top Manifest.  It may also
      have cache control directives, such as ExpiryTime.

   o  The Root Manifest has an NsDef that specifies HashSchema.  It's
      GroupData uses that NsId.  All internal and leaf manifests use the
      same GroupData NsId.  A Manifest Tree MAY omit the NsDef and NsId
      elements and rely on the default being HashSchema.

   o  The Top Manifest is a nameless CCNx content object.  It may have
      cache control directies.

   o  Internal and Leaf manifests are nameless CCNx content objects,
      possibly with cache control directives.

   o  The Data content objects are nameless CCNx content objects,
      possibly with cache control directives.

   o  To form an Interest for a direct or indirect pointer, use a Name
      from one of the Locators and put the pointer HashValue into the
      ContentObjectHashRestriction.

3.9.1.2.  CCNx Single Prefix

   The Single Prefix schema uses the same name in all Content Objects
   and distinguishes them via their ContentObjectHash.  Note that in
   CCNx, using a SinglePrefix name means that we do not use Locators.

   It proceeds as follows:

   o  The Root Manifest content object has a name used to fetch the
      manifest.  It is signed by the publisher.  It has a set of

https://datatracker.ietf.org/doc/html/rfc8569
https://datatracker.ietf.org/doc/html/rfc8569
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      Locators used to fetch the remainder of the manifest.  It has a
      single HashPointer that points to the Top Manifest.  It may also
      have cache control directives, such as ExpiryTime.

   o  The Root Manifest has an NsDef that specifies SinglePrefix and the
      SinglePrefixSchema element specifies the SinglePrefixName.

   o  The Top Manifest has the name SinglePrefixName.  It may have cache
      control directies.  It's GroupData elements must have an NsId that
      references the NsDef.

   o  An Internal or Leaf manifest has the name SinglePrefixName,
      possibly with cache control directives.  It's GroupData elements
      must have an NsId that references the NsDef.

   o  The Data content objects have the name SinglePrefixName, possibly
      with cache control directives.

   o  To form an Interest for a direct or indirect pointer, use
      SinglePrefixName as the Name and put the pointer HashValue into
      the ContentObjectHashRestriction.

3.9.1.3.  CCNx Segmented Prefix

   The Segmented Prefix schema uses a different name in all Content
   Objects and distinguishes them via their ContentObjectHash.  Note
   that in CCNx, using a SegmentedPrefixSchema means that we do not use
   Locators.  OPTIONAL: Use AnnotatedPointers to indicate the segment
   number of each hash pointer to avoid needing to infer the segment
   numbers.

   It proceeds as follows:

   o  The Root Manifest content object has a name used to fetch the
      manifest.  It is signed by the publisher.  It has a set of
      Locators used to fetch the remainder of the manifest.  It has a
      single HashPointer that points to the Top Manifest.  It may also
      have cache control directives, such as ExpiryTime.

   o  The Root Manifest has an NsDef that specifies SegmentedPrefix and
      the SegmentedPrefixSchema element specifies the
      SegmentedPrefixName.

   o  The publisher will track the chunk number of each content object
      within the NsId.  Objects will be numbered in their traversal
      order.  Within each manifest, the name will be constructed from
      the SegmentedPrefixName plus a Chunk name component.
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   o  The Top Manifest has the name SegmentedPrefixName plus chunk
      number.  It may have cache control directies.  It's GroupData
      elements must have an NsId that references the NsDef.

   o  An Internal or Leaf manifest has the name SegmentedPrefixName plus
      chunk number, possibly with cache control directives.  It's
      GroupData elements must have an NsId that references the NsDef.

   o  The Data content objects have the name SegmentedPrefixName plus
      chunk number, possibly with cache control directives.

   o  To form an Interest for a direct or indirect pointer, use
      SegmentedPrefixName plus chunk number as the Name and put the
      pointer HashValue into the ContentObjectHashRestriction.  A
      consumer must track the chunk number in traversal order for each
      SegmentedPrefixSchema NsId.

3.9.1.4.  CCNx Hybrid Schema

   A manifest may use multiple schemas.  For example, the application
   payload in data content objects might use SegmentedPrefix while the
   manifest content objects might use HashNaming.

   The Root Manifest should specify an NsDef with a first NsId (say 1)
   as the HashNaming schema and a second NsDef with a second NsId (say
   2) as the SegmentedPrefix schema along with the SegmentedPrefixName.

   Each manifest (Top, Internal, Leaf) uses two or more HashGroups,
   where eash HashGroup has only Direct (with the second NsId) or
   Indirect (with the first NsId).  The number of hash groups will
   depend on how the publisher wishes to interleave direct and indirect
   pointers.

   Manifests and data objects are named as appropriate for their naming
   schema.

3.9.2.  NDN Encoding

   In NDN, all Manifest Data objects use a ContentType of FLIC (1024),
   while all application data content objects use a PayloadType of Blob.

3.9.2.1.  NDN Hash Naming

   In NDN Hash Naming, a Data Object has a 0-length name.  This means
   that an Interest will only have an ImplicitDigest name component in
   it.  This method relies on using NDN ForwardingHints.

   It proceeds as follows:
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   o  The Root Manifest Data has a name used to fetch the manifest.  It
      is signed by the publisher.  It has a set of Locators used to
      fetch the remainder of the manifest.  It has a single HashPointer
      that points to the Top Manifest.  It may also have cache control
      directives.

   o  The Root Manifest has an NsDef that specifies HashSchema.  It's
      GroupData uses that NsId.  All internal and leaf manifests use the
      same GroupData NsId.  A Manifest Tree MAY omit the NsDef and NsId
      elements and rely on the default being HashSchema.

   o  The Top Manifest has a 0-length Name.  It may have cache control
      directies.

   o  Internal and Leaf manifests has a 0-length Name, possibly with
      cache control directives.

   o  The application Data use a 0-length name, possibly with cache
      control directives.

   o  To form an Interest for a direct or indirect pointer, the name is
      only the Implicit Digest name component derived from a pointer's
      HashValue.  The ForwardingHints come from the Locators.  In NDN,
      one may use one or more locators within a single Interest.

3.9.2.2.  NDN Single Prefix

   In Single Prefix, the Data name is a common prefix used between all
   objects in that namespace, without a Segment or other counter.  They
   are distinguished via the Implicit Digest name component.  The FLIC
   Locators go in the ForwardingHints.

   It proceeds as follows:

   o  The Root Manifest Data object has a name used to fetch the
      manifest.  It is signed by the publisher.  It has a set of
      Locators used to fetch the remainder of the manifest.  It has a
      single HashPointer that points to the Top Manifest.  It may also
      have cache control directives.

   o  The Root Manifest has an NsDef that specifies SinglePrefix and the
      SinglePrefixSchema element specifies the SinglePrefixName.

   o  The Top Manifest has the name SinglePrefixName.  It may have cache
      control directies.  It's GroupData elements must have an NsId that
      references the NsDef.
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   o  An Internal or Leaf manifest has the name SinglePrefixName,
      possibly with cache control directives.  It's GroupData elements
      must have an NsId that references the NsDef.

   o  The Data content objects have the name SinglePrefixName, possibly
      with cache control directives.

   o  To form an Interest for a direct or indirect pointer, use
      SinglePrefixName as the Name and append the pointer's HashValue
      into an ImplicitDigest name component.  Set the ForwardingHints
      from the FLIC locators.

3.9.2.3.  NDN Segmented Prefix

   In Segmented Prefix, the Data name is a common prefix plus a segment
   number, so each manifest or application data object has a unique full
   name before the implicit digest.  This means the consumer must
   maintain a counter for each SegmentedPrefix namespace.  OPTIONAL: Use
   AnnotatedPointers to indicate the segment number of each hash pointer
   to avoid needing to infer the segment numbers.

   It proceeds as follows:

   o  The Root Manifest Data object has a name used to fetch the
      manifest.  It is signed by the publisher.  It has a set of
      Locators used to fetch the remainder of the manifest.  It has a
      single HashPointer that points to the Top Manifest.  It may also
      have cache control directives.

   o  The Root Manifest has an NsDef that specifies SegmentedPrefix and
      the SegmentedPrefixSchema element specifies the
      SegmentedPrefixName.

   o  The publisher will track the segment number of each Data object
      within a SegmentedPrefix NsId.  Data will be numbered in their
      traversal order.  Within each manifest, the name will be
      constructed from the SegmentedPrefixName plus a Segment name
      component.

   o  The Top Manifest has the name SegmentedPrefixName plus segment
      number.  It may have cache control directies.  It's GroupData
      elements must have an NsId that references the NsDef.

   o  An Internal or Leaf manifest has the name SegmentedPrefixName plus
      segment number, possibly with cache control directives.  It's
      GroupData elements must have an NsId that references the NsDef.
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   o  The Data content objects have the name SegmentedPrefixName plus
      chunk number, possibly with cache control directives.

   o  To form an Interest for a direct or indirect pointer, use
      SegmentedPrefixName plus segment number as the Name and put the
      pointer HashValue into the ImplicitDigest name component.  A
      consumer must track the segment number in traversal order for each
      SegmentedPrefixSchema NsId.

3.9.2.4.  NDN Hybrid Schema

   A manifest may use multiple schemas.  For example, the application
   payload in data content objects might use SegmentedPrefix while the
   manifest content objects might use HashNaming.

   The Root Manifest should specify an NsDef with a first NsId (say 1)
   as the HashNaming schema and a second NsDef with a second NsId (say
   2) as the SegmentedPrefix schema along with the SegmentedPrefixName.

   Each manifest (Top, Internal, Leaf) uses two or more HashGroups,
   where eash HashGroup has only Direct (with the second NsId) or
   Indirect (with the first NsId).  The number of hash groups will
   depend on how the publisher wishes to interleave direct and indirect
   pointers.

   Manifests and data objects are named as appropriate for their naming
   schema.

3.10.  Example Structures

3.10.1.  Leaf-only data

              Root
               |
        ______ M0 _____
       /       |       \
      M1       M2       M3
    / | \    / | \    / | \
   D0 D1 D2 D3 D4 D5 D6 D7 D8

                     Figure 9: Leaf-only manifest tree

3.10.2.  Linear

   Of special interest are "skewed trees" where a pointer to a manifest
   may only appear as last pointer of (sub-) manifests.  Such a tree
   becomes a sequential list of manifests with a maximum of datapointers
   per manifest packet.  Beside the tree shape we also show this data
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   structure in form of packet content where D stands for a data pointer
   and M is the hash of a manifest packet.

   Root -> M0 ----> M1 ----> ...
   |->DDDD  |->DDDD

4.  Usage Examples

4.1.  Locating FLIC leaf and manifest nodes

   The names of manifest and data objects are often missing or not
   unique, unless using specific naming conventions.  In this example,
   we show how using manifest locators is used to generate Interests.
   Take for example the figure below where the root manifest is named by
   hash h0.  It has nameless children with hashes with hashes h1 ... hN.

   Objects:
   manifest(name=/a/b/c, ptr=h1, ptr=hN)  - has hash h0
   nameless(data1)                        - has hash h1
   ...
   nameless(dataN)                        - has hash hN

   Query for the manifest:
   interest(name=/a/b/c, implicitDigest=h0)

                       Figure 10: Data Organization

   After obtaining the manifest, the client fetches the contents.  In
   this first instance, the manifest does not provide any Locators data
   structure, so the client must continue using the name it used for the
   manifest.

   interest(name=/a/b/c, implicitDigest=h1)
   ...
   interest(name=/a/b/c, implicitDigest=hN)

                         Figure 11: Data Interests

   Using the locator metadata entry, this behavior can be changed:
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   Objects:
   manifest(name=/a/b/c,
   hashgroup(loc=/x/y/z, ptr=h1)
   hashgroup(ptr=h2)             - has hash h0
   nameless(data1)               - has hash h1
   nameless(data2)               - has hash h2

   Queries:
   interest(name=/a/b/c, implicitDigest=h0)
   interest(name=/x/y/z, implicitDigest=h1)
   interest(name=/a/b/c, implicitDigest=h2)

                         Figure 12: Using Locators

4.2.  Seeking

   Fast seeking (without having to sequentially fetch all content) works
   by skipping over entries for which we know their size.  The following
   expression shows how to compute the byte offset of the data pointed
   at by pointer P_i, offset_i.  In this formula, let P_i represent the
   Size value of the i-th pointer.

   offset_i = \sum_{i = 1}^{i - 1} P_i.size

   With this offset, seeking is done as follows:

   Input: seek_pos P, a FLIC manifest with a hash group having N entries
   Output: pointer index i and byte offset o, or out-of-range error
   Algo:
       offset = 0
       for i in 1..N do
       if (P < P_i.size)
           return (i, P - offset)
       offset += P_i.size
       return out-of-range

                       Figure 13: Seeking Algorithm

   Seeking in a BlockHashGroup is different since offsets can be quickly
   computed.  This is because the size of each pointer P_i except the
   last is equal to the SizePerPtr value.  For a BlockHashGroup with N
   pointers, OverallByteCount D, and SizePerPointer L, the size of P_i
   is equal to the following:

   D - ((i - 1) * L)

   In a BlockHashGroup with k pointers, the size of P_k is equal to:
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   D - L * (k - 1)

   Using these, the seeking algorithm can be thus simplified to the
   following:

   Input: seek_pos P, a FLIC manifest with a hash group having
   OverallByteCount S and SizePerPointer L.
   Output: pointer index i and byte offset o, or out-of-range error
   Algo:
       if (P > S)
           return out-of-range
       i = floor(P / L)
       if (i > N)
           return out-of-range # bad FLIC encoding
       o = P mod L
       return (i, o)

                       Figure 14: Seeking Algorithm

   Note: In both cases, if the pointer at position i is a manifest
   pointer, this algorithm has to be called once more, seeking to
   seek_pos o inside that manifest.

4.3.  Block-level de-duplication

   Consider a huge file, e.g. an ISO image of a DVD or program in binary
   form, that had previously been FLIC-ed but now needs to be patched.
   In this case, all existing encoded ICN chunks can remain in the
   repository while only the chunks for the patch itself is added to a
   new manifest data structure, as is shown in the picture below.  For
   example, the venti [1] archival file system of Plan9 uses this
   technique.

   old_mfst -  - > h1 --> oldData1  <-- h1 < -  -  new_mfst
            \  - > h2 --> oldData2  <-- h2 < -  - /
             \            replace3  <-- h5 < -  -/
              \- > h3 --> oldData3              /
               \ > h4 --> oldData4  <-- h4 < - /

                         Figure 15: De-duplication

4.4.  Growing ICN collections

   A log file, for example, grows over time.  Instead of having to re-
   FLIC the grown file it suffices to construct a new manifest with a
   manifest pointer to the old root manifest plus the sequence of data
   hash pointers for the new data (or additional sub-manifests if
   necessary).  Note that this tree will not be skewed (anymore).
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   old data < -  -  -  mfst_old <-- h_old -  - mfst_new
                                               /
   new data1 <-- h_1 -  -  -  -  -  -  -  -  -/
   new data2                                 /
   ...                                      /
   new dataN <-- h_N -  -  -  -  -  -  -  -/

                      Figure 16: Growing A Collection

4.5.  Re-publishing a FLIC under a new name

   There are several usecases for republishing a collection under a new
   namespace, or having one collection exist under several namespaces:

   o  It can happen that a publisher's namespace is part of a service
      provider's prefix.  When switching provider, the publisher may
      want to republish the old data under a new name.

   o  A publishes wishes to distribute its content to several caches and
      would like a local result to appear.  For example, the publisher
      /alpha wishes to place content at /beta and /gamma, but routing to
      /alpha would not send a request to either of those sites.  Each of
      /beta and /gamma could create a locally named and signed version
      of the root manifest with appropriate keys (or delegate that to
      /alpha) so the results are always local without having to change
      the bulk of the maniest tree.

   This can easily be achieved with a single nameless root manifest for
   the large FLIC plus arbitrarily many per-name manifests (which are
   signed by whomever wants to publish this data):

data < - nameless_mfst() <-- h  < - mfst(/com/example/east/the/flic)
                                < - mfst(/com/example/west/old/the/flic)
                                < - mfst(/internet/archive/flic234)

                    Figure 17: Relocating A Collection

   Note that the hash computation (of h) only requires reading the
   nameless root manifest, not the entire FLIC.

   This example points out the problem of HashGroups having locator
   metadata elements: A retriever would be urged to follow these hints
   which are "hardcoded" deep inside the FLIC but might have become
   outdated.  We therefore recommend to name FLIC manifests only at the
   highest level (where these names have no locator function).  Child
   nodes in a FLIC manifest should not be named as these names serve no
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   purpose except retrieving a sub-tree's manifest by name, if would be
   required.

5.  IANA Considerations

   TODO Need IANA actions:

   o  Create a registry for Manifest Data and Annotation TLVs

   o  Register the SizeAnnotation TLV

   Also TODO: If this document is submitted as an official RG draft,
   this section must be updated to reflect the IANA registries described
   in [RFC8609]

6.  Security Considerations

   TODO Need a discussion on:

   o  signing and hash chaining security.

   o  republishing under a new namespace.

   o  encryption mechanisms.

   o  encryption key distribution mechanisms.

7.  Appendix A: Building Trees

   This section describes one method to build trees.  It constructs a
   pre-order tree in a single pass of the application data, going from
   the tail to the beginning.  This allows us to work up the right side
   of the tree in a single pass, then work down each left branch until
   we exhaust the data.  Using the reverse-order traversal, we create
   the right-most-child manifest, then its parent, then the indirect
   pointers of that parent, then the parent's direct pointers, then the
   parent of the parent (repeating).  This process uses recursion, as it
   is the clearest way to show the code.  A more optimized approach
   could do it in a true single pass.

   Because we're building from the bottom up, we use the term 'level' to
   be the distance from the right-most child up.  Level 0 is the bottom-
   most level of the tree, such as where node 7 is:

https://datatracker.ietf.org/doc/html/rfc8609
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         1
     2      3
   4  5    6  7
   preorder: 1 2 4 5 3 6 7
   reverse:  7 6 3 5 4 2 1

   The Python-like pseudocode build_tree(data, n, k, m) algorithm
   creates a tree of n data objects.  The data[] array is an array of
   Content Objects that hold application payload; the application data
   has already been packetized into n Content Object packets.  An
   interior manifest node has k direct pointers and m indirect pointers.

build_tree(data[0..n-1], n, k, m)
    # data is an array of Content Objects (Data in NDN) with application 
payload.
    # n is the number of data items
    # k is the number of direct pointers per internal node
    # m is the number of indirect pointers per internal node

    segment = namedtuple('Segment', 'head tail')(0, n)
    level = 0

    # This bootstraps the process by creating the right most child manifest
    # A leaf manifest has no indirect pointers, so k+m are direct pointers
    root = leaf_manifest(data, segment, k + m)

    # Keep building subtrees until we're out of direct pointers
    while not segment.empty():
        level += 1
        root = bottom_up_preorder(data, segment, level, k, m, root)

    return root

bottom_up_preorder(data, segment, level, k, m, right_most_child=None)
    manifest = None
    if level == 0:
        assert right_most_child is None
        # build a leaf manifest with only direct pointers
        manifest = leaf_manifest(data, segment, k + m)
    else:
        # If the number of remaining direct pointers will fit in a leaf node, 
make one of those.
        # Otherwise, we need to be an interior node
        if right_most_child is None and segment.length() <= k + m:
            manifest = leaf_manifest(data, segment, k+m)
        else:
            manifest = interior_manifest(data, segment, level, k, m, 
right_most_child)



    return manifest

Tschudin, et al.           Expires May 7, 2020                 [Page 28]



Internet-Draft                    FLIC                     November 2019

   leaf_manifest(data, segment, count)
       # At most count items, but never go before the head
       start = max(segment.head(), segment.tail() - count)
       manifest = Manifest(data[start:segment.tail])
       segment.tail -= segment.tail() - start
       return manifest

   interior_manifest(data, segment, level, k, m, right_most_child)
       children = []
       if right_most_child is not None:
           children.append(right_most_child)

       interior_indirect(data, segment, level, k, m, children)
       interior_direct(data, segment, level, k, m, children)

       manifest = Manifest(children)
       return manifest, tail

interior_indirect(data, segment, level, k, m, children)
    # Reserve space at the head of the segment for this node's direct pointers 
before
    # descending to children.  We want the top of the tree packed.
    reserve_count = min(m, segment.tail - segment.head)
    segment.head += reserve_count

    while len(children) < m and not segment.head == segment.tail:
        child = bottom_up_preorder(data, segment, level - 1, k, m)
        # prepend
        children.insert(0, child)

    # Pull back our reservation and put those pointers in our direct children
    segment.head -= reserve_count

   interior_direct(data, segment, level, k, m, children)
       while len(children) < k+m and not segment.head == segment.tail:
           pointer = data[segment.tail() - 1]
           children.insert(0, pointer)
           segment.tail -= 1
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