
ICNRG C. Tschudin
Internet-Draft University of Basel
Intended status: Experimental C. Wood
Expires: May 7, 2020 University of California Irvine
 M. Mosko
 PARC, Inc.
 D. Oran, Ed.
 Network Systems Research & Design
 November 4, 2019

File-Like ICN Collections (FLIC)
draft-irtf-icnrg-flic-02

Abstract

 This document describes a bare bones "index table"-approach for
 organizing a set of ICN data objects into a large, File-Like ICN
 Collection (FLIC). At the core of this collection is a so called
 manifest which acts as the collection's root node. The manifest
 contains an index table with pointers, each pointer being a hash
 value pointing to either a final data block or another index table
 node.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 7, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents

Tschudin, et al. Expires May 7, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78

Internet-Draft FLIC November 2019

 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Requirements Language 5

2. Design Goals . 5
3. FLIC Structure . 6
3.1. Terminology . 6
3.2. Locators . 7
3.3. Namespaces . 7
3.4. Manifest Metadata . 8
3.5. Pointer Annotations 8
3.6. Manifest Grammar (ABNF) 9
3.7. Manifest Trees . 11
3.7.1. Traversal . 11

3.8. Manifest Encryption 13
3.8.1. Preshared Key Algorithm 13
3.8.2. RSA Key Encapsulation 14
3.8.3. RSA KEM-DEM . 16

3.9. Protocol Encodings 16
3.9.1. CCNx Encoding . 16
3.9.1.1. CCNx Hash Naming 17
3.9.1.2. CCNx Single Prefix 17
3.9.1.3. CCNx Segmented Prefix 18
3.9.1.4. CCNx Hybrid Schema 19

3.9.2. NDN Encoding . 19
3.9.2.1. NDN Hash Naming 19
3.9.2.2. NDN Single Prefix 20
3.9.2.3. NDN Segmented Prefix 21
3.9.2.4. NDN Hybrid Schema 22

3.10. Example Structures 22
3.10.1. Leaf-only data 22
3.10.2. Linear . 22

4. Usage Examples . 23
4.1. Locating FLIC leaf and manifest nodes 23
4.2. Seeking . 24
4.3. Block-level de-duplication 25
4.4. Growing ICN collections 25
4.5. Re-publishing a FLIC under a new name 26

5. IANA Considerations . 27
6. Security Considerations 27

https://trustee.ietf.org/license-info

Tschudin, et al. Expires May 7, 2020 [Page 2]

Internet-Draft FLIC November 2019

7. Appendix A: Building Trees 27
8. References . 29
8.1. Normative References 29
8.2. Informative References 30

 Authors' Addresses . 30

1. Introduction

 ICN architectures such as Content-Centric Networking (CCN)[RFC8569]
 and Named Data Networking [NDN] are well suited for static content
 distribution. Each piece of possibly immutable) static content is
 assigned a name by its producer. Consumers fetch this content using
 said name. Optionally, consumers may specify the full name of
 content, which includes its name and a unique (with overwhelming
 probability) cryptographic digest of said content. (See
 [I-D.irtf-icnrg-terminology] for a formal definition of "full name".)

 To enable requests with full names, consumers need a priori knowledge
 of content digests. Manifests, or catalogs, are data structures
 commonly proposed to transport this information. Typically,
 manifests are signed content objects (data) which carry a collection
 of hash digests. However, as content objects, manifests themselves
 may be fetched by full name. Thus, manifests may contain hash
 digests of, or pointers to, other manifests or content objects. A
 collection of manifests and content objects represents a large piece
 of application data, e.g., one that cannot otherwise fit in a single
 content object.

 Structurally, this relationship between manifests and content objects
 is reminiscent of the UNIX inode concept with index tables and memory
 pointers. In this document, we specify a simple, yet extensible,
 manifest data structure called FLIC - File-Like ICN Collection. FLIC
 is suitable for ICNs such as CCN and NDN. We describe the FLIC
 design, grammar, and various use cases, e.g., seeking, de-
 duplication, extension, and variable-sized encoding. We also include
 FLIC encoding examples for CCN and NDN.

 The purpose of a manifest is to concisely name the constiuent pieces
 of a larger object. A FLIC manifest does this by using a first
 manifest to name and cryptographically sign the data structure and
 then use more concise lists of hash-based names to indicate the
 constituent pieces. This maintains strong security from a single
 signature. A Manifest entry gives one enough information to create
 an Interest for that entry, so it must specify the name, the hash
 digest, and if needed the locators (routing hints).

 FLIC is a distributed data structure best illustrated by the
 following picture.

https://datatracker.ietf.org/doc/html/rfc8569

Tschudin, et al. Expires May 7, 2020 [Page 3]

Internet-Draft FLIC November 2019

 root manifest
 .------------------------------------.
 | optional name: |
 | /icn/name/of/this/flic |
 | |
 | HashGroup (HG): |
 | optional metadata: |
 | overall digest, locator, etc. | .------.
 | hash-valued data pointer -----------> | data |
 | ... | `------' sub manifest
 | hash-valued manifest pointer ------. .------------------.
 | | `--> | ----->
 | optional additional HashGroups .. | | ----->
 | | `------------------'
 | optional signature |
 `------------------------------------'

 Figure 1: A FLIC manifest and its directed acyclic graph

 A key question is how one names the root manifest, the application
 data, and other subsequent manifests. The question of namespaces is
 specific to the names of each Content Object (CCNx) or Data (NDN),
 and is separate from the question of Locators. FLIC allows one to
 use a first namespace for the manifests and a second namespace for
 the application data. A given namespace may use one of three
 schemas: hash-based naming, single-prefix naming, or segmented
 naming. We describe the allowed methods in Section 3.3. There are
 also particulars of how to encode the name schema in a given ICN
 protocol, which we describe in Section 3.9.

 Locators are routing hints to find a Content Object / Data. They
 exist in both CCNx and NDN, though the specifics differ. A FLIC
 manifest encodes locators the same for both ICN protocols, though
 they are encoded differently in the underlying protocol. See

Section 3.9 for encoding differences.

 We follow the CCNx [RFC8569] terminology where a Content Object is
 the data structure that holds application payload. It is made up of
 an optional Name, a PayloadType, a Payload, and an optional
 Signature.

 FLIC has encodings for CCNx encoding (Section 3.9.1) as per RFC 8609
 [RFC8609] and for NDN (Section 3.9.2).

 An example implementation in Python may be found at
 [FLICImplementation].

https://datatracker.ietf.org/doc/html/rfc8569
https://datatracker.ietf.org/doc/html/rfc8609
https://datatracker.ietf.org/doc/html/rfc8609

Tschudin, et al. Expires May 7, 2020 [Page 4]

Internet-Draft FLIC November 2019

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. Design Goals

 The preferred FLIC structure copies the proven UNIX inode concept of
 direct and indirect pointers, but without the specific structural
 forms of direct versus indirect.

 In FLIC terms, a direct pointer links to application-level data,
 which is a Content Object with application data in the Payload. An
 indirect pointer links to a Content Object with a FLIC Manifest in
 the Payload.

 Links in FLIC use hash-based naming of Content Objects, rather than
 inode block numbers. Both CCNx and NDN support hash-based naming,
 though the details vary. See Section 3.9.1 and Section 3.9.2.
 Another advantage of using hash-based naming is it permits block-
 level de-duplication of application data because two blocks with the
 same payload will have the same hash name.

 Because FLIC uses hash-based naming, FLIC graphs are inherently
 acyclic.

 The preferred FLIC structure includes a root manifest with a strong
 cryptographic signature and then strong hash names to other manifests
 (e.g. SHA256). The advantage of this structure is the single
 signature in the root manifest covers the entire data structure no
 matter how many additional manifests are in the data structure.
 Another advantage of this structure is it removes the need to use
 chunk (CCNx) or segment (NDN) name components for the subordinate
 manifests.

 FLIC supports manifest encryption separate from application payload
 encryption. It has a flexible encryption envelope to support various
 encryption algorithms and key discovery mechanisms. The byte layout
 allows for in-place encryption and decryption.

 A limitation of this approach is that one cannot construct a hash-
 based name for a child until one knows the payload of that child. In
 practical terms, this means that one must have the complete
 application payload available at the time of manifest creation.

 FLIC's design allows straightforward applications that just need to
 traverse a linear set of related objects to do so simply, but FLIC

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Tschudin, et al. Expires May 7, 2020 [Page 5]

Internet-Draft FLIC November 2019

 has two extensibility mechanisms that allow for more sophisticated
 uses: manifest metadata, and pointer annotations. These are
 described in Section 3.4 and Section 3.5 respectively.

3. FLIC Structure

3.1. Terminology

 Data Object: a CCNx nameless Content Object that usually only has
 Payload. It might also have an ExpiryTime to limit the lifetime
 of the data.

 Direct Pointer: borrowed from inode terminology, it is a CCNx link
 using a content object hash restriction and a locator name to
 point to a Data Object.

 Indirect Pointer: borrowed from inode terminology, it is a CCNx link
 using a content object hash restriction and a locator name to
 point to a manifest content object.

 Manifest: a CCNx ContentObject with PayloadType 'Manifest' and a
 Payload of the encoded manifest. A leaf manifest only has direct
 pointers. An internal manifest has a mixture of direct and
 indirect manifests.

 Leaf Manifest: all pointers are direct pointers.

 Internal Manifest: some or all pointers are indirect. The order and
 number of each is up to the manifest builder. By convention, all
 the direct manifests come first, then the indirect.

 Manifest Waste: a metric used to measure the amount of waste in a
 manifest tree. Waste is the number of unused pointers. For
 example, a leaf manifest might be able to hold 40 direct pointers,
 but only 30 of them are used, so the waste of this node is 10.
 Manifest tree waste is the sum of waste over all manifests in a
 tree.

 Root Manifest: A signed, named, manifest that points to nameless
 manifest nodes. This structure means that the internal tree
 structure of internal and leaf manifests have no names and thus
 may be located anywhere in a namespace, while the root manifest
 has a name to fetch it by.

 Top Manifest: A preferred manifest structure is to use a Root
 manifest that points to a single Internal manifest called the Top
 Manifest. The Top manifest the begins the structure used to
 organize manifests.

Tschudin, et al. Expires May 7, 2020 [Page 6]

Internet-Draft FLIC November 2019

 Namespace: The prefix and object name that goes inside a Content
 Object. It may include typed name components specifying a version
 and/or chunk/segment number.

 Locator: A routing hint in an Interest used by forwarding to get the
 Interest to where it can be matched based on its Namespace-derived
 name.

3.2. Locators

 Locators are routing hints used by forwarders to get an Interest to a
 node in the network that can resolve the Interest's name. In some
 naming conventions, the name might only be a hash-based name so the
 Locator is the only available routing information.

 A manifest Node may define one or more Locator prefixes that can be
 used in the construction of Interests from the pointers in the
 manifest. The Locators are inherited when walking a manifest tree,
 so they do not need to be defined everywhere. It is RECOMMENDED that
 only the Root manifest contain Locators so that a single operation
 can update the locators. One usecase when storing application
 payloads at different replicas is to replace the Root manifest with a
 new one that contains locators for the current replicas.

3.3. Namespaces

 A FLIC manifest may define zero or more namespaces. If none are
 defined, FLIC uses the default Hash Naming approach. If using
 namespaces, typically there are two defined: one for the manifest
 namespace and one for the application data namespace. If the two are
 the same, they can share a namepace. There may be more than two
 namespaces.

 A namespace follows a naming convention. The naming convention
 governs how FLIC creates the ICN Name that goes in an Interest's Name
 and must match a Content Object / Data Name. The conventions are:
 (1) Hash Naming, (2) Single Prefix, and (3) Segmented Prefix. The
 default is to use Hash Naming. Hash Naming does not include anything
 besides a hash name in the Interest's name and relies on the Locator
 to forward the Interest. Single Prefix uses the same name
 differntiated only by a Content Object's implicit hash. Segmented
 Prefix keeps a counter for the namespace, starting with 0, and
 increments it after each use of the namespace.

 The namespace definitions may be inherited from the Root manifest or
 the Top manifest, or any prior manifest. It is RECOMMENDED that the
 namespace definitions appear in the Root manifest so they can be
 updated by a single operation. Because Segmented Prefix namespaces

Tschudin, et al. Expires May 7, 2020 [Page 7]

Internet-Draft FLIC November 2019

 use a counter, it is RECOMMENDED to only define them in the Root
 manifest or Top manifest and not elsewhere, as it may confuse the
 counters.

 In the NodeData, there may be zero or more NSDef contains. Each
 NSDef defines a namespace identifier (octet string) and its naming
 convention. For the Hash Naming convention, no further information
 is required. For the Single Prefix and Segmented Prefix conventions,
 the NSDef specifies the ICN Name prefix used by the namespace.

 A HashGroup may have an NSRef container that indicates which
 namespace it is using, and by implication which naming convention and
 the corresponding prefix. If there is no NSRef, the hash group uses
 Hash Naming convention.

3.4. Manifest Metadata

 The FLIC Manifest may be extended by defining TLVs that apply to the
 Manifest as a whole, or alternatively, individually to every data
 object pointed to by the Manifest. This basic specification does not
 specify any, but metadata TLVs may be defined through additional RFCs
 or via Vendor TLVs. FLIC uses a Vendor TLV structure similar to
 [RFC8609] for vendor-specific annotations that require no
 standardization process.

 For example, some applications may find it useful to allow
 specialized consumers such as _repositories_ (for example
 [repository]) or enhanced forwarder caches to pre-place, or
 adaptively pre-fetch data in order to improve robustness of delay
 performance. We note in passing that FLICs use of separate
 namespaces for the Manifest and the underlying Data allows different
 encryption keys to be used, hence giving a element like a cache or
 repository access to the Manifest data does not as a side effect
 reveal the contents of the application data itself.

3.5. Pointer Annotations

 FLIC allows each manifest pointer to be annotated with extra data.
 Annotations allow applications to exploit metadata about each Data
 Object pointed to without having to first fetch the corresponding
 Content Object. This specification defines one such annotation. The
 SizeAnnotation specifies the number of application layer octets
 covered by the pointer.

 An annotation may, for example, give hints about a preferred
 traversal order for fetching the data, or an importance/precedence
 indication to aid applications that do not require every content
 object pointed to in the manifest to be fetched. This can be very

https://datatracker.ietf.org/doc/html/rfc8609

Tschudin, et al. Expires May 7, 2020 [Page 8]

Internet-Draft FLIC November 2019

 useful for real-time or streaming media applications that can perform
 error concealment when rendering the media.

 Additional annotations may be defined through additional RFCs or via
 Vendor TLVs. FLIC uses a Vendor TLV structure similar to [RFC8609]
 for vendor-specific annotations that require no standardization
 process.

3.6. Manifest Grammar (ABNF)

 The manifest grammar is mostly independent of the transport ICN
 protocol. The TLV encoding therefore follows the corresponding ICN
 protocol, so for CCNx FLIC uses 2 octet length, 2 octet type and for
 NDN uses the 1/3/5 octet types and lengths. There are also some
 differences in how one structures and resolves links. [RFC8569]
 defines HashValue and Link for CCNx encodings. The NDN
 ImplicitSha256DigestComponent defines HashValue and NDN Delegation
 (from Link Object) defines Link for NDN. The Section 3.9 section
 below specifies these differences.

 The basic structure of a FLIC manifest is a security context, a node,
 and an authentication tag. The security context and authentication
 tag are not needed if the node is unencrypted. A node is made up of
 a set of metadata, the NodeData, that applies to the entire node, and
 one or more HashGroups that contain pointers.

 The NodeData element defines the namespaces used by the manifest.
 There may be multiple namespaces, depending on how one names
 subsequent manifests or data objects. Each HashGroup may reference a
 single namespace to control how one forms Interests from the
 HashGroup. If one is using separate namespaces for manifests and
 application data, one needs at least two HashGroups. For a manifest
 structure of "MMMDDD," (where M means manifest (indirect pointer) and
 D means data (direct pointer)) for example, one would have a first
 hash group for the child manifests with its namespace and a second
 HashGroup for the data pointers with the other namespace. If one
 used a structure like "MMMDDDMMM," then one would need three
 HashGroups.

TYPE = 2OCTET / {1,3,5}OCTET ; As per CCNx or NDN TLV
LENGTH = 2OCTET / {1,3,5}OCTET ; As per CCNx or NDN TLV

Manifest = TYPE LENGTH [SecurityCtx] (EncryptedNode / Node) [AuthTag]

SecurityCtx = TYPE LENGTH AlgorithmCtx
AlgorithmCtx = PresharedKeyCtx / RsaKemCtx / RsaKemDemCtx
AuthTag = TYPE LENGTH *OCTET ; e.g. AEAD authentication tag
EncryptedNode = TYPE LENGTH *OCTET ; Encrypted Node

https://datatracker.ietf.org/doc/html/rfc8609
https://datatracker.ietf.org/doc/html/rfc8569

Tschudin, et al. Expires May 7, 2020 [Page 9]

Internet-Draft FLIC November 2019

Node = TYPE LENGTH [NodeData] 1*HashGroup
NodeData = TYPE LENGTH [SubtreeSize] [SubtreeDigest] [Locators] 0*NSDef
SubtreeSize = TYPE LENGTH INTEGER
SubtreeDigest = TYPE LENGTH HashValue
NSDef = TYPE LENGTH NsId NsSchema
NsId = TYPE LENGTH INTEGER
NsSchema = HashSchema / SinglePrefixSchema / SegmentedPrefixSchema
HashSchema = TYPE 0
SinglePrefixSchema = TYPE LENGTH Name
SegmentedPrefixSchema = TYPE LENGTH Name

Locators = TYPE LENGTH 1*Link
HashValue = TYPE LENGTH *OCTET ; As per ICN Protocol
Link = TYPE LENGTH *OCTET ; As per ICN protocol

HashGroup = TYPE LENGTH [GroupData] (Ptrs / AnnotatedPtrs)
Ptrs = TYPE LENGTH *HashValue
AnnotatedPtrs = TYPE LENGTH *PointerBlock
PointerBlock = TYPE LENGTH *Annotation Ptr
Ptr = TYPE LENGTH HashValue

Annotation = SizeAnnotation / Vendor
SizeAnnotation = TYPE LENGTH Integer
Vendor = TYPE LENGTH PEN *OCTET

GroupData = TYPE LENGTH [LeafSize] [LeafDigest] [SubtreeSize] [SubtreeDigest]
[NsId]
LeafSize = TYPE LENGTH INTEGER
LeafDigest = TYPE LENGTH HashValue

PresharedKeyCtx = TYPE LENGTH PresharedKeyData
PresharedKeyData = KeyNum IV Mode
KeyNum = TYPE LENGTH INTEGER
IV = TYPE LENGTH 1*OCTET
Mode = TYPE LENGTH (AES-GCM-128 / AES-GCM-256)

RsaKemCtx = 2 LENGTH RsaKemData
RsaKemData = KeyId IV Mode WrappedKey LocatorPrefix
KeyId = TYPE LENGTH HashValue; ID of Key Encryption Key
WrappedKey = TYPE LENGTH 1*OCTET
LocatorPrefix = TYPE LENGTH Link

RsaKemDemCtx = 3 LENGTH RsaKemDemData
RsaKemDemData = KeyId IV Mode WrappedKey LocatorPrefix

 Figure 1: FLIC Grammar

 SecurityCtx: information about how to decrypt an EncryptedNode. The
 structure will depend on the specific encryption algorithm.

Tschudin, et al. Expires May 7, 2020 [Page 10]

Internet-Draft FLIC November 2019

 AlgorithmId: The ID of the encryption method (e.g. preshared key, a
 broadcast encryption scheme, etc.)

 AlgorithmData: The context for the encryption algorithm.

 EncryptedNode: An opaque octet string with an optional
 authentication tag (i.e. for AEAD authentication tag)

 Node: A plain-text manifest node. The structure allows for in-place
 encryption/decryption.

 NodeData: the metadata about the Manifest node

 SubtreeSize: The size of all application data at and below the Node
 or Group

 SubtreeDigest: The cryptographic digest of all application data at
 and below the Node or Group

 Locators: An array of routing hints to find the manifest components

 HashGroup: A set of child pointers and associated metadata

 Ptrs: A list of one or more Hash Values

 GroupData: Metadata that applies to a HashGroup

 LeafSize: Size of all application data immediately under the Group
 (i.e. via direct pointers)

 LeafDigest: Digest of all application data immediately under the
 Group

 Ptr: The ContentObjectHash of a child, which may be a data
 ContentObject (i.e. with Payload) or another Manifest Node.

3.7. Manifest Trees

3.7.1. Traversal

 FLIC manifests use a pre-order traversal. This means they are read
 top to bottom, left to right. The algorithms in Figure 2 show the
 in-order forward traversal code and the reverse-oder traversal code,
 which we use below to construct such a tree. This document does not

Tschudin, et al. Expires May 7, 2020 [Page 11]

Internet-Draft FLIC November 2019

 mandate how to build trees. Appendix A provides a detailed example
 of building inode-like trees.

 If using Annotated Pointers, an annotation could influence the
 traversal order.

 preorder(node)
 if (node = null)
 return
 visit(node)
 for (i = 0, i < node.child.length, i++)
 preorder(node.child[i])

 reverse_preorder(node)
 if (node = null)
 return
 for (i = node.child.length - 1, i >= 0, i--)
 reverse_preorder(node.child[i])
 visit(node)

 Figure 2: Traversal Pseudocode

 In terms of the FLIC grammar, one expands a node into its hash
 groups, visiting each hash group in order. In each hash group, one
 follows each pointer in order. Figure Figure 3 shows how hash groups
 inside a manifest expand like virtual children in the tree. The in-
 order traversal is M0, HG1, M1, HG3, D0, D1, D2, HG2, D3, D4.

 M0 ____
 | \
 HG1 HG2
 | \ | \
 M1 D2 D3 D4
 |
 HG3
 | \
 D0 D1

 Figure 3: Node Expansion

 Using the example manifest tree shown in Figure Figure 9, the in-
 order traversal would be: Root, M0, M1, D0, D1, D2, M2, D3, D4, D5,
 M3, D6, D7, D8.

Tschudin, et al. Expires May 7, 2020 [Page 12]

Internet-Draft FLIC November 2019

3.8. Manifest Encryption

 This document specifies three encryption methods. The first is a
 preshared key algorithm, where the parties are assumed to have the
 decryption keys already. This is useful, for example, when using a
 key agreement protocol such as CCNxKE. The second is an RSA key
 encapsulation mechanisms (RsaKem). The third is a standard RSA KEM-
 DEM mechanism that uses a shared group key (RsaKemDem).

 For group key based encryption, RsaKem and RsaKemDem, this
 specification only details the pertinent aspects of the encryption.
 It does not specify aspects of a key manager which may or may not be
 used as part of key distribution and management, nor does it specify
 the protocol between a key manager and a publisher. In it's
 simpliest form, the publisher could be the key manager, so there is
 no extra protocol needed between the publisher and key manager. This
 specification does describe how a consumer locates the appropriate
 keys.

 While the preshared key algorithm is limited in use, the AES
 encryption mechanisms described apply to the group key mechanisms
 too. They group key mechanisms simply facilitate distribution of the
 shared key without an on-line key agreement protocol like CCNxKE.

 A fourth encryption mechanism based on elliptic curve key
 distribution is forthcoming.

3.8.1. Preshared Key Algorithm

 The KeyNum identifies a key on the receiver. The key must be of the
 correct length of the Mode used. If the key is longer, use the left
 bits. Many receivers many have the same key with the same KeyId. A
 publisher creates a signed root manifest with a security context. A
 consumer must ensure that the root manifest signer is the expected
 publisher for use with the pre-shared key, which may be shared with
 many other consumers. The publisher may use either method 8.2.1
 (deterministic IV) or 8.2.2 (RBG-based IV) [NIST 800-38D] for
 creating the IV.

 Each encrypted manifest node (root manifest or internal manifest) has
 a full security context (KeyNum, IV, Mode). The AES-GCM decryption
 is independent for each manifest so Manifest objects can be fetched
 and decrypted in any order. This design also ensures that if a
 manifest tree points to the same subtree repeatedly, such as for
 deduplication, the decryptions are all idempotent.

Tschudin, et al. Expires May 7, 2020 [Page 13]

Internet-Draft FLIC November 2019

 The functions for authenticated encryption and authenticated
 decryption are as given in Sections 7.1 and 7.2 of NIST 800-38D: GCM-
 AE_K(IV, P, A) and GCM-AD_K(IV, C, A, T).

EncryptNode(SecurityCtx, Node, K, IV) -> GCM-AE_K(IV, P, A) -> (C, T)
 Node: The wire format of the Node (P)
 SecurityCtx: The wire format of the SecurityCtx as the Additional
Authenticated Data (A)
 K: the pre-shared key (128 or 256 bits)
 IV: The initialization vector (usually 96 or 128 bits)
 C: The cipher text
 T: The authentication tag

 Figure 4: Preshared Key Encrypt

 The pair (C,T) is the OpaqueNode encoded as a TLV structure:
 (OpaqueNode (CipherText C) (AuthTag T)).

DecryptNode(SecurityCtx, C, T, K, IV) -> GCM-AD_K (IV, C, A, T) -> (Node,
FailFlag)
Node: The wire format of the decrypted Node
FailFlag: Indicates authenticated decryption failure (true or false)

 Figure 5: Preshared Key Decrypt

 If doing in-place decryption, the cipher text C will be enclosed in
 an EncryptedNode TLV value. After decryption, change the TLV type to
 Node. The length should be the same. After decryption the AuthTag
 is no longer needed. The TLV type should be changed to T_PAD and the
 value zeroed. The SecurityCtx could be changed to T_PAD and zeroed
 or left as-is.

3.8.2. RSA Key Encapsulation

 See also RFC 5990, NIST SP 800-56B Rev. 2 and
https://lists.w3.org/Archives/Public/public-xmlsec/2009May/att-0032/
Key_Encapsulation.pdf

 In this system, a key manager (KM) (which could be the publisher)
 creates a symmetric Content Encryption Key (CEK) and a key wrapping
 pair with a Key Encryption Key (KEK) and Key Decryption Key (KDK).
 Each publisher and consumer has its own public/private key pair, and
 the KM knows each publisher's and consumer's identity and its public
 key (PK_x).

 We do not describe the publisher-key manager protocol to request a
 CEK. The publisher will obtain the (CEK, E_KEK(Z), KeyId, Locator),
 where each element is: the content encryption key, the CEK precursor,
 Z, encrypted with the KEK (an RSA operation), and the KeyId of the

https://datatracker.ietf.org/doc/html/rfc5990
https://lists.w3.org/Archives/Public/public-xmlsec/2009May/att-0032/Key_Encapsulation.pdf
https://lists.w3.org/Archives/Public/public-xmlsec/2009May/att-0032/Key_Encapsulation.pdf

 corresponding KDK, and the Locator is the CCNx name prefix to fetch

Tschudin, et al. Expires May 7, 2020 [Page 14]

Internet-Draft FLIC November 2019

 the KDK (see below). The precursor Z is chosen randomly z < n-1,
 where n is KEK's public modulus. Note that CEK = KDF(Z). Note that
 the publisher does not see KEK or Z.

 We use HKDF (RFC 5869) for the KDF. CEK = HKDF-Expand(HKDF-
 Extract(0, Z), "CEK", KeyLen), where KenLen is usually 32 bytes (256
 bits).

 In the ABNF grammar, the RsaKemData includes a KeyId, IV, Mode,
 WrappedKey, and LocatorPrefix. The KeyId is the ID (sha256) of the
 KEK. The IV and Mode are as per preshared key, and describe how the
 manifest is encrypted with AES-GCM. The WrappedKey is the AES key to
 decrypt the manifest. The LocatorPrefix is used to construct an
 Interest to fetch the KDK.

 To fetch the KDK, a consumer with public key PK_c constructs an
 Interest with name /LocatorPrefix/{KeyId}/{PK_c keyid} and a
 KeyIdRestriction of the KM's KeyId (from the LocatorPrefix Link). It
 should receive back a signed Content Object with the KDK wrapped for
 the consumer, or a NAK from the KM. The payload of the ContentObject
 will be RsaKemWrap(PK, KDK). The signed ContentObject must have a
 KeyLocator to the KM's public key. The consumer will trust the KM's
 public key because the publisher, whom the consumer trusts, relayed
 that KeyId inside its own signed Manifest.

 The signed Content Object should have an ExpiryTime, which may be
 shorter than the Manifest's, but should not be substantially longer
 than the Manifest's ExpiryTime. The KM may decide how to handle the
 Recommended Cache Time, or if caching of the response is even
 permissible. The KM may require on-line fetching of the response via
 a CCNxKE encrypted transport tunnel.

 RsaKemWrap(PK, K, KeyLen = 256):
 choose z < n-1, where n is PK's public modulus
 encrypt c = z^e mod n
 prk = HKDF-Extract(0, Z)
 kek = HKDF-Expand(prk, "RsaKemWrap", KeyLen)
 WK = E_KEK(K) # [AES-WRAP, RFC 3394]
 output (c, WK)

 Figure 6: RSA KEM Wrap

 A consumer must verify the signed content object's signature against
 the Key Manager's public key. The consumer then unwraps the KDK from
 the Content Object's payload using RsaKemUnwrap(). The KeyLen is
 taken from the WrapMode parameter.

https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc3394

Tschudin, et al. Expires May 7, 2020 [Page 15]

Internet-Draft FLIC November 2019

 RsaKemUnwrap(SK, c, WK, KeyLen = 256):
 Using the consumers private key SK, decrypt Z from c.
 prk = HKDF-Extract(0, Z)
 kek = HKDF-Expand(prk, "RsaKemWrap", KeyLen)
 K = D_KEK(WK) # [AES-UNWRAP, RFC 33940]
 output K

 Figure 7: RSA KEM Unwrap

 The consumer then unwraps the CEK precursor by using the KDK to
 decrypt Z. It then derives CEK as above. Manifest encryption and
 decryption proceed as with PresharedKey, but using the CEK.

3.8.3. RSA KEM-DEM

 In this scheme a Key Manager (KM), who could be the publisher,
 creates a Key Encryption Key (KEK) and Key Decryption Key (KDK) key
 pair. The publisher obtains the KEK. The KM distributes the KDK to
 each group member by encrypting it under each member's public key.
 To encrypt data, the publisher generates a symmetric Content
 Encryption Key (CEK), wraps it with the KEK, then encrypts the
 manifest with the CEK. It places the wrapped CEK in the manifest.

 The KM communicates the KEK to the publisher through an unspecified
 means particular to the KM.

 The KM distributes the KDK to each group member. It uses a name
 /{km-prefix}/{publisher-prefix}/{KDK KeyId}/{member KeyId} to publish
 the encrypted KDK under a member's public key. It uses RSA-OAEP for
 the encryption.

 The publisher creates a random symmetric CEK of an appropriate bit
 length. It uses the KEK to wrap the CEK using RSA-OAEP. It places
 the wrapped key in the manifest's RsaKemDemData along with the KeyId
 set to the KDK's KeyId and the KeyLocator prefix /{km-
 prefix}/{publisher-prefix}/. Each member appends the KDK KeyId and
 their public key KeyId to the name to attemt to fetch the KDK. When
 forming the Interest to fetch the key, a consumer should also use a
 KeyIdRestriction of the KM's KeyId, which it can retrieve from the
 KeyLocator.

3.9. Protocol Encodings

3.9.1. CCNx Encoding

 In CCNx, all Manifest content objects use a PayloadType of
 T_PYLDTYPE_MANIFEST, while all application data content objects use a
 PayloadType of T_PYLDTYPE_DATA.

https://datatracker.ietf.org/doc/html/rfc33940

Tschudin, et al. Expires May 7, 2020 [Page 16]

Internet-Draft FLIC November 2019

ManifestContentObject = TYPE LENGTH [Name] [ExpiryTime] PayloadType Payload
Name = TYPE LENGTH *OCTET ; As per RFC8569
ExpiryTime = TYPE LENGTH *OCTET ; As per RFC8569
PayloadType = TYPE LENGTH T_PYLDTYPE_MANIFEST ; Value TBD
Payload : TYPE LENGTH *OCTET ; the serialized Manifest object

 Figure 8: CCNx Embedding Grammar

3.9.1.1. CCNx Hash Naming

 The Hash Naming namespace uses CCNx nameless content objects.

 It proceeds as follows:

 o The Root Manifest content object has a name used to fetch the
 manifest. It is signed by the publisher. It has a set of
 Locators used to fetch the remainder of the manifest. It has a
 single HashPointer that points to the Top Manifest. It may also
 have cache control directives, such as ExpiryTime.

 o The Root Manifest has an NsDef that specifies HashSchema. It's
 GroupData uses that NsId. All internal and leaf manifests use the
 same GroupData NsId. A Manifest Tree MAY omit the NsDef and NsId
 elements and rely on the default being HashSchema.

 o The Top Manifest is a nameless CCNx content object. It may have
 cache control directies.

 o Internal and Leaf manifests are nameless CCNx content objects,
 possibly with cache control directives.

 o The Data content objects are nameless CCNx content objects,
 possibly with cache control directives.

 o To form an Interest for a direct or indirect pointer, use a Name
 from one of the Locators and put the pointer HashValue into the
 ContentObjectHashRestriction.

3.9.1.2. CCNx Single Prefix

 The Single Prefix schema uses the same name in all Content Objects
 and distinguishes them via their ContentObjectHash. Note that in
 CCNx, using a SinglePrefix name means that we do not use Locators.

 It proceeds as follows:

 o The Root Manifest content object has a name used to fetch the
 manifest. It is signed by the publisher. It has a set of

https://datatracker.ietf.org/doc/html/rfc8569
https://datatracker.ietf.org/doc/html/rfc8569

Tschudin, et al. Expires May 7, 2020 [Page 17]

Internet-Draft FLIC November 2019

 Locators used to fetch the remainder of the manifest. It has a
 single HashPointer that points to the Top Manifest. It may also
 have cache control directives, such as ExpiryTime.

 o The Root Manifest has an NsDef that specifies SinglePrefix and the
 SinglePrefixSchema element specifies the SinglePrefixName.

 o The Top Manifest has the name SinglePrefixName. It may have cache
 control directies. It's GroupData elements must have an NsId that
 references the NsDef.

 o An Internal or Leaf manifest has the name SinglePrefixName,
 possibly with cache control directives. It's GroupData elements
 must have an NsId that references the NsDef.

 o The Data content objects have the name SinglePrefixName, possibly
 with cache control directives.

 o To form an Interest for a direct or indirect pointer, use
 SinglePrefixName as the Name and put the pointer HashValue into
 the ContentObjectHashRestriction.

3.9.1.3. CCNx Segmented Prefix

 The Segmented Prefix schema uses a different name in all Content
 Objects and distinguishes them via their ContentObjectHash. Note
 that in CCNx, using a SegmentedPrefixSchema means that we do not use
 Locators. OPTIONAL: Use AnnotatedPointers to indicate the segment
 number of each hash pointer to avoid needing to infer the segment
 numbers.

 It proceeds as follows:

 o The Root Manifest content object has a name used to fetch the
 manifest. It is signed by the publisher. It has a set of
 Locators used to fetch the remainder of the manifest. It has a
 single HashPointer that points to the Top Manifest. It may also
 have cache control directives, such as ExpiryTime.

 o The Root Manifest has an NsDef that specifies SegmentedPrefix and
 the SegmentedPrefixSchema element specifies the
 SegmentedPrefixName.

 o The publisher will track the chunk number of each content object
 within the NsId. Objects will be numbered in their traversal
 order. Within each manifest, the name will be constructed from
 the SegmentedPrefixName plus a Chunk name component.

Tschudin, et al. Expires May 7, 2020 [Page 18]

Internet-Draft FLIC November 2019

 o The Top Manifest has the name SegmentedPrefixName plus chunk
 number. It may have cache control directies. It's GroupData
 elements must have an NsId that references the NsDef.

 o An Internal or Leaf manifest has the name SegmentedPrefixName plus
 chunk number, possibly with cache control directives. It's
 GroupData elements must have an NsId that references the NsDef.

 o The Data content objects have the name SegmentedPrefixName plus
 chunk number, possibly with cache control directives.

 o To form an Interest for a direct or indirect pointer, use
 SegmentedPrefixName plus chunk number as the Name and put the
 pointer HashValue into the ContentObjectHashRestriction. A
 consumer must track the chunk number in traversal order for each
 SegmentedPrefixSchema NsId.

3.9.1.4. CCNx Hybrid Schema

 A manifest may use multiple schemas. For example, the application
 payload in data content objects might use SegmentedPrefix while the
 manifest content objects might use HashNaming.

 The Root Manifest should specify an NsDef with a first NsId (say 1)
 as the HashNaming schema and a second NsDef with a second NsId (say
 2) as the SegmentedPrefix schema along with the SegmentedPrefixName.

 Each manifest (Top, Internal, Leaf) uses two or more HashGroups,
 where eash HashGroup has only Direct (with the second NsId) or
 Indirect (with the first NsId). The number of hash groups will
 depend on how the publisher wishes to interleave direct and indirect
 pointers.

 Manifests and data objects are named as appropriate for their naming
 schema.

3.9.2. NDN Encoding

 In NDN, all Manifest Data objects use a ContentType of FLIC (1024),
 while all application data content objects use a PayloadType of Blob.

3.9.2.1. NDN Hash Naming

 In NDN Hash Naming, a Data Object has a 0-length name. This means
 that an Interest will only have an ImplicitDigest name component in
 it. This method relies on using NDN ForwardingHints.

 It proceeds as follows:

Tschudin, et al. Expires May 7, 2020 [Page 19]

Internet-Draft FLIC November 2019

 o The Root Manifest Data has a name used to fetch the manifest. It
 is signed by the publisher. It has a set of Locators used to
 fetch the remainder of the manifest. It has a single HashPointer
 that points to the Top Manifest. It may also have cache control
 directives.

 o The Root Manifest has an NsDef that specifies HashSchema. It's
 GroupData uses that NsId. All internal and leaf manifests use the
 same GroupData NsId. A Manifest Tree MAY omit the NsDef and NsId
 elements and rely on the default being HashSchema.

 o The Top Manifest has a 0-length Name. It may have cache control
 directies.

 o Internal and Leaf manifests has a 0-length Name, possibly with
 cache control directives.

 o The application Data use a 0-length name, possibly with cache
 control directives.

 o To form an Interest for a direct or indirect pointer, the name is
 only the Implicit Digest name component derived from a pointer's
 HashValue. The ForwardingHints come from the Locators. In NDN,
 one may use one or more locators within a single Interest.

3.9.2.2. NDN Single Prefix

 In Single Prefix, the Data name is a common prefix used between all
 objects in that namespace, without a Segment or other counter. They
 are distinguished via the Implicit Digest name component. The FLIC
 Locators go in the ForwardingHints.

 It proceeds as follows:

 o The Root Manifest Data object has a name used to fetch the
 manifest. It is signed by the publisher. It has a set of
 Locators used to fetch the remainder of the manifest. It has a
 single HashPointer that points to the Top Manifest. It may also
 have cache control directives.

 o The Root Manifest has an NsDef that specifies SinglePrefix and the
 SinglePrefixSchema element specifies the SinglePrefixName.

 o The Top Manifest has the name SinglePrefixName. It may have cache
 control directies. It's GroupData elements must have an NsId that
 references the NsDef.

Tschudin, et al. Expires May 7, 2020 [Page 20]

Internet-Draft FLIC November 2019

 o An Internal or Leaf manifest has the name SinglePrefixName,
 possibly with cache control directives. It's GroupData elements
 must have an NsId that references the NsDef.

 o The Data content objects have the name SinglePrefixName, possibly
 with cache control directives.

 o To form an Interest for a direct or indirect pointer, use
 SinglePrefixName as the Name and append the pointer's HashValue
 into an ImplicitDigest name component. Set the ForwardingHints
 from the FLIC locators.

3.9.2.3. NDN Segmented Prefix

 In Segmented Prefix, the Data name is a common prefix plus a segment
 number, so each manifest or application data object has a unique full
 name before the implicit digest. This means the consumer must
 maintain a counter for each SegmentedPrefix namespace. OPTIONAL: Use
 AnnotatedPointers to indicate the segment number of each hash pointer
 to avoid needing to infer the segment numbers.

 It proceeds as follows:

 o The Root Manifest Data object has a name used to fetch the
 manifest. It is signed by the publisher. It has a set of
 Locators used to fetch the remainder of the manifest. It has a
 single HashPointer that points to the Top Manifest. It may also
 have cache control directives.

 o The Root Manifest has an NsDef that specifies SegmentedPrefix and
 the SegmentedPrefixSchema element specifies the
 SegmentedPrefixName.

 o The publisher will track the segment number of each Data object
 within a SegmentedPrefix NsId. Data will be numbered in their
 traversal order. Within each manifest, the name will be
 constructed from the SegmentedPrefixName plus a Segment name
 component.

 o The Top Manifest has the name SegmentedPrefixName plus segment
 number. It may have cache control directies. It's GroupData
 elements must have an NsId that references the NsDef.

 o An Internal or Leaf manifest has the name SegmentedPrefixName plus
 segment number, possibly with cache control directives. It's
 GroupData elements must have an NsId that references the NsDef.

Tschudin, et al. Expires May 7, 2020 [Page 21]

Internet-Draft FLIC November 2019

 o The Data content objects have the name SegmentedPrefixName plus
 chunk number, possibly with cache control directives.

 o To form an Interest for a direct or indirect pointer, use
 SegmentedPrefixName plus segment number as the Name and put the
 pointer HashValue into the ImplicitDigest name component. A
 consumer must track the segment number in traversal order for each
 SegmentedPrefixSchema NsId.

3.9.2.4. NDN Hybrid Schema

 A manifest may use multiple schemas. For example, the application
 payload in data content objects might use SegmentedPrefix while the
 manifest content objects might use HashNaming.

 The Root Manifest should specify an NsDef with a first NsId (say 1)
 as the HashNaming schema and a second NsDef with a second NsId (say
 2) as the SegmentedPrefix schema along with the SegmentedPrefixName.

 Each manifest (Top, Internal, Leaf) uses two or more HashGroups,
 where eash HashGroup has only Direct (with the second NsId) or
 Indirect (with the first NsId). The number of hash groups will
 depend on how the publisher wishes to interleave direct and indirect
 pointers.

 Manifests and data objects are named as appropriate for their naming
 schema.

3.10. Example Structures

3.10.1. Leaf-only data

 Root
 |
 ______ M0 _____
 / | \
 M1 M2 M3
 / | \ / | \ / | \
 D0 D1 D2 D3 D4 D5 D6 D7 D8

 Figure 9: Leaf-only manifest tree

3.10.2. Linear

 Of special interest are "skewed trees" where a pointer to a manifest
 may only appear as last pointer of (sub-) manifests. Such a tree
 becomes a sequential list of manifests with a maximum of datapointers
 per manifest packet. Beside the tree shape we also show this data

Tschudin, et al. Expires May 7, 2020 [Page 22]

Internet-Draft FLIC November 2019

 structure in form of packet content where D stands for a data pointer
 and M is the hash of a manifest packet.

 Root -> M0 ----> M1 ----> ...
 |->DDDD |->DDDD

4. Usage Examples

4.1. Locating FLIC leaf and manifest nodes

 The names of manifest and data objects are often missing or not
 unique, unless using specific naming conventions. In this example,
 we show how using manifest locators is used to generate Interests.
 Take for example the figure below where the root manifest is named by
 hash h0. It has nameless children with hashes with hashes h1 ... hN.

 Objects:
 manifest(name=/a/b/c, ptr=h1, ptr=hN) - has hash h0
 nameless(data1) - has hash h1
 ...
 nameless(dataN) - has hash hN

 Query for the manifest:
 interest(name=/a/b/c, implicitDigest=h0)

 Figure 10: Data Organization

 After obtaining the manifest, the client fetches the contents. In
 this first instance, the manifest does not provide any Locators data
 structure, so the client must continue using the name it used for the
 manifest.

 interest(name=/a/b/c, implicitDigest=h1)
 ...
 interest(name=/a/b/c, implicitDigest=hN)

 Figure 11: Data Interests

 Using the locator metadata entry, this behavior can be changed:

Tschudin, et al. Expires May 7, 2020 [Page 23]

Internet-Draft FLIC November 2019

 Objects:
 manifest(name=/a/b/c,
 hashgroup(loc=/x/y/z, ptr=h1)
 hashgroup(ptr=h2) - has hash h0
 nameless(data1) - has hash h1
 nameless(data2) - has hash h2

 Queries:
 interest(name=/a/b/c, implicitDigest=h0)
 interest(name=/x/y/z, implicitDigest=h1)
 interest(name=/a/b/c, implicitDigest=h2)

 Figure 12: Using Locators

4.2. Seeking

 Fast seeking (without having to sequentially fetch all content) works
 by skipping over entries for which we know their size. The following
 expression shows how to compute the byte offset of the data pointed
 at by pointer P_i, offset_i. In this formula, let P_i represent the
 Size value of the i-th pointer.

 offset_i = \sum_{i = 1}^{i - 1} P_i.size

 With this offset, seeking is done as follows:

 Input: seek_pos P, a FLIC manifest with a hash group having N entries
 Output: pointer index i and byte offset o, or out-of-range error
 Algo:
 offset = 0
 for i in 1..N do
 if (P < P_i.size)
 return (i, P - offset)
 offset += P_i.size
 return out-of-range

 Figure 13: Seeking Algorithm

 Seeking in a BlockHashGroup is different since offsets can be quickly
 computed. This is because the size of each pointer P_i except the
 last is equal to the SizePerPtr value. For a BlockHashGroup with N
 pointers, OverallByteCount D, and SizePerPointer L, the size of P_i
 is equal to the following:

 D - ((i - 1) * L)

 In a BlockHashGroup with k pointers, the size of P_k is equal to:

Tschudin, et al. Expires May 7, 2020 [Page 24]

Internet-Draft FLIC November 2019

 D - L * (k - 1)

 Using these, the seeking algorithm can be thus simplified to the
 following:

 Input: seek_pos P, a FLIC manifest with a hash group having
 OverallByteCount S and SizePerPointer L.
 Output: pointer index i and byte offset o, or out-of-range error
 Algo:
 if (P > S)
 return out-of-range
 i = floor(P / L)
 if (i > N)
 return out-of-range # bad FLIC encoding
 o = P mod L
 return (i, o)

 Figure 14: Seeking Algorithm

 Note: In both cases, if the pointer at position i is a manifest
 pointer, this algorithm has to be called once more, seeking to
 seek_pos o inside that manifest.

4.3. Block-level de-duplication

 Consider a huge file, e.g. an ISO image of a DVD or program in binary
 form, that had previously been FLIC-ed but now needs to be patched.
 In this case, all existing encoded ICN chunks can remain in the
 repository while only the chunks for the patch itself is added to a
 new manifest data structure, as is shown in the picture below. For
 example, the venti [1] archival file system of Plan9 uses this
 technique.

 old_mfst - - > h1 --> oldData1 <-- h1 < - - new_mfst
 \ - > h2 --> oldData2 <-- h2 < - - /
 \ replace3 <-- h5 < - -/
 \- > h3 --> oldData3 /
 \ > h4 --> oldData4 <-- h4 < - /

 Figure 15: De-duplication

4.4. Growing ICN collections

 A log file, for example, grows over time. Instead of having to re-
 FLIC the grown file it suffices to construct a new manifest with a
 manifest pointer to the old root manifest plus the sequence of data
 hash pointers for the new data (or additional sub-manifests if
 necessary). Note that this tree will not be skewed (anymore).

Tschudin, et al. Expires May 7, 2020 [Page 25]

Internet-Draft FLIC November 2019

 old data < - - - mfst_old <-- h_old - - mfst_new
 /
 new data1 <-- h_1 - - - - - - - - -/
 new data2 /
 ... /
 new dataN <-- h_N - - - - - - - -/

 Figure 16: Growing A Collection

4.5. Re-publishing a FLIC under a new name

 There are several usecases for republishing a collection under a new
 namespace, or having one collection exist under several namespaces:

 o It can happen that a publisher's namespace is part of a service
 provider's prefix. When switching provider, the publisher may
 want to republish the old data under a new name.

 o A publishes wishes to distribute its content to several caches and
 would like a local result to appear. For example, the publisher
 /alpha wishes to place content at /beta and /gamma, but routing to
 /alpha would not send a request to either of those sites. Each of
 /beta and /gamma could create a locally named and signed version
 of the root manifest with appropriate keys (or delegate that to
 /alpha) so the results are always local without having to change
 the bulk of the maniest tree.

 This can easily be achieved with a single nameless root manifest for
 the large FLIC plus arbitrarily many per-name manifests (which are
 signed by whomever wants to publish this data):

data < - nameless_mfst() <-- h < - mfst(/com/example/east/the/flic)
 < - mfst(/com/example/west/old/the/flic)
 < - mfst(/internet/archive/flic234)

 Figure 17: Relocating A Collection

 Note that the hash computation (of h) only requires reading the
 nameless root manifest, not the entire FLIC.

 This example points out the problem of HashGroups having locator
 metadata elements: A retriever would be urged to follow these hints
 which are "hardcoded" deep inside the FLIC but might have become
 outdated. We therefore recommend to name FLIC manifests only at the
 highest level (where these names have no locator function). Child
 nodes in a FLIC manifest should not be named as these names serve no

Tschudin, et al. Expires May 7, 2020 [Page 26]

Internet-Draft FLIC November 2019

 purpose except retrieving a sub-tree's manifest by name, if would be
 required.

5. IANA Considerations

 TODO Need IANA actions:

 o Create a registry for Manifest Data and Annotation TLVs

 o Register the SizeAnnotation TLV

 Also TODO: If this document is submitted as an official RG draft,
 this section must be updated to reflect the IANA registries described
 in [RFC8609]

6. Security Considerations

 TODO Need a discussion on:

 o signing and hash chaining security.

 o republishing under a new namespace.

 o encryption mechanisms.

 o encryption key distribution mechanisms.

7. Appendix A: Building Trees

 This section describes one method to build trees. It constructs a
 pre-order tree in a single pass of the application data, going from
 the tail to the beginning. This allows us to work up the right side
 of the tree in a single pass, then work down each left branch until
 we exhaust the data. Using the reverse-order traversal, we create
 the right-most-child manifest, then its parent, then the indirect
 pointers of that parent, then the parent's direct pointers, then the
 parent of the parent (repeating). This process uses recursion, as it
 is the clearest way to show the code. A more optimized approach
 could do it in a true single pass.

 Because we're building from the bottom up, we use the term 'level' to
 be the distance from the right-most child up. Level 0 is the bottom-
 most level of the tree, such as where node 7 is:

https://datatracker.ietf.org/doc/html/rfc8609

Tschudin, et al. Expires May 7, 2020 [Page 27]

Internet-Draft FLIC November 2019

 1
 2 3
 4 5 6 7
 preorder: 1 2 4 5 3 6 7
 reverse: 7 6 3 5 4 2 1

 The Python-like pseudocode build_tree(data, n, k, m) algorithm
 creates a tree of n data objects. The data[] array is an array of
 Content Objects that hold application payload; the application data
 has already been packetized into n Content Object packets. An
 interior manifest node has k direct pointers and m indirect pointers.

build_tree(data[0..n-1], n, k, m)
 # data is an array of Content Objects (Data in NDN) with application
payload.
 # n is the number of data items
 # k is the number of direct pointers per internal node
 # m is the number of indirect pointers per internal node

 segment = namedtuple('Segment', 'head tail')(0, n)
 level = 0

 # This bootstraps the process by creating the right most child manifest
 # A leaf manifest has no indirect pointers, so k+m are direct pointers
 root = leaf_manifest(data, segment, k + m)

 # Keep building subtrees until we're out of direct pointers
 while not segment.empty():
 level += 1
 root = bottom_up_preorder(data, segment, level, k, m, root)

 return root

bottom_up_preorder(data, segment, level, k, m, right_most_child=None)
 manifest = None
 if level == 0:
 assert right_most_child is None
 # build a leaf manifest with only direct pointers
 manifest = leaf_manifest(data, segment, k + m)
 else:
 # If the number of remaining direct pointers will fit in a leaf node,
make one of those.
 # Otherwise, we need to be an interior node
 if right_most_child is None and segment.length() <= k + m:
 manifest = leaf_manifest(data, segment, k+m)
 else:
 manifest = interior_manifest(data, segment, level, k, m,
right_most_child)

 return manifest

Tschudin, et al. Expires May 7, 2020 [Page 28]

Internet-Draft FLIC November 2019

 leaf_manifest(data, segment, count)
 # At most count items, but never go before the head
 start = max(segment.head(), segment.tail() - count)
 manifest = Manifest(data[start:segment.tail])
 segment.tail -= segment.tail() - start
 return manifest

 interior_manifest(data, segment, level, k, m, right_most_child)
 children = []
 if right_most_child is not None:
 children.append(right_most_child)

 interior_indirect(data, segment, level, k, m, children)
 interior_direct(data, segment, level, k, m, children)

 manifest = Manifest(children)
 return manifest, tail

interior_indirect(data, segment, level, k, m, children)
 # Reserve space at the head of the segment for this node's direct pointers
before
 # descending to children. We want the top of the tree packed.
 reserve_count = min(m, segment.tail - segment.head)
 segment.head += reserve_count

 while len(children) < m and not segment.head == segment.tail:
 child = bottom_up_preorder(data, segment, level - 1, k, m)
 # prepend
 children.insert(0, child)

 # Pull back our reservation and put those pointers in our direct children
 segment.head -= reserve_count

 interior_direct(data, segment, level, k, m, children)
 while len(children) < k+m and not segment.head == segment.tail:
 pointer = data[segment.tail() - 1]
 children.insert(0, pointer)
 segment.tail -= 1

8. References

8.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119

Tschudin, et al. Expires May 7, 2020 [Page 29]

Internet-Draft FLIC November 2019

8.2. Informative References

 [FLICImplementation]
 Mosko, M., "FLIC Implementation in Python", various,
 <https://github.com/mmosko/ccnpy>.

 [I-D.irtf-icnrg-terminology]
 Wissingh, B., Wood, C., Afanasyev, A., Zhang, L., Oran,
 D., and C. Tschudin, "Information-Centric Networking
 (ICN): CCNx and NDN Terminology", draft-irtf-icnrg-

terminology-07 (work in progress), November 2019.

 [NDN] "Named Data Networking", various,
 <https://named-data.net/project/execsummary/>.

 [NDNTLV] "NDN Packet Format Specification.", 2016,
 <http://named-data.net/doc/ndn-tlv/>.

 [repository]
 "Repo Protocol Specification", Various,
 <https://redmine.named-data.net/projects/repo-ng/wiki/

Repo_Protocol_Specification>.

 [RFC3552] Rescorla, E. and B. Korver, "Guidelines for Writing RFC
 Text on Security Considerations", BCP 72, RFC 3552,
 DOI 10.17487/RFC3552, July 2003,
 <https://www.rfc-editor.org/info/rfc3552>.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", RFC 5226,
 DOI 10.17487/RFC5226, May 2008,
 <https://www.rfc-editor.org/info/rfc5226>.

 [RFC8569] Mosko, M., Solis, I., and C. Wood, "Content-Centric
 Networking (CCNx) Semantics", RFC 8569,
 DOI 10.17487/RFC8569, July 2019,
 <https://www.rfc-editor.org/info/rfc8569>.

 [RFC8609] Mosko, M., Solis, I., and C. Wood, "Content-Centric
 Networking (CCNx) Messages in TLV Format", RFC 8609,
 DOI 10.17487/RFC8609, July 2019,
 <https://www.rfc-editor.org/info/rfc8609>.

Authors' Addresses

https://github.com/mmosko/ccnpy
https://datatracker.ietf.org/doc/html/draft-irtf-icnrg-terminology-07
https://datatracker.ietf.org/doc/html/draft-irtf-icnrg-terminology-07
https://named-data.net/project/execsummary/
http://named-data.net/doc/ndn-tlv/
https://redmine.named-data.net/projects/repo-ng/wiki/Repo_Protocol_Specification
https://redmine.named-data.net/projects/repo-ng/wiki/Repo_Protocol_Specification
https://datatracker.ietf.org/doc/html/bcp72
https://datatracker.ietf.org/doc/html/rfc3552
https://www.rfc-editor.org/info/rfc3552
https://datatracker.ietf.org/doc/html/rfc5226
https://www.rfc-editor.org/info/rfc5226
https://datatracker.ietf.org/doc/html/rfc8569
https://www.rfc-editor.org/info/rfc8569
https://datatracker.ietf.org/doc/html/rfc8609
https://www.rfc-editor.org/info/rfc8609

Tschudin, et al. Expires May 7, 2020 [Page 30]

Internet-Draft FLIC November 2019

 Christian Tschudin
 University of Basel

 Email: christian.tschudin@unibas.ch

 Christopher A. Wood
 University of California Irvine

 Email: woodc1@uci.edu

 Marc Mosko
 PARC, Inc.

 Email: marc.mosko@parc.com

 David Oran (editor)
 Network Systems Research & Design

 Email: daveoran@orandom.net

Tschudin, et al. Expires May 7, 2020 [Page 31]

