
Workgroup: ICNRG

Internet-Draft: draft-irtf-icnrg-flic-04

Published: 24 October 2022

Intended Status: Experimental

Expires: 27 April 2023

Authors: C. Tschudin

University of Basel

C.A. Wood

Cloudflare

M.E. Mosko

PARC, Inc.

D. Oran, Ed.

Network Systems Research & Design

File-Like ICN Collections (FLIC)

Abstract

This document describes a simple "index table" data structure and

its associated Information Centric Networking (ICN) data objects for

organizing a set of primitive ICN data objects into a large, File-

Like ICN Collection (FLIC). At the core of this collection is a

manifest which acts as the collection's root node. The manifest

contains an index table with pointers, each pointer being a hash

value pointing to either a final data block or another index table

node.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 27 April 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

carefully, as they describe your rights and restrictions with

respect to this document.

Table of Contents

1. Introduction

1.1. FLIC as an ICN experimental tool

1.2. Requirements Language

2. Design Overview

3. FLIC Structure

3.1. Terminology

3.2. Locators

3.3. Name Constructors

3.4. Manifest Metadata

3.5. Pointer Annotations

3.6. Manifest Grammar (ABNF)

3.7. Manifest Trees

3.7.1. Traversal

3.8. Manifest Encryption Modes

3.8.1. AEAD Mode

3.8.2. RSA-OAEP Key Transport Mode

3.9. Protocol Encodings

3.9.1. CCNx Encoding

3.9.1.1. CCNx Hash Naming Strategy

3.9.1.2. CCNx Single Prefix Strategy

3.9.1.3. CCNx Segmented Prefix Strategy

3.9.1.4. CCNx Hybrid Strategy

3.9.2. NDN Encoding

3.9.2.1. NDN Hash Naming

3.9.2.2. NDN Single Prefix

3.9.2.3. NDN Segmented Prefix

3.9.2.4. NDN Hybrid Schema

3.10. Example Structures

3.10.1. Leaf-only data

3.10.2. Linear

4. Experimenting with FLIC

5. Usage Examples

5.1. Locating FLIC leaf and manifest nodes

5.2. Seeking

5.3. Block-level de-duplication

5.4. Growing ICN collections

5.5. Re-publishing a FLIC under a new name

6. IANA Considerations

6.1. FLIC Payload Type

6.2. FLIC Manifest Metadata and Annotation TLVs

7. Security Considerations

7.1. Integrity and Origin Authentication of FLIC Manifests

7.2. Confidentiality of Manifest Data

7.3. Privacy of names and linkability of access patterns

¶

8. References

8.1. Normative References

8.2. Informative References

Appendix A. Building Trees

Authors' Addresses

1. Introduction

ICN architectures, such as Content-Centric Networking (CCNx)

[RFC8569] and Named Data Networking [NDN], are well suited for

static content distribution. Each piece of (possibly immutable)

static content is assigned a name by its producer. Consumers fetch

this content using said name. Optionally, consumers may specify the

full name of content, which includes its name and a unique (with

overwhelming probability) cryptographic digest of said content.

Note: The reader is assumed to be familiar with general ICN concepts

from CCNx or NDN. For general ICN terms, this document uses the

terminology defined in [RFC7927]. Where more specificity is needed,

we utilize CCNx [RFC8569] terminology where a Content Object is the

data structure that holds application payload. Terms defined

specifically for FLIC are enumerated below in Section 3.1.

To enable requests with full names, consumers need a priori

knowledge of content digests. A Manifest, a form of catalog, is a

data structures commonly employed to store and transport this

information. Typically, ICN manifests are signed content objects

(data) which carry a collection of hash digests. As content objects,

a manifest itself may be fetched by full name. A manifest may

contain either hash digests of, or pointers to, either other

manifests or content objects. A collection of manifests and content

objects represents a large piece of application data, e.g., one that

cannot otherwise fit in a single content object. Because a manifest

contains a collection of hashes, it is by definition non-circular

because one cannot hash the manifest before filling it in.

Structurally, this relationship between manifests and content

objects is reminiscent of the UNIX inode concept with index tables

and memory pointers. In this document, we specify a simple, yet

extensible, manifest data structure called FLIC - File-Like ICN

Collection. FLIC is suitable for ICN protocol suites such as CCNx

and NDN. We describe the FLIC design, grammar, and various use

cases, e.g., ordered fetch, seeking, de-duplication, extension, and

variable-sized encoding. We also include FLIC encoding examples for

CCNx and NDN.

The purpose of a manifest is to concisely name, and hence point to,

the constiuent pieces of a larger object. A FLIC manifest does this

by using a root manifest to name and cryptographically sign the data

¶

¶

¶

¶

structure and then use concise lists of hash-based names to indicate

the constituent pieces. This maintains strong security from a single

signature. A Manifest entry gives one enough information to create

an Interest for that entry, so it must specify the name, the hash

digest, and if needed, the locators.

FLIC is a distributed data structure illustrated by the following

picture.

Figure 1: A FLIC manifest and its directed acyclic graph

A key design decision is how one names the root manifest, the

application data, and subsidiary manifests. FLIC uses the concept of

a Name Constructor. The root manifest (in fact, any FLIC manifest)

may include a Name Constructor that instructs a manifest reader how

to properly create Interests for the associated application data and

subsidiary manifests. The Name Constructors allow interest

construction using a well-known, application-independent set of

rules. Some name constructor forms are tailored towards specific ICN

protocols, such as CCNx or NDN; some are more general and could work

with many protocols. We describe the allowed Name Constructor

methods in Section 3.3. There are also particulars of how to encode

the name schema in a given ICN protocol, which we describe in

Section 3.9.

FLIC has encodings for CCNx (Section 3.9.1) as per RFC 8609

[RFC8609] and for NDN (Section 3.9.2).

An example implementation in Python may be found at

[FLICImplementation].

¶

¶

 root manifest

.------------------------------------.

| optional name: |

| /icn/name/of/this/flic |

| |

| HashGroup (HG): |

| optional metadata: |

| overall digest, locator, etc. | .------.

| hash-valued data pointer -----------> | data |

| ... | `------' sub manifest

| hash-valued manifest pointer ------. .------------------.

| | `--> | ----->

| optional additional HashGroups | | ----->

| | `------------------'

| optional signature |

`------------------------------------'

¶

¶

¶

1.1. FLIC as an ICN experimental tool

FLIC enables experimentation with how to structure and retrieve

large data objects and collections in ICN. By having a common data

structure applications can rely on, with a common library of code

that can be used to create and parse manifest data structures,

applications using ICN protocols can both avoid unnecessary

reinvention and also have enhanced interoperability. Since the

design attempts to balance simplicity, universality, and

extensibility, there are a number of important experimental goals to

achieve that may wind up in conflict with one another. We provide a

partial list of these experimental issues in Section 4. It is also

important for users of FLIC to understand that some flexibility and

extensions might be removed if use cases do not materialize to

justify their inclusion in an eventual standard.

1.2. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119].

2. Design Overview

The FLIC design adopts the proven UNIX inode concept of direct and

indirect pointers, but without the specific structural forms of

direct versus indirect. FLIC is a collection of pointers, and when

one de-references the pointer it could be an application object or

another FLIC manifest. The pointers in FLIC use hash-based naming of

Content Objects analogous to the function block numbers play in UNIX

inodes.

Because FLIC uses hash-based pointers as names, FLIC graphs are

inherently acyclic. Both CCNx and NDN support hash-based naming,

though the details differ (see Section 3.9.1 and Section 3.9.2).

The FLIC datastructure is an acyclic digraph of Content Objects. In

this document, our examples are trees, but that is not a

requirement. For example, a de-duplication representation might have

a common object with many 0s and that object could be references

from multiple places in the tree. As another example, there could be

a common sub-collection of objects organized in a Manifest, and that

sub-manifest could be included in multiple places.

In FLIC terms, a direct pointer links to application-level data,

which is a Content Object with application data in the Payload. An

indirect pointer links to a Content Object with a FLIC Manifest in

the Payload.

¶

¶

¶

¶

¶

¶

Note: A substantial advantage of using hash-based naming is that it

permits block-level de-duplication of application data because two

blocks with the same payload will have the same hash name.

The FLIC structure that is expected most applications would use

consists of a root manifest with a strong cryptographic signature

and then cryptographically strong (e.g. SHA256 [SHS]) hash names as

pointers to other manifests. The advantage of this structure is that

the single signature in the root manifest covers the entire data

structure no matter how many additional manifests are in the data

structure. Another advantage of this structure is it removes the

need to use chunk (CCNx) or segment (NDN) name components for the

subordinate manifests.

Another usage is to have a signed Root Manifest with a single

pointer to the Top Manifest. The Top Manifest maybe a CCNx Nameless

object. This method allows an intermediary service to respond to

client requests with its own signed Manifest that then points to a

small Root manifest. The client trusts the intermediary's reponse

because of the intermediary's signature, and then trusts the content

because of the Root manifest. In some cases, the intermediary could

embed the Root Manifest (because it is small) and avoid additional

round trips before beginning download. This technique is used in a

peer-to-peer sharing protocol [ProjectOrigin].

FLIC supports manifest encryption separate from application payload

encryption (See Section 3.8). It has a flexible encryption envelope

to support various encryption algorithms and key discovery

mechanisms. The byte layout allows for in-place encryption and

decryption.

A limitation of this approach is that one cannot construct a hash-

based name for a child until one knows the payload of that child. In

practical terms, this means that one must have the complete

application payload available at the time of manifest creation.

FLIC's design allows straightforward applications that just need to

traverse a linear set of related objects to do so simply, but FLIC

has two extensibility mechanisms that allow for more sophisticated

uses: manifest metadata, and pointer annotations. These are

described in Section 3.4 and Section 3.5 respectively.

FLIC goes to considerable lengths to allow creation and parsing by

application-independent library code. Therefore, any options used by

applications in the data structure or encryption capabilities MUST

NOT require applications to have application-specific Manifest

traversal algorithms. This ensures that such application agnostic

libraries can always successfully parse and traverse any FLIC

Manifest by ignoring the optional capabilities.

¶

¶

¶

¶

¶

¶

¶

Data Object:

Direct Pointer:

Hash Group:

Indirect Pointer:

Internal Manifest:

Leaf Manifest:

Locator:

Manifest:

Manifest Waste:

Name Constructor:

Root Manifest:

The reader may find it useful to refer to Section Example Usages

(Section 5) from time to time to see worked out examples.

3. FLIC Structure

3.1. Terminology

a CCNx nameless Content Object that usually only has

Payload. It might also have an ExpiryTime to limit the lifetime

of the data.

borrowed from inode terminology, it is a CCNx link

using a content object hash restriction and a locator name to

point to a Data Object.

KA collection of pointers. A Manifest should have

atleast one Hash Group. A Hash Group may have its own associated

meta data and Name Constructor.

borrowed from inode terminology, it is a CCNx

link using a content object hash restriction and a locator name

to point to a manifest content object.

some or all pointers are indirect. The order and

number of each is up to the manifest builder. By convention, all

the direct manifests come first, then the indirect.

all pointers are direct pointers.

A routing hint in an Interest used by forwarding to get

the Interest to where it can be matched based on its Name

Constructor-derived name.

a CCNx ContentObject with PayloadType 'Manifest' and a

Payload of the encoded manifest. A leaf manifest only has direct

pointers. An internal manifest has a mixture of direct and

indirect pointers.

a metric used to measure the amount of waste in a

manifest tree. Waste is the number of unused pointers. For

example, a leaf manifest might be able to hold 40 direct

pointers, but only 30 of them are used, so the waste of this node

is 10. Manifest tree waste is the sum of waste over all manifests

in a tree.

The specification of how to construct an Interest

for a Manifest entry.

A signed, named, manifest that points to nameless

manifest nodes. This structure means that the internal tree

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Top Manifest:

structure of internal and leaf manifests have no names and thus

may be located anywhere in a namespace, while the root manifest

has a name to fetch it by.

One useful manifest structure is to use a Root

manifest that points to a single Internal manifest called the Top

Manifest. The Top manifest the begins the structure used to

organize manifests. It is also possible to elide the two and use

only a root manifest that also serves in the role of the top

manifest.

3.2. Locators

Locators are routing hints used by forwarders to get an Interest to

a node in the network that can resolve the Interest's name. In some

naming conventions, the name might only be a hash-based name so the

Locator is the only available routing information. Locators exist in

both CCNx and NDN, though the specific protocol mechanisms differ. A

FLIC manifest represents locators in the same way for both ICN

protocols inside Name Constructors (Section 3.3), though they are

encoded differently in the underlying protocol. See Section 3.9 for

encoding differences.

A manifest Node may define one or more Locator prefixes that can be

used in the construction of Interests from the pointers in the

manifest. The Locators are inherited when walking a manifest tree,

so they do not need to be defined everywhere. It is RECOMMENDED that

only the Root manifest contain Locators so that a single operation

can update the locators. One use case when storing application

payloads at different replicas is to replace the Root manifest with

a new one that contains locators for the current replicas.

3.3. Name Constructors

A Manifest may define zero or more name constructors in

NameConstructorDefinitions (NCD) located in the Manifest Node. An

NCD associates a Name Constructor Id (NCID) to a Name Constructor.

The NCID is used in other parts of the Manifest to refer to that

specific definition.

A manifest organizes pointers inside Hash Groups. Each Hash Group

uses an NCID to indicate what Name Constructor to use to fetch the

pointers inside the group.

NCID 0 is the default name constructor. If it is not defined in an

NCD, it is assumed to be a HashNamingConstructor. A Manifest may re-

define the default as needed.

A Manifest MUST use locally unique NCIDs in the NCD.

¶

¶

¶

¶

¶

¶

¶

¶

(1)

(2)

(3)

(4)

NCDs and their associated NCIDs are inherited as one traverses a

manifest. That is, a manifest consumer must remember the NCDs as it

traverses manifests. If it encounters a HashGroup that uses an

unknown NCID, the RECOMMENDED action is to report a malformed

manifest to the user.

A Manifest may update an NCID. If a child manifest re-defines an

NCID, the manifest consumer MUST use the new definition from that

point forward under that Manifest branch.

It is RECOMMENDED that only the root or similar top-level manifest

define NCDs and they not be re-defined in subsequent manifests.

We expect that an application constructing a Manifest will take one

of three approaches to name constructors. The advantage of using, or

re-defining, the default name constructor is that any hash groups

that use it do not need to specify an NCID and thus might save some

space.

A manifest might define (or use) a default name constructor and

mix subsequent Manifest and Data objects under that same

namespace. The manifest only needs to use one Hash Group and can

freely mix Manifest and Data pointers.

A manifest might define (or use) a default name constructor for

subsequent Manifests and define a second NCD for the application

data. This places all subsequent manifests under the default

constructor and places all application data under the second NCD.

The Manifest must use at least two Hash Groups.

There are a few options on how to organize the Hash Groups:

Manifest Hash Group followed by Data Hash group,

Data Hash Group followed by Manifest Hash Group,

Intermix multiple manifest and data hash groups for

interleaved reading, or

use a data-on-leaf only approach: the interior manifests

would use the manifest hash group and the leaves would use

the data hash group. Other organizations are possible.

Define multiple NCDs for subsequent manifests and data, or not

use the default NCD, or use some other organization.

In this specification, we define the following four types of Name

Constructors. Additional name constructor types may be specified in

a subsequent revision of the specification. Here, we informally

¶

¶

¶

¶

*

¶

*

¶

¶

¶

¶

¶

¶

*

¶

Type 0 (Interest-Derived Naming):

Type 1 (Data-Derived Naming):

Type 2 (Prefix List):

Type 3 (Segmented Naming):

define the name constructors. Section 3.6 specifies the encoding of

each name constructor.

Use whatever name was used in the

Interest to retrieve this Manifest, less a hash component, and

append the desired hash value.

Use the Manifest Name, less a hash

component, as the Interest name, and append the desired hash

value.

The NCD specifies a list of 1 or more name

prefixes. The consumer may use any (or all) of those prefixes

with the desired hash appended.

As in Type 2, but the consumer MUST

track Segment Numbers. If the Hash Group provides Segment Number

annotations for each pointer, it MUST use those numbers.

Otherwise, the consumer MUST use a 0-based counter that follows

the traversal order.

In Type 0, the consumer uses some name N to fetch a manifest. When

the consumer receives the Manifest back, it begins issuing interests

for the content using the same name N, but with the hash pointers

from the manifest.

In Type 1, the consumer uses some name N to fetch a manifest. The

consumer receives a manifest back with name M inside the Manifest

Content Object. The consumer then uses the name M plus hash pointers

from the manifest.

In Type 2, the consumer receives a manifest and begins traversing

it. If it visits a Hash Group with a PrefixSchema Name Constructor,

then that Name Constructor provides a list of 1 or more locators to

use. The consumer may use any or all of the provided locators, plus

the hash pointer, to fetch the contents.

In Type 3, if a Hash Group has a SegmentedSchema Name Constructor,

then the consumer uses the same mechanism as Type 2, but with the

addition of a Segment Number in the name. Segmented naming is only

compatible with deterministic traversal orders or if the Manifest

provides Segment Number annotations for each pointer. If the Hash

Group provides hints about other traversal orders, then it must also

provide Segment Number annotations for each prefix.

3.4. Manifest Metadata

The FLIC Manifest may be extended by defining TLVs that apply to the

Manifest as a whole, or alternatively, individually to every data

object pointed to by the Manifest. This basic specification does not

¶

¶

¶

¶

¶

¶

¶

¶

¶

specify any, but metadata TLVs may be defined through additional

RFCs or via Vendor TLVs. FLIC uses a Vendor TLV structure identical

to [RFC8609] for vendor-specific annotations that require no

standardization process.

For example, some applications may find it useful to allow

specialized consumers such as repositories (for example

[repository]) or enhanced forwarder caches to pre-place, or

adaptively pre-fetch data in order to improve robustness and/or

retrieval latency. Metadata can supply hints to such entities about

what subset of the compound object to fetch and in what order.

Note: FLICs ability to use separate namespaces for the Manifest and

the underlying Data allows different encryption keys to be used,

hence giving a network element like a cache or repository access to

the Manifest data does not as a side effect reveal the contents of

the application data itself.

3.5. Pointer Annotations

FLIC allows each manifest pointer to be annotated with extra data.

Annotations allow applications to exploit metadata about each Data

Object pointed to without having to first fetch the corresponding

Content Object. This specification defines one such annotation. The

SizeAnnotation specifies the number of application layer octets

covered by the pointer.

An annotation may, for example, give hints about a desirable

traversal order for fetching the data, or an importance/precedence

indication to aid applications that do not require every content

object pointed to in the manifest to be fetched. This can be very

useful for real-time or streaming media applications that can

perform error concealment when rendering the media.

Additional annotations may be defined through additional RFCs or via

Vendor TLVs. FLIC uses a Vendor TLV structure identical to [RFC8609]

for vendor-specific annotations that require no standardization

process.

3.6. Manifest Grammar (ABNF)

The manifest grammar is mostly, but not entirely independent of the

ICN protocol used to encode and transport it. The TLV encoding

therefore follows the corresponding ICN protocol, so for CCNx FLIC

uses 2 octet length, 2 octet type and for NDN uses the 1/3/5 octet

types and lengths (see [NDNTLV] for details). There are also some

differences in how one structures and resolves links. [RFC8569]

defines HashValue and Link for CCNx encodings. The NDN

ImplicitSha256DigestComponent defines HashValue and NDN Delegation

¶

¶

¶

¶

¶

¶

(from Link Object) defines Link for NDN. Section 3.9 below specifies

these differences.

The basic structure of a FLIC manifest comprises a security context,

a node, and an authentication tag. The security context and

authentication tag are not needed if the node is unencrypted. A node

is made up of a set of metadata, the NodeData, that applies to the

entire node, and one or more HashGroups that contain pointers.

The NodeData element defines the namespaces used by the manifest.

There may be multiple namespaces, depending on how one names

subsequent manifests or data objects. Each HashGroup may reference a

single namespace to control how one forms Interests from the

HashGroup. If one is using separate namespaces for manifests and

application data, one needs at least two hash groups. For a manifest

structure of "MMMDDD," (where M means manifest (indirect pointer)

and D means data (direct pointer)) for example, one would have a

first HashGroup for the child manifests with its namespace and a

second HashGroup for the data pointers with the other namespace. If

one used a structure like "MMMDDDMMM," then one would need three

hash groups.

¶

¶

¶

TYPE = 2OCTET / {1,3,5}OCTET ; As per CCNx or NDN TLV

LENGTH = 2OCTET / {1,3,5}OCTET ; As per CCNx or NDN TLV

Manifest = TYPE LENGTH [SecurityCtx] (EncryptedNode / Node) [AuthTag]

SecurityCtx = TYPE LENGTH AlgorithmCtx

AlgorithmCtx = AEADCtx / RsaKemCtx

AuthTag = TYPE LENGTH *OCTET ; e.g. AEAD authentication tag

EncryptedNode = TYPE LENGTH *OCTET ; Encrypted Node

Node = TYPE LENGTH [NodeData] 1*HashGroup

NodeData = TYPE LENGTH [SubtreeSize] [SubtreeDigest] [Locators]

 0*Vendor 0*NcDef

SubtreeSize = TYPE LENGTH INTEGER

SubtreeDigest = TYPE LENGTH HashValue

NcDef = TYPE LENGTH NcId NcSchema

NcId = TYPE LENGTH INTEGER

NcSchema = InterestDerivedSchema / DataDerivedSchema /

 PrefixSchema / SegmentedSchema

InterestDerivedSchema = TYPE LENGTH [ProtocolFlags]

DataDerivedSchema = TYPE LENGTH [ProtocolFlags]

PrefixSchema = TYPE LENGTH Locators [ProtocolFlags]

SegmentedSchema = TYPE LENGTH Locators [ProtocolFlags]

Locators = TYPE LENGTH 1*Link

HashValue = TYPE LENGTH *OCTET ; As per ICN Protocol

Link = TYPE LENGTH *OCTET ; As per ICN protocol

ProtocolFlags = TYPE LENGTH *OCTET

 ; ICN-specific flags, e.g. must be fresh

HashGroup = TYPE LENGTH [GroupData] (Ptrs / AnnotatedPtrs)

Ptrs = TYPE LENGTH *HashValue

AnnotatedPtrs = TYPE LENGTH *PointerBlock

PointerBlock = TYPE LENGTH *Annotation Ptr

Ptr = TYPE LENGTH HashValue

Annotation = SizeAnnotation / Vendor

SizeAnnotation = TYPE LENGTH Integer

Vendor = TYPE LENGTH PEN *OCTET

GroupData = TYPE LENGTH [NcId] [LeafSize] [LeafDigest]

 [SubtreeSize] [SubtreeDigest]

LeafSize = TYPE LENGTH INTEGER

LeafDigest = TYPE LENGTH HashValue

AEADCtx = TYPE LENGTH AEADData

AEADData = KeyNum AEADNonce Mode

KeyNum = TYPE LENGTH INTEGER

SecurityCtx:

AlgorithmId:

AlgorithmData:

EncryptedNode:

Node:

NodeData:

SubtreeSize:

SubtreeDigest:

Locators:

HashGroup:

Ptrs:

GroupData:

LeafSize:

LeafDigest:

Ptr:

AEADNonce = TYPE LENGTH 1*OCTET

AEADMode = TYPE LENGTH (AEAD_AES_128_GCM / AEAD_AES_256_GCM /

 AEAD_AES_128_CCM / AEAD_AES_128_CCM)

RsaKemCtx = 2 LENGTH RsaKemData

RsaKemData = KeyId AEADNonce AEADMode WrappedKey LocatorPrefix

KeyId = TYPE LENGTH HashValue; ID of Key Encryption Key

WrappedKey = TYPE LENGTH 1*OCTET

LocatorPrefix = TYPE LENGTH Link

Figure 2: FLIC Grammar

information about how to decrypt an EncryptedNode. The

structure will depend on the specific encryption algorithm.

The ID of the encryption method (e.g. preshared key, a

broadcast encryption scheme, etc.)

The context for the encryption algorithm.

An opaque octet string with an optional

authentication tag (i.e. for AEAD authentication tag)

A plain-text manifest node. The structure allows for in-place

encryption/decryption.

the metadata about the Manifest node

The size of all application data at and below the Node

or Group

The cryptographic digest of all application data at

and below the Node or Group

An array of routing hints to find the manifest components

A set of child pointers and associated metadata

A list of one or more Hash Values

Metadata that applies to a HashGroup

Size of all application data immediately under the Group

(i.e. via direct pointers)

Digest of all application data immediately under the

Group

The ContentObjectHash of a child, which may be a data

ContentObject (i.e. with Payload) or another Manifest Node.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

3.7. Manifest Trees

3.7.1. Traversal

FLIC manifests use a pre-order traversal. This means they are read

top to bottom, left to right. The algorithms in Figure 3 show the

pre-order forward traversal code and the reverse-order traversal

code, which we use below to construct such a tree. This document

does not mandate how to build trees. Appendix A provides a detailed

example of building inode-like trees.

If using Annotated Pointers, an annotation could influence the

traversal order.

 preorder(node)

 if (node = null)

 return

 visit(node)

 for (i = 0, i < node.child.length, i++)

 preorder(node.child[i])

reverse_preorder(node)

 if (node = null)

 return

 for (i = node.child.length - 1, i >= 0, i--)

 reverse_preorder(node.child[i]) visit(node)

Figure 3: Traversal Pseudocode

In terms of the FLIC grammar, one expands a node into its hash

groups, visiting each hash group in order. In each hash group, one

follows each pointer in order. Figure 4 shows how hash groups inside

a manifest expand like virtual children in the tree. The in-order

traversal is M0, HG1, M1, HG3, D0, D1, D2, HG2, D3, D4.

Figure 4: Node Expansion

¶

¶

¶

M0 ____

| \

HG1 HG2

| \ | \

M1 D2 D3 D4

|

HG3

| \

D0 D1

Using the example manifest tree shown in Figure 6, the in-order

traversal would be: Root, M0, M1, D0, D1, D2, M2, D3, D4, D5, M3,

D6, D7, D8.

3.8. Manifest Encryption Modes

This document specifies two encryption modes. The first is a

preshared key mode, where the parties are assumed to have the

decryption keys already. It uses AES-GCM or AES-CCM. This is useful,

for example, when using a key agreement protocol such as CCNxKE

[I-D.wood-icnrg-ccnxkeyexchange]. The second is an RSA key

encapsulation mode (RsaKem [RFC5990]), which may be used for group

keying.

Additional modes may be defined in subsequent specifications. We

expect that an RSA KemDem mode and Elliptic Curve mode should be

specified.

All encryption modes use standard encryption algorithms and

specifications. Where appropriate, we adopt the TLS 1.2 standards

for how to use the encryption algorithms. This section specifies how

to encode algorithm parameters or ICN-specific data.

For group key based encryption, we use RsaKem. This specification

only details the pertinent aspects of the encryption. It describes

how a consumer locates the appropriate keys in the ICN namespace. It

does not specify aspects of a key manager which may or may not be

used as part of key distribution and management, nor does it specify

the protocol between a key manager and a publisher. In its simpliest

form, the publisher could be the key manager, in which case there is

no extra protocol needed between the publisher and key manager.

While the preshared key algorithm is limited in use, the AES

encryption mode described applies to the group key mechanisms too.

The group key mechanism facilitates the distribution of the shared

key without an on-line key agreement protocol like (the expired

draft) CCNxKE [I-D.wood-icnrg-ccnxkeyexchange].

3.8.1. AEAD Mode

This mechanism uses AES-GEM [AESGCM] or AES-CCM [RFC3310] for

manifest encryption. A publisher creating a SecurityCtx SHOULD use

the mechanisms in [RFC6655] for AES-CCM Nonce generation and

[RFC5288] for AES-GCM Nonce generation.

As these references specify, it is essential that the publisher

creating a Manifest never use a Nonce more than once for the same

key. For keys exchanged via a session protocol, such as CCNx, the

publisher MUST use unique nonces on each Manifest for that session.

If the key is derived via a group key mechanism, the publisher MUST

¶

¶

¶

¶

¶

¶

¶

ensure that the same Nonce is not used more than once for the same

Content Encryption Key.

The AEAD Mode uses [RFC5116] defined symbols AEAD_AES_128_CCM,

AEAD_AES_128_GCM, AEAD_AES_256_CCM and AEAH_AES_256_GCM to specify

the key length and algorithm.

The KeyNum identifies a key on the receiver. The key MUST be exactly

of the length specific by the Mode. Many receivers may have the same

key with the same KeyNum.

When a Consumer reads a manifest that specifies a KeyNum, the

consumer SHOULD verify that the Manifest's publisher is an expected

one for the KeyNum's usage. This trust mechanism employed to

ascertain whether the publisher is expected is beyond the scope of

this document, but we provide an outline of one such possible trust

mechanism. When a consumer learns a shared key and KeyNum, it

associates that KeyNum with the publisher ID used in a public key

signature. When the consumer receives a signed manifest (e.g. the

root manifest of a manifest tree), the consumer matches the KeyNum's

publisher with the Manifest's publisher.

Each encrypted manifest node has a full security context (KeyNum,

Nonce, Mode). The AEAD decryption is independent for each manifest

so Manifest objects can be fetched and decrypted in any order. This

design also ensures that if a manifest tree points to the same

subtree repeatedly, such as for deduplication, the decryptions are

all idempotent.

To encrypt a Manifest, the publisher:

Removes any SecurityCtx or AuthTag from the Manifest.

Creates a SecurityCtx and adds it to the Manifest.

Treats the Manifest TLV through the end of the Node TLV Length

as unencrypted authenticated Header. That includes anything

from the start of the Manifest up to but not including the

start of the Node's body.

Treats the body of the Node to the end of the Manifest as

encrypted data.

Appends the AEAD AuthTag to the end of the Manifest, increasing

the Manifest's length

Changes the TLV type of the Node to EncryptedNode.

¶

¶

¶

¶

¶

¶

1. ¶

2. ¶

3.

¶

4.

¶

5.

¶

6. ¶

To decrypt a Manifest, the consumer:

Verifies that the KeyNum exists and the publisher is trusted

for that KeyNum.

Saves the AuthTag and removes it from the Manifest, decreasing

the Manifest length.

Changes the EncryptedNode type to Node.

Treats everything from the Manifest TLV through the end of the

Node Length as unencrypted authenticated Header. That is, all

bytes from the start of the Manifest up to but not including

the start of the Node's body.

Treats the body of the Node to the end of the Manifest as

encrypted data.

Verifies and decrypts the data using the key and saved AuthTag.

If the decryption fails, the consumer SHOULD notify the user

and stop further processing of the manifest.

3.8.2. RSA-OAEP Key Transport Mode

The RSA-OAEP mode uses RSA-OAEP (see RFC8017 Sec 7.1 [RFC8017] and

[RSAKEM]) to encrypt a symmetric key that is used to encrypt the

Manifest. We call this RSA key the Key Encryption Key (KEK) and each

group member has this private key. A separate key distribuiton

system is responsible for distributing the KEK. For our purposes, it

is reasonable to assume that the KEK private key is available at a

Locator and that group members can decrypt this private key.

The symmetric key MUST be one that is compatible with the AEAD Mode,

i.e. a 128-bit or 256-bit random number. Further, the symmetric key

MUST fit in the OAEP envelope (which will be true for normal-sized

keys).

Any group key protocol and system needed are outside the scope of

this document. We assume there is a Key Manager (KM) and a Publisher

(P) and a set of group members. Through some means, the Publisher

therefore has at its disposal:

A Content Encryption Key (CEK), i.e. the symmetric key.

The RSA-OAEP wrapped CEK.

The KeyId of the KEK used to wrap the CEK.

¶

1.

¶

2.

¶

3. ¶

4.

¶

5.

¶

6. ¶

7.

¶

¶

¶

¶

* ¶

* ¶

* ¶

The Locator of the KEK, which is shared under some group key

protocol.

This Manifest specification requires that if a group member fetches

the KEK key at Locator it can decrypt the WrappedKey and retrieve

the CEK.

In one example, a publisher could request a key for a group and the

Key Manager could securely communicate (CEK, Wapped_CEK, KeyId,

Locator) back to the publisher. The Key Manager is responsible for

publishing the Locator. In another example, the publisher could be a

group member and have a group private key in which case the

publisher can create their own key encryption key, publish it under

the Locator and proceed. The publisher generates CEK, Wrapped_CEK,

KeyId, and a Locator on its own.

To create the wrapped key using a Key Encryption Key:

Obtain the CEK in binary format (e.g. 32 bytes for 256 bits)

RSA encrypt the CEK using the KEK public key with OAEP padding,

following RFC8017 Sec 7.1 [RFC8017]. The encryption is not

signed because the root Manifest must have been signed by the

publisher already.

To decrypt the wrapped key using a Key Encryption Key:

RSA decrypt the WrappedKey using the KEK private key with OAEP

padding, following RFC8017 Sec 7.1 [RFC8017].

Verify the unwrapped key is a valid length for the AEADMode.

To encrypt a Manifest, the publisher:

Acquires the set of (CEK, Wrapped_CEK, KeyId, Locator).

Creates a SecurityCtx and adds it to the Manifest. The

SecurityCtx includes an AEADNonce and AEADMode, as per AEAD

mode.

Encrypts the Manifest as per AEAD Mode using the RSA-OAEP

SecurityCtx and CEK.

To decrypt a Manifest, the consumer:

Acquires the KEK from the Key Locator. If the consumer already

has a cached copy of the KeyId in memory, it may use that

cached key.

*

¶

¶

¶

¶

1. ¶

2.

¶

¶

1.

¶

2. ¶

¶

1. ¶

2.

¶

3.

¶

¶

1.

¶

SHOULD verify that it trusts the Manifest publisher to use the

provided key Locator.

Decrypts the WrappedKey to get the CEK. If the consumer has

already decrypted the same exact WrappedKey TLV block, it may

use that cached CEK.

Using the CEK, AEADNonce, and AEADMode, decrypt the Manifest as

per AEAD Mode, ignoring the KeyNum steps.

3.9. Protocol Encodings

3.9.1. CCNx Encoding

In CCNx, application data content objects use a PayloadType of

T_PAYLOADTYPE_DATA. In order to clearly distinguish FLIC Manifests

from application data, a different payload type is required.

Therefore this specification defines a new payload type of

T_PAYLOADTYPE_FLIC.

ManifestContentObject = TYPE LENGTH [Name] [ExpiryTime] PayloadType Payload

Name = TYPE LENGTH *OCTET ; As per RFC8569

ExpiryTime = TYPE LENGTH *OCTET ; As per RFC8569

PayloadType = TYPE LENGTH T_PAYLOADTYPE_FLIC ; Value TBD

Payload : TYPE LENGTH *OCTET ; the serialized Manifest object

Figure 5: CCNx Embedding Grammar

3.9.1.1. CCNx Hash Naming Strategy

The Hash Naming Strategy uses CCNx nameless content objects. This

means that only the Root Manifest should have a name embedded in the

Content object. All other are CCNx nameless objects. The Manifest

should provide a set of Locators that the client may use to form the

Interests.

It proceeds as follows:

The Root Manifest content object bound to a name assigned by the

publisher and signed by the publisher. It also may have a set of

Locators used to fetch the remainder of the manifest. The root

manifest has a single HashPointer that points to the Top

Manifest. It may also have cache control directives, such as

ExpiryTime.

The Root Manifest has an NsDef that specifies HashSchema. Its

GroupData uses that NsId. All internal and leaf manifests use the

same GroupData NsId. A Manifest Tree MAY omit the NsDef and NsId

elements and rely on the default being HashSchema.

2.

¶

3.

¶

4.

¶

¶

¶

¶

*

¶

*

¶

The Top Manifest is a nameless CCNx content object. It may have

cache control directies.

Internal and Leaf manifests are nameless CCNx content objects,

possibly with cache control directives.

The Data content objects are nameless CCNx content objects,

possibly with cache control directives.

To form an Interest for a direct or indirect pointer, use a Name

from one of the Locators and put the pointer HashValue into the

ContentObjectHashRestriction.

3.9.1.2. CCNx Single Prefix Strategy

The Single Prefix strategy uses a named Root manifest and then all

other data and sub-manifest objects use the same Name. They are

differentiated only by their hash.

It proceeds as follows:

The Root Manifest content object has a name used to fetch the

manifest. It is signed by the publisher. It has a single Locator

used to fetch the remainder of the manifest using the commong

Single Prefix name. It has a single HashPointer that points to

the Top Manifest. It may also have cache control directives, such

as ExpiryTime.

The Root Manifest has an NsDef that specifies PrefixSchema with

the Locator for the single prefix.

The Top Manifest has the name SinglePrefixName. It may have cache

control directies. Its GroupData elements must have an NsId that

references the NsDef.

An Internal or Leaf manifest has the name SinglePrefixName,

possibly with cache control directives. Its GroupData elements

must have an NsId that references the NsDef.

The Data content objects have the name SinglePrefixName, possibly

with cache control directives.

To form an Interest for a direct or indirect pointer, use

SinglePrefixName as the Name and put the pointer HashValue into

the ContentObjectHashRestriction.

3.9.1.3. CCNx Segmented Prefix Strategy

The Segmented Prefix schema uses a different name in all Content

Objects and distinguishes them via their ContentObjectHash. Note

*

¶

*

¶

*

¶

*

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

that in CCNx, using a SegmentedPrefixSchema means that only the Root

Manifest has a Locator for the Segmented Prefix (minus the segment

number).

Optional: Use AnnotatedPointers to indicate the segment number of

each hash pointer to avoid needing to infer the segment numbers.

It proceeds as follows:

The Root Manifest content object has a name used to fetch the

manifest. It is signed by the publisher. It has a set of Locators

used to fetch the remainder of the manifest. It has a single

HashPointer that points to the Top Manifest. It may also have

cache control directives, such as ExpiryTime.

The Root Manifest has an NsDef that specifies SegmentedPrefix and

the SegmentedPrefixSchema element specifies the

SegmentedPrefixName.

The publisher tracks the chunk number of each content object

within the NsId. Objects are be numbered in their traversal

order. Within each manifest, the name can be constructed from the

SegmentedPrefixName plus a Chunk name component.

The Top Manifest has the name SegmentedPrefixName plus chunk

number. It may have cache control directies. It's GroupData

elements must have an NsId that references the NsDef.

An Internal or Leaf manifest has the name SegmentedPrefixName

plus chunk number, possibly with cache control directives. Its

GroupData elements must have an NsId that references the NsDef.

The Data content objects have the name SegmentedPrefixName plus

chunk number, possibly with cache control directives.

To form an Interest for a direct or indirect pointer, use

SegmentedPrefixName plus chunk number as the Name and put the

pointer HashValue into the ContentObjectHashRestriction. A

consumer must track the chunk number in traversal order for each

SegmentedPrefixSchema NsId.

3.9.1.4. CCNx Hybrid Strategy

A manifest may use multiple schemas. For example, the application

payload in data content objects might use SegmentedPrefix while the

manifest content objects might use HashNaming.

The Root Manifest should specify an NsDef with a first NsId (say 1)

as the HashNaming schema and a second NsDef with a second NsId (say

2) as the SegmentedPrefix schema along with the SegmentedPrefixName.

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

Each manifest (Top, Internal, Leaf) uses two or more HashGroups,

where each HashGroup has only Direct (with the second NsId) or

Indirect (with the first NsId). The number of hash groups will

depend on how the publisher wishes to interleave direct and indirect

pointers.

Manifests and data objects derive their names according to the

application's naming schema.

3.9.2. NDN Encoding

In NDN, all Manifest Data objects use a ContentType of FLIC (1024),

while all application data content objects use a PayloadType of

Blob.

3.9.2.1. NDN Hash Naming

In NDN Hash Naming, a Data Object has a 0-length name. This means

that an Interest will only have an ImplicitDigest name component in

it. This method relies on using NDN Forwarding Hints.

It proceeds as follows:

The Root Manifest Data has a name used to fetch the manifest. It

is signed by the publisher. It has a set of Locators used to

fetch the remainder of the manifest. It has a single HashPointer

that points to the Top Manifest. It may also have cache control

directives.

The Root Manifest has an NsDef that specifies HashSchema. Its

GroupData uses that NsId. All internal and leaf manifests use the

same GroupData NsId. A Manifest Tree MAY omit the NsDef and NsId

elements and rely on the default being HashSchema.

The Top Manifest has a 0-length Name. It may have cache control

directies.

Internal and Leaf manifests has a 0-length Name, possibly with

cache control directives.

The application Data use a 0-length name, possibly with cache

control directives.

To form an Interest for a direct or indirect pointer, the name is

only the Implicit Digest name component derived from a pointer's

HashValue. The ForwardingHints come from the Locators. In NDN,

one may use one or more locators within a single Interest.

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

3.9.2.2. NDN Single Prefix

In Single Prefix, the Data name is a common prefix used between all

objects in that namespace, without a Segment or other counter. They

are distinguished via the Implicit Digest name component. The FLIC

Locators go in the ForwardingHints.

It proceeds as follows:

The Root Manifest Data object has a name used to fetch the

manifest. It is signed by the publisher. It has a set of Locators

used to fetch the remainder of the manifest. It has a single

HashPointer that points to the Top Manifest. It may also have

cache control directives.

The Root Manifest has an NsDef that specifies SinglePrefix and

the SinglePrefixSchema element specifies the SinglePrefixName.

The Top Manifest has the name SinglePrefixName. It may have cache

control directies. Its GroupData elements must have an NsId that

references the NsDef.

An Internal or Leaf manifest has the name SinglePrefixName,

possibly with cache control directives. Its GroupData elements

must have an NsId that references the NsDef.

The Data content objects have the name SinglePrefixName, possibly

with cache control directives.

To form an Interest for a direct or indirect pointer, use

SinglePrefixName as the Name and append the pointer's HashValue

into an ImplicitDigest name component. Set the ForwardingHints

from the FLIC locators.

3.9.2.3. NDN Segmented Prefix

In Segmented Prefix, the Data name is a common prefix plus a segment

number, so each manifest or application data object has a unique

full name before the implicit digest. This means the consumer must

maintain a counter for each SegmentedPrefix namespace.

Optional: Use AnnotatedPointers to indicate the segment number of

each hash pointer to avoid needing to infer the segment numbers.

It proceeds as follows:

The Root Manifest Data object has a name used to fetch the

manifest. It is signed by the publisher. It has a set of Locators

used to fetch the remainder of the manifest. It has a single

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

*

HashPointer that points to the Top Manifest. It may also have

cache control directives.

The Root Manifest has an NsDef that specifies SegmentedPrefix and

the SegmentedPrefixSchema element specifies the

SegmentedPrefixName.

The publisher tracks the segment number of each Data object

within a SegmentedPrefix NsId. Data is numbered in traversal

order. Within each manifest, the name is constructed from the

SegmentedPrefixName plus a Segment name component.

The Top Manifest has the name SegmentedPrefixName plus segment

number. It may have cache control directies. Its GroupData

elements must have an NsId that references the NsDef.

An Internal or Leaf manifest has the name SegmentedPrefixName

plus segment number, possibly with cache control directives. Its

GroupData elements must have an NsId that references the NsDef.

The Data content objects have the name SegmentedPrefixName plus

chunk number, possibly with cache control directives.

To form an Interest for a direct or indirect pointer, use

SegmentedPrefixName plus segment number as the Name and put the

pointer HashValue into the ImplicitDigest name component. A

consumer must track the segment number in traversal order for

each SegmentedPrefixSchema NsId.

3.9.2.4. NDN Hybrid Schema

A manifest may use multiple schemas. For example, the application

payload in data content objects might use SegmentedPrefix while the

manifest content objects might use HashNaming.

The Root Manifest should specify an NsDef with a first NsId (say 1)

as the HashNaming schema and a second NsDef with a second NsId (say

2) as the SegmentedPrefix schema along with the SegmentedPrefixName.

Each manifest (Top, Internal, Leaf) uses two or more HashGroups,

where eash HashGroup has only Direct (with the second NsId) or

Indirect (with the first NsId). The number of hash groups will

depend on how the publisher wishes to interleave direct and indirect

pointers.

Manifests and data objects derive their names according to the

application's naming schema.

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

3.10. Example Structures

3.10.1. Leaf-only data

Figure 6: Leaf-only manifest tree

3.10.2. Linear

Of special interest are "skewed trees" where a pointer to a manifest

may only appear as last pointer of (sub-) manifests. Such a tree

becomes a sequential list of manifests with a maximum of

datapointers per manifest packet. Beside the tree shape we also show

this data structure in form of packet content where D stands for a

data pointer and M is the hash of a manifest packet.

4. Experimenting with FLIC

FLIC is expected to enable a number of salient experiments in the

use of ICN protools by applications. These experiments will help not

only to inform the desirable structure of ICN applications but

reflect back to the features included in FLIC to evaluate their

usefulness to those applications. While many interesting design

aspects of FLIC remain to be discovered through experience, a number

of important questions to be answered through experimentation

include:

use for just files or other collections like directories

use for particular applications, like streaming media manifests

utility of pointer annotations to optimize retrieval

utility of the encryption options for use by repositories and

forwarders

need for application metadata in manifests

 Root

 |

 ______ M0 _____

 / | \

 M1 M2 M3

 / | \ / | \ / | \

D0 D1 D2 D3 D4 D5 D6 D7 D8

¶

Root -> M0 ----> M1 ----> ...

|->DDDD |->DDDD

¶

¶

* ¶

* ¶

* ¶

*

¶

* ¶

5. Usage Examples

5.1. Locating FLIC leaf and manifest nodes

The names of manifest and data objects are often missing or not

unique, unless using specific naming conventions. In this example,

we show how using manifest locators is used to generate Interests.

Take for example the figure below where the root manifest is named

by hash h0. It has nameless children with hashes with hashes h1 ...

hN.

Figure 7: Data Organization

After obtaining the manifest, the client fetches the contents. In

this first instance, the manifest does not provide any Locators data

structure, so the client must continue using the name it used for

the manifest.

Figure 8: Data Interests

Using the locator metadata entry, this behavior can be changed:

¶

Objects:

manifest(name=/a/b/c, ptr=h1, ptr=hN) - has hash h0

nameless(data1) - has hash h1

...

nameless(dataN) - has hash hN

Query for the manifest:

interest(name=/a/b/c, implicitDigest=h0)

¶

interest(name=/a/b/c, implicitDigest=h1)

...

interest(name=/a/b/c, implicitDigest=hN)

¶

Objects:

manifest(name=/a/b/c,

hashgroup(loc=/x/y/z, ptr=h1)

hashgroup(ptr=h2) - has hash h0

nameless(data1) - has hash h1

nameless(data2) - has hash h2

Queries:

interest(name=/a/b/c, implicitDigest=h0)

interest(name=/x/y/z, implicitDigest=h1)

interest(name=/a/b/c, implicitDigest=h2)

Figure 9: Using Locators

5.2. Seeking

Fast seeking (without having to sequentially fetch all content)

works by skipping over entries for which we know their size. The

following expression shows how to compute the byte offset of the

data pointed at by pointer P_i, call it offset_i. In this formula,

let P_i.size represent the Size value of the i-th pointer.

 offset_i = \sum_{k=1}^{i-1} > P_k.size.

With this offset, seeking is done as follows:

Input: seek_pos P, a FLIC manifest with a hash group having N entries

Output: pointer index i and byte offset o, or out-of-range error

Algorithm:

offset = 0

for i in 1..N do

if (P > offset + P_i.size)

return (i, P - offset)

offset += P_i.size

return out-of-range

Figure 10: Seeking Algorithm

Seeking in a BlockHashGroup is different since offsets can be

quickly computed. This is because the size of each pointer P_i

except the last is equal to the SizePerPtr value. For a

BlockHashGroup with N pointers, OverallByteCount D, and

SizePerPointer L, the size of P_N is equal to the following:

In a BlockHashGroup with k pointers, the size of P_k is equal to:

Using these, the seeking algorithm can be thus simplified to the

following:

¶

¶

¶

¶

D - ((N - 1) * L)¶

¶

D - L * (k - 1)¶

¶

Input: seek_pos P, a FLIC manifest with a hash group having

 OverallByteCount S and SizePerPointer L.

Output: pointer index i and byte offset o, or out-of-range error

Algo:

if (P > S)

 return out-of-range

i = floor(P / L)

if (i > N)

 return out-of-range # bad FLIC encoding

o = P mod L

return (i, o)

Figure 11: Seeking Algorithm

Note: In both cases, if the pointer at position i is a manifest

pointer, this algorithm has to be called once more, seeking to

seek_pos o inside that manifest.

5.3. Block-level de-duplication

Consider a huge file, e.g. an ISO image of a DVD or program in

binary be patched. In this case, all existing encoded ICN chunks can

remain in the repository while only the chunks for the patch itself

is added to a new manifest data structure, as is shown in the

diagram below. For example, the venti archival file system of Plan9

[venti] uses this technique.

Figure 12: De-duplication

5.4. Growing ICN collections

A log file, for example, grows over time. Instead of having to re-

FLIC the grown file it suffices to construct a new manifest with a

manifest pointer to the old root manifest plus the sequence of data

hash pointers for the new data (or additional sub-manifests if

necessary).

Note that this tree will not be skewed (anymore).

¶

¶

old_mfst - - > h1 --> oldData1 <-- h1 < - - new_mfst

 \ - > h2 --> oldData2 <-- h2 < - - /

 \ replace3 <-- h5 < - -/

 \- > h3 --> oldData3 /

 \ > h4 --> oldData4 <-- h4 < - /

¶

¶

Figure 13: Growing A Collection

5.5. Re-publishing a FLIC under a new name

There are several use cases for republishing a collection under a

new namespace, or having one collection exist under several

namespaces:

It can happen that a publisher's namespace is part of a service

provider's prefix. When switching provider, the publisher may

want to republish the old data under a new name.

A publishes wishes to distribute its content to several

repositories and would like a result to be delivered from the

repository for consumers who have good connectivity to that

repository. For example, the publisher /alpha wishes to place

content at /beta and /gamma, but routing only to /alpha would not

send a request to either /beta or /gamma. The operators of of /

beta and /gamma could create a named and signed version of the

root manifest with appropriate keys (or delegate that to /alpha)

so the results are always delivered by the corresponding

repository without having to change the bulk of the manifest

tree.

This can easily be achieved with a single nameless root manifest for

the large FLIC plus arbitrarily many per-name manifests (which are

signed by whomever wants to publish this data):

Figure 14: Relocating A Collection

Note that the hash computation (of h) only requires reading the

nameless root manifest, not the entire FLIC.

This example points out the problem of HashGroups having their own

locator metadata elements: A retriever would be urged to follow

these hints which are "hardcoded" deep inside the FLIC but might

have become outdated. We therefore recommend to name FLIC manifests

only at the highest level (where these names have no locator

old data < - - - mfst_old <-- h_old - - mfst_new

 /

new data1 <-- h_1 - - - - - - - - -/

new data2 /

... /

new dataN <-- h_N - - - - - - - -/

¶

*

¶

*

¶

¶

data < - nameless_mfst() <-- h < - mfst(/com/example/east/the/flic)

 < - mfst(/com/example/west/old/the/flic)

 < - mfst(/internet/archive/flic234)

¶

function). Child nodes in a FLIC manifest should not be named as

these names serve no purpose except retrieving a sub-tree's manifest

by name, if would be required.

6. IANA Considerations

IANA is requested to perform the actions in the following sub-

sections.

IANA should also note that FLIC uses the definitions of

AEAD_AES_128_GCM, AEAD_AES_128_CCM, AEAD_AES_256_GCM,

AEAD_AES_256_CCM from [RFC5116].

6.1. FLIC Payload Type

Register FLIC as a Payload Type in the CCNx Payload Types Registry

referring to the description in Section 3.9.1 as follows:

Type Name Reference

TBA T_PAYLOADTYPE_FLIC
Section 3.9.1 and Section 3.6.2.2.1 of

[RFC8609]

Table 1: FLIC CCNx Payload Type

6.2. FLIC Manifest Metadata and Annotation TLVs

Create the following registry to be titled FLIC Manifest Metadata

and Annotation TLVs Manifest Metadata is described in Section 3.4;

Pointer Annotations are described in Section 3.5. The registration

procedure is Specification Required. The Type value is 2 octets. The

range is 0x0000-0xFFFF. Allocate a value for the single

SizeAnnotation TLV.

Type Name Reference

TBA T_SIZE_ANNOTATION Size (Section 3.5)

Table 2: FLIC Manifest Metadata and

Annotation TLVs

7. Security Considerations

TODO Need a discussion on:

signing and hash chaining security. (Note: Did I cover this

adequately below?)

republishing under a new namespace. (Note: need help here - is

this to reinforce that you can re-publish application data by

creating a new root Manifest and signing that, requiring only one

signature to change?)

¶

¶

¶

¶

¶

¶

*

¶

*

¶

encryption mechanisms. (Note: did I cover this adequately below?)

encryption key distribution mechanisms.(Note: not sure what needs

to be said here)

discussion of privacy, leaking of linkability information - could

really use some help here.

Anything else?????.

7.1. Integrity and Origin Authentication of FLIC Manifests

A FLIC Manifest is used to describe how to form Interests to access

large CCNx or NDN application data. The Manifest is itself either an

individual content object, or a tree of content objects linked

together via the corresponding content hashes. The NDN and CCnx

protocol architectures directly provide both individual object

integrity (using cryptographically strong hashes) and data origin

authentication (using signatures). The protocol specifications,

[NDN] and CCNx [RFC8609] respectively, provide the protocol

machinery and keying to support strong integrity and authentication.

Therefore, FLIC utilizes the existing protocol specifications for

these functions, rather than providing its own. There are a few

subtle differences in the handling of signatures and keys in NDN and

CCNx worth recapitulating here:

NDN in general adds a signature to every individual data packet

rather than aggregating signatures via some object-level scheme.

When employing FLIC Manifests to multi-packet NDN objects, it is

expected that the individual packet signatures would be elided

and the signture on the Manifest used instead.

In contrast, CCNx is biased to have primitive objects or pieces

thereof be "nameless" in the sense they are identified only by

their hashes rather than each having a name directly bound to the

content through an individual signature. Therefore, CCNx depends

heavily on FLIC (or an alternative method) to provide the name

and the signed binding of the name to the content described in

the Manifest

A FLIC Manifest therefore gets integrity of its individual pieces

through the existing secure hashing procedures of the underlying

protocols. Origin authentication of the entire Manifest is achieved

through hash chaining and applying a signature only to the root

Manifest of a manifest tree. It is important to note that the Name

of the Manifest, which is what the signature is bound to, need not

bear any particular relationship to the names of the application

objects pointed to in the Manifest via Name Constructors. This has a

number of important benefits described in Section 3.3.

* ¶

*

¶

*

¶

¶

¶

*

¶

*

¶

¶

[RFC2119]

7.2. Confidentiality of Manifest Data

ICN protocol architectures like CCNx and NDN, while providing

integrity and origin authentication as described above, leaves

confidentiality issues entirely in the domain of the ICN

application. Therefore, since FLIC is an application-level construct

in both NDN and CCNx, it is incumbent on this specification for FLIC

to provide the desired confidentiality properties using encryption.

One could leave the specification of Manifest encryption entirely in

the hands of the individual application utilizing FLIC, but this

would be undesirable for a number of reasons:

The sensitivity of the information in a Manifest may be different

from the sensitivity of the application data it describes. In

some cases, it may not be necessary to encrypt manifests, or to

encrypt them with a different keying scheme from that used for

the application data

One of the major capabilities enabled by FLIC is to allow

repositories or forwarding caches to operate on Manifests (see in

particular Section 3.4). In order to allow such intermediaries to

interpret manifests without revealing the underlying application

data, separate encryption and keying is necessary

A strong design goal of FLIC is universality such that it can be

used transparently by many different ICN applications. This

argues that FLIC should have a set of common encryption and

keying capabilities that can be delegated to library code and not

have to be re-worked by each individual application (see

Section 2, Paragraph 11)

Therefore, this specification directly specifies two encryption

encapsulations and associated links to key management, as described

in Section 3.8. As more experience is gained with various use cases,

additional encryption capabilities may be needed and hence we expect

the encryption aspects of this specification to evolve over time.

7.3. Privacy of names and linkability of access patterns

What to say here, if anything?

8. References

8.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

¶

*

¶

*

¶

*

¶

¶

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119

[RFC3310]

[RFC5116]

[RFC5288]

[RFC5990]

[RFC6655]

[RFC8017]

[RFC8569]

[RFC8609]

[AESGCM]

Niemi, A., Arkko, J., and V. Torvinen, "Hypertext

Transfer Protocol (HTTP) Digest Authentication Using

Authentication and Key Agreement (AKA)", RFC 3310, DOI

10.17487/RFC3310, September 2002, <https://www.rfc-

editor.org/info/rfc3310>.

McGrew, D., "An Interface and Algorithms for

Authenticated Encryption", RFC 5116, DOI 10.17487/

RFC5116, January 2008, <https://www.rfc-editor.org/info/

rfc5116>.

Salowey, J., Choudhury, A., and D. McGrew, "AES Galois

Counter Mode (GCM) Cipher Suites for TLS", RFC 5288, DOI

10.17487/RFC5288, August 2008, <https://www.rfc-

editor.org/info/rfc5288>.

Randall, J., Kaliski, B., Brainard, J., and S. Turner,

"Use of the RSA-KEM Key Transport Algorithm in the

Cryptographic Message Syntax (CMS)", RFC 5990, DOI

10.17487/RFC5990, September 2010, <https://www.rfc-

editor.org/info/rfc5990>.

McGrew, D. and D. Bailey, "AES-CCM Cipher Suites for

Transport Layer Security (TLS)", RFC 6655, DOI 10.17487/

RFC6655, July 2012, <https://www.rfc-editor.org/info/

rfc6655>.

Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A.

Rusch, "PKCS #1: RSA Cryptography Specifications Version

2.2", RFC 8017, DOI 10.17487/RFC8017, November 2016,

<https://www.rfc-editor.org/info/rfc8017>.

Mosko, M., Solis, I., and C. Wood, "Content-Centric

Networking (CCNx) Semantics", RFC 8569, DOI 10.17487/

RFC8569, July 2019, <https://www.rfc-editor.org/info/

rfc8569>.

Mosko, M., Solis, I., and C. Wood, "Content-Centric

Networking (CCNx) Messages in TLV Format", RFC 8609, DOI

10.17487/RFC8609, July 2019, <https://www.rfc-editor.org/

info/rfc8609>.

8.2. Informative References

Dworkin, M., "Recommendation for Block Cipher Modes of

Operation: Galois/Counter Mode (GCM) and GMAC", National

Institute of Standards and Technology SP 800-38D, 2007,

<https://doi.org/10.6028/NIST.SP.800-38D>.

https://www.rfc-editor.org/info/rfc3310
https://www.rfc-editor.org/info/rfc3310
https://www.rfc-editor.org/info/rfc5116
https://www.rfc-editor.org/info/rfc5116
https://www.rfc-editor.org/info/rfc5288
https://www.rfc-editor.org/info/rfc5288
https://www.rfc-editor.org/info/rfc5990
https://www.rfc-editor.org/info/rfc5990
https://www.rfc-editor.org/info/rfc6655
https://www.rfc-editor.org/info/rfc6655
https://www.rfc-editor.org/info/rfc8017
https://www.rfc-editor.org/info/rfc8569
https://www.rfc-editor.org/info/rfc8569
https://www.rfc-editor.org/info/rfc8609
https://www.rfc-editor.org/info/rfc8609
https://doi.org/10.6028/NIST.SP.800-38D

[FLICImplementation]

[I-D.wood-icnrg-ccnxkeyexchange]

[NDN]

[NDNTLV]

[ProjectOrigin]

[repository]

[RFC7927]

[RSAKEM]

[SHS]

[venti]

Mosko, M., "FLIC Implementation in Python",

various, <https://github.com/mmosko/ccnpy>.

Mosko, M., Uzun, E., and A.

Christopher Wood, "CCNx Key Exchange Protocol Version

1.0", Work in Progress, Internet-Draft, draft-wood-icnrg-

ccnxkeyexchange-02, 6 July 2017, <https://www.ietf.org/

archive/id/draft-wood-icnrg-ccnxkeyexchange-02.txt>.

"Named Data Networking", various, <https://named-

data.net/project/execsummary/>.

"NDN Packet Format Specification.", 2016, <http://named-

data.net/doc/ndn-tlv/>.

Mosko, M., "Peer-to-Peer Sharing with CCNx 1.0",

2014, <https://github.com/PARC/CCNxReports/blob/master/

SelectedTopics/p2pshare.pdf>.

"Repo Protocol Specification", Various, <https://

redmine.named-data.net/projects/repo-ng/wiki/

Repo_Protocol_Specification>.

Kutscher, D., Ed., Eum, S., Pentikousis, K., Psaras, I.,

Corujo, D., Saucez, D., Schmidt, T., and M. Waehlisch,

"Information-Centric Networking (ICN) Research

Challenges", RFC 7927, DOI 10.17487/RFC7927, July 2016,

<https://www.rfc-editor.org/info/rfc7927>.

Barker, E., Chen, L., Roginsky, A., Vassilev, A., Davis,

R., and S. Simon, "Recommendation for Pair-Wise Key-

Establishment Using Integer Factorization Cryptography",

National Institute of Standards and Technology SP 800-56B

Rev. 2, 2019, <https://doi.org/10.6028/NIST.SP.

800-56Br2>.

Technology, N. I. O. S. A., "Secure Hash Standard, United

States of American, National Institute of Science and

Technology, Federal Information Processing Standard

(FIPS) 180-4", National Institute of Standards and

Technology SP 180-4, 2012, <https://csrc.nist.gov/

publications/fips/fips180-4/ fips180-4_final.pdf>.

"Venti: a new approach to archival storage", Bell Labs

Document Archive /sts/doc, 2002, <http://doc.cat-v.org/

plan_9/4th_edition/papers/venti/>.

https://github.com/mmosko/ccnpy
https://www.ietf.org/archive/id/draft-wood-icnrg-ccnxkeyexchange-02.txt
https://www.ietf.org/archive/id/draft-wood-icnrg-ccnxkeyexchange-02.txt
https://named-data.net/project/execsummary/
https://named-data.net/project/execsummary/
http://named-data.net/doc/ndn-tlv/
http://named-data.net/doc/ndn-tlv/
https://github.com/PARC/CCNxReports/blob/master/SelectedTopics/p2pshare.pdf
https://github.com/PARC/CCNxReports/blob/master/SelectedTopics/p2pshare.pdf
https://redmine.named-data.net/projects/repo-ng/wiki/Repo_Protocol_Specification
https://redmine.named-data.net/projects/repo-ng/wiki/Repo_Protocol_Specification
https://redmine.named-data.net/projects/repo-ng/wiki/Repo_Protocol_Specification
https://www.rfc-editor.org/info/rfc7927
https://doi.org/10.6028/NIST.SP.800-56Br2
https://doi.org/10.6028/NIST.SP.800-56Br2
https://csrc.nist.gov/publications/fips/fips180-4/%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20fips180-4_final.pdf
https://csrc.nist.gov/publications/fips/fips180-4/%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20fips180-4_final.pdf
http://doc.cat-v.org/plan_9/4th_edition/papers/venti/
http://doc.cat-v.org/plan_9/4th_edition/papers/venti/

Appendix A. Building Trees

This appendix describes one method to build trees. It constructs a

pre-order tree in a single pass of the application data, going from

the tail to the beginning. This allows us to work up the right side

of the tree in a single pass, then work down each left branch until

we exhaust the data. Using the reverse-order traversal, we create

the right-most-child manifest, then its parent, then the indirect

pointers of that parent, then the parent's direct pointers,then the

parent of the parent (repeating). This process uses recursion, as it

is the clearest way to show the code. A more optimized approach

could do it in a true single pass.

Because we're building from the bottom up, we use the term 'level'

to be the distance from the right-most child up. Level 0 is the

bottom-most level of the tree, such as where node 7 is:

The Python-like pseudocode build_tree(data, n, k, m) algorithm

creates a tree of n data objects. The data[] array is an array of

Content Objects that hold application payload; the application data

has already been packetized into n Content Object packets.An

interior manifest node has k direct pointers and m indirect

pointers.

 build_tree(data[0..n-1], n, k, m)

 # data is an array of Content Objects (Data in NDN) with application payload.

 # n is the number of data items

 # k is the number of direct pointers per internal node

 # m is the number of indirect pointers per internal node

 segment = namedtuple('Segment', 'head tail')(0, n)

 level = 0

 # This bootstraps the process by creating the right most child manifest

 # A leaf manifest has no indirect pointers, so k+m are direct pointers

 root = leaf_manifest(data, segment, k + m)

 # Keep building subtrees until we're out of direct pointers

 while not segment.empty():

 level += 1

 root = bottom_up_preorder(data, segment, level, k, m, root)

 return root

¶

¶

 1

 2 3

4 5 6 7

preorder: 1 2 4 5 3 6 7

reverse: 7 6 3 5 4 2 1

¶

¶

 bottom_up_preorder(data, segment, level, k, m, right_most_child=None)

 manifest = None

 if level == 0:

 assert right_most_child is None

 # build a leaf manifest with only direct pointers

 manifest = leaf_manifest(data, segment, k + m)

 else:

 # If the number of remaining direct pointers will fit

 # in a leaf node, make one of those. Otherwise, we need to be

 # an interior node

 if right_most_child is None and segment.length() <= k + m:

 manifest = leaf_manifest(data, segment, k+m)

 else:

 manifest = interior_manifest(data, segment, level, k, m, right_most_child)

 return manifest

 leaf_manifest(data, segment, count)

 # At most count items, but never go before the head

 start = max(segment.head(), segment.tail() - count)

 manifest = Manifest(data[start:segment.tail])

 segment.tail -= segment.tail() - start

 return manifest

 interior_manifest(data, segment, level, k, m, right_most_child)

 children = []

 if right_most_child is not None:

 children.append(right_most_child)

 interior_indirect(data, segment, level, k, m, children)

 interior_direct(data, segment, level, k, m, children)

 manifest = Manifest(children)

 return manifest, tail

¶

¶

¶

¶

 interior_indirect(data, segment, level, k, m, children)

 # Reserve space at the head of the segment for this node's

 # direct pointers before descending to children. We want

 # the top of the tree packed.

 reserve_count = min(k, segment.tail - segment.head)

 segment.head += reserve_count

 while len(children) < m and not segment.head == segment.tail:

 child = bottom_up_preorder(data, segment, level - 1, k, m)

 # prepend

 children.insert(0, child)

 # Pull back our reservation and put those pointers in our direct children

 segment.head -= reserve_count

 interior_direct(data, segment, level, k, m, children)

 while len(children) < k+m and not segment.head == segment.tail:

 pointer = data[segment.tail() - 1]

 children.insert(0, pointer)

 segment.tail -= 1

Authors' Addresses

Christian Tschudin

University of Basel

Email: christian.tschudin@unibas.ch

Christopher A. Wood

Cloudflare

Email: caw@heapingbits.net

Marc Mosko

PARC, Inc.

Email: marc.mosko@parc.com

David Oran (editor)

Network Systems Research & Design

Email: daveoran@orandom.net

¶

¶

mailto:christian.tschudin@unibas.ch
mailto:caw@heapingbits.net
mailto:marc.mosko@parc.com
mailto:daveoran@orandom.net

	File-Like ICN Collections (FLIC)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. FLIC as an ICN experimental tool
	1.2. Requirements Language

	2. Design Overview
	3. FLIC Structure
	3.1. Terminology
	3.2. Locators
	3.3. Name Constructors
	3.4. Manifest Metadata
	3.5. Pointer Annotations
	3.6. Manifest Grammar (ABNF)
	3.7. Manifest Trees
	3.7.1. Traversal

	3.8. Manifest Encryption Modes
	3.8.1. AEAD Mode
	3.8.2. RSA-OAEP Key Transport Mode

	3.9. Protocol Encodings
	3.9.1. CCNx Encoding
	3.9.1.1. CCNx Hash Naming Strategy
	3.9.1.2. CCNx Single Prefix Strategy
	3.9.1.3. CCNx Segmented Prefix Strategy
	3.9.1.4. CCNx Hybrid Strategy

	3.9.2. NDN Encoding
	3.9.2.1. NDN Hash Naming
	3.9.2.2. NDN Single Prefix
	3.9.2.3. NDN Segmented Prefix
	3.9.2.4. NDN Hybrid Schema

	3.10. Example Structures
	3.10.1. Leaf-only data
	3.10.2. Linear

	4. Experimenting with FLIC
	5. Usage Examples
	5.1. Locating FLIC leaf and manifest nodes
	5.2. Seeking
	5.3. Block-level de-duplication
	5.4. Growing ICN collections
	5.5. Re-publishing a FLIC under a new name

	6. IANA Considerations
	6.1. FLIC Payload Type
	6.2. FLIC Manifest Metadata and Annotation TLVs

	7. Security Considerations
	7.1. Integrity and Origin Authentication of FLIC Manifests
	7.2. Confidentiality of Manifest Data
	7.3. Privacy of names and linkability of access patterns

	8. References
	8.1. Normative References
	8.2. Informative References

	Appendix A. Building Trees
	Authors' Addresses

