INTERNET-DRAFT Sam X. Sun
draft-irtf-idrm-handle-system-def-01.txt Sean Reilly
Larry Lannom
CNRI
May 2001

Handle System Namespace and Service Definition

<draft-irtf-idrm-handle-system-def-01.txt>

Status of this Memo

This document is an Internet-Draft and is in full conformance with all
provisions of Section 10 of RFC2026. Internet-Drafts are working
documents of the Internet Engineering Task Force (IETF), its areas, and
its working groups. Note that other groups may also distribute working
documents as Internet Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [KEYWORDS].

Abstract

The Handle System is a general-purpose global name service that allows
secured name resolution and administration over the public Internet.
The Handle System manages handles, which are unique names for digital
objects and other Internet resources. This document provides a detailed
description of the Handle System namespace, data and service model, as
well as its operation and authentication protocol. It assumes that
readers are familiar with the basic concepts of the Handle System as
introduced in the overview document.

Table of Contents

Introduction
Handle System Namespace
Handle System Data Model

(W N =

https://datatracker.ietf.org/doc/html/draft-irtf-idrm-handle-system-def-01.txt
https://datatracker.ietf.org/doc/html/draft-irtf-idrm-handle-system-def-01.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc2119

3.1 Handle Value Set

3.2 Pre-defined Handle Data Types

3.2.1 Handle Administrator: HS_ADMIN
3.2.2 Service Site Information: HS_SITE
3.2.3 Service Handle: HS_SERV

3.2.4 Handle Alias: HS_ALIAS

3.2.5 Primary Site: HS_PRIMARY

3.2.6. Handle Value List: HS_VLIST

4. Handle System Service Model

4.1. Handle System Service Components
4.1.1. Global Handle Registry (GHR)

4.1.2. Local Handle Service (LHS)

4.2 Handle System Middle-Ware Components
4.2.1. Handle System Caching Service
4.2.2. Handle System Proxy Servers

4.3 Handle System Client Components

5. Handle System Operation Model

5.1 Handle System Service Request and Response
5.2 Handle System Authentication Protocol
6. Security Consideration

7. Acknowledgement

8. Authors' Address

9. References

1. Introduction

The Handle System(r) manages handles as globally unique names for
Internet resources. It provides a general-purpose global name service
that allows handles to be resolved and administrated securely over the
Internet. The Handle System categorizes its service into two
categories, that is, the handle resolution service and the handle
administration service. Clients use handle resolution service to
resolve handles into their values. The handle administration service
deals with client requests to manage these handles, including adding
and deleting handles, or updating their values. It also deals with
authority administration via naming authority handles. The document
"Handle System Overview" [1] provides an architectural overview of the
Handle System, as well as its relationship to other Internet services
such as DNS [2,3] and LDAP[4]. This document provides a detailed
description of the Handle System namespace, data and service model, and
operations. It assumes that readers are familiar with the basic
concepts of the Handle System as introduced in the overview document.

The namespace definition specifies the handle syntax and its semantic
structure. The data model defines the data structure used by the handle
system protocol, and pre-defined data types for carrying out the handle
service. The service model provides a definition of various components
of the Handle System, and explains how they work together over the
Internet. Finally, the handle system operation model describes its
service operation in terms of messages transmitted between client and

server, as well as client authentication using the handle system
authentication protocol.

2. Handle System Namespace

Handles are character strings that may consist of a wide range of
characters. Every handle in the Handle System consists of two parts:
its naming authority, followed by a unique local name under the naming
authority. The naming authority and the local name are separated by the
ASCII character "/" (octet Ox2F). The following table provides the
handle syntax definition in ABNF [5] notation:

<Handle> = <NamingAuthority> "/" <LocalName>
<NamingAuthority> = *(<NamingAuthority> ".") <NAsegment>
<NAsegment> = 1*(%x00-2D / %x30-3F / %x41-FF)

; any octets that map to UTF-8 encoded

; Unicode 2.0 characters except

; octets 'Ox2E' and 'Ox2F' (which

; correspond to the ASCII characters '.',
; and '/').

<LocalName> = *(%x00-FF)
; any octets that map to UTF-8 encoded
; Unicode 2.0 characters

Table 2.1 Handle syntax definition

As shown in Table 2.1, both <NamingAuthority> and <LocalName> are UTF-8
[6] encoded character strings. The handle system protocol mandates UTF-
8 encoding for handles transferred over the wire. The <LocalName> may
consist of any printable characters from the Unicode 2.0 standard [7].
The <NamingAuthority> may use any printable characters from the Unicode
2.0 standard except the ASCII character '/' (0x2F), which is reserved
to separate the <NamingAuthority> from the <LocalName>. A
<NamingAuthority> may consist of multiple non-empty <NAsegment>s, each
of which separated by the ASCII character '.' (octet Ox2E).

Naming authorities are defined in a hierarchical fashion resembling a
tree structure. Each node and leaf of the tree are given a label that
corresponds to a naming authority segment (<NAsegment>). The parent
node represents the parent naming authority. Naming authorities are
constructed left to right, concatenating the labels from the root of
the tree to the node that represents the naming authority. Each label
(or its <NAsegment>) is separated by the character '.' (octet Ox2E).
For example, the naming authority for the Digital Object Identifier
(DOI) project is "10". It is a root-level naming authority as it has
no parent naming authority for itself. It can, however, have many child

naming authorities, e.g., "10.1045" which is used as a naming authority
for D-Lib Magazine.

By default, handles are case sensitive. However, a handle service,
global or local, may implement its namespace so that ASCII characters
under the namespace are treated as case insensitive. For example, the
global handle service, formally known as the Global Handle Registry
(GHR), is implemented such that ASCII characters are treated as case
insensitive. Since GHR manages every handle system naming authority
handle, ASCII characters in all naming authorities are treated as case
insensitive.

3. Handle System Data Model

The Handle System provides a name to value binding service so that a
handle can be used as a reference to any Internet resource. Each handle
may have a set of values assigned to it. The Handle System maintains
the value set of each handle and will return it in response to the
handle resolution request. The handle system data model defines the
conceptual data structure for these values. The data model used by the
protocol may not correspond to the physical data model used for storage
in any specific implementation. Rather, it is the data model followed
by the handle system protocol as specified in the "Handle System
Protocol Specification" [8].

3.1. Handle Value Set

Each handle may have a set of values assigned to it. Each value has a
unique index number that distinguishes it from the other values of the
set. Each value also has a specific data type that defines the syntax
and semantics of its data, and each value has associated administrative
information such as TTL and permissions. Each of these complex handle
value records, which are also referred to simply as handle values, is
bound to a given handle and any given handle can be bound with one or
more handle values. Figure 3.1 shows the handle "10.1045/may99-payette"
with a set of three handle values assigned to it, one of which (index
number 1) is shown in detail. (Note that the encoding of the length for
each field is not shown in Figure 3.1.)

Handle "10.1045/may99-payette"

<index>: 1

I (A
I (A
| <type>: URL [1]
| <data>: http://www.dlib.org/dlib. .. |]]
| <TTL>: {Relative: 24 hours} | 1 |
| <permission>: public-read, authorized-write | |]
| <timestamp>: 927314334000 | |]
| <reference>: {empty} | |-
I I

Figure 3.1. Handle "10.1045/may99-payette" and its set of values.

The value record whose index is 1 has a URL data type. The URL data
as specified in the <data> field is
"http://www.dlib.org/dlib/may99/payette/05payette.html". The TTL (time
to live) entry suggests that the value record should be cached no more
than 24 hours before the source of the information is consulted again.
The <permission> field grants anyone permission to read, but only the
administrator may modify (or delete) the value record. The <reference>
field is empty. It could contain a list of references to other handle
values in order to provide additional credentials for this value
record.

Thus, a handle value may be thought of as a record that consists of a
group of fields, e.g., the <index> field, the <type> field, and so on.
Each of these fields is defined below:

<index>
An unsigned 32-bit integer that uniquely identifies the value from the
value set for that handle.

<type>

A UTF8-string that identifies the data type for the value record. Note
that throughout this document, a UTF8-string is defined as a data
structure that consists of a 4-byte unsigned integer followed by an UTF-8
encoded character string. The integer specifies the number of octets in
the character string. The <type> field identifies the data type that
defines the syntax and semantics for data in the next <data> field. The
data type should be registered with the Handle System to avoid

potential conflicts. The Handle System has a reserved naming authority
"O.TYPE" for registered data types. For example, "URL" (as shown in Figure
3.1) is a registered data type. It is registered as the handle "O.TYPE/URL".
The handle may have a string value (e.g., referening to RFC1738 [9]) that
explains the syntax and semantics of the data type.

<data>

A sequence of octets (preceded by its length in a 4-byte unsigned

integer) that describes the resource identified by the handle. The
syntax and semantics of these octets are identified by the <type>

http://www.dlib.org/dlib
https://datatracker.ietf.org/doc/html/rfc1738

field.

<permission>

An eight-bit bit mask that defines the access control of the value
record. Access control is defined in terms of read or write permission.
Read permission is categorized as public-read, authorized-read, or no-
read. Write access is similarly categorized as public-write,
authorized-write, or no-write. Public-read (or public-write)
permission grants read (or write) access to any user. Authorized-read
(or authorized-write) limits read (or write) access to handle
administrators only. A handle value with no-read permission cannot
leave the server and so may be used, for example, to store secret keys
for authentication. The no-write permission makes the value immutable
and prevents it from being deleted (via the protocol). By default, any
handle value allows read access without authentication (i.e., public-
read), but requires authentication for write access (i.e., authorized-
write). The administrator for a given handle must specify the
permission for each handle value. Handle servers must check permissions
before fulfilling any client request.

<TTL>

An octet followed by a 4-byte integer that specifies the Time-To-Live
of the value record. The TTL describes how long the value record can be
cached before the source of the information should again be consulted.
A zero value for a TTL indicates that the value record should only be
used for the transaction in progress, and should not be cached. If the
TTL field is empty, a 24-hour default value is assumed. Any non-zero
TTL is defined in terms of a TTL type (specified in the first octet),
followed by the TTL value as a 32-bit unsigned integer. The TTL type
indicates whether the TTL value is absolute or relative. The absolute
TTL value defines the time to live in terms of seconds since 00:00:00
UTC, January 1st 1970. A relative TTL specifies the time to live in
terms of the number of seconds elapsed since the value was obtained by
the client from the Handle System.

<timestamp>

An 8-byte (long) integer that records the last time the value was
updated at the primary server that manages the handle value. The field
contains elapsed time since 00:00:00 UTC, January 1970 in milliseconds.
The choice of milliseconds is to avoid potential collision when
updating the value.

<reference>

A 4-byte integer followed by a list of references to other handle
values. The integer specifies the number of references in the list.
Each reference in the list refers to another handle value in terms of a
UTF8-string and a 4-byte integer (where the UTF8-string is the handle
name and the integer is the value index). References are generally used
to add credentials to the current handle value. For example, a handle
value may make itself more trust-worthy by providing a reference to a
digital signature signed by a commonly trusted party.

By default, for any handle resolution request, the Handle System
returns all the handle values with public-read permission. It is
possible for a client to ask for a subset of those values with specific
types (e.g. all URLs assigned to the handle). The client may also ask
for a specific handle value based on the value index.

Each handle value may be uniquely referenced by the combination of the
handle and the value index. Care must be taken when changing the value
index, as it may break an existing reference to the handle value. For
example, suppose handle X/Y has a value whose index is 1. That value
may be referred to as X/Y:1. If the handle administrator changes the
value index from 1 to 2, the value reference X/Y:1 will become
obsolete, and the value will have to be referred to as X/Y:2.

Value records assigned to any handle may or may not have continuous
index numbers. Nor can it be assumed that the index will start with @
or 1. A handle administrator may assign values with any index as long
as each index is unique within the value set.

A handle value may be "privatized" or "disabled" by setting its
<permission> field as "authorized-read". This limits read-access to the
handle administrator. The "privatized" value can then be used to keep
any historical data (on behalf of the handle administrator) without
making it public. This approach may also be used to keep any obsolete
handle or naming authority from being reused accidentally.

3.2. Pre-defined Handle Data Types

Every handle value must have a data type specified in its <type> field.
The Handle System provides a type registration service that allows
organizations to register new data types for their applications. Data
types are registered as handles under the naming authority "O.TYPE". For
example, the handle "O.TYPE/URL" (uniquely) identifies the URL data type
used by the Handle System. The associated values then describe, or
point to descriptions, of the data type syntax and semantics, e.g.,
values associated with "O.TYPE/URL" could point to the RFCs which define
URL. The Handle System pre-defines a set of data types to carry out the
service. For example, HS_ADMIN is a pre-defined data type used to
identify handle administrators or administrator groups. HS_SITE is a
pre-defined data type used to describe the service interface of any
handle system service components. The following sections describe the
pre-defined data types used by the Handle System.

3.2.1. Handle Administrator: HS_ADMIN

Each handle has one or more administrators. Any administrative
operation (e.g., add, delete or modify handle values) can only be
performed by its authorized handle administrator(s). Handle
administrators are defined by HS_ADMIN values. Every handle must have

at least one HS_ ADMIN value. Handles with more than one administrator
will have multiple HS_ADMIN values. HS_ADMIN values are used by the
Handle System to authenticate any client as the handle administrator
before fulfilling any administration requests.

Naming authorities, as described above, are themselves registered as
handles under the pre-defined and reserved naming authority "O.NA". These
handles are referred to as naming authority handles. Administrators for
any naming authority are so defined by being specified as the
administrators of the corresponding naming authority handle. For

example, "O0.NA/10" is the naming authority handle for the naming authority
"10". Hence any administrator for the naming authority handle "©.NA/10"
becomes the administrator for the naming authority "10". Naming

authority administrators are the only ones who can create handles or
sub-naming authorities under the naming authority. A sub-naming

authority may define their own administrators to create handles and
further levels of sub-naming authorities. Thus the naming authority
"10.1045" may have a totally separate group of administrators from its
parent naming authority "10".

A handle value of type HS_ADMIN is a handle value whose <type> field is
HS_ADMIN and whose <data> field consists of the following entries:

<AdminRef>

A reference to a handle value, the reference consisting of the handle
name (a UTF8-string) followed by a 4-byte integer providing the index
of the handle value.

<AdminPermission>
A 16-bit bit-mask that defines the permissions granted to the
administrator.

An <AdminRef> entry can provide a reference to another handle value
that may be used to authenticate the administrator. That referenced
handle value may contain the secret key or the public key (or its X.509
certificate [10]) used by the administrator. Alternatively, that
referenced value may contain a list of references to yet other handle
values, each of which eventually contains the secret key or the public
key (or its X.509 certificate) used by the administrator. For example,
the <AdminRef> entry may refer to a handle value whose <type> field is
DSS_WITH_DES_CBC_SHA and whose <data> field contains a DES secret
key[11], to be used in the Cipher Block Chaining (CBC) mode of
operation [12, 13]. That handle value can then be used by the handle
server to authenticate the client via the handle system authentication
protocol, which is explained in section 5.2.

A single handle may contain both the HS_Admin value and the secret or
public key value referenced by the <AdminRef> piece of that same
HS_Admin value. That is, a handle may hold its own key(s) as well as
its own administrator(s). Alternatively, and perhaps more commonly, the

<AdminRef> entry may reference a different handle that contains the
secret or public key used by the administrator. This allows a single
key to be referenced from the administrative records of many handles.
In either case, the handle value containing the secret key should be
protected with no-read permission to prevent it from being exposed.

The handle value referred to by the <AdminRef> entry may be of type
HS_VLIST, the <data> field of which contains a list of references to
other handle values. An HS_VLIST value defines an administrator group
in which each reference is a member of the group. Each reference is
defined in terms of a <handle>:<index> pair. An administrator group may
also contain other administrator groups as its members. This allows
administrator groups to be defined in a hierarchical fashion. Care must
be taken, however, to avoid cyclic definition of administrators or
administrator groups. Multiple levels of administrator groups should be
avoided due to their lack of efficiency, but will not be signaled as
an error. Client software should be prepared to detect any potential
cyclic definition of administrators or <AdminRef> entries that point to
non-existent handle values and report the error back to the user.

A handle can have multiple HS_ADMIN values, each of which defines a
separate handle administrator. Different administrators can play
different roles or be granted different permissions. For example, the
naming authority handle "O@.NA /10" may have two administrators, one of
which may only have permission to create new handles under the naming
authority, while the other may have permission to create new sub-naming
authorities (e.g. "10.1045"). The permission types are as follows:

Add_NA
This permission allows the naming authority administrator to create
new sub-naming authorities.

Delete_ NA
This permission allows naming authority administrator to delete an
existing sub-naming authority.

Add_Handle
This permission allows naming authority administrator to create new
handles under the given naming authority.

Delete_Handle
This permission allows naming authority administrator to delete
handles under the given naming authority.

Add_Value

This permission allows handle administrator to add handle values other
than HS_ADMIN values. HS_ADMIN values are used to define handle
administrators and are managed by a different set of permissions.

Delete_Value
This permission allows handle administrator to delete any handle

values other than HS_ADMIN values.

Modify_Value
This permission allows handle administrator to modify any handle
values other than HS_ADMIN values.

Add_Admin
This permission allows handle administrator to add new administrators,
i.e., HS_ADMIN values.

Delete_Admin
This permission allows handle administrator to delete handle
administrators, i.e., HS_ADMIN values.

Modify_Admin
This permission allows handle administrator to modify handle
administrator in terms of HS_ADMIN values.

LIST_Handle
This permission allows naming authority administrator to list
handles under the naming authority.

LIST_NA
This permission allows naming authority administrator to list
sub-naming authorities under the naming authority.

Authorized_Read

This permission grants handle administrator read-access to all those
handle values with "auth-read" permission. Adminitrator without this
permission will not have access to handle values that require
authentication for read access.

Administrator permissions are encoded in the <AdminPermission> part of
the <data> field of any HS_ADMIN value. Each permission is encoded as a
bit flag. The permission is granted if the flag is set to 1, otherwise
it is set to O.

Figure 3.2.1 shows an example of HS_ADMIN value that defines an
administrator for the naming authority handle "0.NA/10".

Add_Handle, Delete_Handle,
Add_Vvalue, Delete_Value, Modify_Value,

I |
| <index>: 2 |

| <type>: HS_ADMIN |
| <data>: |

| <AdminRef>: "0.NA/10": 3 | |
| <AdminPermission>: Add_NA, Delete_NA, | |
| |
I |

Authorized_Read, List_Handle, List_NA

<TTL>: 24 hours
<permission>: read by all, write by administrator
<reference>: {Empty} -

Figure 3.2.1. Administrator for the naming authority handle "©@.NA/10"

As shown in figure 3.2.1, a naming authority administrator for "10" is
identified by an HS_ADMIN value assigned to the naming authority handle
"0.NA/10". This administrator may be authenticated based on the handle
value "0.NA/10:3", which is another value assigned to this same naming
authority handle. This administrator is granted permission to add,
delete, or modify sub-naming authorities under "10", as well as add or
delete handles directly under the naming authority "10". This
administrator may also add, delete, or modify any values assigned to
the naming authority handle except for HS_ADMIN values, thus preventing
this administrator from adding, deleting, or modifying any other
administrators for the naming authority.

HS_ADMIN values are used by handle servers to authenticate clients as
handle administrators before fulfilling any administrative requests.
The server authenticates a client as the administrator by testing
whether the client has possession of the secret key (or the private
key) as referenced to by the <AdminRef> entry. The authentication is
carried out according to the handle system authentication protocol, as
specified later in this document.

HS_ADMIN values may require authentication for read access in order to
limit public exposure of the data. Alternatively, the handle value
that contains the secret key (as referenced to by the <AdminRef> entry)
may have no-read permission set to prevent the key from leaving the
server and so exposed during transmission.

3.2.2. Service Site Information: HS_SITE

The Handle System consists of a single distributed global handle
service, also known as the Global Handle Registry (GHR), along with
many local handle services (LHS), each of which may also be
distributed. Every handle service provides the same set of functions
for resolving and administering collections of handles. Handle services
differ primarily in that each is responsible for a unique set of
handles. They are also likely to differ in the selection, number, and
configuration of components such as servers used to provide handle
resolution and administration, and they are likely to be created and
managed by different organizations, each with their own goals and
policies.

Each handle service, global or local, may consist of one or more sites
and each site may consist of one or more handle servers. Each site is a
full functional replication, at least in terms of handle resolution,
of all other sites within the service, although each site may have
differing numbers of servers and computers. Having multiple sites
allows the handle service to distribute load among these sites and
avoid a single point of failure.

A site typically consists of a cluster of server computers residing
within a local Internet domain. These computers work together to
distribute the data storage and processing load at the site. It is
possible, although it is not recommended, to compose a site from
servers at widely different locations. Further, it is even possible
to compose two different sites from the same set of servers.

Each service site is defined by an HS_SITE value. HS_SITE is a pre-
defined handle system data type. An HS_SITE value defines a service
site by identifying the server computers (e.g., IP addresses) that
comprise the site along with their service configurations (e.g., port
numbers). HS_SITE values are typically part of naming authority
handles. The set of HS_SITE values assigned to a naming authority
handle is also called the service information for the naming authority.
These values are used by naming authority administrators to manage
service configurations. Note that an additional layer of indirection,
called a service handle, can be used to allow multiple naming
authorities to reference a single set of HS_SITE values. This is
described in the Service Handle section below. Clients of the Handle
System depend on service information to locate the responsible handle
server(s) for their requests. The service information can also be used
by clients to authenticate responses from those servers.

An HS_SITE value is a handle value whose <type> field is HS_SITE and
whose <data> field consists of the following entries:

<Version>

A 2-byte value that identifies the version number of the HS_SITE data
format, to allow backward compatibility over time. The first byte
contains the major version number, and the second byte contains the
minor version number. This document specifies the version number 1.1.

<Protocolversion>

A 2-byte integer that identifies the handle protocol version number.
The higher byte of the value identifies the major version number and
the lower byte the minor version.

<SerialNumber>

A 2-byte integer that increases by 1 (and eventually returns to 0)
each time the value gets changed. It is used in the handle system
protocol to synchronize the HS_SITE values between client and server.

<PrimaryMask>

An 8-bit mask that identifies the primary site(s) of the handle
service. The first bit of the octet is the <MultiPrimary> bit. It
indicates whether the handle service has multiple primary sites. The
second bit of the octet is the <PrimarySite> bit. It indicates whether
the HS_SITE value defines a primary site. A primary site is one that
supports administrative operations for its handles. A <MultiPrimary>
entry with zero value indicates that the handle service has a single
primary site and all handle administration has to be done at that site.
A non-zero <MultiPrimary> entry indicates that the handle service has
multiple primary sites. Each primary site may be used to administrate
a subset of handles managed by the handle service. Any handle under
such service must identify its primary site using an HS_PRIMARY value.
The HS_PRIMARY value is a handle value whose <type> is HS_PRIMARY and
whose <data> contains a reference to the HS_SITE value that defines
the primary site for that handle.

<HashOption>

An 8-bit octet that identifies the hash option used by the service site
to distribute handles among its servers. Valid options include
HASH_BY_HANDLE, HASH_BY_NA, or HASH_BY_LOCAL, which indicate whether
the hash operation should be applied to the entire handle, the naming
authority portion of the handle, or the local name portion of the
handle, respectively. The standard MD5 hashing algorithm [14] is used
by each service site to distribute handles among its servers.

<HashFilter>
An UTF8-string entry that is reserved for future extension.

<AttributeList>

A 4-byte integer followed by a list of UTF8-string pairs. The integer
indicates the number of UTF8-string pairs that follow. Each UTF8-string
pair is an <attribute>:<value> pair that is used to describe the
service site. For example, if the <attribute> is "Description", the
<value> will contain a natural language description of the service
site. Other <attribute> types may be defined in the future to further
distinguish each service site.

<NumOfServer>

A 4-byte integer that defines the number of servers in the service
site. The entry is followed by a list of <ServerRecord>s, each of
which defines a handle server that is part of the site. The
<ServerRecord> is defined as follows:

<ServerRecord> ::= <ServerID>
<Address>
<PublicKeyRecord>
<Servicelnterface>
where
<ServerID>

a 4-byte unsigned integer that uniquely identifies the server process

at the service site. <ServerID> does not have to begin with 1 and
might not be consecutive. It is defined for administration purpose
but not used in the hash-operation (described below) to locate a
handle server. Note that there can be multiple servers residenting on
any given computer, each with a different <ServerID>.

<Address>
the 16-byte IPv6 [15, 16] address of the handle server.

<PublicKeyRecord> ::= <RecordType>

<KeyRecord>
here <RecordType> is an UTF-8 String that identifies a registered
handle data type used to store the key in <KeyRecord>. <KeyRecord>
contains the public key of the handle server, which may be used
by clients to authenticate any server response.

<Servicelnterface> ::= <InterfaceCounter>
*[<ServiceType>

<TransmissionProtocol>

<PortNumber>]
a 4-byte integer followed by an array of triplets of <ServiceType,
TransmissionProtocol, PortNumber>. The 4-byte integer specifies the
number of triplets. Each triplet lists a service interface provided
by the handle server. For each triplet, the <ServiceType> is an octet
as a bit mask that specifies whether the interface is for handle
resolution (bit ©), handle administration (bit 1), or both. The
<TransmissionProtocol> is also an octet as a bit mask that specifies
the transmission protocol, including TCP (bit @), UDP (bit 1), and
HTTP (bit 2). The <PortNumber> is a 4-byte unsigned integer that
specifies the port number used by the interface. The default port
number for handle resolution/administration is 2641.

The following figure gives an example of an HS_SITE value assigned to
the naming authority handle "O.NA/10". The value describes the primary
service site that manages all handles under the naming authority "10".

<index>: 2
<type>: HS_SITE
<data>:
Version: 1.1
ProtocolVversion: 4.0
SerialNumber: 1
PrimaryMask:
MultiPrimary: FALSE
PrimarySite: TRUE

HashOption: HASH_BY_HANDLE

HashFilter: {Empty}
AttributelList: 0] {followed by no attributes}
NumOfServer: 3

{followed by a list of <ServerRecord>}

I
| ServerID: 1 []
| Address: 1:132.151.1.155 [1]
| PublicKeyRecord: HS_DSAKEY, iQCuR2R... []]
| ServiceInterface [1]
| ServiceType: Resolution_Only |||
| TransmissionProtocol: TCP & UDP [1]
| PortNumber: 2641 1]
I Y
| ServiceType: Admin only []]
| TransmissionProtocol: TCP []
| PortNumber: 2642 |

<TTL>: 24 hours

<permission>: read by all, write by administrator
<reference>: {empty}

Fig. 3.2.2. The primary service site for the naming authority "10"

Figure 3.2.2 defines a handle system service site in terms of an
HS_SITE value. The value is assigned to the naming authority handle
"®.NA/10". According to the <PrimaryMask> entry, it is the only primary
site for the handle service and so manages all handles under the naming
authority. The site consists of three handle servers, as indicated by
the <NumOfServer> entry. These servers provide handle resolution and
administration service for all handles under "10". The first server
record (ServerID 0) shows two service interfaces, one for handle
resolution and the other for handle administration, each with its own
port.

Each server of a service site is responsible for a subset of handles
managed by that site. Clients can find the responsible server by
performing a hash-operation that first convert all of the ASCII
characters in the handle to upper-case, then apply the MD5 hashing

on the converted handle string (according to the <HashOption> specified
in the HS_SITE value). The result is a 16-byte integer

that will be divided by the number of servers (as specified in the
<NumOfServer> of the HS_SITE value). The remainder is the sequence

number (starting with zero) of the <ServerRecord> as listed in the
HS_SITE value. From the server record, clients can find the IP address
of the responsible server, and select their preferred transmission
protocol for their request.

3.2.3. Service Handle: HS_SERV

The configuration of any given handle service is characterized by the
collection of HS_SITE values which define the service, as described
above. These HS_SITE values may be assigned directly to the relevant
naming authority handle(s), or an additional level of indirection may
be introduced through the use of service handles, which may be thought
of as names for handle services. Service handles are intended to
contain a list of HS_SITE values and may be referenced from naming
authority handles via the HS_SERV pre-defined data type. This mechanism
allows changes to handle service configurations, e.g., adding a new
site, to be made in one place, the service handle, rather than in each
naming authority handle, an administrative advantage in those cases in
which multiple naming authorities share a single handle service. The
mechanism may also be generalized to provide referral from one handle
service to another for whatever reason.

An HS_SERV value is a handle value whose <type> field is HS_SERV and

whose <data> field contains the service handle. Service handles can be
registered under the reserved naming authority "©.SERV" that is managed by
the Global Handle Registry. For example, a service handle "0.SERV/123" may
be created as the service handle that maintains the service information
for the handle service that is responsible for handles under the naming
authority "123" and its sub-naming authorities. HS_SERV values are
typically assigned to naming authority handles to refer clients to the
responsible handle service. A naming authority handle may have no more
than one HS_SERV value assigned to it, otherwise it is an error. If a
naming authority handle has both a list of HS_SITE values and an

HS_SERV value, the HS_SITE values should be used as the service
information for the naming authority.

The use of service handles raises several special considerations.
Multiple levels of service handle redirection should be avoided due to
their lack of efficiency, but will not be signaled as an error. Client
software should be prepared to detect any looped reference of service
handles or HS_SERV values that point to non-existent service handles
and return an error condition back to the user.

3.2.4. Handle Alias: HS_ALIAS

To support multiple names for the same object, the Handle System
provides the pre-defined data type HS_ALIAS. An HS_ALIAS value simply
provides a reference to another handle. A handle that has an HS_ALIAS
value should not have any additional values other than HS_ADMIN (for
administration). This is necessary to prevent any inconsistencies
between a handle and its aliases.

Thus, when resolving a handle, a client may get back an HS_ALIAS value.
This indicates that the handle in question is a handle alias. The
client may then retry the query against the handle specified in the
HS_ALIAS value until final results are obtained. The use of aliases
introduce a number of special considerations, e.g., multiple levels of
aliases should be avoided, for the sake of efficiency, but are not
signaled as an error. Alias loops and aliases that point to non-
existent handles should be caught and error conditions passed back to
the client.

One potential use of handle aliases would be in the transfer of
ownership of the underlying resources. When a resource identified by a
handle transfers from one organization to another, a new handle for the
resource may be created. To avoid inconsistency and broken references,
the handle used before the ownership transfer may be changed to a
handle alias and its HS_ALIAS value pointed to the newly created
handle.

3.2.5. Primary Site: HS_PRIMARY

HS_PRIMARY 1is a pre-defined data type used to designate a primary
service site. If a handle service supports multiple primary service
sites, each handle managed by the handle service must specify its
primary service site via an HS_PRIMARY value. An HS_PRIMARY value is a
handle value whose <type> is HS_PRIMARY and whose <data> contains a
reference to the HS_SITE value that defines the primary service site.

There can be at most one HS_PRIMARY value assigned to any handle,
otherwise it is an error. A handle with no HS_PRIMARY value but managed
by a handle service with multiple primary service sites is an error.
Handles managed by a handle service with a single primary service site
do not need HS_PRIMARY values and any such values are ignored.

3.2.6. Handle Value List: HS_VLIST

HS_VLIST is a pre-defined data type that allows a handle value to make
reference to a list of other handle values. An HS_VLIST value 1is a
handle value whose <type> is HS_VLIST and whose <data> consists of a 4-
byte integer followed by a list of references to other handle values.
The integer specifies the number of references in the list. The
references may point to handle values of the same handle or to handle
values of one or more other handles. Each reference is encoded as a
UTF8-string followed by a 4-byte integer, which identifies the handle
name and index value respectively.

HS_VLIST values may be used to define administrator groups for handles.
In that case, each reference in the HS_VLIST defines a member of the
administrator group and the HS_VLIST value can be used to make
reference to the group as a whole. Client software must be careful,
however, to avoid cyclic definition of value references. Applications

must keep track of the levels of reference to prevent infinite loops.
4. Handle System Service Model

The Handle System provides a distributed global name service via its
service components, which consist of a single distributed Global Handle
Registry (GHR) and many local handle services (registered underneath
the GHR). These service components provide the name service (both
resolution and administration) on behalf of handle system client
components. Handle system client components may also choose to use
handle system middle-ware components (e.g., the handle system caching
service) for efficiency. This section describes these components and
their relationship to each other.

4.1. Handle System Service Components

The Handle System defines a hierarchical service model. At the top
level is the single distributed global handle service, also known as
the Global Handle Registry (GHR). Underneath the GHR, there are many
local handle services (LHS). Each handle service, global or local, may
be registered with the GHR to manage handles under a set of naming
authorities and will provide resolution and administration service for
these handles. The GHR manages all the naming authorities through the
management of naming authority handles (i.e., handles under the naming
authority "©.NA"). Each naming authority handle maintains the service
information (in terms of HS_SITE values) that describes the local
handle service (or the GHR) that is responsible for handles under that
naming authority. The service information is defined in terms of a list
of HS_SITE values, as described in section 3.2, and enables clients to
interact with the relevant handle server in order to resolve or
administer those handles. Note that a local handle service may further
refer to other local handle services in response to any service
requests. This allows the local handle service to distribute its
service in a hierarchical fashion underneath the GHR.

Handle system service components are scalable and extensible to
accommodate their service loads. Any handle service, global or local,
may consist of multiple service sites, replicating each other. Each
service site may also consist of a cluster of computers working
together to serve its respective namespace. Having multiple service
sites avoids having a single point of failure, and allows load
balancing among these sites. Using multiple computers at any service
site distributes the workload and allows less powerful computers to be
utilized for the name service.

4.1.1. Global Handle Registry (GHR)

The Global Handle Registry (GHR) is used to manage naming authority
handles and to provide service information for every naming authority
under the Handle System. The GHR may also be used to manage and provide
resolution service to non naming authority handles. Unlike any local

handle service, which is typically responsible for handles under one

or a few naming authorities, the GHR is used to register and provide
service information for the entire handle system namespace. Every
naming authority handle under the Handle System is managed by the GHR.
A naming authority handle provides the service information for the
handle service that manages all handles under the naming authority.

The service information may be provided in terms of a set of HS_SITE
values, or a HS_SERV value as described above. The GHR may consist of
multiple service sites, each described in terms of an HS_SITE value. In
the case of GHR these HS_SITE values are specifically assigned to the
designated naming authority handle "©.NA/0.NA", or root handle.

Recall that every handle under the naming authority "®.NA" is a naming
authority handle, The handle "0.NA/0.NA" is the naming authority handle
that manages all the root-level naming authorities and also provides
service configuration information for the Global Handle Registry.

The GHR can be configured to consist of multiple primary service sites.
In this case, root-level naming authorities may be created or managed
at any one of these sites. The site where a naming authority is created
is called the primary service site for the naming authority. All other
service sites are secondary service sites for the naming authority.
Sub-naming authorities may only be created at the primary service site
of its parent naming authority. Any naming authority administration
(e.g., add/delete a sub-naming authority) can only be done at the
primary service site for the naming authority handle. The primary
service site is responsible to inform every secondary service sites for
any updates that need to be replicated. Conflicts should be caught when
multiple service sites attempt to create the same root-level naming
authority.

In order to communicate with the GHR, handle clients need its service
information (i.e., the set of HS_SITE values that describes the GHR
service sites). This may be distributed with the client software, or
obtained from some other secure source (e.g., postal mail, secure web
site, etc.). When clients find that their version of GHR service
information has expired (according to its TTL), they may update their
GHR service information by resolving the naming authority handle
"®.NA/0.NA". The GHR must be managed in such a way that clients with
expired GHR service information can still access the service and get
the update.

Fig. 4.1.1 shows the GHR service information in terms of a set of
HS_SITE values, one of which is shown in detail. These values are
assigned to the naming authority handle "©.NA/0.NA" whose administrator
also manages all the root level naming authorities.

<index>: 3

<permission>: read by all, write by administrator
<reference>: {empty}

| Il
| <type>: HS_SITE [] |
<data>:		
Version: 1		
Protocolversion: 4.0		
SerialNumber: 1		
PrimaryMask:		
MultiPrimary: TRUE [1		
PrimarySite: TRUE		
HashOption: HASH_BY_HANDLE		
HashFilter: {Empty}		
AttributelList: 1		
Description: Service site at US East Coast		
NumOfServer: 3		
(A		
[b bl Il		
e I (A		
e	(A	
	ServerID: 1 [1] []	
	Address: ::132.151.2.150 [1]	
	PublicKeyRecord: HS_DSAKEY, iQCuR2Rnw...	
	ServiceInterface [1]	
	ServiceType: Resolution & Admin	
	TransmissionProtocol: TCP & UDP []	
	PortNumber: 2641	
e (A		
Il		
<TTL>: 24 hours []		
I Il		
I		

Figure 4.1.1. GHR service information

The GHR and its service information provide an entry point for any
handle system service request. Since the GHR manages all naming
authority handles, it can provide clients with the service information
for any naming authority upon request. If, for example, a client trying
to resolve the handle "10.1045" does not know which handle service to
query, it can begin by querying the GHR for the naming authority

handle, i.e., "O.NA/10". The GHR will return the service information for
the naming authority "10", enabling the client to choose a service site
and send the handle query to the responsible server at that site.

4.1.2. Local Handle Service (LHS)

Local Handle Services (LHS) manage handles under given sets of naming
authorities. Each naming authority defines a "local" namespace that
consists of all of the handles under the naming authority. A naming

authority is "homed" at an LHS if all handles under the naming
authority are managed by that LHS. An LHS may be home to multiple
naming authorities, but a naming authority may only be "homed" at one
LHS. A naming authority may be homed at the GHR. Note that a local
handle service is not a "local" service in terms of any network
topology, but is called a local handle service because it is typically
home to a restricted, or local, namespace.

As with the GHR, any LHS may consist of many service sites with each
site described by an HS_SITE value. The set of HS_SITE values for any
LHS may be assigned to a single service handle or to the relevant
naming authority handle(s). Fig. 4.1.2 shows an example of HS_SITE
values for an LHS. These HS_SITE values are assigned to the naming
authority handle "0.NA/10", indicating that the naming authority "10" is
homed at the local handle service described by these HS_SITE values.
Clients may query the GHR to obtain this service information in order
to communicate with this local handle service. Administrators for the
naming authority handle are responsible for managing the service
information and keeping it up to date.

PortNumber: 2641

I
I Il
| <index>: 3 | | |
| <type>: HS_SITE [1 |
| <data>: [1] |
| Version: 1 | | |
| Protocolversion: 4.0 | | |
| SerialNumber: 1 [1 |
PrimaryMask:		
MultiPrimary: FALSE		
PrimarySite: TRUE		
HashOption: HASH_BY_LOCALNAME		
HashFilter: {Empty}		
AttributelList: 1		
Description: Local Service for "10"		
NumOfServer: 2 []		
I (A		
e (A		
e I (A		
	ServerID: 1 [[]	
	Address: 1:132.151.3.150 [
	PublicKeyRecord: HS_DSAKEY, iQCuRZ2R... []	
	ServicelInteface: []	
	ServiceType: Resolution & Admin [
	TransmissionProtocol: TCP & UDP []	
I I | (A
I Il
I Il

<TTL>: 24 hours
<permission>: read by all, write by administrator
<reference>: {empty}

Figure 4.1.2. LHS service information

4.2. Handle System Middle-Ware Components

Handle system middle-ware components currently include handle system
caching services and handle system proxy servers. These handle system
middle-ware components are clients to global or local handle services,
but servers to handle system clients. Handle system middle-ware
components may be used to provide additional service interfaces to the
basic handle service. For example, a handle system caching service may
be utilized to share resolution results within a local community. A
handle system proxy server could be used to bypass organizational
firewalls, and accept service requests in terms of the HTTP protocol.

4.2.1. Handle System Caching Service

Handle system caching service can be used to reduce the network traffic
between handle system clients and servers. Caching handle data,
including service information for any local handle service allows
subsequent requests going through the cache to be answered using the
information obtained from earlier queries.

Every handle value contains a <TTL> (Time to Live) field that tells a
caching server how long the value should be cached before an update is
required. A zero-value TTL indicates that the value can only be used
for the transaction in progress, and should not be cached. A caching
server may obtain its data directly from the responsible handle service
component, or from another caching service which eventually gets its
data from the handle service.

A caching service is defined in terms of an HS_SITE value that consists
of multiple caching servers. Clients can direct their request to the
responsible caching server within the caching service by using the
hashing algorithm defined in the HS_SITE value.

Caching services are not part of any handle system administration or
authentication hierarchy. The handle system protocol does not
authenticate any response from a caching service. Use of a caching
service is a client option, and the client may have to rely on the
caching service to authenticate any service response from handle system
service components. Clients are responsible to set up their own trust
relationship with the caching service they select.

4.2.2. Handle System Proxy Servers

Handle system proxy servers can be used to enable handle resolution via
other Internet application protocols. For example, CNRI has built and
made available a handle system to HTTP proxy server that will listen to
handle resolution requests in terms of HTTP. The current DNS address
for the proxy server is "hdl.handle.net". Thus, the handle "
ncstrl.vatech_cs/tr-93-35" can be resolved as the URL
"http://hdl.handle.net/ncstrl.vatech_cs/tr-93-35" from any web browser.
In this case, the URL is sent to the proxy server as an HTTP request.
The proxy server will query the handle system for the handle data and
return the results to the client as an HTTP response.

Using HTTP URLs allows handles to be resolved from standard web
browsers without additional client software, but requires that the
handles be associated with a specific proxy server. If that proxy
server changes its DNS name or otherwise becomes invalid, the reference
(i.e. the HTTP URL) to the handle will break. Thus the selection or use
of proxy servers should be carefully evaluated.

Proxy servers are not part of any handle system administration or
authentication hierarchy. The handle system protocol does not
authenticate any response from a proxy server. Use of a proxy server 1is
a client option, and the client may have to rely on the proxy server to
authenticate any service response from handle system service
components. Clients are responsible to set up their own trust
relationship with the proxy server they select.

4.3. Handle System Client Components

Handle system client components are end-user software applications that
receive service from the Handle System. Depending on configuration, a
handle system client component may talk to handle system service
components directly, or obtain service via handle system middle-ware
components, such as a handle system caching service.

When a client component sends a request to a handle system service
component directly, the response from the component may be the final
answer to the request, or it may be a referral to another handle system
component. Service referrals are returned in terms of service
information (i.e., HS_SITE values) or service names (i.e., HS_SERV
values). If a service referral is returned, the client component will
need to follow the referral in order to complete the transaction.

Client components may also be configured to fill their requests from
handle system middle-ware components. The middle-ware component will
then be responsible for getting the final result of any client request
and returning it to the client. Unlike the handle system service
components, middle-ware components will only return final result
regarding their client's request. No service referral should be
returned from handle system middle-ware components.

Handle system client components should be developed according to the
"Handle System Protocol Specification" [8] or the "Handle System
Application Programming Interface (API) Specification" [17], which are
specified in separate documents. The Handle System API defines a high-
level application programming interface on top of the basic Handle
System protocol, and allows common client modules to be developed and
shared among various applications.

Various handle system client components may be developed for various
applications. The CNRI Handle System Resolver [18], which can be
integrated with web browsers, is one such client component. It extends
web browsers (e.g. Netscape or Microsoft Internet Explorer) such that
handles can be resolved directly as Uniform Resource Identifiers (URIS)
under the "hdl:" scheme. The Grail web browser [21], a freely
downloadable software developed in Python [22], also supports the
"hdl:" URI scheme and will resolve handles accordingly. For example,
the handle "10.1045/july95-arms" may be resolved by entering its handle
URI as "hdl:10.1045/july95-arms" into any of these resolver enabled
browsers. The "Handle System URI Syntax" [19] will specify the syntax
and semantics for handles expressed under the "hdl:" URI scheme.

5. Handle System Operation Model

Handle System operations can be categorized into resolution and
administration. Handle resolution is achieved by client submitting a
handle query to a handle service and receiving back the set of handle
values from the responsible handle server. Handle administration allows
clients to manage handles, including adding and deleting handles, or
updating their values, over the public Internet. It also deals with
naming authority administration via naming authority handles. Both
types of operations may require authentication of the client via the
handle system authentication protocol, described below. Whether
authentication is required or not depends on the kind of operation
involved and the permission settings of the relevant handle value(s),
as well as the policies deployed by the responsible service components.

The handle system protocol governs the syntax and semantics of each
message transmitted between handle system clients and server
components. This section provides a high level overview of the protocol
and the role that each message plays during a service operation. The
exact programmatic details of these messages (i.e. their byte layout or
syntax) are specified in a separate document [2].

5.1. Handle System Service Request and Response

The Handle System provides its service in response to client service
requests. A client may send a request to any handle server to provoke a
response. The response either provides an answer to the request, or a
status code with associated information that either refers the request
to another service component, asks for client authentication, or
signals some error status.

Each handle under the Handle System is managed by its home service. The
naming authority handle provides the home service information (in terms
of HS_SERV or HS_SITE values) for all the handles under the naming
authority. Any handle service request must be directed to its home
service. Clients may find the home service by querying the Global
Handle Registry (GHR) for the corresponding naming authority handle.
Alternatively, this information may be found in a local cache or even
be part of a local client configuration. Given the service information,
clients select a service site and communicate with the responsible
handle server at the site.

To resolve the handle "ncstrl.vatech_cs/te-93-35", for example, a
client would need to know the home service for the naming authority
"ncstrl.vatech_cs". The home service can be obtained by querying the
GHR for the corresponding naming authority handle. In this case, the
naming authority handle is "©.NA/ncstrl.vatech_cs". GHR will return the
service information in terms of the HS_SITE values assigned to the
naming authority handle. From that service information, clients can
pick a service site, find the responsible server within the site, and
send the resolution request to that server.

Clients may require digital signatures attached to any response from a
handle server in order to authenticate the response. The signature is
generated using the server's private key. Clients may verify the
signature using the public key available in the service information
(refer to the <PublicKey> element shown in Figure 3.2.2).

A communication session may be established between the client and
server to manage a request that requires multiple interactions. The
session may also be used to share a TCP connection or client
authentication among multiple service requests. Each session is
identified by a session ID managed by the server. The client may
provide a session key which would be a secret key shared by the client
and server. The session key can be a nonce (i.e., a random array of
octets) generated by the client and sent to the handle server,
encrypted by the server's public key. Using the session key, the
session may provide data integrity service by attaching the Message
Authentication Code (MAC) to each message. It may also provide data
confidentiality service by encrypting each message sent back and forth
between the client and server.

The following diagram shows a handle resolution process in terms of the
messages transmitted between a handle system client and handle system
service components. In this case, the client is trying to resolve the
handle "ncstrl.vatech_cs/tr-93-35", does not know the home service, and
so must begin by querying the GHR.

[HS Client] ------------"--------------- > [Global Handle Registry]

1. request for service
information for the
naming authority handle
"®.NA/ncstrl.vatech_cs"

[HS Client] -------mmmmmmm e - > [Global Handle Registry]
2. service information for
the naming authority
handle "O.NA/ncstrl.vatech_cs"

[HS Client] ------cmmmmmm i iem e e oo > [Local Handle Service]
3. query for the handle
"ncstrl.vatech_cs/tr-93-35"
against the responsible
local handle server

(optional client authentication, depending on the service request)

[HS Client] ----------mmmmmmmi e e oo > [Local Handle Service]
4. query result from the server
+ signature from the server (optional)

Figure 5.1 Handle resolution example

In Figure 5.1, the client is configured to communicate with the GHR for
any handle service. In this case, the client first sends a request to
GHR to find the home service for the handle in question. GHR returns
the service information assigned to the corresponding naming authority
handle. The service information typically directs the client to the LHS
that manages all the handles under that naming authority. From the
service information, a client can find the responsible server at their
choice of service site and send the handle query to that server. That
server may set up a session to authenticate the client if the queried
data requires authentication. Otherwise, the server will simply send
the data back to the client. The server may provide a signature as part
of 1its response if so requested by the client.

The above procedure assumes that the client already has the GHR service
information. That information was likely obtained from the client

software distribution and kept up to date by queries against the naming
authority handle "O.NA/0.NA", which is the naming authority handle for all
the root level naming authorities. "O©.NA/0.NA" also maintains the public

key that may be used to authenticate the GHR service information.

Note that a client may cache the service information for any naming
authority handle so that subsequent queries for handles under the same
naming authority may reuse the service information and bypass the first
two steps shown in Figure 5.1. Clients may also elect to communicate
directly with a caching service or proxy server for any handle
resolution operations. In that case, clients will not need to query for
any home service information and instead will query the caching or
proxy server directly for the handle. The caching or proxy server will
then act as the [HS Client] in Figure 5.1 before finally returning the
end query result to the client.

It is also possible for clients to communicate with any given LHS
directly with their requests. This will give them quick response for
handles homed at the local handle service. For handles not homed at the
LHS, clients are referred to the GHR and will continue from there.

5.2. Handle System Authentication Protocol

The Handle System supports handle administration and access control
of handle values over the Internet. The handle system authentication
protocol is used by handle server to authenticate clients as
authorized administrators by both administration and resolution
purposes. The protocol does not perform server authentication.
However, client may authenticate any response from the server by
asking the server to sign any response from the server with server's
digital signature.

Client authentication is generally required for any handle
administration requests, including adding, deleting or modifying
handle values. Adding or deleting handles or sub-naming authorities
are considered administration of the corresponding naming authority
handle and can only be performed by the authorized naming authority
(handle) administrator(s).

By default, the Handle System authenticates clients using a challenge
response protocol. That is, after receiving a client's request, the
server issues a challenge to the client if authentication is necessary.
The challenge consists of a nonce generated by the handle server,
concatenated to the MD5 hash of the client's request. To be
authenticated as the administrator, the client has to send back a
response message that demonstrates procession of the administrator's
secret. The secret may be the secret key or the private key of the
administrator. When secret key is used by the administrator, the
response message will consist of the Message Authentication Code

(MAC) over the server's challenge, generated using the administrator's
secret key. If public key is used, the response message will contain
the digital signature over the challenge, generated using the
administrator's private key. This challenge-response message allows
the server to authenticate the client as the handle administrator

as claimed by the client. Upon successful authentication, the server
will carry out the client's request as long as the claimed
administrator is granted with sufficient permission.

For example, suppose a client sends a request to the responsible handle
server to add a new handle value. If authentication is required, the
server will return a challenge for the client to authenticate himself
as an administrator. If the client processes the private key of some
administrator, he can use it to sign the server's challenge and send
the signature back to the server. The server will verify the signature
in order to authenticate the client as the handle administrator claimed
by the client. If the verification fails, a message indicating
authentication failure will be sent to the client. Otherwise, the
server will further check if the claimed administrator has the
permission to add new handle value(s). If so, the server will add the
handle value and report success to the client. Otherwise, a permission
denied message will be sent instead.

The following control diagram shows a typical authentication process in
terms of the messages transmitted between the client and the handle
server.

[Client] -------mmmmmm i > [Handle Server]
1. client request
+ client credential (optional)

[Client] <-------mmmmmmmm oo [Handle Server]
2. session ID
+ server's challenge to client
(i.e., nonce + MD5 of client request)

[Client] -----------““““""““---mm-o - > [Handle Server]
3. session ID
+ response to server's challenge
+ administrator reference
+ encrypted session key (optional)

[Client] <----cmmmmmmmmmimm e [Handle Server]
4. server acknowledgement

Figure 5.2. Handle system authentication process

In Figure 5.2, the client sends a request to the handle server (along
with optional credential discussed later). The server decides that
client authentication is required and issues a challenge back to the

client, along with the session ID. The client authenticates itself as
an administrator by answering the challenge using the secret key or the
private key of the administrator. The server verifies client's response
using the administrator reference from the client. The administrator
reference specifies the HS_ADMIN value claimed by the client, as well
as the key reference that refers to the handle value that contains the
key used by the administrator. The key reference allows the handle
server to verify the response (i.e., the MAC or signature over the
challenge) from the client. From the HS_ADMIN value, the server can
check whether the key reference is one of the administrators defined by
the HS_ADMIN value, and confirm that the administrator is granted
sufficient permission. A client may send back its administrator
reference without specifying the specific HS_ADMIN value. In this case,
the handle server should look up all the HS_ADMIN values with
sufficient permission and check if the key reference belongs to any of
the HS_ADMIN values.

The handle server authenticates the client before fulfilling any client
request that requires authentication. Authentication is based on the
administrator reference along with the response from the client. The
process of authenticating the client varies depending on whether public
key or secret key is used by the administrator. It also depends on
whether the key reference (as part of the administrator reference) is
managed by the same handle server or not.

When a public key is used by the administrator, the response from the
client contains the digital signature over the challenge from the
server. The server can authenticate the client by verifying the digital
signature using the administrator's public key. If secret key is used,
the response from the client carries the Message Authenticate Code
(MAC) generated using the secret key. The MAC is generated by applying
the MD5 hashing over the block of data that is made of the server's
challenge concatenated with the secret key. The server may authenticate
the client by generating the same MAC using the administrator's secret
key and comparing it with the response from the client.

The key reference refers to a handle value that contains the key used
by the administrator. If the handle value is managed by the same handle
server (e.g., assigned to the same handle referenced by the client's
request), the server may acquire the key securely from its local
database. If the handle value is managed by another handle server
(whether or not within the same service), the server will have to send
a verification request to this other handle server, call it the key
server, in order to authenticate the client. The verification request
to the key server includes both the server's challenge and the client's
response. The key server is requested to send back its verification
response, signed using the key server's private key. The content of the
verification response will depend on the handle value referred to by
the key reference. If the key reference refers to a public key used by
the administrator, the key server will send back the public key as the
verification response. Otherwise, the key server will verify the

client's response on behalf of the requesting server and send back a
verification response indicating whether or not the client's response
matches the server's challenge. The following diagram shows the control
flow of the authentication process where the key reference refers to a
handle value, containing the administrator's public or secret key,
residing on another handle server.

I I I
I | mmmmmmm > | I
I | I I
| | 2. session ID |

	+ server's challenge	
Handle	<-------mmmmmm e	Handle
system		server
client	3. session ID	responsible
	+ response to the challenge	for client
	+ administrator reference	request
	+ encrypted session key	
I	mmmmmmm e >	I
I I I I		
I	I I	
I I I I		
	6 server acknowledgement	
	S	
I | I I

N

4. Verification 5. verifi-
request cation
(signed)

< — — — — — — —

I
I
I
| response
I
I
I

The handle server (the
key server) referred

to by the administrator
reference

Figure 5.3. Authentication process requiring verification
from a second handle server.

Secret key based authentication via a second handle server, i.e., the
key server, provides a convenient way to share a single administrator

password for multiple handles. However, it should not be used to manage
highly sensitive handles or handle data. The authentication process
itself is expensive and relies on a third party, i.e., the key server,
for proper operation. Additionally, the secret key itself is subject to
dictionary attack since the key server can not determine whether any
verification request is from a legitimate handle server. A handle
service may set local policy such that secret key based authentication
can only be used if the key reference refers to a handle value managed
by the same handle server.

When sending a challenge-response to the server, a client has the option
to send a randomly generated session key, encrypted using the server's
public key. The session key is a secret key that may be used for
subsequent message exchange between the client and the handle server.
The client may also ask that all the messages within the communication
session to be encrypted using the session key. The session key may also
be used to authenticate any message between the client and server by
attaching the MAC, generated using the session key, to each message.

Local handle services may define additional local policies for
authentication and/or authorization. A handle system client and its
service components may also elect to use other Internet authentication
mechanisms such as Kerberos [20] or Transport Layer Security
protocol[23]. Details of these will be addressed in a separate
document.

6. Security Consideration

Handle System security considerations are discussed in the "Handle
System Overview" document [1] and that discussion applies equally to
this document.

7. Acknowledgement

This work is derived from earlier versions of the Handle System. Design
ideas are based on those discussed within the handle system development
team, including David Ely, Allison Yu, Jane Euler, Catherine Rey, and
Stephanie Nguyen. Their contributions to this work are gratefully
acknowledged.

8. Authors' Address

Sam X. Sun

Corporation for National Research Initiatives (CNRI)
1895 Preston White Dr. Suite 100

Reston, VA 20191

USA

Phone: 703-262-5316

Email: ssun@cnri.reston.va.us

Sean Reilly
Corporation for National Research Initiatives (CNRI)

1895 Preston White Dr. Suite 100
Reston, VA 20191

USA

Phone: 703-620-8990

Email: sreilly@cnri.reston.va.us

Larry Lannom
Corporation for National Research Initiatives (CNRI)

1895 Preston White Dr. Suite 100
Reston, VA 20191

USA

Phone: 703-620-8990

Email: llannom@cnri.reston.va.us

9. References

[1] S. Sun, L. Lannom, "Handle System Overview", IETF draft,
http://www.ietf.org/internet-drafts/draft-sun-handle-system-06.txt,
work in progress.

[2] P. Mockapetris, "DOMAIN NAMES - CONCEPTS AND FACILITIES", RFC1034,
November 1987. http://www.ietf.org/rfc/rfcl034.txt

[3] P. Mockapetris, "DOMAIN NAMES - IMPLEMENTATION AND SPECIFICATION",
RFC1035, November 1987. http://www.ietf.org/rfc/rfcl035.txt

[4] M. wahl, T. Howes, and S. Kille, "Lightweight Directory Access
Protocol (v3)", REC 2251, http://www.ietf.org/rfc/rfc2251.txt

[5] D. Crocker, Ed., P. Overell, "Augmented BNF for Syntax
Specifications: ABNF", RFC 2234, http://www.ietf.orqg/rfc/rfc2234.txt
[6] F. Yergeau, "UTF-8, A Transform Format for Unicode and IS010646",
RFC2044, October 1996. http://www.ietf.org/rfc/rfc2044.txt

[7] The Unicode Consortium, "The Unicode Standard, Version 2.0",
Addison-Wesley Developers Press, 1996. ISBN 0-201-48345-9

[8] S. Sun, S. Reilly, L. Lannom, J. She, "Handle System Protocol
Specification", IETF draft, http://www.ietf.org/internet-drafts/draft-
sun-handle-system-protocol-01.txt, work in progress.

[9] T. Berners-Lee, L. Masinter, M. McCahill, et al., "Uniform Resource
Locators (URL)", REC1738, http://www.ietf.org/rfc/rfcl738.txt

[10] ITU-T Rec. X.509, "The Directory: Authentication Framework", 1993.
[11] Federal Information Processing Standards Publication (FIPS PUB)
46-1, Data Encryption Standard, Reaffirmed 1988 January 22 (supersedes
FIPS PUB 46, 1977 January 15).

[12] Federal Information Processing Standards Publication (FIPS PUB)
81, DES Modes of Operation, 1980 December 2.

[13] D. Balenson, "Privacy Enhancement for Internet Electronic Mail:
Part III: Algorithms, Modes, and Identifiers", RFC 1423, February 1993,
http://www.ietf.org/rfc/rfc1423.txt

[14] R. Rivest, " The MD5 Message-Digest Algorithm", RFC 1321, April

http://www.ietf.org/internet-drafts/draft-sun-handle-system-06.txt
https://datatracker.ietf.org/doc/html/rfc1034
http://www.ietf.org/rfc/rfc1034.txt
https://datatracker.ietf.org/doc/html/rfc1035
http://www.ietf.org/rfc/rfc1035.txt
https://datatracker.ietf.org/doc/html/rfc2251
http://www.ietf.org/rfc/rfc2251.txt
https://datatracker.ietf.org/doc/html/rfc2234
http://www.ietf.org/rfc/rfc2234.txt
https://datatracker.ietf.org/doc/html/rfc2044
http://www.ietf.org/rfc/rfc2044.txt
http://www.ietf.org/internet-drafts/draft-
https://datatracker.ietf.org/doc/html/rfc1738
http://www.ietf.org/rfc/rfc1738.txt
https://datatracker.ietf.org/doc/html/rfc1423
http://www.ietf.org/rfc/rfc1423.txt
https://datatracker.ietf.org/doc/html/rfc1321

1992, http://www.ietf.org/rfc/rfci321.txt

[15] S. Deering, R. Hinden, "Internet Protocol, Version 6 (IPv6)
Specification", RFC 1883, http://www.ietf.org/rfc/rfc1883.txt

[16] R. Hinden, S. Deering, "IP Version 6 Addressing Architecture",
RFC1884, http://www.ietf.org/rfc/rfcl1884.txt

[17] "Handle System Application Programming Interface (API)
Specification", work in progress.

[18] CNRI Handle System Resolver, http://www.handle.net/resolver
[19] "Handle System URI Syntax", work in progress.

[20] J. Kohl, and C. Neuman, "The Kerberos Network Authentication
Service (V5)", RFEC1510, http://www.ietf.org/rfc/rfci510.txt

[21] Grail browser home page, http://grail.cnri.reston.va.us/grail/
[22] Python language website, http://www.python.org/

[23] T. Dierks, C. Allen, "The TLS Protocol Version 1.0", RFC2246,
http://www.ietf.org/rfc/rfc2246.txt

http://www.ietf.org/rfc/rfc1321.txt
https://datatracker.ietf.org/doc/html/rfc1883
http://www.ietf.org/rfc/rfc1883.txt
https://datatracker.ietf.org/doc/html/rfc1884
http://www.ietf.org/rfc/rfc1884.txt
http://www.handle.net/resolver
https://datatracker.ietf.org/doc/html/rfc1510
http://www.ietf.org/rfc/rfc1510.txt
http://grail.cnri.reston.va.us/grail/
http://www.python.org/
https://datatracker.ietf.org/doc/html/rfc2246
http://www.ietf.org/rfc/rfc2246.txt

