
NFVRG R. Szabo, Ed.
Internet-Draft Z. Qiang
Intended status: Informational Ericsson
Expires: September 22, 2016 M. Kind
 Deutsche Telekom AG
 March 21, 2016

Recursive virtualization and programming for network and cloud resources
draft-irtf-nfvrg-unify-recursive-programming-00

Abstract

 The introduction of Network Function Virtualization (NFV) in carrier-
 grade networks promises improved operations in terms of flexibility,
 efficiency, and manageability. NFV is an approach to combine network
 and compute virtualizations together. However, network and compute
 resource domains expose different virtualizations and programmable
 interfaces. In [I-D.unify-nfvrg-challenges] we argued for a joint
 compute and network virtualization by looking into different compute
 abstractions.

 In this document we analyze different approaches to orchestrate a
 service graph with transparent network functions relying on a public
 telecommunication network and ending in a commodity data center. We
 show that a recursive compute and network joint virtualization and
 programming has clear advantages compared to other approaches with
 separated control between compute and network resources. In
 addition, the joint virtualization will have cost and performance
 advantages by removing additional virtualization overhead. The
 discussion of the problems and the proposed solution is generic for
 any data center use case; however, we use NFV as an example.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Szabo, et al. Expires September 22, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/draft-irtf-nfvrg-unify-recursive-programming-00
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft Recursive virtualization and programming March 2016

 This Internet-Draft will expire on September 22, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Terms and Definitions . 3
3. Use Cases . 4
3.1. Black Box DC . 4
3.1.1. Black Box DC with L3 tunnels 5
3.1.2. Black Box DC with external steering 6
3.2. White Box DC . 8
3.3. Conclusions . 9
4. Recursive approach . 10
4.1. Virtualization . 11
4.1.1. The virtualizer's data model 13
5. Relation to ETSI NFV . 24
5.1. Policy based resource management 27
6. Examples . 29
6.1. Infrastructure reports 29
6.2. Simple requests . 35
7. Experimentations . 37
8. IANA Considerations . 38
9. Security Considerations 38
10. Acknowledgement . 38
11. Informative References 38

 Authors' Addresses . 39

1. Introduction

 To a large degree there is agreement in the research community that
 rigid network control limits the flexibility of service creation. In
 [I-D.unify-nfvrg-challenges]

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Szabo, et al. Expires September 22, 2016 [Page 2]

Internet-Draft Recursive virtualization and programming March 2016

 o we analyzed different compute domain abstractions to argue that
 joint compute and network virtualization and programming is needed
 for efficient combination of these resource domains;

 o we described challenges associated with the combined handling of
 compute and network resources for a unified production
 environment.

 Our goal here is to analyze different approaches to instantiate a
 service graph with transparent network functions into a commodity
 Data Center (DC). More specifically, we analyze

 o two black box DC set-ups, where the intra-DC network control is
 limited to some generic compute only control programming
 interface;

 o a white box DC set-up, where the intra-DC network control is
 exposed directly to for a DC external control to coordinate
 forwarding configurations;

 o a recursive approach, which illustrates potential benefits of a
 joint compute and network virtualization and control.

 The discussion of the problems and the proposed solution is generic
 for any data center use case; however, we use NFV as an example.

2. Terms and Definitions

 We use the terms compute and "compute and storage" interchangeably
 throughout the document. Moreover, we use the following definitions,
 as established in [ETSI-NFV-Arch]:

 NFV: Network Function Virtualization - The principle of separating
 network functions from the hardware they run on by using virtual
 hardware abstraction.

 NFVI: NFV Infrastructure - Any combination of virtualized compute,
 storage and network resources.

 VNF: Virtualized Network Function - a software-based network
 function.

 MANO: Management and Orchestration - In the ETSI NFV framework
 [ETSI-NFV-MANO], this is the global entity responsible for
 management and orchestration of NFV lifecycle.

 Further, we make use of the following terms:

Szabo, et al. Expires September 22, 2016 [Page 3]

Internet-Draft Recursive virtualization and programming March 2016

 NF: a network function, either software-based (VNF) or appliance-
 based.

 SW: a (routing/switching) network element with a programmable
 control plane interface.

 DC: a data center is an interconnection of Compute Nodes (see below)
 with a data center controller, which offers programmatic resource
 control interface to its clients.

 CN: a server, which is controlled by a DC control plane and provides
 execution environment for virtual machine (VM) images such as
 VNFs.

3. Use Cases

 Service Function Chaining (SFC) looks into the problem how to deliver
 end-to-end services through the chain of network functions (NFs).
 Many of such NFs are envisioned to be transparent to the client,
 i.e., they intercept the client connection for adding value to the
 services without the knowledge of the client. However, deploying
 network function chains in DCs with Virtualized Network Functions
 (VNFs) are far from trivial [I-D.ietf-sfc-dc-use-cases]. For
 example, different exposures of the internals of the DC will imply
 different dynamisms in operations, different orchestration
 complexities and may yield for different business cases with regards
 to infrastructure sharing.

 We investigate different scenarios with a simple NF forwarding graph
 of three VNFs (o->VNF1->VNF2->VNF3->o), where all VNFs are deployed
 within the same DC. We assume that the DC is a multi-tier leaf and
 spine (CLOS) and that all VNFs of the forwarding graph are bump-in-
 the-wire NFs, i.e., the client cannot explicitly access them.

3.1. Black Box DC

 In Black Bock DC set-ups, we assume that the compute domain is an
 autonomous domain with legacy (e.g., OpenStack) orchestration APIs.
 Due to the lack of direct forwarding control within the DC, no native
 L2 forwarding can be used to insert VNFs running in the DC into the
 forwarding graph. Instead, explicit tunnels (e.g., VxLAN) must be
 used, which need termination support within the deployed VNFs.
 Therefore, VNFs must be aware of the previous and the next hops of
 the forwarding graph to receive and forward packets accordingly.

Szabo, et al. Expires September 22, 2016 [Page 4]

Internet-Draft Recursive virtualization and programming March 2016

3.1.1. Black Box DC with L3 tunnels

 Figure 1 illustrates a set-up where an external VxLAN termination
 point in the SDN domain is used to forward packets to the first NF
 (VNF1) of the chain within the DC. VNF1, in turn, is configured to
 forward packets to the next SF (VNF2) in the chain and so forth with
 VNF2 and VNF3.

 In this set-up VNFs must be capable of handling L3 tunnels (e.g.,
 VxLAN) and must act as forwarders themselves. Additionally, an
 operational L3 underlay must be present so that VNFs can address each
 other.

 Furthermore, VNFs holding chain forwarding information could be
 untrusted user plane functions from 3rd party developers.
 Enforcement of proper forwarding is problematic.

 Additionally, compute only orchestration might result in sub-optimal
 allocation of the VNFs with regards to the forwarding overlay, for
 example, see back-forth use of a core switch in Figure 1.

 In [I-D.unify-nfvrg-challenges] we also pointed out that within a
 single Compute Node (CN) similar VNF placement and overlay
 optimization problem may reappear in the context of network interface
 cards and CPU cores.

Szabo, et al. Expires September 22, 2016 [Page 5]

Internet-Draft Recursive virtualization and programming March 2016

 | A A
 +---+ | S |
 |SW1| | D |
 +---+ | N | P
 / \ V | H
 / \ | Y
 | | A | S
 +---+ +-+-+ | | I
 |SW | |SW | | | C
 ,+--++.._ _+-+-+ | | A
 ,-" _|,,`.""-..+ | C | L
 ,,,--"" | `. |""-.. | L |
 +---+ +--++ `+-+-+ ""+---+ | O |
 |SW | |SW | |SW | |SW | | U |
 +---+ ,'+---+ ,'+---+ ,'+---+ | D |
 | | ,-" | | ,-" | | ,-" | | | |
 +--+ +--+ +--+ +--+ +--+ +--+ +--+ +--+ | |
 |CN| |CN| |CN| |CN| |CN| |CN| |CN| |CN| | |
 +--+ +--+ +--+ +--+ +--+ +--+ +--+ +--+ V V
 | | |
 +-+ +-+ +-+ A
 |V| |V| |V| | L
 |N| |N| |N| | O
 |F| |F| |F| | G
 |1| |3| |2| | I
 +-+ +-+ +-+ | C
 +---+ --1>-+ | | +--<3---------------<3---+ | | A
 |SW1| +-2>-----------------------------2>---+ | L
 +---+ <4--------------+ V

 <<===>>
 IP tunnels, e.g., VxLAN

 Figure 1: Black Box Data Center with VNF Overlay

3.1.2. Black Box DC with external steering

 Figure 2 illustrates a set-up where an external VxLAN termination
 point in the SDN domain is used to forward packets among all the SFs
 (VNF1-VNF3) of the chain within the DC. VNFs in the DC need to be
 configured to receive and send packets between only the SDN endpoint,
 hence are not aware of the next hop VNF address. Shall any VNFs need
 to be relocated, e.g., due to scale in/out as described in
 [I-D.zu-nfvrg-elasticity-vnf], the forwarding overlay can be
 transparently re-configured at the SDN domain.

Szabo, et al. Expires September 22, 2016 [Page 6]

Internet-Draft Recursive virtualization and programming March 2016

 Note however, that traffic between the DC internal SFs (VNF1, VNF2,
 VNF3) need to exit and re-enter the DC through the external SDN
 switch. This, certainly, is sub-optimal an results in ping-pong
 traffic similar to the local and remote DC case discussed in
 [I-D.zu-nfvrg-elasticity-vnf].

 | A A
 +---+ | S |
 |SW1| | D |
 +---+ | N | P
 / \ V | H
 / \ | Y
 | | ext port A | S
 +---+ +-+-+ | | I
 |SW | |SW | | | C
 ,+--++.._ _+-+-+ | | A
 ,-" _|,,`.""-..+ | C | L
 ,,,--"" | `. |""-.. | L |
 +---+ +--++ `+-+-+ ""+---+ | O |
 |SW | |SW | |SW | |SW | | U |
 +---+ ,'+---+ ,'+---+ ,'+---+ | D |
 | | ,-" | | ,-" | | ,-" | | | |
 +--+ +--+ +--+ +--+ +--+ +--+ +--+ +--+ | |
 |CN| |CN| |CN| |CN| |CN| |CN| |CN| |CN| | |
 +--+ +--+ +--+ +--+ +--+ +--+ +--+ +--+ V V
 | | |
 +-+ +-+ +-+ A
 |V| |V| |V| | L
 |N| |N| |N| | O
 |F| |F| |F| | G
 |1| |3| |2| | I
 +-+ +-+ +-+ | C
 +---+ --1>-+ | | | | | | A
 |SW1| <2-----+ | | | | | L
 | | --3>---------------------------------------+ | |
 | | <4---+ |
 | | --5>------------+ | |
 +---+ <6----------------+ V

 <<===>>
 IP tunnels, e.g., VxLAN

 Figure 2: Black Box Data Center with ext Overlay

Szabo, et al. Expires September 22, 2016 [Page 7]

Internet-Draft Recursive virtualization and programming March 2016

3.2. White Box DC

 Figure 3 illustrates a set-up where the internal network of the DC is
 exposed in full details through an SDN Controller for steering
 control. We assume that native L2 forwarding can be applied all
 through the DC until the VNFs' port, hence IP tunneling and tunnel
 termination at the VNFs are not needed. Therefore, VNFs need not be
 forwarding graph aware but transparently receive and forward packets.
 However, the implications are that the network control of the DC must
 be handed over to an external forwarding controller (see that the SDN
 domain and the DC domain overlaps in Figure 3). This most probably
 prohibits clear operational separation or separate ownerships of the
 two domains.

Szabo, et al. Expires September 22, 2016 [Page 8]

Internet-Draft Recursive virtualization and programming March 2016

 | A A
 +---+ | S |
 |SW1| | D |
 +---+ | N | P
 / \ | | H
 / \ | | Y
 | | ext port | A | S
 +---+ +-+-+ | | | I
 |SW | |SW | | | | C
 ,+--++.._ _+-+-+ | | | A
 ,-" _|,,`.""-..+ | | C | L
 ,,,--"" | `. |""-.. | | L |
 +---+ +--++ `+-+-+ ""+---+ | | O |
 |SW | |SW | |SW | |SW | | | U |
 +---+ ,'+---+ ,'+---+ ,'+---+ V | D |
 | | ,-" | | ,-" | | ,-" | | | |
 +--+ +--+ +--+ +--+ +--+ +--+ +--+ +--+ | |
 |CN| |CN| |CN| |CN| |CN| |CN| |CN| |CN| | |
 +--+ +--+ +--+ +--+ +--+ +--+ +--+ +--+ V V
 | | |
 +-+ +-+ +-+ A
 |V| |V| |V| | L
 |N| |N| |N| | O
 |F| |F| |F| | G
 |1| |3| |2| | I
 +-+ +-+ +-+ | C
 +---+ --1>-+ | | +--<3---------------<3---+ | | A
 |SW1| +-2>-----------------------------2>---+ | L
 +---+ <4--------------+ V

 <<===>>
 L2 overlay

 Figure 3: White Box Data Center with L2 Overlay

3.3. Conclusions

 We have shown that the different solutions imply different operation
 and management actions. From network operations point of view, it is
 not desirable to run and manage similar functions several times (L3
 blackbox DC case) - especially if the networking overlay can be
 easily managed upfront by using a programmatic interface, like with
 the external steering in black and whitebox DC scenarios.

Szabo, et al. Expires September 22, 2016 [Page 9]

Internet-Draft Recursive virtualization and programming March 2016

4. Recursive approach

 We argued in [I-D.unify-nfvrg-challenges] and
 [I-D.caszpe-nfvrg-orchestration-challenges] for a joint software and
 network programming interface. Consider that such joint software and
 network abstraction (virtualization) exists around the DC with a
 corresponding resource programmatic interface. A software and
 network programming interface could include VNF requests and the
 definition of the corresponding network overlay. However, such
 programming interface is similar to the top level services
 definition, for example, by the means of a VNF Forwarding Graph.

 Figure 4 illustrates a joint domain virtualization and programming
 setup. In Figure 4 "[x]" denotes ports of the virtualized data plane
 while "x" denotes port created dynamically as part of the VNF
 deployment request. Over the joint software and network
 virtualization VNF placement and the corresponding traffic steering
 could be defined in an atomic, which is orchestrated, split and
 handled to the next levels (see Figure 5) in the hierarchy for
 further orchestration. Such setup allows clear operational
 separation, arbitrary domain virtualization (e.g., topology details
 could be omitted) and constraint based optimization of domain wide
 resources.

 |
 +-----------------------[x]--------------------+ A
 |Domain 0 | | |O
 | +--------[x]----------+ | |V
 | | / \ | | |E
 |Big Switch | -<--- --->-- | | |R
 |with | / BiS-BiS \ | | |A
 |Big Software | | +-->-+ +-->-+ | | | |R
 |(BiS-BiS) | | | | | | | | | |C
 | +--x-x----x-x----x-x--+ | |H
 | | | | | | | | |I
 | +-+ +-+ +-+ | |N
 | |V| |V| |V| | |G V
 | |N| |N| |N| | | N
 | |F| |F| |F| | | F
 | |1| |2| |3| | |
 | +-+ +-+ +-+ | | F
 | | | G
 +--+ V

 Figure 4: Recursive Domain Virtualization and Joint VNF FG
 programming: Overarching View

Szabo, et al. Expires September 22, 2016 [Page 10]

Internet-Draft Recursive virtualization and programming March 2016

 +-------------------------|-----------------------------+ A
 | +----------------------[x]---------------------+ AV | | | | | |
 | | Domain 1 / \ | |N | |
 | | | A | |F | |
 | | Big Switch (BS) | | | | | |O
 | | V | | |F | |V
 | | / \ | |G | |E
 | +-----------------[x]--------[x]---------------+ V1 | |R
 | | | | |A
 | +------------------|----------|----------------+ A | |R
 | |Domain 2 | A | | | |C
 | | V | | | | |H
 | | +---[x]--------[x]----+ | |V | |I
 | |Big Switch | / BiS-BiS \ | | |N | |N
 | |with | / \ | | |F | |G
 | |Big Software | | +-->-+ +-->-+ | | | | | |
 | |(BiS-BiS) | | | | | | | | | |F | |V
 | | +--x-x----x-x----x-x--+ | |G | |N
 | | | | | | | | | |2 | |F
 | | +-+ +-+ +-+ | | | |
 | | |V| |V| |V| | | | |F
 | | |N| |N| |N| | | | |G
 | | |F| |F| |F| | | | |
 | | |1| |2| |3| | | | |
 | | +-+ +-+ +-+ | | | |
 | +--+ V | |
 +---+ V

 Figure 5: Recursive Domain Virtualization and Joint VNF FG
 programming: Domain Views

4.1. Virtualization

 Let us first define the joint software and network abstraction
 (virtualization) as a Big Switch with Big Software (BiS-BiS). A BiS-
 BiS is a node abstraction, which incorporates both software and
 networking resources with an associated joint software and network
 control API (see Figure 6).

Szabo, et al. Expires September 22, 2016 [Page 11]

Internet-Draft Recursive virtualization and programming March 2016

 API o __
 | \
 Software Ctrler \
 API O-------------+ \ \
 | \ \
 Compute Ctrler \ |
 | \ |
 | +---------------------+ |
 | | | | Joint Software &
 | | {vCPU | | Network Ctrl API
 | | memory | | o
 | | storage} | | |
 | | | | +---------------------+
 | | | | | {{vCPU |
 | |Compute Node | \ [1 memory 3]
 | | | ==> | storage} |
 | +----------x----------+ / [2 {port rate 4]
 \ | | | switching delay}} |
 +----------x----------+ | +---------------------+
 | | | Big Switch &
 [1 {port rate 3] | Big Software (BiS-BiS)
 | switching delay} | | with joint
 [2 4] / Software & Network Ctrler
 | Network Element | /
 +---------------------+ /
 __/

 Figure 6: Big Switch with Big Software definition

 The configuration over a BiS-BiS allows the atomic definition of NF
 placements and the corresponding forwarding overlay as a Network
 Function - Forwarding Graph (NF-FG). The embedment of NFs into a
 BiS-BiS allows the inclusion of NF ports into the forwarding overlay
 definition (see ports a, b, ...,f in Figure 7). Ports 1,2, ..., 4
 are seen as infrastructure ports while NF ports are created and
 destroyed with NF placements.

Szabo, et al. Expires September 22, 2016 [Page 12]

Internet-Draft Recursive virtualization and programming March 2016

 Step 1: Placement of NFs
 Step 2: Interconnect NFs __ Step 1: Placement of NFs
 \ with the forwarding
 Compute Node \ overlay definition
 +---------------------+ \
 | +-+ +-+ +-+ | \ +-+ +-+ +-+
 | |V| |V| |V| | | |V| |V| |V|
 | |N| |N| |N| | | |N| |N| |N|
 | |F| |F| |F| | | |F| |F| |F|
 | |1| |2| |3| | | |1| |2| |3|
 | +-+ +-+ +-+ | | +-+ +-+ +-+
 | | +---.| |.---+ | | \ | | | | | |
 | +------\ /------+ | ==> +--a-b----c-d----e-f--+
 +----------x----------+ / | | | | | | | |
 | | [1->+ +-->-+ +-->-+ | 3]
 +----------x----------+ | | | |
 | / \ | | [2 +->4]
 [1->----->- -->---+ 3] | | |
 | | | | +---------------------+
 [2 +->4] / Big Switch with
 | Network Element | / Big Software (BiS-BiS)
 +---------------------+ /
 __/

 Figure 7: Big Switch with Big Software definition with a Network
 Function - Forwarding Graph (NF-FG)

4.1.1. The virtualizer's data model

4.1.1.1. Tree view

 module: virtualizer
 +--rw virtualizer
 +--rw id string
 +--rw name? string
 +--rw nodes
 | +--rw node* [id]
 | +--rw id string
 | +--rw name? string
 | +--rw type string
 | +--rw ports
 | | +--rw port* [id]
 | | +--rw id string
 | | +--rw name? string
 | | +--rw port_type? string
 | | +--rw capability? string
 | | +--rw sap? string
 | | +--rw sap_data

Szabo, et al. Expires September 22, 2016 [Page 13]

Internet-Draft Recursive virtualization and programming March 2016

 | | | +--rw technology? string
 | | | +--rw resources
 | | | +--rw delay? string
 | | | +--rw bandwidth? string
 | | | +--rw cost? string
 | | +--rw control
 | | | +--rw controller? string
 | | | +--rw orchestrator? string
 | | +--rw addresses
 | | | +--rw l2? string
 | | | +--rw l3* [id]
 | | | | +--rw id string
 | | | | +--rw name? string
 | | | | +--rw configure? string
 | | | | +--rw client? string
 | | | | +--rw requested? string
 | | | | +--rw provided? string
 | | | +--rw l4? string
 | | +--rw metadata* [key]
 | | +--rw key string
 | | +--rw value? string
 | +--rw links
 | | +--rw link* [id]
 | | +--rw id string
 | | +--rw name? string
 | | +--rw src? ->
 | | +--rw dst? ->
 | | +--rw resources
 | | +--rw delay? string
 | | +--rw bandwidth? string
 | | +--rw cost? string
 | +--rw resources
 | | +--rw cpu string
 | | +--rw mem string
 | | +--rw storage string
 | | +--rw cost? string
 | +--rw metadata* [key]
 | | +--rw key string
 | | +--rw value? string
 | +--rw NF_instances
 | | +--rw node* [id]
 | | +--rw id string
 | | +--rw name? string
 | | +--rw type? string
 | | +--rw ports
 | | | +--rw port* [id]
 | | | +--rw id string
 | | | +--rw name? string

Szabo, et al. Expires September 22, 2016 [Page 14]

Internet-Draft Recursive virtualization and programming March 2016

 | | | +--rw port_type? string
 | | | +--rw capability? string
 | | | +--rw sap? string
 | | | +--rw sap_data
 | | | | +--rw technology? string
 | | | | +--rw resources
 | | | | +--rw delay? string
 | | | | +--rw bandwidth? string
 | | | | +--rw cost? string
 | | | +--rw control
 | | | | +--rw controller? string
 | | | | +--rw orchestrator? string
 | | | +--rw addresses
 | | | | +--rw l2? string
 | | | | +--rw l3* [id]
 | | | | | +--rw id string
 | | | | | +--rw name? string
 | | | | | +--rw configure? string
 | | | | | +--rw client? string
 | | | | | +--rw requested? string
 | | | | | +--rw provided? string
 | | | | +--rw l4? string
 | | | +--rw metadata* [key]
 | | | +--rw key string
 | | | +--rw value? string
 | | +--rw links
 | | | +--rw link* [id]
 | | | +--rw id string
 | | | +--rw name? string
 | | | +--rw src? ->
 | | | +--rw dst? ->
 | | | +--rw resources
 | | | +--rw delay? string
 | | | +--rw bandwidth? string
 | | | +--rw cost? string
 | | +--rw resources
 | | | +--rw cpu string
 | | | +--rw mem string
 | | | +--rw storage string
 | | | +--rw cost? string
 | | +--rw metadata* [key]
 | | +--rw key string
 | | +--rw value? string
 | +--rw capabilities
 | | +--rw supported_NFs
 | | +--rw node* [id]
 | | +--rw id string
 | | +--rw name? string

Szabo, et al. Expires September 22, 2016 [Page 15]

Internet-Draft Recursive virtualization and programming March 2016

 | | +--rw type? string
 | | +--rw ports
 | | | +--rw port* [id]
 | | | +--rw id string
 | | | +--rw name? string
 | | | +--rw port_type? string
 | | | +--rw capability? string
 | | | +--rw sap? string
 | | | +--rw sap_data
 | | | | +--rw technology? string
 | | | | +--rw resources
 | | | | +--rw delay? string
 | | | | +--rw bandwidth? string
 | | | | +--rw cost? string
 | | | +--rw control
 | | | | +--rw controller? string
 | | | | +--rw orchestrator? string
 | | | +--rw addresses
 | | | | +--rw l2? string
 | | | | +--rw l3* [id]
 | | | | | +--rw id string
 | | | | | +--rw name? string
 | | | | | +--rw configure? string
 | | | | | +--rw client? string
 | | | | | +--rw requested? string
 | | | | | +--rw provided? string
 | | | | +--rw l4? string
 | | | +--rw metadata* [key]
 | | | +--rw key string
 | | | +--rw value? string
 | | +--rw links
 | | | +--rw link* [id]
 | | | +--rw id string
 | | | +--rw name? string
 | | | +--rw src? ->
 | | | +--rw dst? ->
 | | | +--rw resources
 | | | +--rw delay? string
 | | | +--rw bandwidth? string
 | | | +--rw cost? string
 | | +--rw resources
 | | | +--rw cpu string
 | | | +--rw mem string
 | | | +--rw storage string
 | | | +--rw cost? string
 | | +--rw metadata* [key]
 | | +--rw key string
 | | +--rw value? string

Szabo, et al. Expires September 22, 2016 [Page 16]

Internet-Draft Recursive virtualization and programming March 2016

 | +--rw flowtable
 | +--rw flowentry* [id]
 | +--rw id string
 | +--rw name? string
 | +--rw priority? string
 | +--rw port ->
 | +--rw match string
 | +--rw action string
 | +--rw out? ->
 | +--rw resources
 | +--rw delay? string
 | +--rw bandwidth? string
 | +--rw cost? string
 +--rw links
 | +--rw link* [id]
 | +--rw id string
 | +--rw name? string
 | +--rw src? ->
 | +--rw dst? ->
 | +--rw resources
 | +--rw delay? string
 | +--rw bandwidth? string
 | +--rw cost? string
 +--rw metadata* [key]
 | +--rw key string
 | +--rw value? string
 +--rw version? string

 Figure 8: Virtualizer's YANG data model: tree view

4.1.1.2. YANG Module

<CODE BEGINS> file "virtualizer.yang"
module virtualizer {
 namespace "urn:unify:virtualizer";
 prefix "virtualizer";
 organization "ETH";
 contact "Robert Szabo <robert.szabo@ericsson.com>";

 revision "2016-02-24" {
 description "V5.0: Common port configuration were added to the yang model
from the metadata fields";
 }

 revision "2016-02-19" {
 description "Added port/control (for Cf-Or interface); port/resources;
link-resources/cost and sofware-resource/cost for administrative metric;
clarifications for port/capability";

 }

 revision "2016-01-28" {

Szabo, et al. Expires September 22, 2016 [Page 17]

Internet-Draft Recursive virtualization and programming March 2016

 description "Metadata added to infra_node and virtualizer level;
Virtualizer's revised data model based on virtualizer3; changes: link key is
set to id";
 }

 //======================== REUSABLE GROUPS ================================

 grouping id-name {
 leaf id { type string; }
 leaf name { type string;}
 }

 grouping id-name-type {
 uses id-name;
 leaf type {
 type string;
 // for infrastructue view: mandatory true; --> refined in infrastrucutre
view
 mandatory false;
 }
 }

 grouping metadata {
 list metadata {
 min-elements 0;
 key key;
 leaf key{
 type string;
 mandatory true;
 }
 leaf value{
 type string;
 mandatory false;
 }
 }
 }

 grouping link-resource {
 leaf delay {
 type string;
 mandatory false;
 }
 leaf bandwidth {
 type string;
 mandatory false;
 }
 leaf cost {
 description "Administrative metric.";

 type string;
 mandatory false;
 }

Szabo, et al. Expires September 22, 2016 [Page 18]

Internet-Draft Recursive virtualization and programming March 2016

 }

 grouping l3-address {
 uses id-name;
 leaf configure {
 description "True: this is a configuration request; False: this is fyi";
 type string;
 }
 leaf client {
 description "Configuration service support at the client: {'dhcp-client',
'pre-configured'}; if not present it is left to the infrastructure to deal with
it.";
 type string;
 }
 leaf requested {
 description "To request port configuration, options: {'public', 'ip/
mask'}, where public means the request of public IP address and private ip/mask
a given address/mask configuration";
 type string;
 }
 leaf provided {
 description "The provided L3 configuration in response to the requested
field.";
 type string;
 }
 }
 // ------------ PORTS -------
 grouping port {
 uses id-name;
 leaf port_type {
 description "{port-abstract, port-sap} port-sap is to represent UNIFY
domain boundary; port-abstract is to represent UNIFY native port. Technology
specific attributes of a SAP is in the metadata.";
 type string;
 }
 leaf capability {
 description "To describe match and action capabilities associated with
the port, e.g., match=port,tag,ip,tcp,udp,mpls,of1.0, where port: based
forwarding; tag: unify abstract tagging; ip: ip address matching etc.";
 type string;
 }
 leaf sap {
 type string;
 }
 container sap_data {
 leaf technology {
 description "e.g., ('IEEE802.1q': '0x00c', 'MPLS': 70, 'IEEE802.1q')";
 type string;

 }
 container resources{
 description "Only used for domain boundary ports (port-sap type), where
this is used to derive interconnection link characteristics.";
 uses link-resource;
 }
 }
 container control {
 description "Used to connect this port to a UNIFY orchestrator's Cf-Or
reference point. Support controller - orchestrator or orchestrator - controller
connection establishment.";
 leaf controller{

Szabo, et al. Expires September 22, 2016 [Page 19]

Internet-Draft Recursive virtualization and programming March 2016

 description "URI of the local controller service at this NF, e.g.,
http://*:8080/cf-or/";
 type string;
 }
 leaf orchestrator{
 description "URI of the scoped orchestration service offered to this NF
specifically, e.g., http://192.168.1.100:8080/cf-or/";
 type string;
 }
 }
 container addresses {
 leaf l2 {
 description "Requested or provided";
 type string;
 }
 list l3 {
 key "id";
 uses l3-address;
 }
 leaf l4 {
 description "e.g., request: {tcp/22, tcp/8080}; response {tcp/22:
(192.168.1.100, 1001)";
 type string;
 }
 }
 uses metadata;
 }

 // ------------ FLOW CONTROLS -------

 grouping flowentry {
 description "The flowentry syntax will follow ovs-ofctrl string format. The
UNIFY general tagging mechanism will be use like 'mpls'-> 'tag', i.e.,
push_tag:tag; pop_tag:tag...";
 uses id-name;
 leaf priority {
 type string;
 }
 leaf port {
 type leafref {
 path "";
 }
 mandatory true;
 }
 leaf match {
 description "The match syntax will follow ovs-ofctrl string format with
'mpls'->'tag', e.g.,: in_port=port, dl_tag=A, where port is the leafref above";
 type string;

http://192.168.1

 mandatory true;
 }
 leaf action {
 description "The action syntax will follow ovs-ofctrl string format with
'mpls'->'tag', e.g.,: push_tag:A, set_tag_label:A, output:out, where out is the
leafref below";
 type string;
 mandatory true;

Szabo, et al. Expires September 22, 2016 [Page 20]

Internet-Draft Recursive virtualization and programming March 2016

 }
 leaf out {
 type leafref {
 path "";
 }
 }
 container resources{
 uses link-resource;
 }

 }

 grouping flowtable {
 container flowtable {
 list flowentry {
 key "id";
 uses flowentry;
 }
 }
 }

 // ------------ LINKS -------

 grouping link {
 uses id-name;
 leaf src {
 type leafref {
 path "";
 }
 }
 leaf dst {
 type leafref {
 path "";
 }
 }
 container resources{
 uses link-resource;
 }
 }

 grouping links {
 container links {
 list link {
 key "id";
 uses link;
 }
 }

Szabo, et al. Expires September 22, 2016 [Page 21]

Internet-Draft Recursive virtualization and programming March 2016

 }

 // ---------- NODE -------------------

 grouping software-resource {
 leaf cpu {
 type string;
 mandatory true;
 }
 leaf mem {
 type string;
 mandatory true;
 }
 leaf storage {
 type string;
 mandatory true;
 }
 leaf cost {
 description "Administrative metric.";
 type string;
 mandatory false;
 }
 }

 grouping node {
 description "Any node: infrastructure or NFs";
 uses id-name-type;
 container ports {
 list port{
 key "id";
 uses port;
 }
 }
 uses links;
 container resources{
 uses software-resource;
 }
 uses metadata;
 }

 grouping nodes {
 list node{
 key "id";
 uses node;
 }
 }

 grouping infra-node { // they can contain other nodes (as NFs)

Szabo, et al. Expires September 22, 2016 [Page 22]

Internet-Draft Recursive virtualization and programming March 2016

 uses node {
 refine type {
 mandatory true;
 }
 }
 container NF_instances {
 uses nodes;
 }
 container capabilities {
 container supported_NFs { // if supported NFs are enumerated
 uses nodes;
 }
 }
 uses flowtable;
 }

 //======================== NF-FG: Virtualizer and the Mapped request
================================

 container virtualizer {
 description "Container for a single virtualizer";
 uses id-name {
 refine id {
 mandatory true;
 }
 }
 container nodes{
 list node{ // infra nodes
 key "id";
 uses infra-node;
 }
 }
 uses links; // infra links
 uses metadata;
 leaf version {
 description "yang and virtualizer library version";
 type string;
 }
 }
}
<CODE ENDS>

 Figure 9: Virtualizer's YANG data model

Szabo, et al. Expires September 22, 2016 [Page 23]

Internet-Draft Recursive virtualization and programming March 2016

5. Relation to ETSI NFV

 According to the ETSI MANO framework [ETSI-NFV-MANO], an NFVO is
 split into two functions:

 o The orchestration of NFVI resources across multiple VIMs,
 fulfilling the Resource Orchestration functions. The NFVO uses
 the Resource Orchestration functionality to provide services that
 support accessing NFVI resources in an abstracted manner
 independently of any VIMs, as well as governance of VNF instances
 sharing resources of the NFVI infrastructure

 o The lifecycle management of Network Services, fulfilling the
 network Service Orchestration functions.

 Similarly, a VIM is split into two functions:

 o Orchestrating the allocation/upgrade/release/reclamation of NFVI
 resources (including the optimization of such resources usage),
 and

 o managing the association of the virtualised resources to the
 physical compute, storage, networking resources.

 The functional split is shown in Figure 14.

Szabo, et al. Expires September 22, 2016 [Page 24]

Internet-Draft Recursive virtualization and programming March 2016

 +-------------------+
 |NVFO |
 | +--------------+ |
 | |NFVO: | |
 | |Service | |
 | |Lifecycle | |
 | |Management | |
 | +------+-------+ |
 | | |
 | +------+-------+ |
 | |NFVO: | |
 | |Resrouce | |
 | |Orchestration | |
 | +--+---+----+--+ |
 +-----|---|----|----+
 / | \
 /---------/ | \------------\
 / | \
 +-------------|-----+ +--------|----------+ +------|------------+
 |VIM | | |VIM | | |VIM | | | | |
 | +----------+---+ | | +-----+--------+ | | +---+----------+ |
 | |VIM: | | | |VIM: | | | |VIM: | |
 | |Orchestration | | | |Orchestration | | | |Orchestration | |
 | |& | | | |& | | | |& | |
 | |Optimization | | | |Optimization | | | |Optimization | |
 | +------+-------+ | | +------+-------+ | | +------+-------+ |
 | | | | | | | | |
 | +------+-------+ | | +------+-------+ | | +------+-------+ |
 | |VIM: | | | |VIM: | | | |VIM: | |
 | |Virtualized 2 | | | |Virtualized 2 | | | |Virtualized 2 | |
 | |Pys mapping | | | |Pys mapping | | | |Pys mapping | |
 | +--------------+ | | +--------------+ | | +--------------+ |
 +-------------------+ +-------------------+ +-------------------+

 Figure 10: Functional decomposition of the NFVO and the VIM according
 to the ETSI MANO

 If the Joint Software and Network Control API (Joint API) could be
 used between all the functional components working on the same
 abstraction, i.e., from the north of the VIM Virtualized to physical
 mapping component to the south of the NFVO: Service Lifecycle
 Management as shown in Figure 11, then a more flexible virtualization
 programming architecture could be created as shown in Figure 12.

Szabo, et al. Expires September 22, 2016 [Page 25]

Internet-Draft Recursive virtualization and programming March 2016

 +-------------------+
 |NVFO |
 | +--------------+ |
 | |NFVO: | |
 | |Service | |
 | |Lifecycle | |
 | |Management | |
 | +------+-------+ |
 | | | <-- Joint API
 | +------+-------+ |
 | |NFVO: | |
 | |Resrouce | |
 | |Orchestration | |
 | +--+---+-------+ |
 +-----|---|---------+
 / |
 /---------/ | <-- Joint API
 / |
 +-------------|-----+ +--------|----------+
 |VIM | | |VIM | | | |
 | +----------+---+ | | +-----+--------+ |
 | |VIM: | | | |VIM: | |
 | |Orchestration | | | |Orchestration | |
 | |& | | | |& | |
 | |Optimization | | | |Optimization | |
 | +------+-------+ | | +------+-------+ |
 | | | | | | <-- Joint API
 | +------+-------+ | | +------+-------+ | | | | |
 | |VIM: | | | |VIM: | |
 | |Virtualized 2 | | | |Virtualized 2 | |
 | |Pys mapping | | | |Pys mapping | |
 | +--------------+ | | +--------------+ |
 +-------------------+ +-------------------+

 Figure 11: Functional decomposition of the NFVO and the VIM with the
 Joint Software and Network control API

Szabo, et al. Expires September 22, 2016 [Page 26]

Internet-Draft Recursive virtualization and programming March 2016

 +--------------+
 |NFVO: |
 |Service |
 Domain 4 |Lifecycle M. |
 +--+-----------+
 **********************|******************
 * +--------------+ |
 * |NFVO: | |
 * |Service | |
 * |Lifecycle | |
 * |Management | |
 * +-------+------+ /
 * | / <-- Joint API
 * +-+---------+--+
 * | Rersource |
 * |Orchestration |
 ******************** * | |
 +--------------+ * * +--+---+-------+ Domain 3
 |NFVO: | * ********|***|*************************
 |Service | * / |
 |Lifecycle | /---------/ |
 |Management | / * |
 +---------+----+ | * |
 | | * | <-- Joint API
 +--+-------+---+* |
 | |* |
 | Rersource |* |
 |Orchestration |* |
 | |* |
 +------+-------+* |
 /|\ * *********|********** <-- Joint API
 +------+-------+* * +------+-------+ *
 +--|d1 |* * |VIM: | *
 +--|d2|Resource |* * |Virtualized 2 | *
 |d3| | Orchestration|* * |Pys mapping | *
 | | +--------------+* * +--------------+ *
 Domain 1 * * Domain 2 *
 ************************* * *

 Figure 12: Joint Software and Network Control API: Recurring Flexible
 Architecture

5.1. Policy based resource management

 In Figure 13 we show various policies mapped to the MANO
 architecture:

Szabo, et al. Expires September 22, 2016 [Page 27]

Internet-Draft Recursive virtualization and programming March 2016

 o Tenant Policies: Tenant policies exist whenever a domain offers a
 virtualization service to more than one consumer. User tenants
 may exists at the northbound of the NFVO. Additionally, if a VIM
 expose resource services to more than one NFVO, then each NFVO may
 appear as a tenant (virtualization consumer) at the northbound of
 the VIM.

 o Wherever virtualization services are produced or consumed
 corresponding export and import policies may exist. Export
 policies govern the details of resources, capabilities, costs,
 etc. exposed to consumers. In turn, consumers (tenants) apply
 import policies to filter, tweak, annotate resources and services
 received from their southbound domains. An entity may at the same
 time consume and produce virtualization services hence apply both
 import and export policies.

 o Operational policies support the business logic realized by the
 domain's ownership. They are often associated with Operations or
 Business Support Systems (OSS or BSS) and frequently determine
 operational objectives like energy optimization, utilization
 targets, offered services, charing models, etc. Operational
 policies may be split according to different control plane layers,
 for example, i) lifecycle and ii) resource management layers
 within the NFVO.

Szabo, et al. Expires September 22, 2016 [Page 28]

Internet-Draft Recursive virtualization and programming March 2016

 T1 T2...Tn
 | | |
 +-----|--|---|------+
 |NVFO | | | | Tenant
 | +--+--+---+----+ | <- Policies
 | |NFVO: | |
 Operational | |Service | |
 Policies-> | |Lifecycle | |
 | |Management | |
 | +------+-------+ |
 | | |
 | +------+-------+ |
 | |NFVO: | |
 Operational | |Resource | |
 Policies-> | |Orchestration | | ^
 | +--+---+----+--+ | |Import
 to +-----|---|---------+ |Policies
 other NFVO / \
 \ +-------+ \
 \ / \ to NFVO ^
 +------\------|-----+ \ / |Export
 |VIM \ | | \ / |Policies
 | +-----+----+---+ | +--------|----|-----+
 | |VIM: | | |VIM | | | Tenant
 | |Orchestration | | | +-----+----+---+ | <- Policies
 | |& | | | |VIM: | |
 | |Optimization | | . | |Orchestration | |
 | +------+-------+ | . | |& | | <- Operational
 | | | | |Optimization | | Policies
 | +------+-------+ | | +------+-------+ | | | |
 | |VIM: | | | | |
 | |Virtualized 2 | | | +------+-------+ |
 | |Pys mapping | | | |VIM: | | <- Operational
 | +--------------+ | | |Virtualized 2 | | Policies
 +-------------------+ | |Pys mapping | |
 | +--------------+ |
 +-------------------+

 Figure 13: Policies within the MANO framework

6. Examples

6.1. Infrastructure reports

 Figure 14 and Figure 15 show a single node infrastructure report.
 The example shows a BiS-BiS with two ports, out of which Port 0 is
 also a Service Access Point 0 (SAP0).

Szabo, et al. Expires September 22, 2016 [Page 29]

Internet-Draft Recursive virtualization and programming March 2016

 20 CPU
 +-----------+ 64GB MEM
 SAP1--[0 BiS-BiS | 1TB STO
 | (UUID13) |
 +[2 1]+
 | +-----------+ |
 | |
 | |
 +-----------+ | | +-----------+
 SAP0--[0 BiS-BiS 1]+ +[0 BiS-BiS 1]--SAP1
 | (UUID11) | | (UUID12) |
 | 2]-----------------[2 |
 +-----------+ +-----------+
 20 CPU 10 CPU
 64GB MEM 32GB MEM
 100TB STO 100TB STO

 Figure 14: Single node infrastructure report example: Virtualization
 view

Szabo, et al. Expires September 22, 2016 [Page 30]

Internet-Draft Recursive virtualization and programming March 2016

 <virtualizer xmlns="http://fp7-unify.eu/framework/virtualizer">
 <id>UUID001</id>
 <name>Single node simple infrastructure report</name>
 <nodes>
 <node>
 <id>UUID11</id>
 <name>single Bis-Bis node</name>
 <type>BisBis</type>
 <ports>
 <port>
 <id>0</id>
 <name>SAP0 port</name>
 <port_type>port-sap</port_type>
 <vxlan>...</vxlan>
 </port>
 <port>
 <id>1</id>
 <name>North port</name>
 <port_type>port-abstract</port_type>
 <capability>...</capability>
 </port>
 <port>
 <id>2</id>
 <name>East port</name>
 <port_type>port-abstract</port_type>
 <capability>...</capability>
 </port>
 </ports>
 <resources>
 <cpu>20</cpu>
 <mem>64 GB</mem>
 <storage>100 TB</storage>
 </resources>
 </node>
 </nodes>
 </virtualizer>

 Figure 15: Single node infrastructure report example: xml view

 Figure 16 and Figure 17 show a 3-node infrastructure report with 3
 BiS-BiS nodes. Infrastructure links are inserted into the
 virtualization view between the ports of the BiS-BiS nodes.

Szabo, et al. Expires September 22, 2016 [Page 31]

Internet-Draft Recursive virtualization and programming March 2016

 20 CPU
 +-----------+ 64GB MEM
 SAP1--[0 BiS-BiS | 1TB STO
 | (UUID13) |
 +[2 1]+
 | +-----------+ |
 | |
 | |
 +-----------+ | | +-----------+
 SAP0--[0 BiS-BiS 1]+ +[0 BiS-BiS 1]--SAP1
 | (UUID11) | | (UUID12) |
 | 2]-----------------[2 |
 +-----------+ +-----------+
 20 CPU 10 CPU
 64GB MEM 32GB MEM
 100TB STO 100TB STO

 Figure 16: 3-node infrastructure report example: Virtualization view

 <virtualizer xmlns="http://fp7-unify.eu/framework/virtualizer">
 <id>UUID002</id>
 <name>3-node simple infrastructure report</name>
 <nodes>
 <node>
 <id>UUID11</id>
 <name>West Bis-Bis node</name>
 <type>BisBis</type>
 <ports>
 <port>
 <id>0</id>
 <name>SAP0 port</name>
 <port_type>port-sap</port_type>
 <vxlan>...</vxlan>
 </port>
 <port>
 <id>1</id>
 <name>North port</name>
 <port_type>port-abstract</port_type>
 <capability>...</capability>
 </port>
 <port>
 <id>2</id>
 <name>East port</name>
 <port_type>port-abstract</port_type>
 <capability>...</capability>
 </port>
 </ports>
 <resources>

Szabo, et al. Expires September 22, 2016 [Page 32]

Internet-Draft Recursive virtualization and programming March 2016

 <cpu>20</cpu>
 <mem>64 GB</mem>
 <storage>100 TB</storage>
 </resources>
 </node>
 <node>
 <id>UUID12</id>
 <name>East Bis-Bis node</name>
 <type>BisBis</type>
 <ports>
 <port>
 <id>1</id>
 <name>SAP1 port</name>
 <port_type>port-sap</port_type>
 <vxlan>...</vxlan>
 </port>
 <port>
 <id>0</id>
 <name>North port</name>
 <port_type>port-abstract</port_type>
 <capability>...</capability>
 </port>
 <port>
 <id>2</id>
 <name>West port</name>
 <port_type>port-abstract</port_type>
 <capability>...</capability>
 </port>
 </ports>
 <resources>
 <cpu>10</cpu>
 <mem>32 GB</mem>
 <storage>100 TB</storage>
 </resources>
 </node>
 <node>
 <id>UUID13</id>
 <name>North Bis-Bis node</name>
 <type>BisBis</type>
 <ports>
 <port>
 <id>0</id>
 <name>SAP2 port</name>
 <port_type>port-sap</port_type>
 <vxlan>...</vxlan>
 </port>
 <port>
 <id>1</id>

Szabo, et al. Expires September 22, 2016 [Page 33]

Internet-Draft Recursive virtualization and programming March 2016

 <name>East port</name>
 <port_type>port-abstract</port_type>
 <capability>...</capability>
 </port>
 <port>
 <id>2</id>
 <name>West port</name>
 <port_type>port-abstract</port_type>
 <capability>...</capability>
 </port>
 </ports>
 <resources>
 <cpu>20</cpu>
 <mem>64 GB</mem>
 <storage>1 TB</storage>
 </resources>
 </node>
 </nodes>
 <links>
 <link>
 <id>0</id>
 <name>Horizontal link</name>
 <src>../../nodes/node[id=UUID11]/ports/port[id=2]</src>
 <dst>../../nodes/node[id=UUID12]/ports/port[id=2]</dst>
 <resources>
 <delay>2 ms</delay>
 <bandwidth>10 Gb</bandwidth>
 </resources>
 </link>
 <link>
 <id>1</id>
 <name>West link</name>
 <src>../../nodes/node[id=UUID11]/ports/port[id=1]</src>
 <dst>../../nodes/node[id=UUID13]/ports/port[id=2]</dst>
 <resources>
 <delay>5 ms</delay>
 <bandwidth>10 Gb</bandwidth>
 </resources>
 </link>
 <link>
 <id>2</id>
 <name>East link</name>
 <src>../../nodes/node[id=UUID12]/ports/port[id=0]</src>
 <dst>../../nodes/node[id=UUID13]/ports/port[id=1]</dst>
 <resources>
 <delay>2 ms</delay>
 <bandwidth>5 Gb</bandwidth>
 </resources>

Szabo, et al. Expires September 22, 2016 [Page 34]

Internet-Draft Recursive virtualization and programming March 2016

 </link>
 </links>
 </virtualizer>

 Figure 17: 3-node infrastructure report example: xml view

6.2. Simple requests

 Figure 18 and Figure 19 show the allocation request for 3 NFs (NF1:
 Parental control B.4, NF2: Http Cache 1.2 and NF3: Stateful firewall
 C) as instrumented over a BiS-BiS node. It can be seen that the
 configuration request contains both the NF placement and the
 forwarding overlay definition as a joint request.

 +---+ +---+ +---+
 |NF1| |NF2| |NF3|
 +---+ +---+ +---+
 | | | | | |
 +-2-3----4-5----6-7--+
 --[0-/ ____/ \----|- \ |
 | |___________| \-+1]--
 | |
 | BiS-BiS (UUID11) |
 +--------------------+

 Figure 18: Simple request of 3 NFs on a single BiS-BiS:
 Virtualization view

 <virtualizer xmlns="http://fp7-unify.eu/framework/virtualizer">
 <id>UUID001</id>
 <name>Single node simple request</name>
 <nodes>
 <node>
 <id>UUID11</id>
 <NF_instances>
 <node>
 <id>NF1</id>
 <name>first NF</name>
 <type>Parental control B.4</type>
 <ports>
 <port>
 <id>2</id>
 <name>in</name>
 <port_type>port-abstract</port_type>
 <capability>...</capability>
 </port>
 <port>
 <id>3</id>

Szabo, et al. Expires September 22, 2016 [Page 35]

Internet-Draft Recursive virtualization and programming March 2016

 <name>out</name>
 <port_type>port-abstract</port_type>
 <capability>...</capability>
 </port>
 </ports>
 </node>
 <node>
 <id>NF2</id>
 <name>cache</name>
 <type>Http Cache 1.2</type>
 <ports>
 <port>
 <id>4</id>
 <name>in</name>
 <port_type>port-abstract</port_type>
 <capability>...</capability>
 </port>
 <port>
 <id>5</id>
 <name>out</name>
 <port_type>port-abstract</port_type>
 <capability>...</capability>
 </port>
 </ports>
 </node>
 <node>
 <id>NF3</id>
 <name>firewall</name>
 <type>Stateful firewall C</type>
 <ports>
 <port>
 <id>6</id>
 <name>in</name>
 <port_type>port-abstract</port_type>
 <capability>...</capability>
 </port>
 <port>
 <id>7</id>
 <name>out</name>
 <port_type>port-abstract</port_type>
 <capability>...</capability>
 </port>
 </ports>
 </node>
 </NF_instances>
 <flowtable>
 <flowentry>
 <port>../../ports/port[id=0]</port>

Szabo, et al. Expires September 22, 2016 [Page 36]

Internet-Draft Recursive virtualization and programming March 2016

 <match>*</match>
 <action>output:../../NF_instances/node[id=NF1]
 /ports/port[id=2]</action>
 </flowentry>
 <flowentry>
 <port>../../NF_instances/node[id=NF1]
 /ports/port[id=3]</port>
 <match>fr-a</match>
 <action>output:../../NF_instances/node[id=NF2]
 /ports/port[id=4]</action>
 rpcre </flowentry>
 <flowentry>
 <port>../../NF_instances/node[id=NF1]
 /ports/port[id=3]</port>
 <match>fr-b</match>
 <action>output:../../NF_instances/node[id=NF3]
 /ports/port[id=6]</action>
 </flowentry>
 <flowentry>
 <port>../../NF_instances/node[id=NF2]
 /ports/port[id=5]</port>
 <match>*</match>
 <action>output:../../ports/port[id=1]</action>
 </flowentry>
 <flowentry>
 <port>../../NF_instances/node[id=NF3]
 /ports/port[id=7]</port>
 <match>*</match>
 <action>output:../../ports/port[id=1]</action>
 </flowentry>
 </flowtable>
 </node>
 </nodes>
 </virtualizer>

 Figure 19: Simple request of 3 NFs on a single BiS-BiS: xml view

7. Experimentations

 We have implemented the proposed recursive control plane architecture
 with joint software and network virtualization and control. We used
 a Python based open source implementation [virtualizer-library] of
 the virtualizer data structure for the orchestration API. We used
 the Extensible Service ChAin Prototyping Environment (ESCAPE)
 [ESCAPE] as the general orchestration platform with various
 technology specific domain adapters like OpenStack, Docker and Ryu
 SDN controller. A detailed service function chaining report is
 available at [I-D.unify-sfc-control-plane-exp].

Szabo, et al. Expires September 22, 2016 [Page 37]

Internet-Draft Recursive virtualization and programming March 2016

8. IANA Considerations

 This memo includes no request to IANA.

9. Security Considerations

 TBD

10. Acknowledgement

 The research leading to these results has received funding from the
 European Union Seventh Framework Programme (FP7/2007-2013) under
 grant agreement no. 619609 - the UNIFY project. The views expressed
 here are those of the authors only. The European Commission is not
 liable for any use that may be made of the information in this
 document.

 We would like to thank in particular David Jocha and Janos Elek from
 Ericsson for the useful discussions.

11. Informative References

 [ESCAPE] BME, "Extensible Service ChAin Prototyping Environment
 (open source)", Mar. 2016,
 <http://sb.tmit.bme.hu/mediawiki/index.php/ESCAPE>.

 [ETSI-NFV-Arch]
 ETSI, "Architectural Framework v1.1.1", Oct 2013,
 <http://www.etsi.org/deliver/etsi_gs/

NFV/001_099/002/01.01.01_60/gs_NFV002v010101p.pdf>.

 [ETSI-NFV-MANO]
 ETSI, "Network Function Virtualization (NFV) Management
 and Orchestration V0.6.1 (draft)", Jul. 2014,
 <http://docbox.etsi.org/ISG/NFV/Open/Latest_Drafts/

NFV-MAN001v061-%20management%20and%20orchestration.pdf>.

 [I-D.caszpe-nfvrg-orchestration-challenges]
 Carrozzo, G., Szabo, R., and K. Pentikousis, "Network
 Function Virtualization: Resource Orchestration
 Challenges", draft-caszpe-nfvrg-orchestration-

challenges-00 (work in progress), November 2015.

 [I-D.ietf-sfc-dc-use-cases]
 Surendra, S., Tufail, M., Majee, S., Captari, C., and S.
 Homma, "Service Function Chaining Use Cases In Data
 Centers", draft-ietf-sfc-dc-use-cases-04 (work in
 progress), January 2016.

http://sb.tmit.bme.hu/mediawiki/index.php/ESCAPE
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.01.01_60/gs_NFV002v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.01.01_60/gs_NFV002v010101p.pdf
http://docbox.etsi.org/ISG/NFV/Open/Latest_Drafts/NFV-MAN001v061-%20management%20and%20orchestration.pdf
http://docbox.etsi.org/ISG/NFV/Open/Latest_Drafts/NFV-MAN001v061-%20management%20and%20orchestration.pdf
https://datatracker.ietf.org/doc/html/draft-caszpe-nfvrg-orchestration-challenges-00
https://datatracker.ietf.org/doc/html/draft-caszpe-nfvrg-orchestration-challenges-00
https://datatracker.ietf.org/doc/html/draft-ietf-sfc-dc-use-cases-04

Szabo, et al. Expires September 22, 2016 [Page 38]

Internet-Draft Recursive virtualization and programming March 2016

 [I-D.unify-nfvrg-challenges]
 Szabo, R., Csaszar, A., Pentikousis, K., Kind, M., Daino,
 D., Qiang, Z., and H. Woesner, "Unifying Carrier and Cloud
 Networks: Problem Statement and Challenges", draft-unify-

nfvrg-challenges-03 (work in progress), January 2016.

 [I-D.unify-sfc-control-plane-exp]
 Szabo, R. and B. Sonkoly, "SFC Control Plane Experiment:
 UNIFYed Approach", March 2016, <draft-unify-sfc-control-

plane-exp>.

 [I-D.zu-nfvrg-elasticity-vnf]
 Qiang, Z. and R. Szabo, "Elasticity VNF", draft-zu-nfvrg-

elasticity-vnf-01 (work in progress), March 2015.

 [virtualizer-library]
 Ericsson, "Python based virtualizer library for Netconf
 protocol (open source)", Mar. 2016,
 <https://github.com/Ericsson/unify-virtualizer>.

Authors' Addresses

 Robert Szabo (editor)
 Ericsson Research, Hungary
 Irinyi Jozsef u. 4-20
 Budapest 1117
 Hungary

 Email: robert.szabo@ericsson.com
 URI: http://www.ericsson.com/

 Zu Qiang
 Ericsson
 8400, boul. Decarie
 Ville Mont-Royal, QC 8400
 Canada

 Email: zu.qiang@ericsson.com
 URI: http://www.ericsson.com/

https://datatracker.ietf.org/doc/html/draft-unify-nfvrg-challenges-03
https://datatracker.ietf.org/doc/html/draft-unify-nfvrg-challenges-03
https://datatracker.ietf.org/doc/html/draft-unify-sfc-control-plane-exp
https://datatracker.ietf.org/doc/html/draft-unify-sfc-control-plane-exp
https://datatracker.ietf.org/doc/html/draft-zu-nfvrg-elasticity-vnf-01
https://datatracker.ietf.org/doc/html/draft-zu-nfvrg-elasticity-vnf-01
https://github.com/Ericsson/unify-virtualizer
http://www.ericsson.com/
http://www.ericsson.com/

Szabo, et al. Expires September 22, 2016 [Page 39]

Internet-Draft Recursive virtualization and programming March 2016

 Mario Kind
 Deutsche Telekom AG
 Winterfeldtstr. 21
 10781 Berlin
 Germany

 Email: mario.kind@telekom.de

Szabo, et al. Expires September 22, 2016 [Page 40]

