
Network Working Group J. Schoenwaelder
Internet-Draft TU Braunschweig
Expires April 2000 22. October 1999

Operation-Types for SMIv2

 <draft-irtf-nmrg-smi-ops-00.txt>

 Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC 2026. Internet-Drafts are
 working documents of the Internet Engineering Task Force (IETF), its
 areas, and its working groups. Note that other groups may also
 distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

 Distribution of this document is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (1999). All Rights Reserved.

Abstract

 This document defines an extension for the SMIv2 which allows to
 define operations. Operations can among other things be used to
 define install/remove operations on conceptual MIB tables. This can
 result in simpler and more efficient implementations of configuration
 management systems.

Warning

 This document has not been written in order to specify a solution.
 Instead, this document has been written to stimulate (controversial)
 discussions within the NMRG (and elsewhere).

Schoenwaelder [Page 1]

https://datatracker.ietf.org/doc/html/draft-irtf-nmrg-smi-ops-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft Operation-Types for SMIv2 October 1999

 Table of Contents

1 Introduction ... 3
2 Definitions .. 4
3 Mapping of the OPERATION-TYPE macro 5
3.1 Mapping of the ARGUMENTS clause 6
3.2 Mapping of the ERRORS clause 6
3.3 Mapping of the RESULTS clause 6
3.4 Mapping of the CREATES clause 6
3.5 Mapping of the DELETES clause 7
3.6 Mapping of the STATUS clause 7
3.7 Mapping of the DESCRIPTION clause 7
3.8 Mapping of the REFERENCE clause 7
3.9 Mapping of the OPERATION-TYPE value 8
3.10 Usage Examples .. 9
4 Revising Operation Type Definitions 10
5 Open Issues .. 11
6 Security Considerations 12
7 Authors' Address ... 12
8 References ... 12
9 Full Copyright Statement 13

Schoenwaelder [Page 2]

Internet-Draft Operation-Types for SMIv2 October 1999

1. Introduction

 Management information is viewed as a collection of managed objects,
 residing in a virtual information store, termed the Management
 Information Base (MIB). Collections of related objects are defined
 in MIB modules. These modules are written using an adapted subset of
 OSI's Abstract Syntax Notation One, ASN.1 (1988) [ASN1], termed the
 Structure of Management Information (SMI) [RFC2578].

 When designing a MIB module, it is often useful to define operations
 on collections of related objects. Operations go beyond what is
 available with normal read and write access to individual objects:

 - Operations have a defined name which makes it easier to communicate
 complex operations on MIB objects.

 - Operations have well defined input and output parameters with
 ordering constraints which reduces variability and simplifies
 implementations.

 - Operations can raise operation specific errors during their
 invocation.

 - Operations define whether they create or delete rows in conceptual
 tables.

 - The defined signatures of operations allow to implement tools that
 generate APIs and stub procedures for command responder as well as
 command generator applications.

 Operations can be defined on arbitrary collections of objects.
 However, it is expected that operations will normally be defined only
 on closely related objects (e.g. objects contained in a single
 conceptual row) since this simplifies implementation in extensible
 agent environments.

https://datatracker.ietf.org/doc/html/rfc2578

Schoenwaelder [Page 3]

Internet-Draft Operation-Types for SMIv2 October 1999

2. Definitions

SNMPv2-OPS DEFINITIONS ::= BEGIN

IMPORTS ObjectName FROM SNMPv2-SMI;

 OPERATION-TYPE MACRO ::=
 BEGIN
 TYPE NOTATION ::=
 ArgumentsPart
 ErrorsPart
 ResultsPart
 CreatesPart
 DeletesPart
 "STATUS" Status
 "DESCRIPTION" Text
 ReferPart

 VALUE NOTATION ::=
 value(VALUE ObjectName)

 ArgumentsPart ::=
 "ARGUMENTS" "{" Parameters "}"
 | empty

 ErrorsPart ::=
 "ERRORS" "{" NamedNumbers "}" -- INTEGER enumerations
 | empty

 ResultsPart ::=
 "RESULTS" "{" Parameters "}"
 | empty

 CreatesPart ::=
 "CREATES" "{" Rows "}"
 | empty

 DeletesPart ::=
 "DELETES" "{" Rows "}"
 | empty

 Parameters ::=
 Parameter
 | Parameters "," Parameter

 Parameter ::=
 identifier Syntax

 Syntax ::=

 type

Schoenwaelder [Page 4]

Internet-Draft Operation-Types for SMIv2 October 1999

 | "BITS" "{" NamedBits "}"

 NamedBits ::=
 NamedBit
 | NamedBits "," NamedBit

 NamedBit ::=
 identifier "(" number ")" -- number is nonnegative

 NamedNumbers ::=
 NamedNumber
 | NamedNumbers "," NamedNumber

 NamedNumber ::=
 identifier "(" number ")"

 Rows ::=
 Row
 | Rows "," Row
 Row ::=
 value(ObjectName)

 Status ::=
 "current"
 | "deprecated"
 | "obsolete"

 ReferPart ::=
 "REFERENCE" Text
 | empty

 -- a character string as defined in [RFC2578]
 Text ::= value(IA5String)
 END
END

3. Mapping of the OPERATION-TYPE macro

 The OPERATION-TYPE macro is used to define an operation. An operation
 has a defined signature which consists of the operation name, the
 types and names of the arguments, the types and names of the results
 and the operation specific errors that can occur while invoking the
 operation. Operations can create or delete rows in conceptual tables.
 The optional CREATES and DELETES clauses of the OPERATION-TYPE macro
 identify the tables in which rows are created or deleted. It should
 be noted that the expansion of the OPERATION-TYPE macro is something
 which conceptually happens during implementation and not during run-
 time.

https://datatracker.ietf.org/doc/html/rfc2578

Schoenwaelder [Page 5]

Internet-Draft Operation-Types for SMIv2 October 1999

3.1. Mapping of the ARGUMENTS clause

 The ARGUMENTS clause, which need not be present, defines an ordered
 sequence of the types and names that form the arguments of the
 operation. The operation's DESCRIPTION clause must specify the
 information/meaning conveyed by each argument listed in the ARGUMENTS
 clause.

 The name of an argument must consist of one or more letters or
 digits, and its initial character must be a lower-case letter.
 Argument names must be unique across all arguments and results
 defined in a single invocation of an OPERATION-TYPE macro.

3.2. Mapping of the ERRORS clause

 The ERRORS clause, which need not be present, defines the operation
 specific errors that can occur while invoking the operation. Errors
 are represented as integer-valued named-number enumerations. Note
 that although it is recommended that error values start at 1 and be
 numbered contiguously, any valid value for an INTEGER in the range (1
 to 2147483647 decimal) is allowed for an error value and, further,
 error values need not be contiguously assigned. The no error case
 does not need to be enumerated.

 A label for a named-number enumeration within the ERRORS clause must
 consist of one or more letters or digits, up to a maximum of 64
 characters, and the initial character must be a lower-case letter.
 (However, labels longer than 32 characters are not recommended.)
 Note that hyphens are not allowed.

3.3. Mapping of the RESULTS clause

 The RESULTS clause, which need not be present, defines an ordered
 sequence of the types and names that form the results of the
 operation. The operation's DESCRIPTION clause must specify the
 information/meaning conveyed by each result listed in the RESULTS
 clause.

 The name of a result parameter must consist of one or more letters or
 digits, and its initial character must be a lower-case letter. Result
 names must be unique across all arguments and results defined in a
 single invocation of an OPERATION-TYPE macro.

3.4. Mapping of the CREATES clause

 The CREATES clause, which need not be present, defines the conceptual

 table rows that will be created by invoking the operation. Rows are

Schoenwaelder [Page 6]

Internet-Draft Operation-Types for SMIv2 October 1999

 identified by the descriptor which refers to a conceptual row, i.e.
 has a syntax which resolves to a SEQUENCE containing columnar
 objects. The operation's DESCRIPTION clause must specify how an
 implementation determines the instance identifier(s) of the row(s)
 created by the operation.

3.5. Mapping of the DELETES clause

 The DELETES clause, which need not be present, defines the conceptual
 table rows that will be deleted by invoking the operation. Rows are
 identified by the descriptor which refers to a conceptual row, i.e.
 has a syntax which resolves to a SEQUENCE containing columnar
 objects. The operation's DESCRIPTION clause must specify how an
 implementation determines the instance identifier(s) of the row(s)
 deleted by the operation.

3.6. Mapping of the STATUS clause

 The STATUS clause, which must be present, indicates whether this
 definition is current or historic.

 The value "current" means that the definition is current and valid.
 The value "obsolete" means the definition is obsolete and should not
 be implemented and/or can be removed if previously implemented.
 While the value "deprecated" also indicates an obsolete definition,
 it permits new/continued implementation in order to foster
 interoperability with older/existing implementations.

3.7. Mapping of the DESCRIPTION clause

 The DESCRIPTION clause, which must be present, contains a textual
 definition of the operation type which provides all semantic
 definitions necessary for implementation and use, and should embody
 any information which would otherwise be communicated in any ASN.1
 commentary annotations associated with the object.

3.8. Mapping of the REFERENCE clause

 The REFERENCE clause, which need not be present, contains a textual
 cross-reference to some other document, either another information
 module or some other document which provides additional information
 relevant to this definition.

Schoenwaelder [Page 7]

Internet-Draft Operation-Types for SMIv2 October 1999

3.9. Mapping of the OPERATION-TYPE value

 The value of an invocation of the OPERATION-TYPE macro is the name of
 the operation type, which is an OBJECT IDENTIFIER, an
 administratively assigned name.

Schoenwaelder [Page 8]

Internet-Draft Operation-Types for SMIv2 October 1999

3.10. Usage Examples

 The first example shows an operation which creates or allocates a new
 entry in the vacmSecurityToGroupTable [RFC2575].

 vacmCreateSTGEntry OPERATION-TYPE
 ARGUMENTS {
 securityModel SnmpSecurityModel (1..2147483647),
 securityName SnmpAdminString (SIZE(1..32)),
 groupName SnmpAdminString (SIZE(1..32)),
 storageType StorageType {
 volatile(2),
 nonVolatile(3)
 }
 }
 ERRORS { rowAlreadyExists(1) }
 CREATES { vacmSecurityToGroupEntry }
 DESCRIPTION
 "This operation installs and activates a new entry in
 the vacmSecurityToGroupTable. The new entry is identified
 by the securityModel and securityName parameters.

 Implementations that do not support the creation of
 new rows but which have permanent rows that are
 currently notInService are expected to allocate
 and activate one of these notInService rows. The
 value of the storageType parameter is ignored in
 this case.

 The rowAlreadyExists(1) error is returned if the row
 identified by securityModel and securityName already
 exists."
 ::= { vacmOperations 1 }

 The second example shows the definition of an operation that can be
 used to remove a row from the vacmSecurityToGroupTable.

 vacmRemoveSTGEntry OPERATION-TYPE
 ARGUMENTS {
 securityModel SnmpSecurityModel (1..2147483647),
 securityName SnmpAdminString (SIZE(1..32))
 }
 ERRORS { rowDoesNotExist(1), readOnlyStorageType(2) }
 DELETES { vacmSecurityToGroupEntry }
 DESCRIPTION
 "This operation removes an entry identified by the
 securityModel and securityName parameters from the
 vacmSecurityToGroupTable.

https://datatracker.ietf.org/doc/html/rfc2575

 Entries which can not be removed (e.g. the value

Schoenwaelder [Page 9]

Internet-Draft Operation-Types for SMIv2 October 1999

 of vacmSecurityToGroupStorageType is permanent)
 will be disabled by changing the RowStatus column
 vacmSecurityToGroupStatus to notInService.

 The rowDoesNotExist(1) error is returned if the row
 identified by the securityModel and securityName parameters
 does not exist. The readOnlyStorageType(2) error is returned
 if the row cannot be removed or disabled since it is stored
 in ROM."
 ::= { vacmOperations 2 }

 The third example shows the definition of an operation which deletes
 zero or more entries from the vacmSecurityToGroupTable. The argument
 of the operation contains a pattern which is matched against all
 vacmGroupName instances.

 vacmRemoveSTGEntryByGroupName OPERATION-TYPE
 ARGUMENTS {
 pattern SnmpAdminString (SIZE(1..32))
 }
 RESULTS { numberRemoved Unsigned32 }
 DELETES { vacmSecurityToGroupEntry }
 DESCRIPTION
 "This operation removes all entries from the
 vacmSecurityToGroupTable where the vacmGroupName
 matches the pattern parameter. The comparison is an
 exact match where each byte must match exactly (no
 wildcarding).

 Entries that can not be removed (e.g. the value
 of vacmSecurityToGroupStorageType is permanent)
 will be disabled by changing the RowStatus column
 vacmSecurityToGroupStatus to notInService.

 Entries that can not be disabled (e.g. the value
 of vacmSecurityToGroupStorageType is readOnly)
 will be ignored.

 The operation returns the number of entries that
 were actually removed from or disabled in the
 vacmSecurityToGroupTable."
 ::= { vacmOperations 3 }

4. Revising Operation Type Definitions

 An operation definition may be revised in any of the following ways:

 (1) The ERRORS clause may have new enumerations added.

Schoenwaelder [Page 10]

Internet-Draft Operation-Types for SMIv2 October 1999

 (2) A STATUS clause value of "current" may be revised as
 "deprecated" or "obsolete". Similarly, a STATUS clause value of
 "deprecated" may be revised as "obsolete". When making such a
 change, the DESCRIPTION clause should be updated to explain the
 rationale.

 (3) A REFERENCE clause may be added or updated.

 (4) Clarifications and additional information may be included in the
 DESCRIPTION clause.

 (5) Entirely new operations may be defined, named with previously
 unassigned OBJECT IDENTIFIER values.

 Otherwise, if the semantics of any previously defined operation are
 changed (i.e., if a non-editorial change is made to any clause other
 than those specifically allowed above), then the OBJECT IDENTIFIER
 value associated with that operation must also be changed.

 Note that changing the descriptor associated with an existing
 operation is considered a semantic change, as these strings may be
 used in fielded implementations and APIs derived from the operation
 type definition.

5. Open Issues

 1. The current version supports three different ways to define a
 parameter. There are valid reasons for all three alternatives.

 First, there is a need to have input parameters for operations
 that do not exactly match an existing object. It would be a
 burdon to require that all parameters be defined as objects
 since many would end up with a write-only access (which does not
 exist) anyway.

 Second, there is a need to refer to types that are implicitely
 defined as part of an object definition. A good example is
 ifAdminStatus, which is an implicitly defined enumeration
 without a proper name.

 Third, it is necessary to assign names to parameters in order to
 solve problems when a single type of implicit type shows up in a
 arguments or result clause more than once.

 2. It is currently not allowed to return vectors as a result. There
 are several issues to consider in this case. The most important
 reason to allow vectors is that you can have an operation which

 itself returns a sequence of operations to recreate the current

Schoenwaelder [Page 11]

Internet-Draft Operation-Types for SMIv2 October 1999

 state. But the details how this would work are not yet fully
 worked out.

6. Security Considerations

 This document defines the means to define operations on collections
 of MIB objects. The definition of operations has no direct security
 impact on the Internet.

7. Authors' Address

 Juergen Schoenwaelder
 TU Braunschweig
 Bueltenweg 74/75
 38106 Braunschweig
 Germany

 Phone: +49 531 391-3283
 EMail: schoenw@ibr.cs.tu-bs.de

8. References

 [ASN1] Information processing systems - Open Systems
 Interconnection - Specification of Abstract Syntax
 Notation One (ASN.1), International Organization for
 Standardization. International Standard 8824, December,
 1987

 [RFC2575] Wijnen, B., Presuhn, R., and K. McCloghrie, "View-based
 Access Control Model (VACM) for the Simple Network
 Management Protocol (SNMP)", RFC 2575, April 1999

 [RFC2578] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
 Rose, M., and S. Waldbusser, "Structure of Management
 Information Version 2 (SMIv2)", STD 58, RFC 2578, April
 1999

 [RFC2579] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
 Rose, M., and S. Waldbusser, "Textual Conventions for
 SMIv2", STD 58, RFC 2579, April 1999

https://datatracker.ietf.org/doc/html/rfc2575
https://datatracker.ietf.org/doc/html/rfc2578
https://datatracker.ietf.org/doc/html/rfc2579

Schoenwaelder [Page 12]

Internet-Draft Operation-Types for SMIv2 October 1999

9. Full Copyright Statement

 Copyright (C) The Internet Society (1999). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Schoenwaelder [Page 13]

