
Network Working Group F. Strauss
Internet-Draft TU Braunschweig
Expires: June 15, 2004 J. Schoenwaelder
 International University Bremen
 December 16, 2003

SMIng - Next Generation Structure of Management Information
draft-irtf-nmrg-sming-07

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on June 15, 2004.

Copyright Notice

 Copyright (C) The Internet Society (2003). All Rights Reserved.

Abstract

 This memo defines the base SMIng (Structure of Management
 Information, Next Generation) language. SMIng is a data definition
 language that provides a protocol-independent representation for
 management information. Separate RFCs define mappings of SMIng to
 specific management protocols, including SNMP [RFCxxx2].

Strauss & Schoenwaelder Expires June 15, 2004 [Page 1]

https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft SMIng December 2003

Table of Contents

1. Introduction . 4
1.1 The History of SMIng . 5
1.2 Terms of Requirement Levels 5
2. SMIng Data Modelling . 5
2.1 Identifiers . 6
3. Base Types and Derived Types 8
3.1 OctetString . 8
3.2 Pointer . 9
3.3 ObjectIdentifier . 10
3.4 Integer32 . 11
3.5 Integer64 . 11
3.6 Unsigned32 . 12
3.7 Unsigned64 . 13
3.8 Float32 . 14
3.9 Float64 . 15
3.10 Float128 . 16
3.11 Enumeration . 17
3.12 Bits . 18
3.13 Display Formats . 19
4. The SMIng File Structure 21
4.1 Comments . 21
4.2 Textual Data . 21
4.3 Statements and Arguments 22
5. The module Statement . 22
5.1 The module's import Statement 23
5.2 The module's organization Statement 24
5.3 The module's contact Statement 24
5.4 The module's description Statement 24
5.5 The module's reference Statement 24
5.6 The module's revision Statement 24
5.6.1 The revision's date Statement 24
5.6.2 The revision's description Statement 25
5.7 Usage Example . 25
6. The extension Statement 26
6.1 The extension's status Statement 27
6.2 The extension's description Statement 27
6.3 The extension's reference Statement 27
6.4 The extension's abnf Statement 27
6.5 Usage Example . 28
7. The typedef Statement 28
7.1 The typedef's type Statement 28
7.2 The typedef's default Statement 28
7.3 The typedef's format Statement 29
7.4 The typedef's units Statement 29
7.5 The typedef's status Statement 29
7.6 The typedef's description Statement 30

Strauss & Schoenwaelder Expires June 15, 2004 [Page 2]

Internet-Draft SMIng December 2003

7.7 The typedef's reference Statement 30
7.8 Usage Examples . 30
8. The identity Statement 31
8.1 The identity's parent Statement 31
8.2 The identity's status Statement 32
8.3 The identity' description Statement 32
8.4 The identity's reference Statement 32
8.5 Usage Examples . 33
9. The class Statement . 33
9.1 The class' extends Statement 33
9.2 The class' attribute Statement 33
9.2.1 The attribute's type Statement 34
9.2.2 The attribute's access Statement 34
9.2.3 The attribute's default Statement 34
9.2.4 The attribute's format Statement 34
9.2.5 The attribute's units Statement 35
9.2.6 The attribute's status Statement 35
9.2.7 The attribute's description Statement 36
9.2.8 The attribute's reference Statement 36
9.3 The class' unique Statement 36
9.4 The class' event Statement 36
9.4.1 The event's status Statement 37
9.4.2 The event's description Statement 37
9.4.3 The event's reference Statement 37
9.5 The class' status Statement 37
9.6 The class' description Statement 38
9.7 The class's reference Statement 38
9.8 Usage Example . 38
10. Extending a Module . 39
11. SMIng Language Extensibility 41
12. Security Considerations 42
13. Acknowledgements . 42

 Normative References . 43
 Informative References 43
 Authors' Addresses . 44

A. NMRG-SMING Module . 45
B. SMIng ABNF Grammar . 54

 Intellectual Property and Copyright Statements 65

Strauss & Schoenwaelder Expires June 15, 2004 [Page 3]

Internet-Draft SMIng December 2003

1. Introduction

 In traditional management systems management information is viewed as
 a collection of managed objects, residing in a virtual information
 store, termed the Management Information Base (MIB). Collections of
 related objects are defined in MIB modules. These modules are
 written conforming to a specification language, the Structure of
 Management Information (SMI). There are different versions of the
 SMI. The SMI version 1 (SMIv1) is defined in [RFC1155], [RFC1212],
 [RFC1215] and the SMI version 2 (SMIv2) in [RFC2578], [RFC2579],
 [RFC2580]. Both are based on adapted subsets of OSI's Abstract
 Syntax Notation One, ASN.1 [ASN1].

 In a similar fashion policy provisioning information is viewed as a
 collection of Provisioning Classes (PRCs) and Provisioning Instances
 (PRIs) residing in a virtual information store, termed the Policy
 Information Base (PIB). Collections of related Provisioning Classes
 are defined in PIB modules. PIB modules are written using the
 Structure of Policy Provisioning Information (SPPI) [RFC3159] which
 is an adapted subset of SMIv2.

 The SMIv1 and the SMIv2 are bound to the Simple Network Management
 Protocol (SNMP) while the the SPPI is bound to the Common Open Policy
 Service Provisioning (COPS-PR) protocol. Even though the languages
 have common rules, it is hard to use common data definitions with
 both protocols. It is the purpose of this document to define a
 common data definition language, named SMIng, that allows to formally
 specify data models independent of specific protocols and
 applications. The appendix of this document defines a core module
 that supplies common SMIng definitions.

 A companion document contains an SMIng language extension to define
 SNMP specific mappings of SMIng definitions in a way compatible to
 SMIv2 MIBs [RFCxxx2]. Additional language extensions may be added in
 the future, e.g. to define COPS-PR specific mappings of SMIng
 definition in a way compatible to SPPI PIBs.

Section 2 gives an overview of the basic concepts of data modelling
 using SMIng while the subsequent sections present the concepts of the
 SMIng language in detail: the base types, the SMIng file structure,
 and all SMIng core statements.

 The remainder of the document describes extensibility features of the
 language and rules to follow when changes are applied to a module.

Appendix B contains the grammar of SMIng in ABNF [RFC2234] notation.

https://datatracker.ietf.org/doc/html/rfc1155
https://datatracker.ietf.org/doc/html/rfc1212
https://datatracker.ietf.org/doc/html/rfc1215
https://datatracker.ietf.org/doc/html/rfc2578
https://datatracker.ietf.org/doc/html/rfc2579
https://datatracker.ietf.org/doc/html/rfc2580
https://datatracker.ietf.org/doc/html/rfc3159
https://datatracker.ietf.org/doc/html/rfc2234

Strauss & Schoenwaelder Expires June 15, 2004 [Page 4]

Internet-Draft SMIng December 2003

1.1 The History of SMIng

 SMIng started in 1999 as a research project to address some drawbacks
 of SMIv2, the current data modelling language for management
 information bases, primarily its partial dependence on ASN.1 and a
 number of exception rules that turned out to be problematic. In
 2000, the work was handed over to the IRTF Network Management
 Research Group where it was significantly detailed. Since the work
 of the RAP Working Group on COPS-PR and SPPI emerged in 1999/2000,
 SMIng was split into two parts: a core data definition language
 (defined in this document) and protocol mappings to allow the
 application of core defintions through (potentially) multiple
 management protocols. The replacement of SMIv2 and SPPI by a single
 merged data definition language was also a primary goal of the IETF
 SMING Working Group that was chartered at the end of 2000.

 The requirements for a new data definition language were discussed
 several times within the IETF SMING Working Group and changed
 significantly over time [RFC3216], so that another proposal (in
 addition to SMIng), named SMI Data Structures (SMI-DS) was presented
 to the Working Group. In the end neither of the two proposals found
 enough consensus and support and the attempt to merge the existing
 concepts did not succeed, so that the Working Group was closed down
 in April 2003.

 In order to record the work of the NMRG (Network Management Research
 Group) on SMIng, this memo and the accompanying memo on the SNMP
 protocol mapping [RFCxxx2] have been published for informational
 purpose.

 Note that throughout these documents the term "SMIng" refers to the
 specific data modelling language that is specified in this document,
 whereas the term "SMING" refers to the general effort within the IETF
 Working Group to define a new management data definition language as
 an SMIv2 successor and probably an SPPI merger, for which "SMIng" and
 "SMI-DS" were two specific proposals.

1.2 Terms of Requirement Levels

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. SMIng Data Modelling

 SMIng is a language designed to specify management information in a
 structured way readable to computer programs, e.g. MIB compilers, as
 well as to human readers.

https://datatracker.ietf.org/doc/html/rfc3216
https://datatracker.ietf.org/doc/html/rfc2119

Strauss & Schoenwaelder Expires June 15, 2004 [Page 5]

Internet-Draft SMIng December 2003

 Management information is modeled in classes. Classes can be defined
 from scratch or by derivation from a parent class. Derivation from
 multiple parent classes is not possible. The concept of classes is
 described in Section 9.

 Each class has a number of attributes. Each attribute represents an
 atomic piece of information of a base type, a sub-type of a base
 type, or another class. The concept of attributes is described in

Section 9.2.

 The base types of SMIng include signed and unsigned integers, octet
 strings, enumeration types, bitset types, and pointers. Pointers are
 references to class instances, attributes of class instances, or
 arbitrary identities. The SMIng type system is described in Section

3.

 Related class and type definitions are defined in modules. A module
 may refer to definitions from other modules by importing identifiers
 from those modules. Each module may serve one or multiple purposes:

 o the definition of management classes,

 o the definition of events,

 o the definition of derived types,

 o the definition of arbitrary untyped identities serving as values
 of pointers,

 o the definition of SMIng extensions to allow the local module or
 other modules to specify information beyond the scope of the base
 SMIng in a machine readable notation. Some extensions for the
 application of SMIng in the SNMP framework are defined in
 [RFCxxx2],

 o the definition of information beyond the scope of the base SMIng
 statements, based on locally defined or imported SMIng extensions.

 Each module is identified by an upper-case identifier. The names of
 all standard modules must be unique (but different versions of the
 same module should have the same name). Developers of enterprise
 modules are encouraged to choose names for their modules that will
 have a low probability of colliding with standard or other enterprise
 modules, e.g. by using the enterprise or organization name as a
 prefix.

2.1 Identifiers

Strauss & Schoenwaelder Expires June 15, 2004 [Page 6]

Internet-Draft SMIng December 2003

 Identifiers are used to identify different kinds of SMIng items by
 name. Each identifier is valid in a namespace which depends on the
 type of the SMIng item being defined:

 o The global namespace contains all module identifiers.

 o Each module defines a new namespace. A module's namespace may
 contain definitions of extension identifiers, derived type
 identifiers, identity identifiers, and class identifiers.
 Furthermore, a module may import identifiers of these kinds from
 other modules. All these identifiers are also visible within all
 inner namespaces of the module.

 o Each class within a module defines a new namespace. A class'
 namespace may contain definitions of attribute identifiers and
 event identifiers.

 o Each enumeration type and bitset type defines a new namespace of
 its named numbers. These named numbers are visible in each
 expression of a corresponding value, e.g., default values and
 sub-typing restrictions.

 o Extensions may define additional namespaces and have additional
 rules of other namespaces' visibilty.

 Within every namespace each identifier MUST be unique.

 Each identifier starts with an upper-case or lower-case character,
 dependent on the kind of SMIng item, followed by zero or more
 letters, digits and hyphens.

 All identifiers defined in a namespace MUST be unique and SHOULD NOT
 only differ in case. Identifiers MUST NOT exceed 64 characters in
 length. Furthermore, the set of all identifiers defined in all
 modules of a single standardization body or organization SHOULD be
 unique and mnemonic. This promotes a common language for humans to
 use when discussing a module.

 To reference an item that is defined in the local module, its
 definition MUST sequentially precede the reference. Thus, there MUST
 NOT be any forward references.

 To reference an item, that is defined in an external module it MUST
 be imported (Section 5.1). Identifiers that are neither defined nor
 imported MUST NOT be visible in the local module.

 When identifiers from external modules are referenced, there is the
 possibility of name collisions. As such, if different items with the

Strauss & Schoenwaelder Expires June 15, 2004 [Page 7]

Internet-Draft SMIng December 2003

 same identifier are imported or if imported identifiers collide with
 identifiers of locally defined items, then this ambiguity is resolved
 by prefixing those identifiers with the names of their modules and
 the namespace operator `::', i.e. `Module::item'. Of course, this
 notation can be used to refer to identifiers even when there is no
 name collision.

 Note that SMIng core language keywords MUST NOT be imported. See the
 `...Keyword' rules of the SMIng ABNF grammar in Appendix B for a list
 of those keywords.

3. Base Types and Derived Types

 SMIng has a set of base types, similar to those of many programming
 languages, but with some differences due to special requirements from
 the management information model.

 Additional types may be defined, derived from those base types or
 from other derived types. Derived types may use subtyping to
 formally restrict the set of possible values. An initial set of
 commonly used derived types is defined in the SMIng standard module
 NMRG-SMING [RFCxxx2].

 The different base types and their derived types allow different
 kinds of subtyping, namely size restrictions of octet strings
 (Section 3.1), range restrictions of numeric types (Section 3.4
 through Section 3.10), restricted pointer types (Section 3.2), and
 restrictions of the sets of named numbers for enumeration types
 (Section 3.11) and bit sets (Section 3.12).

3.1 OctetString

 The OctetString base type represents arbitrary binary or textual
 data. Although SMIng has a theoretical size limitation of 2^16-1
 (65535) octets for this base type, module designers should realize
 that there may be implementation and interoperability limitations for
 sizes in excess of 255 octets.

 Values of octet strings may be denoted as textual data enclosed in
 double quotes or as arbitrary binary data denoted as a `0x'-prefixed
 hexadecimal value of an even number of at least two hexadecimal
 digits, where each pair of hexadecimal digits represents a single
 octet. Letters in hexadecimal values MAY be upper-case but
 lower-case characters are RECOMMENDED. Textual data may contain any
 number (possibly zero) of any 7-bit displayable ASCII characters,
 including tab characters, spaces and line terminator characters (nl
 or cr & nl). Some characters require a special encoding (see Section

4.2). Textual data may span multiple lines, where each subsequent

Strauss & Schoenwaelder Expires June 15, 2004 [Page 8]

Internet-Draft SMIng December 2003

 line prefix containing only white space up to the column where the
 first line's data starts SHOULD be skipped by parsers for a better
 text formatting.

 When defining a type derived (directly or indirectly) from the
 OctetString base type, the size in octets may be restricted by
 appending a list of size ranges or explicit size values, separated by
 pipe `|' characters and the whole list enclosed in parenthesis. A
 size range consists of a lower bound, two consecutive dots `..' and
 an upper bound. Each value can be given in decimal or `0x'-prefixed
 hexadecimal notation. Hexadecimal numbers must have an even number
 of at least two digits. Size restricting values MUST NOT be
 negative. If multiple values or ranges are given, they all MUST be
 disjoint and MUST be in ascending order. If a size restriction is
 applied to an already size restricted octet string the new
 restriction MUST be equal or more limiting, that is raising the lower
 bounds, reducing the upper bounds, removing explicit size values or
 ranges, or splitting ranges into multiple ranges with intermediate
 gaps.

 Value Examples:

 "This is a multiline
 textual data example." // legal
 "This is "illegally" quoted." // illegal quotes
 "This is \"legally\" quoted." // legally encoded quotes
 "But this is 'ok', as well." // legal apostrophe quoting
 "" // legal zero length
 0x123 // illegal odd hex length
 0x534d496e670a // legal octet string

 Restriction Examples:

 OctetString (0 | 4..255) // legal size spec
 OctetString (4) // legal exact size
 OctetString (-1 | 1) // illegal negative size
 OctetString (5 | 0) // illegal ordering
 OctetString (1 | 1..10) // illegal overlapping

3.2 Pointer

 The Pointer base type represents values that reference class
 instances, attributes of class instances, or arbitrary identities.
 The only values of the Pointer type that can be present in a module
 can refer to identities. They are denoted as identifiers of the
 concerned identities.

Strauss & Schoenwaelder Expires June 15, 2004 [Page 9]

Internet-Draft SMIng December 2003

 When defining a type derived (directly or indirectly) from the
 Pointer base type, the values may be restricted to a specific class,
 attribute or identity and all (directly or indirectly) derived items
 thereof by appending the identifier of the appropriate construct
 enclosed in parenthesis.

 Value Examples:

 null // legal identity name
 snmpUDPDomain // legal identity name

 Restriction Examples:

 Pointer (snmpTransportDomain) // legal restriction

3.3 ObjectIdentifier

 The ObjectIdentifier base type represents administratively assigned
 names for use with SNMP and COPS-PR. This type SHOULD NOT be used in
 protocol independant SMIng modules. It is meant to be used in SNMP
 and COPS-PR mappings of attributes of type Pointer (Section 3.2).

 Values of this type may be denoted as a sequence of numerical
 non-negative sub-identifier values which each MUST NOT exceed 2^32-1
 (4294967295). Sub-identifiers may be denoted decimal or
 `0x'-prefixed hexadecimal. They are separated by single dots and
 without any intermediate white space. Alternatively (and preferred
 in most cases), the first element may be a previously defined or
 imported lower-case identifier, representing a static object
 identifier prefix.

 Although the number of sub-identifiers in SMIng object identifiers is
 not limited, module designers should realize that there may be
 implementations that stick with the SMIv1/v2 limit of 128
 sub-identifiers.

 Object identifier derived types cannot be restricted in any way.

 Value Examples:

 1.3.6.1 // legal numerical oid
 mib-2.1 // legal oid with identifier prefix
 internet.4.1.0x0627.0x01 // legal oid with hex subids
 iso.-1 // illegal negative subid
 iso.org.6 // illegal non-heading identifier
 IF-MIB::ifNumber.0 // legel fully quallified instance oid

Strauss & Schoenwaelder Expires June 15, 2004 [Page 10]

Internet-Draft SMIng December 2003

3.4 Integer32

 The Integer32 base type represents integer values between -2^31
 (-2147483648) and 2^31-1 (2147483647).

 Values of type Integer32 may be denoted as decimal or hexadecimal
 numbers, where only decimal numbers can be negative. Decimal numbers
 other than zero MUST NOT have leading zero digits. Hexadecimal
 numbers are prefixed by `0x' and MUST have an even number of at least
 two hexadecimal digits, where letters MAY be upper-case but
 lower-case characters are RECOMMENDED.

 When defining a type derived (directly or indirectly) from the
 Integer32 base type, the set of possible values may be restricted by
 appending a list of ranges or explicit values, separated by pipe `|'
 characters and the whole list enclosed in parenthesis. A range
 consists of a lower bound, two consecutive dots `..' and an upper
 bound. Each value can be given in decimal or `0x'-prefixed
 hexadecimal notation. Hexadecimal numbers must have an even number
 of at least two digits. If multiple values or ranges are given they
 all MUST be disjoint and MUST be in ascending order. If a value
 restriction is applied to an already restricted type the new
 restriction MUST be equal or more limiting, that is raising the lower
 bounds, reducing the upper bounds, removing explicit values or
 ranges, or splitting ranges into multiple ranges with intermediate
 gaps.

 Value Examples:

 015 // illegal leading zero
 -123 // legal negative value
 - 1 // illegal intermediate space
 0xabc // illegal hexadecimal value length
 -0xff // illegal sign on hex value
 0x80000000 // illegal value, too large
 0xf00f // legal hexadecimal value

 Restriction Examples:

 Integer32 (0 | 5..10) // legal range spec
 Integer32 (5..10 | 2..3) // illegal ordering
 Integer32 (4..8 | 5..10) // illegal overlapping

3.5 Integer64

 The Integer64 base type represents integer values between -2^63
 (-9223372036854775808) and 2^63-1 (9223372036854775807).

Strauss & Schoenwaelder Expires June 15, 2004 [Page 11]

Internet-Draft SMIng December 2003

 Values of type Integer64 may be denoted as decimal or hexadecimal
 numbers, where only decimal numbers can be negative. Decimal numbers
 other than zero MUST NOT have leading zero digits. Hexadecimal
 numbers are prefixed by `0x' and MUST have an even number of
 hexadecimal digits, where letters MAY be upper-case but lower-case
 characters are RECOMMENDED.

 When defining a type derived (directly or indirectly) from the
 Integer64 base type, the set of possible values may be restricted by
 appending a list of ranges or explicit values, separated by pipe `|'
 characters and the whole list enclosed in parenthesis. A range
 consists of a lower bound, two consecutive dots `..' and an upper
 bound. Each value can be given in decimal or `0x'-prefixed
 hexadecimal notation. Hexadecimal numbers must have an even number
 of at least two digits. If multiple values or ranges are given they
 all MUST be disjoint and MUST be in ascending order. If a value
 restriction is applied to an already restricted type the new
 restriction MUST be equal or more limiting, that is raising the lower
 bounds, reducing the upper bounds, removing explicit values or
 ranges, or splitting ranges into multiple ranges with intermediate
 gaps.

 Value Examples:

 015 // illegal leading zero
 -123 // legal negative value
 - 1 // illegal intermediate space
 0xabc // illegal hexadecimal value length
 -0xff // illegal sign on hex value
 0x80000000 // legal value

 Restriction Examples:

 Integer64 (0 | 5..10) // legal range spec
 Integer64 (5..10 | 2..3) // illegal ordering
 Integer64 (4..8 | 5..10) // illegal overlapping

3.6 Unsigned32

 The Unsigned32 base type represents positive integer values between 0
 and 2^32-1 (4294967295).

 Values of type Unsigned32 may be denoted as decimal or hexadecimal
 numbers. Decimal numbers other than zero MUST NOT have leading zero
 digits. Hexadecimal numbers are prefixed by `0x' and MUST have an
 even number of hexadecimal digits, where letters MAY be upper-case
 but lower-case characters are RECOMMENDED.

Strauss & Schoenwaelder Expires June 15, 2004 [Page 12]

Internet-Draft SMIng December 2003

 When defining a type derived (directly or indirectly) from the
 Unsigned32 base type, the set of possible values may be restricted by
 appending a list of ranges or explicit values, separated by pipe `|'
 characters and the whole list enclosed in parenthesis. A range
 consists of a lower bound, two consecutive dots `..' and an upper
 bound. Each value can be given in decimal or `0x'-prefixed
 hexadecimal notation. Hexadecimal numbers must have an even number
 of at least two digits. If multiple values or ranges are given they
 all MUST be disjoint and MUST be in ascending order. If a value
 restriction is applied to an already restricted type the new
 restriction MUST be equal or more limiting, that is raising the lower
 bounds, reducing the upper bounds, removing explicit values or
 ranges, or splitting ranges into multiple ranges with intermediate
 gaps.

 Value Examples:

 015 // illegal leading zero
 -123 // illegal negative value
 0xabc // illegal hexadecimal value length
 0x80000000 // legal hexadecimal value
 0x8080000000 // illegal value, too large

 Restriction Examples:

 Unsigned32 (0 | 5..10) // legal range spec
 Unsigned32 (5..10 | 2..3) // illegal ordering
 Unsigned32 (4..8 | 5..10) // illegal overlapping

3.7 Unsigned64

 The Unsigned64 base type represents positive integer values between 0
 and 2^64-1 (18446744073709551615).

 Values of type Unsigned64 may be denoted as decimal or hexadecimal
 numbers. Decimal numbers other than zero MUST NOT have leading zero
 digits. Hexadecimal numbers are prefixed by `0x' and MUST have an
 even number of hexadecimal digits, where letters MAY be upper-case
 but lower-case characters are RECOMMENDED.

 When defining a type derived (directly or indirectly) from the
 Unsigned64 base type, the set of possible values may be restricted by
 appending a list of ranges or explicit values, separated by pipe `|'
 characters and the whole list enclosed in parenthesis. A range
 consists of a lower bound, two consecutive dots `..' and an upper
 bound. Each value can be given in decimal or `0x'-prefixed
 hexadecimal notation. Hexadecimal numbers must have an even number

Strauss & Schoenwaelder Expires June 15, 2004 [Page 13]

Internet-Draft SMIng December 2003

 of at least two digits. If multiple values or ranges are given they
 all MUST be disjoint and MUST be in ascending order. If a value
 restriction is applied to an already restricted type the new
 restriction MUST be equal or more limiting, that is raising the lower
 bounds, reducing the upper bounds, removing explicit values or
 ranges, or splitting ranges into multiple ranges with intermediate
 gaps.

 Value Examples:

 015 // illegal leading zero
 -123 // illegal negative value
 0xabc // illegal hexadecimal value length
 0x8080000000 // legal hexadecimal value

 Restriction Examples:

 Unsigned64 (1..10000000000) // legal range spec
 Unsigned64 (5..10 | 2..3) // illegal ordering

3.8 Float32

 The Float32 base type represents floating point values of single
 precision as described by [IEEE754].

 Values of type Float32 may be denoted as a decimal fraction with an
 optional exponent as known from many programming languages. See the
 grammar rule `floatValue' of Appendix B for the detailed syntax.
 Special values are `snan' (signaling Not-a-Number), `qnan' (quiet
 Not-a-Number), `neginf' (negative infinity), and `posinf' (positive
 infinity). Note that -0.0 and +0.0 are different floating point
 values. 0.0 is equal to +0.0.

 When defining a type derived (directly or indirectly) from the
 Float32 base type, the set of possible values may be restricted by
 appending a list of ranges or explicit values, separated by pipe `|'
 characters and the whole list enclosed in parenthesis. A range
 consists of a lower bound, two consecutive dots `..' and an upper
 bound. If multiple values or ranges are given they all MUST be
 disjoint and MUST be in ascending order. If a value restriction is
 applied to an already restricted type the new restriction MUST be
 equal or more limiting, that is raising the lower bounds, reducing
 the upper bounds, removing explicit values or ranges, or splitting
 ranges into multiple ranges with intermediate gaps. The special
 values `snan', `qnan', `neginf', and `posinf' must be explicitly
 listed in restrictions if they shall be included, where `snan' and
 `qnan' cannot be used in ranges.

Strauss & Schoenwaelder Expires June 15, 2004 [Page 14]

Internet-Draft SMIng December 2003

 Note that encoding is not subject to this specification. It has to
 be described by protocols that transport objects of type Float32.
 Note also that most floating point encodings disallow the
 representation of many values that can be written as decimal
 fractions as used in SMIng for human readability. Therefore,
 explicit values in floating point type restrictions should be handled
 with care.

 Value Examples:

 00.1 // illegal leading zero
 3.1415 // legal value
 -2.5E+3 // legal negative exponential value

 Restriction Examples:

 Float32 (-1.0..1.0) // legal range spec
 Float32 (1 | 3.3 | 5) // legal, probably unrepresentable 3.3
 Float32 (neginf..-0.0) // legal range spec
 Float32 (-10.0..10.0 | 0) // illegal overlapping

3.9 Float64

 The Float64 base type represents floating point values of double
 precision as described by [IEEE754].

 Values of type Float64 may be denoted as a decimal fraction with an
 optional exponent as known from many programming languages. See the
 grammar rule `floatValue' of Appendix B for the detailed syntax.
 Special values are `snan' (signaling Not-a-Number), `qnan' (quiet
 Not-a-Number), `neginf' (negative infinity), and `posinf' (positive
 infinity). Note that -0.0 and +0.0 are different floating point
 values. 0.0 is equal to +0.0.

 When defining a type derived (directly or indirectly) from the
 Float64 base type, the set of possible values may be restricted by
 appending a list of ranges or explicit values, separated by pipe `|'
 characters and the whole list enclosed in parenthesis. A range
 consists of a lower bound, two consecutive dots `..' and an upper
 bound. If multiple values or ranges are given they all MUST be
 disjoint and MUST be in ascending order. If a value restriction is
 applied to an already restricted type the new restriction MUST be
 equal or more limiting, that is raising the lower bounds, reducing
 the upper bounds, removing explicit values or ranges, or splitting
 ranges into multiple ranges with intermediate gaps. The special
 values `snan', `qnan', `neginf', and `posinf' must be explicitly
 listed in restrictions if they shall be included, where `snan' and

Strauss & Schoenwaelder Expires June 15, 2004 [Page 15]

Internet-Draft SMIng December 2003

 `qnan' cannot be used in ranges.

 Note that encoding is not subject to this specification. It has to
 be described by protocols that transport objects of type Float64.
 Note also that most floating point encodings disallow the
 representation of many values that can be written as decimal
 fractions as used in SMIng for human readability. Therefore,
 explicit values in floating point type restrictions should be handled
 with care.

 Value Examples:

 00.1 // illegal leading zero
 3.1415 // legal value
 -2.5E+3 // legal negative exponential value

 Restriction Examples:

 Float64 (-1.0..1.0) // legal range spec
 Float64 (1 | 3.3 | 5) // legal, probably unrepresentable 3.3
 Float64 (neginf..-0.0) // legal range spec
 Float64 (-10.0..10.0 | 0) // illegal overlapping

3.10 Float128

 The Float128 base type represents floating point values of quadruple
 precision as described by [IEEE754].

 Values of type Float128 may be denoted as a decimal fraction with an
 optional exponent as known from many programming languages. See the
 grammar rule `floatValue' of Appendix B for the detailed syntax.
 Special values are `snan' (signaling Not-a-Number), `qnan' (quiet
 Not-a-Number), `neginf' (negative infinity), and `posinf' (positive
 infinity). Note that -0.0 and +0.0 are different floating point
 values. 0.0 is equal to +0.0.

 When defining a type derived (directly or indirectly) from the
 Float128 base type, the set of possible values may be restricted by
 appending a list of ranges or explicit values, separated by pipe `|'
 characters and the whole list enclosed in parenthesis. A range
 consists of a lower bound, two consecutive dots `..' and an upper
 bound. If multiple values or ranges are given they all MUST be
 disjoint and MUST be in ascending order. If a value restriction is
 applied to an already restricted type the new restriction MUST be
 equal or more limiting, that is raising the lower bounds, reducing
 the upper bounds, removing explicit values or ranges, or splitting
 ranges into multiple ranges with intermediate gaps. The special

Strauss & Schoenwaelder Expires June 15, 2004 [Page 16]

Internet-Draft SMIng December 2003

 values `snan', `qnan', `neginf', and `posinf' must be explicitly
 listed in restrictions if they shall be included, where `snan' and
 `qnan' cannot be used in ranges.

 Note that encoding is not subject to this specification. It has to
 be described by protocols that transport objects of type Float128.
 Note also that most floating point encodings disallow the
 representation of many values that can be written as decimal
 fractions as used in SMIng for human readability. Therefore,
 explicit values in floating point type restrictions should be handled
 with care.

 Value Examples:

 00.1 // illegal leading zero
 3.1415 // legal value
 -2.5E+3 // legal negative exponential value

 Restriction Examples:

 Float128 (-1.0..1.0) // legal range spec
 Float128 (1 | 3.3 | 5) // legal, probably unrepresentable 3.3
 Float128 (neginf..-0.0) // legal range spec
 Float128 (-10.0..10.0 | 0) // illegal overlapping

3.11 Enumeration

 The Enumeration base type represents values from a set of integers in
 the range between -2^31 (-2147483648) and 2^31-1 (2147483647), where
 each value has an assigned name. The list of those named numbers has
 to be comma-separated, enclosed in parenthesis and appended to the
 `Enumeration' keyword. Each named number is denoted by its
 lower-case identifier followed by the assigned integer value, denoted
 as a decimal or `0x'-prefixed hexadecimal number, enclosed in
 parenthesis. Hexadecimal numbers must have an even number of at
 least two digits. Every name and every number in an enumeration type
 MUST be unique. It is RECOMMENDED that values are positive and start
 at 1 and be numbered contiguously. All named numbers MUST be given
 in ascending order.

 Values of enumeration types may be denoted as decimal or
 `0x'-prefixed hexadecimal numbers or preferably as their assigned
 names. Hexadecimal numbers must have an even number of at least two
 digits.

 When types are derived (directly or indirectly) from an enumeration
 type, the set of named numbers may be equal or restricted by removing

Strauss & Schoenwaelder Expires June 15, 2004 [Page 17]

Internet-Draft SMIng December 2003

 one or more named numbers. But no named numbers may be added or
 changed regarding its name, value, or both.

 Type and Value Examples:

 Enumeration (up(1), down(2), testing(3))
 Enumeration (down(2), up(1)) // illegal order

 0 // legal (though not recommended) value
 up // legal value given by name
 2 // legal value given by number

3.12 Bits

 The Bits base type represents bit sets. That is, a Bits value is a
 set of flags identified by small integer numbers starting at 0. Each
 bit number has an assigned name. The list of those named numbers has
 to be comma-separated, enclosed in parenthesis and appended to the
 `Bits' keyword. Each named number is denoted by its lower-case
 identifier followed by the assigned integer value, denoted as a
 decimal or `0x'-prefixed hexadecimal number, enclosed in parenthesis.
 Hexadecimal numbers must have an even number of at least two digits.
 Every name and every number in a bits type MUST be unique. It is
 RECOMMENDED that numbers start at 0 and be numbered contiguously.
 Negative numbers are forbidden. All named numbers MUST be given in
 ascending order.

 Values of bits types may be denoted as a comma-separated list of
 decimal or `0x'-prefixed hexadecimal numbers or preferably their
 assigned names enclosed in parenthesis. Hexadecimal numbers must
 have an even number of at least two digits. There MUST NOT be any
 element (by name or number) listed more than once. Elements MUST be
 listed in ascending order.

 When defining a type derived (directly or indirectly) from a bits
 type, the set of named numbers may be restricted by removing one or
 more named numbers. But no named numbers may be added or changed
 regarding its name, value, or both.

 Type and Value Examples:

 Bits (readable(0), writeable(1), executable(2))
 Bits (writeable(1), readable(0) // illegal order

 () // legal empty value
 (readable, writeable, 2) // legal value
 (0, readable, executable) // illegal, readable(0) appears twice

Strauss & Schoenwaelder Expires June 15, 2004 [Page 18]

Internet-Draft SMIng December 2003

 (writeable, 4) // illegal, element 4 out of range

3.13 Display Formats

 Attribute definitions and type definitions allow the specification of
 a format to be used, when a value of that attribute or an attribute
 of that type is displayed. Format specifications are represented as
 textual data.

 When the attribute or type has an underlying base type of Integer32,
 Integer64, Unsigned32, or Unsigned64, the format consists of an
 integer-format specification, containing two parts. The first part
 is a single character suggesting a display format, either: `x' for
 hexadecimal, or `d' for decimal, or `o' for octal, or `b' for binary.
 For all types, when rendering the value, leading zeros are omitted,
 and for negative values, a minus sign is rendered immediately before
 the digits. The second part is always omitted for `x', `o' and `b',
 and need not be present for `d'. If present, the second part starts
 with a hyphen and is followed by a decimal number, which defines the
 implied decimal point when rendering the value. For example `d-2'
 suggests that a value of 1234 be rendered as `12.34'.

 When the attribute or type has an underlying base type of
 OctetString, the format consists of one or more octet-format
 specifications. Each specification consists of five parts, with each
 part using and removing zero or more of the next octets from the
 value and producing the next zero or more characters to be displayed.
 The octets within the value are processed in order of significance,
 most significant first.

 The five parts of a octet-format specification are:

 1. the (optional) repeat indicator; if present, this part is a `*',
 and indicates that the current octet of the value is to be used
 as the repeat count. The repeat count is an unsigned integer
 (which may be zero) which specifies how many times the remainder
 of this octet-format specification should be successively
 applied. If the repeat indicator is not present, the repeat
 count is one.

 2. the octet length: one or more decimal digits specifying the
 number of octets of the value to be used and formatted by this
 octet-specification. Note that the octet length can be zero. If
 less than this number of octets remain in the value, then the
 lesser number of octets are used.

 3. the display format, either: `x' for hexadecimal, `d' for decimal,

Strauss & Schoenwaelder Expires June 15, 2004 [Page 19]

Internet-Draft SMIng December 2003

 `o' for octal, `a' for ASCII, or `t' for UTF-8 [RFC2279]. If the
 octet length part is greater than one, and the display format
 part refers to a numeric format, then network byte-ordering
 (big-endian encoding) is used interpreting the octets in the
 value. The octets processed by the `t' display format do not
 necessarily form an integral number of UTF-8 characters.
 Trailing octets which do not form a valid UTF-8 encoded character
 are discarded.

 4. the (optional) display separator character; if present, this part
 is a single character which is produced for display after each
 application of this octet-specification; however, this character
 is not produced for display if it would be immediately followed
 by the display of the repeat terminator character for this octet
 specification. This character can be any character other than a
 decimal digit and a `*'.

 5. the (optional) repeat terminator character, which can be present
 only if the display separator character is present and this octet
 specification begins with a repeat indicator; if present, this
 part is a single character which is produced after all the zero
 or more repeated applications (as given by the repeat count) of
 this octet specification. This character can be any character
 other than a decimal digit and a `*'.

 Output of a display separator character or a repeat terminator
 character is suppressed if it would occur as the last character of
 the display.

 If the octets of the value are exhausted before all the octet format
 specification have been used, then the excess specifications are
 ignored. If additional octets remain in the value after interpreting
 all the octet format specifications, then the last octet format
 specification is re-interpreted to process the additional octets,
 until no octets remain in the value.

 Note that for some types no format specifications are defined. For
 derived types and attributes that are based on such types, format
 specifications SHOULD be omitted. Implementations MUST ignore format
 specifications they cannot interpret. Also note that the SMIng
 grammar (Appendix B) does not specify the syntax of format
 specifications.

 Display Format Examples:

https://datatracker.ietf.org/doc/html/rfc2279

Strauss & Schoenwaelder Expires June 15, 2004 [Page 20]

Internet-Draft SMIng December 2003

 Base Type Format Example Value Rendered Value
 ----------- ------------------- ---------------- -----------------
 OctetString 255a "Hello World." Hello World.
 OctetString 1x: "Hello!" 48:65:6c:6c:6f:21
 OctetString 1d:1d:1d.1d,1a1d:1d 0x0d1e0f002d0400 13:30:15.0,-4:0
 OctetString 1d.1d.1d.1d/2d 0x0a0000010400 10.0.0.1/1024
 OctetString *1x:/1x: 0x02aabbccddee aa:bb/cc:dd:ee
 Integer32 d-2 1234 12.34

4. The SMIng File Structure

 The topmost container of SMIng information is a file. An SMIng file
 may contain zero, one or more modules. It is RECOMMENDED to separate
 modules into files named by their modules, where possible. However,
 for dedicated purposes it may be reasonable to collect several
 modules in a single file.

 The top level SMIng construct is the `module' statement (Section 5)
 that defines a single SMIng module. A module contains a sequence of
 sections in an obligatory order with different kinds of definitions.
 Whether these sections contain statements or remain empty mainly
 depends on the purpose of the module.

4.1 Comments

 Comments can be included at any position in an SMIng file, except
 between the characters of a single token like those of a quoted
 string. However, it is RECOMMENDED that all substantive descriptions
 be placed within an appropriate description clause, so that the
 information is available to SMIng parsers.

 Comments commence with a pair of adjacent slashes `//' and end at the
 end of the line.

4.2 Textual Data

 Some statements, namely `organization', `contact', `description',
 `reference', `abnf', `format', and `units', get a textual argument.
 This text, as well as representations of OctetString values, have to
 be enclosed in double quotes. They may contain arbitrary characters
 with the following exceptional encoding rules:

 A backslash character introduces a special character, which depends
 on the character that immediately follows the backslash:

Strauss & Schoenwaelder Expires June 15, 2004 [Page 21]

Internet-Draft SMIng December 2003

 \n new line
 \t a tab character
 \" a double quote
 \\ a single backslash

 If the text contains a line break followed by whitespace which is
 used to indent the text according to the layout in the SMIng file,
 this prefixing whitespace is stripped from the text.

4.3 Statements and Arguments

 SMIng has a very small set of basic grammar rules based on the
 concept of statements. Each statement starts with a lower-case
 keyword identifying the statement followed by a number (possibly
 zero) of arguments. An argument may be quoted text, an identifier, a
 value of any base type, a list of identifiers enclosed in parenthesis
 `()' or a statement block enclosed in curly braces `{ }'. Since
 statement blocks are valid arguments, it is possible to nest
 statement sequences. Each statement is terminated by a semicolon
 `;'.

 The core set of statements may be extended using the SMIng
 `extension' statement. See Section 6 and Section 11 for details.

 At places where a statement is expected, but an unknown lower-case
 word is read, those statements MUST be skipped up to the proper
 semicolon, including nested statement blocks.

5. The module Statement

 The `module' statement is used as a container of all definitions of a
 single SMIng module. It gets two arguments: an upper-case module
 name and a statement block that contains mandatory and optional
 statements and sections of statements in an obligatory order:

Strauss & Schoenwaelder Expires June 15, 2004 [Page 22]

Internet-Draft SMIng December 2003

 module <MODULE-NAME> {

 <optional import statements>
 <organization statement>
 <contact statement>
 <description statement>
 <optional reference statement>
 <at least one revision statement>

 <optional extension statements>

 <optional typedef statements>

 <optional identity statements>

 <optional class statements>

 };

 The optional `import' statements (Section 5.1) are followed by the
 mandatory `organization' (Section 5.2), `contact' (Section 5.3), and
 `description' (Section 5.4) statements and the optional `reference'
 statement (Section 5.5), which in turn are followed by at least one
 mandatory `revision' statement (Section 5.6). The part up to this
 point defines the module's meta information, i.e., information that
 describes the whole module but which does not define any items used
 by applications in the first instance. This part of a module is
 followed by its main definitions, namely SMIng extensions (Section

6), derived types (Section 7), identities (Section 8), and classes
 (Section 9).

 See the `moduleStatement' rule of the SMIng grammar (Appendix B) for
 the formal syntax of the `module' statement.

5.1 The module's import Statement

 The optional module's `import' statement is used to import
 identifiers from external modules into the local module's namespace.
 It gets two arguments: the name of the external module and a
 comma-separated list of one or more identifiers to be imported
 enclosed in parenthesis.

 Multiple `import' statements for the same module but with disjoint
 lists of identifiers are allowed, though NOT RECOMMENDED. Anyhow,
 the same identifier from the same module MUST NOT be imported
 multiple times. To import identifiers with the same name from
 different modules might be necessary and is allowed. To distinguish
 them in the local module, they have to be referred by qualified

Strauss & Schoenwaelder Expires June 15, 2004 [Page 23]

Internet-Draft SMIng December 2003

 names. It is NOT RECOMMENDED to import identifiers not used in the
 local module.

 See the `importStatement' rule of the SMIng grammar (Appendix B) for
 the formal syntax of the `import' statement.

5.2 The module's organization Statement

 The module's `organization' statement, which must be present, gets
 one argument which is used to specify a textual description of the
 organization(s) under whose auspices this module was developed.

5.3 The module's contact Statement

 The module's `contact' statement, which must be present, gets one
 argument which is used to specify the name, postal address, telephone
 number, and electronic mail address of the person to whom technical
 queries concerning this module should be sent.

5.4 The module's description Statement

 The module's `description' statement, which must be present, gets one
 argument which is used to specify a high-level textual description of
 the contents of this module.

5.5 The module's reference Statement

 The module's `reference' statement, which need not be present, gets
 one argument which is used to specify a textual cross-reference to
 some other document, either another module which defines related
 management information, or some other document which provides
 additional information relevant to this module.

5.6 The module's revision Statement

 The module's `revision' statement is repeatedly used to specify the
 editorial revisions of the module, including the initial revision.
 It gets one argument which is a statement block that holds detailed
 information in an obligatory order. A module MUST have at least one
 initial `revision' statement. For every editorial change, a new one
 MUST be added in front of the revisions sequence, so that all
 revisions are in reverse chronological order.

 See the `revisionStatement' rule of the SMIng grammar (Appendix B)
 for the formal syntax of the `revision' statement.

5.6.1 The revision's date Statement

Strauss & Schoenwaelder Expires June 15, 2004 [Page 24]

Internet-Draft SMIng December 2003

 The revision's `date' statement, which must be present, gets one
 argument which is used to specify the date and time of the revision
 in the format `YYYY-MM-DD HH:MM' or `YYYY-MM-DD' which implies the
 time `00:00'. The time is always given in UTC.

 See the `date' rule of the SMIng grammar (Appendix B) for the formal
 syntax of the revision's `date' statement.

5.6.2 The revision's description Statement

 The revision's `description' statement, which must be present, gets
 one argument which is used to specify a high-level textual
 description of the revision.

5.7 Usage Example

 Consider how a skeletal module might be constructed:

Strauss & Schoenwaelder Expires June 15, 2004 [Page 25]

Internet-Draft SMIng December 2003

 module ACME-MIB {

 import NMRG-SMING (DisplayString);

 organization
 "IRTF Network Management Research Group (NMRG)";

 contact "IRTF Network Management Research Group (NMRG)
http://www.ibr.cs.tu-bs.de/projects/nmrg/

 Joe L. User

 ACME, Inc.
 42 Anywhere Drive
 Nowhere, CA 95134
 USA

 Phone: +1 800 555 0815
 EMail: joe@acme.example.com";

 description
 "The module for entities implementing the ACME protocol.

 Copyright (C) The Internet Society (2003).
 All Rights Reserved.
 This version of this MIB module is part of RFC xxx1,
 see the RFC itself for legal notices.";

 revision {
 date "2003-12-16";
 description
 "Initial revision, published as RFC xxx1.";
 };

 // ... further definitions ...

 }; // end of module ACME-MIB.

6. The extension Statement

 The `extension' statement is used to define new statements to be used
 in the local module following this extension statement definition or
 in external modules that may import this extension statement
 definition. The `extension' statement gets two arguments: a
 lower-case extension statement identifier and a statement block that
 holds detailed extension information in an obligatory order.

 Extension statement identifiers SHOULD NOT contain any upper-case

http://www.ibr.cs.tu-bs.de/projects/nmrg/

Strauss & Schoenwaelder Expires June 15, 2004 [Page 26]

Internet-Draft SMIng December 2003

 characters.

 Note that the SMIng extension feature does not allow to formally
 specify the context, argument syntax and semantics of an extension.
 Its only purpose is to declare the existence of an extension and to
 allow a unique reference to an extension. See Section 11 for
 detailed information on extensions and [RFCxxx2] for mappings of
 SMIng definitions to SNMP which is formally defined as an extension.

 See the `extensionStatement' rule of the SMIng grammar (Appendix B)
 for the formal syntax of the `extension' statement.

6.1 The extension's status Statement

 The extension's `status' statement, which must be present, gets one
 argument which is used to specify whether this extension definition
 is current or historic. The value `current' means that the
 definition is current and valid. The value `obsolete' means the
 definition is obsolete and should not be implemented and/or can be
 removed if previously implemented. While the value `deprecated' also
 indicates an obsolete definition, it permits new/continued
 implementation in order to foster interoperability with older/
 existing implementations.

6.2 The extension's description Statement

 The extension's `description' statement, which must be present, gets
 one argument which is used to specify a high-level textual
 description of the extension statement.

 It is RECOMMENDED to include information on the extension's context,
 its semantics, and implementation conditions. See also Section 11.

6.3 The extension's reference Statement

 The extension's `reference' statement, which need not be present,
 gets one argument which is used to specify a textual cross-reference
 to some other document, either another module which defines related
 extension definitions, or some other document which provides
 additional information relevant to this extension.

6.4 The extension's abnf Statement

 The extension's `abnf' statement, which need not be present, gets one
 argument which is used to specify a formal ABNF [RFC2234] grammar
 definition of the extension. This grammar can reference rule names
 from the core SMIng grammar (Appendix B).

https://datatracker.ietf.org/doc/html/rfc2234

Strauss & Schoenwaelder Expires June 15, 2004 [Page 27]

Internet-Draft SMIng December 2003

 Note that the `abnf' statement should contain only pure ABNF and no
 additional text, though comments prefixed by semicolon are allowed
 but should probably be moved to the description statement. Note that
 double quotes within the ABNF grammar have to be represented as `\"'
 according to Section 4.2.

6.5 Usage Example

 extension severity {
 status current;
 description
 "The optional severity extension statement can only
 be applied to the statement block of an SMIng class'
 event definition. If it is present it denotes the
 severity level of the event in a range from 0
 (emergency) to 7 (debug).";
 abnf
 "severityStatement = severityKeyword sep number optsep \";\"
 severityKeyword = \"severity\"";
 };

7. The typedef Statement

 The `typedef' statement is used to define new data types to be used
 in the local module or in external modules. It gets two arguments:
 an upper-case type identifier and a statement block that holds
 detailed type information in an obligatory order.

 Type identifiers SHOULD NOT consist of all upper-case characters and
 SHOULD NOT contain hyphens.

 See the `typedefStatement' rule of the SMIng grammar (Appendix B) for
 the formal syntax of the `typedef' statement.

7.1 The typedef's type Statement

 The typedef's `type' statement, which must be present, gets one
 argument which is used to specify the type from which this type is
 derived. Optionally, type restrictions may be applied to the new
 type by appending subtyping information according to the rules of the
 base type. See Section 3 for SMIng base types and their type
 restrictions.

7.2 The typedef's default Statement

 The typedef's `default' statement, which need not be present, gets
 one argument which is used to specify an acceptable default value for
 attributes of this type. A default value may be used when an

Strauss & Schoenwaelder Expires June 15, 2004 [Page 28]

Internet-Draft SMIng December 2003

 attribute instance is created. That is, the value is a "hint" to
 implementors.

 The value of the `default' statement must, of course, correspond to
 the (probably restricted) type specified in the typedef's `type'
 statement.

 The default value of a type may be overwritten by a default value of
 an attribute of this type.

 Note that for some types, default values make no sense.

7.3 The typedef's format Statement

 The typedef's `format' statement, which need not be present, gets one
 argument which is used to give a hint as to how the value of an
 instance of an attribute of this type might be displayed. See

Section 3.13 for a description of format specifications.

 If no format is specified, it is inherited from the type given in the
 `type' statement. On the other hand, the format specification of a
 type may be semantically refined by a format specification of an
 attribute of this type.

7.4 The typedef's units Statement

 The typedef's `units' statement, which need not be present, gets one
 argument which is used to specify a textual definition of the units
 associated with attributes of this type.

 If no units are specified, they are inherited from the type given in
 the `type' statement. On the other hand, the units specification of
 a type may be semantically refined by a units specification of an
 attribute of this type.

 The units specification has to be appropriate for values displayed
 according to the typedef's format specification, if present. E.g.,
 if the type defines frequency values of type Unsigned64 measured in
 thousands of Hertz, the format specification should be `d-3' and the
 units specification should be `Hertz' or `Hz'. If the format
 specification would be omitted, the units specification should be
 `Milli-Hertz' or `mHz'. Authors of SMIng modules should pay
 attention to keep format and units specifications synced.
 Application implementors MUST NOT implement units specifications
 without implementing format specifications.

7.5 The typedef's status Statement

Strauss & Schoenwaelder Expires June 15, 2004 [Page 29]

Internet-Draft SMIng December 2003

 The typedef's `status' statement, which must be present, gets one
 argument which is used to specify whether this type definition is
 current or historic. The value `current' means that the definition
 is current and valid. The value `obsolete' means the definition is
 obsolete and should not be implemented and/or can be removed if
 previously implemented. While the value `deprecated' also indicates
 an obsolete definition, it permits new/continued implementation in
 order to foster interoperability with older/existing implementations.

 Derived types SHOULD NOT be defined as `current' if their underlying
 type is `deprecated' or `obsolete'. Similarly, they SHOULD NOT be
 defined as `deprecated' if their underlying type is `obsolete'.
 Nevertheless, subsequent revisions of the underlying type cannot be
 avoided, but SHOULD be taken into account in subsequent revisions of
 the local module.

7.6 The typedef's description Statement

 The typedef's `description' statement, which must be present, gets
 one argument which is used to specify a high-level textual
 description of the newly defined type.

 It is RECOMMENDED to include all semantic definitions necessary for
 implementation, and to embody any information which would otherwise
 be communicated in any commentary annotations associated with this
 type definition.

7.7 The typedef's reference Statement

 The typedef's `reference' statement, which need not be present, gets
 one argument which is used to specify a textual cross-reference to
 some other document, either another module which defines related type
 definitions, or some other document which provides additional
 information relevant to this type definition.

7.8 Usage Examples

 typedef RptrOperStatus {
 type Enumeration (other(1), ok(2), rptrFailure(3),
 groupFailure(4), portFailure(5),
 generalFailure(6));
 default other; // undefined by default.
 status deprecated;
 description
 "A type to indicate the operational state
 of a repeater.";
 reference
 "[IEEE 802.3 Mgt], 30.4.1.1.5, aRepeaterHealthState.";

Strauss & Schoenwaelder Expires June 15, 2004 [Page 30]

Internet-Draft SMIng December 2003

 };

 typedef SnmpTransportDomain {
 type Pointer (snmpTransportDomain);
 status current;
 description
 "A pointer to an SNMP transport domain identity.";
 };

 typedef DateAndTime {
 type OctetString (8 | 11);
 format "2d-1d-1d,1d:1d:1d.1d,1a1d:1d";
 status current;
 description
 "A date-time specification.
 ...
 Note that if only local time is known, then timezone
 information (fields 8-10) is not present.";
 reference
 "RFC 2579, SNMPv2-TC.DateAndTime.";
 };

 typedef Frequency {
 type Unsigned64;
 format "d-3"
 units "Hertz";
 status current;
 description
 "A wide-range frequency specification measured
 in thousands of Hertz.";
 };

8. The identity Statement

 The `identity' statement is used to define a new abstract and untyped
 identity. Its only purpose is to denote its name, semantics and
 existence. An identity can be defined either from scratch or derived
 from a parent identity. The `identity' statement gets the following
 two arguments: The first argument is a lower-case identity
 identifier. The second argument is a statement block that holds
 detailed identity information in an obligatory order.

 See the `identityStatement' rule of the SMIng grammar (Appendix B)
 for the formal syntax of the `identity' statement.

8.1 The identity's parent Statement

 The identity's `parent' statement must be present for a derived

https://datatracker.ietf.org/doc/html/rfc2579

Strauss & Schoenwaelder Expires June 15, 2004 [Page 31]

Internet-Draft SMIng December 2003

 identity and must be absent for an identity defined from scratch. It
 gets one argument which is used to specify the parent identity from
 which this identity shall be derived.

8.2 The identity's status Statement

 The identity's `status' statement, which must be present, gets one
 argument which is used to specify whether this identity definition is
 current or historic. The value `current' means that the definition
 is current and valid. The value `obsolete' means the definition is
 obsolete and should not be implemented and/or can be removed if
 previously implemented. While the value `deprecated' also indicates
 an obsolete definition, it permits new/continued implementation in
 order to foster interoperability with older/existing implementations.

 Derived identities SHOULD NOT be defined as `current' if their parent
 identity is `deprecated' or `obsolete'. Similarly, they SHOULD NOT
 be defined as `deprecated' if their parent identity is `obsolete'.
 Nevertheless, subsequent revisions of the parent identity cannot be
 avoided, but SHOULD be taken into account in subsequent revisions of
 the local module.

8.3 The identity' description Statement

 The identity's `description' statement, which must be present, gets
 one argument which is used to specify a high-level textual
 description of the newly defined identity.

 It is RECOMMENDED to include all semantic definitions necessary for
 implementation, and to embody any information which would otherwise
 be communicated in any commentary annotations associated with this
 identity definition.

8.4 The identity's reference Statement

 The identity's `reference' statement, which need not be present, gets
 one argument which is used to specify a textual cross-reference to
 some other document, either another module which defines related
 identity definitions, or some other document which provides
 additional information relevant to this identity definition.

Strauss & Schoenwaelder Expires June 15, 2004 [Page 32]

Internet-Draft SMIng December 2003

8.5 Usage Examples

 identity null {
 status current;
 description
 "An identity used to represent null pointer values.";
 };

 identity snmpTransportDomain {
 status current;
 description
 "A generic SNMP transport domain identity.";
 };

 identity snmpUDPDomain {
 parent snmpTransportDomain;
 status current;
 description
 "The SNMP over UDP transport domain.";
 };

9. The class Statement

 The `class' statement is used to define a new class, that represents
 a container of related attributes and events (Section 9.2, Section

9.4). A class can be defined either from scratch or derived from a
 parent class. A derived class inherits all attributes and events of
 the parent class and can be extended by additional attributes and
 events.

 The `class' statement gets the following two arguments: The first
 argument is an upper-case class identifier. The second argument is a
 statement block that holds detailed class information in an
 obligatory order.

 See the `classStatement' rule of the SMIng grammar (Appendix B) for
 the formal syntax of the `class' statement.

9.1 The class' extends Statement

 The class' `extends' statement must be present for a class derived
 from a parent class and must be absent for a class defined from
 scratch. It gets one argument which is used to specify the parent
 class from which this class shall be derived.

9.2 The class' attribute Statement

 The class' `attribute' statement, which can be present zero, one or

Strauss & Schoenwaelder Expires June 15, 2004 [Page 33]

Internet-Draft SMIng December 2003

 multiple times, gets two arguments: the attribute name and a
 statement block that holds detailed attribute information in an
 obligatory order.

9.2.1 The attribute's type Statement

 The attribute's `type' statement must be present. It gets at least
 one argument which is used to specify the type of the attribute:
 either a type name or a class name. In case of a type name, it may
 be restricted by a second argument according to the restriction rules
 described in Section 3.

9.2.2 The attribute's access Statement

 The attribute's `access' statement must be present for attributes
 typed by a base type or derived type, and must be absent for
 attributes typed by a class. It gets one argument which is used to
 specify whether it makes sense to read and/or write an instance of
 the attribute, or to include its value in an event. This is the
 maximal level of access for the attribute. This maximal level of
 access is independent of any administrative authorization policy.

 The value `readwrite' indicates that read and write access makes
 sense. The value `readonly' indicates that read access makes sense,
 but write access is never possible. The value `eventonly' indicates
 an object which is accessible only via an event.

 These values are ordered, from least to greatest access level:
 `eventonly', `readonly', `readwrite'.

9.2.3 The attribute's default Statement

 The attribute's `default' statement need not be present for
 attributes typed by a base type or derived type, and must be absent
 for attributes typed by a class. It gets one argument which is used
 to specify an acceptable default value for this attribute. A default
 value may be used when an attribute instance is created. That is,
 the value is a "hint" to implementors.

 The value of the `default' statement must, of course, correspond to
 the (probably restricted) type specified in the attribute's `type'
 statement.

 The attribute's default value overrides the default value of the
 underlying type definition if both are present.

9.2.4 The attribute's format Statement

Strauss & Schoenwaelder Expires June 15, 2004 [Page 34]

Internet-Draft SMIng December 2003

 The attribute's `format' statement need not be present for attributes
 typed by a base type or derived type, and must be absent for
 attributes typed by a class. It gets one argument which is used to
 give a hint as to how the value of an instance of this attribute
 might be displayed. See Section 3.13 for a description of format
 specifications.

 The attribute's format specification overrides the format
 specification of the underlying type definition if both are present.

9.2.5 The attribute's units Statement

 The attribute's `units' statement need not be present for attributes
 typed by a base type or derived type, and must be absent for
 attributes typed by a class. It gets one argument which is used to
 specify a textual definition of the units associated with this
 attribute.

 The attribute's units specification overrides the units specification
 of the underlying type definition if both are present.

 The units specification has to be appropriate for values displayed
 according to the attribute's format specification if present. E.g.,
 if the attribute represents a frequency value of type Unsigned64
 measured in thousands of Hertz, the format specification should be
 `d-3' and the units specification should be `Hertz' or `Hz'. If the
 format specification would be omitted the units specification should
 be `Milli-Hertz' or `mHz'. Authors of SMIng modules should pay
 attention to keep format and units specifications of type and
 attribute definitions synced. Application implementors MUST NOT
 implement units specifications without implementing format
 specifications.

9.2.6 The attribute's status Statement

 The attribute's `status' statement must be present. It gets one
 argument which is used to specify whether this attribute definition
 is current or historic. The value `current' means that the
 definition is current and valid. The value `obsolete' means the
 definition is obsolete and should not be implemented and/or can be
 removed if previously implemented. While the value `deprecated' also
 indicates an obsolete definition, it permits new/continued
 implementation in order to foster interoperability with older/
 existing implementations.

 Attributes SHOULD NOT be defined as `current' if their type or their
 containing class is `deprecated' or `obsolete'. Similarly, they
 SHOULD NOT be defined as `deprecated' if their type or their

Strauss & Schoenwaelder Expires June 15, 2004 [Page 35]

Internet-Draft SMIng December 2003

 containting class is `obsolete'. Nevertheless, subsequent revisions
 of used type definition cannot be avoided, but SHOULD be taken into
 account in subsequent revisions of the local module.

9.2.7 The attribute's description Statement

 The attribute's `description' statement, which must be present, gets
 one argument which is used to specify a high-level textual
 description of this attribute.

 It is RECOMMENDED to include all semantic definitions necessary for
 the implementation of this attribute.

9.2.8 The attribute's reference Statement

 The attribute's `reference' statement, which need not be present,
 gets one argument which is used to specify a textual cross-reference
 to some other document, either another module which defines related
 attribute definitions, or some other document which provides
 additional information relevant to this attribute definition.

9.3 The class' unique Statement

 The class' `unique' statement, which need not be present, gets one
 argument that specifies a comma-separated list of attributes of this
 class, enclosed in parenthesis. If present, this list of attributes
 makes up a unique identification of all possible instances of this
 class. It can be used as a unique key in underlying protocols.

 If the list is empty the class should be regarded as a scalar class
 with only a single instance.

 If the `unique' statement is not present the class is not meant to be
 instantiated directly, but just to be contained in other classes or
 to be the parent class of other refining classes.

 If present, the attribute list MUST NOT contain any attribute more
 than once and the attributes should be ordered where appropriate so
 that the attributes that are most significant in most situations
 appear first.

9.4 The class' event Statement

 The class' `event' statement is used to define an event related to an
 instance of this class that can occur asynchronously. It gets two
 arguments: a lower-case event identifier and a statement block that
 holds detailed information in an obligatory order.

Strauss & Schoenwaelder Expires June 15, 2004 [Page 36]

Internet-Draft SMIng December 2003

 See the `eventStatement' rule of the SMIng grammar (Appendix B) for
 the formal syntax of the `event' statement.

9.4.1 The event's status Statement

 The event's `status' statement, which must be present, gets one
 argument which is used to specify whether this event definition is
 current or historic. The value `current' means that the definition
 is current and valid. The value `obsolete' means the definition is
 obsolete and should not be implemented and/or can be removed if
 previously implemented. While the value `deprecated' also indicates
 an obsolete definition, it permits new/continued implementation in
 order to foster interoperability with older/existing implementations.

9.4.2 The event's description Statement

 The event's `description' statement, which must be present, gets one
 argument which is used to specify a high-level textual description of
 this event.

 It is RECOMMENDED to include all semantic definitions necessary for
 the implementation of this event. In particular, it SHOULD be
 documented which instance of the class is associated with an event of
 this type.

9.4.3 The event's reference Statement

 The event's `reference' statement, which need not be present, gets
 one argument which is used to specify a textual cross-reference to
 some other document, either another module which defines related
 event definitions, or some other document which provides additional
 information relevant to this event definition.

9.5 The class' status Statement

 The class' `status' statement, which must be present, gets one
 argument which is used to specify whether this class definition is
 current or historic. The value `current' means that the definition
 is current and valid. The value `obsolete' means the definition is
 obsolete and should not be implemented and/or can be removed if
 previously implemented. While the value `deprecated' also indicates
 an obsolete definition, it permits new/continued implementation in
 order to foster interoperability with older/existing implementations.

 Derived classes SHOULD NOT be defined as `current' if their parent
 class is `deprecated' or `obsolete'. Similarly, they SHOULD NOT be
 defined as `deprecated' if their parent class is `obsolete'.
 Nevertheless, subsequent revisions of the parent class cannot be

Strauss & Schoenwaelder Expires June 15, 2004 [Page 37]

Internet-Draft SMIng December 2003

 avoided, but SHOULD be taken into account in subsequent revisions of
 the local module.

9.6 The class' description Statement

 The class' `description' statement, which must be present, gets one
 argument which is used to specify a high-level textual description of
 the newly defined class.

 It is RECOMMENDED to include all semantic definitions necessary for
 implementation, and to embody any information which would otherwise
 be communicated in any commentary annotations associated with this
 class definition.

9.7 The class's reference Statement

 The class's `reference' statement, which need not be present, gets
 one argument which is used to specify a textual cross-reference to
 some other document, either another module which defines related
 class definitions, or some other document which provides additional
 information relevant to this class definition.

9.8 Usage Example

 Consider how an event might be described that signals a status change
 of an interface:

 class Interface {
 // ...
 attribute speed {
 type Gauge32;
 access readonly;
 units "bps";
 status current;
 description
 "An estimate of the interface's current bandwidth
 in bits per second.";
 };
 // ...
 attribute adminStatus {
 type AdminStatus;
 access readwrite;
 status current;
 description
 "The desired state of the interface.";
 };
 attribute operStatus {
 type OperStatus;

Strauss & Schoenwaelder Expires June 15, 2004 [Page 38]

Internet-Draft SMIng December 2003

 access readonly;
 status current;
 description
 "The current operational state of the interface.";
 };

 event linkDown {
 status current;
 description
 "A linkDown event signifies that the ifOperStatus
 attribute for this interface instance is about to
 enter the down state from some other state (but not
 from the notPresent state). This other state is
 indicated by the included value of ifOperStatus.";
 };

 status current;
 description
 "A physical or logical network interface.";

 };

10. Extending a Module

 As experience is gained with a module, it may be desirable to revise
 that module. However, changes are not allowed if they have any
 potential to cause interoperability problems between an
 implementation using an original specification and an implementation
 using an updated specification(s).

 For any change, some statements near the top of the module MUST be
 updated to include information about the revision: specifically, a
 new `revision' statement (Section 5.6) must be included in front of
 the `revision' statements. Furthermore, any necessary changes MUST
 be applied to other statements, including the `organization' and
 `contact' statements (Section 5.2, Section 5.3).

 Note that any definition contained in a module is available to be
 imported by any other module, and is referenced in an `import'
 statement via the module name. Thus, a module name MUST NOT be
 changed. Specifically, the module name (e.g., `ACME-MIB' in the
 example of Section 5.7) MUST NOT be changed when revising a module
 (except to correct typographical errors), and definitions MUST NOT be
 moved from one module to another.

 Also note, that obsolete definitions MUST NOT be removed from modules
 since their identifiers may still be referenced by other modules.

Strauss & Schoenwaelder Expires June 15, 2004 [Page 39]

Internet-Draft SMIng December 2003

 A definition may be revised in any of the following ways:

 o In `typedef' statement blocks, a `type' statement containing an
 `Enumeration' or `Bits' type may have new named numbers added.

 o In `typedef' statement blocks, the value of a `type' statement may
 be replaced by another type if the new type is derived (directly
 or indirectly) from the same base type, has the same set of
 values, and has identical semantics.

 o In `attribute' statements where the `type' sub-statement specifies
 a class, the class may be replaced by another class if the new
 class is derived (directly or indirectly) from the base class and
 both classes have identical semantics.

 o In `attribute' statements where the `type' sub-statement specifies
 a base type, a defined type, or an implicitly derived type (i.e.
 not a class), that type may be replaced by another type if the new
 type is derived (directly or indirectly) from the same base type,
 has the same set of values, and has identical semantics.

 o In any statement block, a `status' statement value of `current'
 may be revised as `deprecated' or `obsolete'. Similarly, a
 `status' statement value of `deprecated' may be revised as
 `obsolete'. When making such a change, the `description'
 statement SHOULD be updated to explain the rationale.

 o In `typedef' and `attribute' statement blocks, a `default'
 statement may be added or updated.

 o In `typedef' and `attribute' statement blocks, a `units' statement
 may be added.

 o A class may be augmented by adding new attributes.

 o In any statement block, clarifications and additional information
 may be included in the `description' statement.

 o In any statement block, a `reference' statement may be added or
 updated.

 o Entirely new extensions, types, identities, and classes may be
 defined, using previously unassigned identifiers.

 Otherwise, if the semantics of any previous definition are changed
 (i.e., if a non-editorial change is made to any definition other than
 those specifically allowed above), then this MUST be achieved by a
 new definition with a new identifier. In case of a class where the

Strauss & Schoenwaelder Expires June 15, 2004 [Page 40]

Internet-Draft SMIng December 2003

 semantics of any attributes are changed, the new class can be defined
 by derivation from the old class and refining the changed attributes.

 Note that changing the identifier associated with an existing
 definition is considered a semantic change, as these strings may be
 used in an `import' statement.

11. SMIng Language Extensibility

 While the core SMIng language has a well defined set of statements
 (Section 5 through Section 9.4) that are used to specify those
 aspects of management information commonly regarded as necessary
 without management protocol specific information, there may be
 further information, people wish to express. To describe additional
 information informally in description statements has the disadvantage
 that this information cannot be parsed by any program.

 SMIng allows modules to include statements that are unknown to a
 parser but fulfill some core grammar rules (Section 4.3).
 Furthermore, additional statements may be defined by the `extension'
 statement (Section 6). Extensions can be used in the local module or
 in other modules, that import the extension. This has some
 advantages:

 o A parser can differentiate between statements known as extensions
 and unknown statements. This enables the parser to complain about
 unknown statements, e.g. due to typos.

 o If an extension's definition contains a formal ABNF grammar
 definition and a parser is able to interpret this ABNF definition,
 this enables the parser also to complain about wrong usage of an
 extension.

 o Since, there might be some common need for extensions, there is a
 relatively high probability of extension name collisions
 originated by different organizations, as long as there is no
 standardized extension for that purpose. The requirement to
 explicitly import extension statements allows to distinguish those
 extensions.

 o The supported extensions of an SMIng implementation, e.g. an
 SMIng module compiler, can be clearly expressed.

 The only formal effect of an extension statement definition is to
 declare its existence and its status, and optionally its ABNF
 grammar. All additional aspects SHOULD be described in the
 `description' statement:

Strauss & Schoenwaelder Expires June 15, 2004 [Page 41]

Internet-Draft SMIng December 2003

 o The detailed semantics of the new statement SHOULD be described.

 o The contexts in which the new statement can be used, SHOULD be
 described, e.g., a new statement may be designed to be used only
 in the statement block of a module, but not in other nested
 statement blocks. Others may be applicable in multiple contexts.
 In addition, the point in the sequence of an obligatory order of
 other statements, where the new statement may be inserted, might
 be prescribed.

 o The circumstances that make the new statement mandatory or
 optional SHOULD be described.

 o The syntax of the new statement SHOULD at least be described
 informally, if not supplied formally in an `abnf' statement.

 o It might be reasonable to give some suggestions under which
 conditions the implementation of the new statement is adequate and
 how it could be integrated into existent implementations.

 Some possible extension applications are:

 o The formal mapping of SMIng definitions into the SNMP [RFCxxx2]
 framework is defined as an SMIng extension. Other mappings may
 follow in the future.

 o Inlined annotations to definitions. E.g., a vendor may wish to
 describe additional information to class and attribute definitions
 in private modules. An example are severity levels of events in
 the statement block of an `event' statement.

 o Arbitrary annotations to external definitions. E.g., a vendor may
 wish to describe additional information to definitions in a
 "standard" module. This allows a vendor to implement "standard"
 modules as well as additional private features, without redundant
 module definitions, but on top of "standard" module definitions.

12. Security Considerations

 This document defines a language with which to write and read
 descriptions of management information. The language itself has no
 security impact on the Internet.

13. Acknowledgements

 Since SMIng started as a close successor of SMIv2, some paragraphs
 and phrases are directly taken from the SMIv2 specifications

Strauss & Schoenwaelder Expires June 15, 2004 [Page 42]

Internet-Draft SMIng December 2003

 [RFC2578], [RFC2579], [RFC2580] written by Jeff Case, Keith
 McCloghrie, David Perkins, Marshall T. Rose, Juergen Schoenwaelder,
 and Steven L. Waldbusser.

 The authors would like to thank all participants of the 7th NMRG
 meeting held in Schloss Kleinheubach from 6-8 September 2000, which
 was a major step towards the current status of this memo, namely
 Heiko Dassow, David Durham, Keith McCloghrie, and Bert Wijnen.

 Furthmore, several discussions within the SMING Working Group
 reflected experience with SMIv2 and influenced this specification at
 some points.

Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", RFC 2119, BCP 14, March 1997.

 [RFC2234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", RFC 2234, November 1997.

Informative References

 [RFC3216] Elliott, C., Harrington, D., Jason, J., Schoenwaelder, J.,
 Strauss, F. and W. Weiss, "SMIng Objectives", RFC 3216,
 December 2001.

 [RFCxxx2] Strauss, F. and J. Schoenwaelder, "SMIng Extension for
 SNMP Mappings", draft-irtf-nmrg-sming-snmp-05.txt,
 December 2003.

 [RFC2578] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
 Rose, M. and S. Waldbusser, "Structure of Management
 Information Version 2 (SMIv2)", RFC 2578, STD 58, April
 1999.

 [RFC2579] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
 Rose, M. and S. Waldbusser, "Textual Conventions for
 SMIv2", RFC 2579, STD 59, April 1999.

 [RFC2580] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
 Rose, M. and S. Waldbusser, "Conformance Statements for
 SMIv2", RFC 2580, STD 60, April 1999.

 [RFC3159] McCloghrie, K., Fine, M., Seligson, J., Chan, K., Hahn,
 S., Sahita, R., Smith, A. and F. Reichmeyer, "Structure of
 Policy Provisioning Information (SPPI)", RFC 3159, August
 2001.

https://datatracker.ietf.org/doc/html/rfc2578
https://datatracker.ietf.org/doc/html/rfc2579
https://datatracker.ietf.org/doc/html/rfc2580
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2234
https://datatracker.ietf.org/doc/html/rfc3216
https://datatracker.ietf.org/doc/html/draft-irtf-nmrg-sming-snmp-05.txt
https://datatracker.ietf.org/doc/html/rfc2578
https://datatracker.ietf.org/doc/html/rfc2579
https://datatracker.ietf.org/doc/html/rfc2580
https://datatracker.ietf.org/doc/html/rfc3159

Strauss & Schoenwaelder Expires June 15, 2004 [Page 43]

Internet-Draft SMIng December 2003

 [RFC1155] Rose, M. and K. McCloghrie, "Structure and Identification
 of Management Information for TCP/IP-based Internets", RFC

1155, STD 16, May 1990.

 [RFC1212] Rose, M. and K. McCloghrie, "Concise MIB Definitions", RFC
1212, STD 16, March 1991.

 [RFC1215] Rose, M., "A Convention for Defining Traps for use with
 the SNMP", RFC 1215, March 1991.

 [ASN1] International Organization for Standardization,
 "Specification of Abstract Syntax Notation One (ASN.1)",
 International Standard 8824, December 1987.

 [RFC3411] Harrington, D., Presuhn, R. and B. Wijnen, "An
 Architecture for Describing Simple Network Management
 Protocol (SNMP) Management Frameworks", RFC 3411, STD 62,
 December 2002.

 [IEEE754] Institute of Electrical and Electronics Engineers, "IEEE
 Standard for Binary Floating-Point Arithmetic", ANSI/IEEE
 Standard 754-1985, August 1985.

 [RFC2279] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", RFC 2279, January 1998.

Authors' Addresses

 Frank Strauss
 TU Braunschweig
 Muehlenpfordtstrasse 23
 38106 Braunschweig
 Germany

 Phone: +49 531 391 3266
 EMail: strauss@ibr.cs.tu-bs.de
 URI: http://www.ibr.cs.tu-bs.de/

 Juergen Schoenwaelder
 International University Bremen
 P.O. Box 750 561
 28725 Bremen
 Germany

 Phone: +49 421 200 3587
 EMail: j.schoenwaelder@iu-bremen.de

https://datatracker.ietf.org/doc/html/rfc1155
https://datatracker.ietf.org/doc/html/rfc1155
https://datatracker.ietf.org/doc/html/rfc1212
https://datatracker.ietf.org/doc/html/rfc1212
https://datatracker.ietf.org/doc/html/rfc1215
https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc2279
http://www.ibr.cs.tu-bs.de/

Strauss & Schoenwaelder Expires June 15, 2004 [Page 44]

Internet-Draft SMIng December 2003

 URI: http://www.eecs.iu-bremen.de/

Appendix A. NMRG-SMING Module

 Most SMIng modules are built on top of the definitions of some
 commonly used derived types. The definitions of these derived types
 are contained in the NMRG-SMING module which is defined below. Its
 derived types are generally applicable for modelling all areas of
 management information. Among these derived types are counter types,
 string types and date and time related types.

 This module is derived from RFC 2578 [RFC2578] and RFC 2579
 [RFC2579].

 module NMRG-SMING {

 organization "IRTF Network Management Research Group (NMRG)";

 contact "IRTF Network Management Research Group (NMRG)
http://www.ibr.cs.tu-bs.de/projects/nmrg/

 Frank Strauss
 TU Braunschweig
 Muehlenpfordtstrasse 23
 38106 Braunschweig
 Germany
 Phone: +49 531 391 3266
 EMail: strauss@ibr.cs.tu-bs.de

 Juergen Schoenwaelder
 International University Bremen
 P.O. Box 750 561
 28725 Bremen
 Germany
 Phone: +49 421 200 3587
 EMail: j.schoenwaelder@iu-bremen.de";

 description "Core type definitions for SMIng. Several
 type definitions are SMIng versions of
 similar SMIv2 or SPPI definitions.

 Copyright (C) The Internet Society (2003).
 All Rights Reserved.
 This version of this module is part of
 RFC xxx1, see the RFC itself for full
 legal notices.";

 revision {

http://www.eecs.iu-bremen.de/
https://datatracker.ietf.org/doc/html/rfc2578
https://datatracker.ietf.org/doc/html/rfc2578
https://datatracker.ietf.org/doc/html/rfc2579
https://datatracker.ietf.org/doc/html/rfc2579
http://www.ibr.cs.tu-bs.de/projects/nmrg/

Strauss & Schoenwaelder Expires June 15, 2004 [Page 45]

Internet-Draft SMIng December 2003

 date "2003-12-16";
 description "Initial revision, published as RFC XXXX.";
 };

 typedef Gauge32 {
 type Unsigned32;
 description
 "The Gauge32 type represents a non-negative integer,
 which may increase or decrease, but shall never
 exceed a maximum value, nor fall below a minimum
 value. The maximum value can not be greater than
 2^32-1 (4294967295 decimal), and the minimum value
 can not be smaller than 0. The value of a Gauge32
 has its maximum value whenever the information
 being modeled is greater than or equal to its
 maximum value, and has its minimum value whenever
 the information being modeled is smaller than or
 equal to its minimum value. If the information
 being modeled subsequently decreases below
 (increases above) the maximum (minimum) value, the
 Gauge32 also decreases (increases).";
 reference
 "RFC 2578, Sections 2. and 7.1.7.";
 };

 typedef Counter32 {
 type Unsigned32;
 description
 "The Counter32 type represents a non-negative integer
 which monotonically increases until it reaches a
 maximum value of 2^32-1 (4294967295 decimal), when it
 wraps around and starts increasing again from zero.

 Counters have no defined `initial' value, and thus, a
 single value of a Counter has (in general) no information
 content. Discontinuities in the monotonically increasing
 value normally occur at re-initialization of the
 management system, and at other times as specified in the
 description of an attribute using this type. If such
 other times can occur, for example, the creation of a
 class instance that contains an attribute of type
 Counter32 at times other than re-initialization, then a
 corresponding attribute should be defined, with an
 appropriate type, to indicate the last discontinuity.
 Examples of appropriate types include: TimeStamp32,
 TimeStamp64, DateAndTime, TimeTicks32 or TimeTicks64
 (other types defined in this module).

https://datatracker.ietf.org/doc/html/rfc2578

Strauss & Schoenwaelder Expires June 15, 2004 [Page 46]

Internet-Draft SMIng December 2003

 The value of the access statement for attributes with
 a type value of Counter32 should be either `readonly'
 or `eventonly'.

 A default statement should not be used for attributes
 with a type value of Counter32.";
 reference
 "RFC 2578, Sections 2. and 7.1.6.";
 };

 typedef Gauge64 {
 type Unsigned64;
 description
 "The Gauge64 type represents a non-negative integer,
 which may increase or decrease, but shall never
 exceed a maximum value, nor fall below a minimum
 value. The maximum value can not be greater than
 2^64-1 (18446744073709551615), and the minimum value
 can not be smaller than 0. The value of a Gauge64
 has its maximum value whenever the information
 being modeled is greater than or equal to its
 maximum value, and has its minimum value whenever
 the information being modeled is smaller than or
 equal to its minimum value. If the information
 being modeled subsequently decreases below
 (increases above) the maximum (minimum) value, the
 Gauge64 also decreases (increases).";
 };

 typedef Counter64 {
 type Unsigned64;
 description
 "The Counter64 type represents a non-negative integer
 which monotonically increases until it reaches a
 maximum value of 2^64-1 (18446744073709551615), when
 it wraps around and starts increasing again from zero.

 Counters have no defined `initial' value, and thus, a
 single value of a Counter has (in general) no
 information content. Discontinuities in the
 monotonically increasing value normally occur at
 re-initialization of the management system, and at
 other times as specified in the description of an
 attribute using this type. If such other times can
 occur, for example, the creation of a class
 instance that contains an attribute of type Counter32
 at times other than re-initialization, then
 a corresponding attribute should be defined, with an

https://datatracker.ietf.org/doc/html/rfc2578

Strauss & Schoenwaelder Expires June 15, 2004 [Page 47]

Internet-Draft SMIng December 2003

 appropriate type, to indicate the last discontinuity.
 Examples of appropriate types include: TimeStamp32,
 TimeStamp64, DateAndTime, TimeTicks32 or TimeTicks64
 (other types defined in this module).

 The value of the access statement for attributes with
 a type value of Counter64 should be either `readonly'
 or `eventonly'.

 A default statement should not be used for attributes
 with a type value of Counter64.";
 reference
 "RFC 2578, Sections 2. and 7.1.10.";
 };

 typedef Opaque {
 type OctetString;
 status obsolete;
 description
 "******* THIS TYPE DEFINITION IS OBSOLETE *******

 The Opaque type is provided solely for
 backward-compatibility, and shall not be used for
 newly-defined attributes and derived types.

 The Opaque type supports the capability to pass
 arbitrary ASN.1 syntax. A value is encoded using
 the ASN.1 Basic Encoding Rules into a string of
 octets. This, in turn, is encoded as an
 OctetString, in effect `double-wrapping' the
 original ASN.1 value.

 Note that a conforming implementation need only be
 able to accept and recognize opaquely-encoded data.
 It need not be able to unwrap the data and then
 interpret its contents.

 A requirement on `standard' modules is that no
 attribute may have a type value of Opaque and no
 type may be derived from the Opaque type.";
 reference
 "RFC 2578, Sections 2. and 7.1.9.";
 };

 typedef IpAddress {
 type OctetString (4);
 status deprecated;
 description

https://datatracker.ietf.org/doc/html/rfc2578
https://datatracker.ietf.org/doc/html/rfc2578

Strauss & Schoenwaelder Expires June 15, 2004 [Page 48]

Internet-Draft SMIng December 2003

 "******* THIS TYPE DEFINITION IS DEPRECATED *******

 The IpAddress type represents a 32-bit Internet
 IPv4 address. It is represented as an OctetString
 of length 4, in network byte-order.

 Note that the IpAddress type is present for
 historical reasons.";
 reference
 "RFC 2578, Sections 2. and 7.1.5.";
 };

 typedef TimeTicks32 {
 type Unsigned32;
 description
 "The TimeTicks32 type represents a non-negative integer
 which represents the time, modulo 2^32 (4294967296
 decimal), in hundredths of a second between two epochs.
 When attributes are defined which use this type, the
 description of the attribute identifies both of the
 reference epochs.

 For example, the TimeStamp32 type (defined in this
 module) is based on the TimeTicks32 type.";
 reference
 "RFC 2578, Sections 2. and 7.1.8.";
 };

 typedef TimeTicks64 {
 type Unsigned64;
 description
 "The TimeTicks64 type represents a non-negative integer
 which represents the time, modulo 2^64
 (18446744073709551616 decimal), in hundredths of a second
 between two epochs. When attributes are defined which use
 this type, the description of the attribute identifies
 both of the reference epochs.

 For example, the TimeStamp64 type (defined in this
 module) is based on the TimeTicks64 type.";
 };

 typedef TimeStamp32 {
 type TimeTicks32;
 description
 "The value of an associated TimeTicks32 attribute at
 which a specific occurrence happened. The specific
 occurrence must be defined in the description of any

https://datatracker.ietf.org/doc/html/rfc2578
https://datatracker.ietf.org/doc/html/rfc2578

Strauss & Schoenwaelder Expires June 15, 2004 [Page 49]

Internet-Draft SMIng December 2003

 attribute defined using this type. When the specific
 occurrence occurred prior to the last time the
 associated TimeTicks32 attribute was zero, then the
 TimeStamp32 value is zero. Note that this requires all
 TimeStamp32 values to be reset to zero when the value of
 the associated TimeTicks32 attribute reaches 497+ days
 and wraps around to zero.

 The associated TimeTicks32 attribute should be specified
 in the description of any attribute using this type.
 If no TimeTicks32 attribute has been specified, the
 default scalar attribute sysUpTime is used.";
 reference
 "RFC 2579, Section 2.";
 };

 typedef TimeStamp64 {
 type TimeTicks64;
 description
 "The value of an associated TimeTicks64 attribute at which
 a specific occurrence happened. The specific occurrence
 must be defined in the description of any attribute
 defined using this type. When the specific occurrence
 occurred prior to the last time the associated TimeTicks64
 attribute was zero, then the TimeStamp64 value is zero.
 The associated TimeTicks64 attribute must be specified in
 the description of any attribute using this
 type. TimeTicks32 attributes must not be used as
 associated attributes.";
 };

 typedef TimeInterval32 {
 type Integer32 (0..2147483647);
 description
 "A period of time, measured in units of 0.01 seconds.

 The TimeInterval32 type uses Integer32 rather than
 Unsigned32 for compatibility with RFC 2579.";
 reference
 "RFC 2579, Section 2.";
 };

 typedef TimeInterval64 {
 type Integer64;
 description
 "A period of time, measured in units of 0.01 seconds.
 Note that negative values are allowed.";
 };

https://datatracker.ietf.org/doc/html/rfc2579#section-2
https://datatracker.ietf.org/doc/html/rfc2579
https://datatracker.ietf.org/doc/html/rfc2579#section-2

Strauss & Schoenwaelder Expires June 15, 2004 [Page 50]

Internet-Draft SMIng December 2003

 typedef DateAndTime {
 type OctetString (8 | 11);
 default 0x0000000000000000000000;
 format "2d-1d-1d,1d:1d:1d.1d,1a1d:1d";
 description
 "A date-time specification.

 field octets contents range
 ----- ------ -------- -----

1 1-2 year* 0..65535
2 3 month 1..12 | 0
3 4 day 1..31 | 0
4 5 hour 0..23
5 6 minutes 0..59
6 7 seconds 0..60

 (use 60 for leap-second)
7 8 deci-seconds 0..9

 8 9 direction from UTC '+' / '-'
9 10 hours from UTC* 0..13
10 11 minutes from UTC 0..59

 * Notes:
 - the value of year is in big-endian encoding
 - daylight saving time in New Zealand is +13

 For example, Tuesday May 26, 1992 at 1:30:15 PM EDT would
 be displayed as:

 1992-5-26,13:30:15.0,-4:0

 Note that if only local time is known, then timezone
 information (fields 8-10) is not present.

 The two special values of 8 or 11 zero bytes denote an
 unknown date-time specification.";
 reference
 "RFC 2579, Section 2.";
 };

 typedef TruthValue {
 type Enumeration (true(1), false(2));
 description
 "Represents a boolean value.";
 reference
 "RFC 2579, Section 2.";
 };

 typedef PhysAddress {

https://datatracker.ietf.org/doc/html/rfc2579#section-2
https://datatracker.ietf.org/doc/html/rfc2579#section-2

Strauss & Schoenwaelder Expires June 15, 2004 [Page 51]

Internet-Draft SMIng December 2003

 type OctetString;
 format "1x:";
 description
 "Represents media- or physical-level addresses.";
 reference
 "RFC 2579, Section 2.";
 };

 typedef MacAddress {
 type OctetString (6);
 format "1x:";
 description
 "Represents an IEEE 802 MAC address represented in the
 `canonical' order defined by IEEE 802.1a, i.e., as if it
 were transmitted least significant bit first, even though
 802.5 (in contrast to other 802.x protocols) requires MAC
 addresses to be transmitted most significant bit first.";
 reference
 "RFC 2579, Section 2.";
 };

 // The DisplayString definition below does not impose a size
 // restriction and is thus not the same as the DisplayString
 // definition in RFC 2579. The DisplayString255 definition is
 // provided for mapping purposes.

 typedef DisplayString {
 type OctetString;
 format "1a";
 description
 "Represents textual information taken from the NVT ASCII
 character set, as defined in pages 4, 10-11 of RFC 854.

 To summarize RFC 854, the NVT ASCII repertoire specifies:

 - the use of character codes 0-127 (decimal)

 - the graphics characters (32-126) are interpreted as
 US ASCII

 - NUL, LF, CR, BEL, BS, HT, VT and FF have the special
 meanings specified in RFC 854

 - the other 25 codes have no standard interpretation

 - the sequence 'CR LF' means newline

 - the sequence 'CR NUL' means carriage-return

https://datatracker.ietf.org/doc/html/rfc2579#section-2
https://datatracker.ietf.org/doc/html/rfc2579#section-2
https://datatracker.ietf.org/doc/html/rfc2579
https://datatracker.ietf.org/doc/html/rfc854
https://datatracker.ietf.org/doc/html/rfc854
https://datatracker.ietf.org/doc/html/rfc854

Strauss & Schoenwaelder Expires June 15, 2004 [Page 52]

Internet-Draft SMIng December 2003

 - an 'LF' not preceded by a 'CR' means moving to the
 same column on the next line.

 - the sequence 'CR x' for any x other than LF or NUL is
 illegal. (Note that this also means that a string may
 end with either 'CR LF' or 'CR NUL', but not with CR.)
 ";
 };

 typedef DisplayString255 {
 type DisplayString (0..255);
 description
 "A DisplayString with a maximum length of 255 characters.
 Any attribute defined using this syntax may not exceed 255
 characters in length.

 The DisplayString255 type has the same semantics as the
 DisplayString textual convention defined in RFC 2579.";
 reference
 "RFC 2579, Section 2.";
 };

 // The Utf8String and Utf8String255 definitions below facilitate
 // internationalization. The definition is consistent with the
 // definition of SnmpAdminString in RFC 2571.

 typedef Utf8String {
 type OctetString;
 format "65535t"; // is there a better way ?
 description
 "A human readable string represented using the ISO/IEC IS
 10646-1 character set, encoded as an octet string using
 the UTF-8 transformation format described in RFC 2279.

 Since additional code points are added by amendments to
 the 10646 standard from time to time, implementations must
 be prepared to encounter any code point from 0x00000000 to
 0x7fffffff. Byte sequences that do not correspond to the
 valid UTF-8 encoding of a code point or are outside this
 range are prohibited.

 The use of control codes should be avoided. When it is
 necessary to represent a newline, the control code
 sequence CR LF should be used.

 The use of leading or trailing white space should be
 avoided.

https://datatracker.ietf.org/doc/html/rfc2579
https://datatracker.ietf.org/doc/html/rfc2579#section-2
https://datatracker.ietf.org/doc/html/rfc2571
https://datatracker.ietf.org/doc/html/rfc2279

Strauss & Schoenwaelder Expires June 15, 2004 [Page 53]

Internet-Draft SMIng December 2003

 For code points not directly supported by user interface
 hardware or software, an alternative means of entry and
 display, such as hexadecimal, may be provided.

 For information encoded in 7-bit US-ASCII, the UTF-8
 encoding is identical to the US-ASCII encoding.

 UTF-8 may require multiple bytes to represent a single
 character / code point; thus the length of a Utf8String in
 octets may be different from the number of characters
 encoded. Similarly, size constraints refer to the number
 of encoded octets, not the number of characters
 represented by an encoding.";
 };

 typedef Utf8String255 {
 type Utf8String (0..255);
 format "255t";
 description
 "A Utf8String with a maximum length of 255 octets. Note
 that the size of an Utf8String is measured in octets, not
 characters.";
 };

 identity null {
 description
 "An identity used to represent null pointer values.";
 };

 };

Appendix B. SMIng ABNF Grammar

 The SMIng grammar conforms to the Augmented Backus-Naur Form (ABNF)
 [RFC2234].

 ;;
 ;; sming.abnf -- SMIng grammar in ABNF notation (RFC 2234).
 ;;
 ;; @(#) $Id: sming.abnf,v 1.33 2003/10/23 19:31:55 strauss Exp $
 ;;
 ;; Copyright (C) The Internet Society (2003). All Rights Reserved.
 ;;

https://datatracker.ietf.org/doc/html/rfc2234
https://datatracker.ietf.org/doc/html/rfc2234

Strauss & Schoenwaelder Expires June 15, 2004 [Page 54]

Internet-Draft SMIng December 2003

 smingFile = optsep *(moduleStatement optsep)

 ;;
 ;; Statement rules.
 ;;

 moduleStatement = moduleKeyword sep ucIdentifier optsep
 "{" stmtsep
 *(importStatement stmtsep)
 organizationStatement stmtsep
 contactStatement stmtsep
 descriptionStatement stmtsep
 *1(referenceStatement stmtsep)
 1*(revisionStatement stmtsep)
 *(extensionStatement stmtsep)
 *(typedefStatement stmtsep)
 *(identityStatement stmtsep)
 *(classStatement stmtsep)
 "}" optsep ";"

 extensionStatement = extensionKeyword sep lcIdentifier optsep
 "{" stmtsep
 statusStatement stmtsep
 descriptionStatement stmtsep
 *1(referenceStatement stmtsep)
 *1(abnfStatement stmtsep)
 "}" optsep ";"

 typedefStatement = typedefKeyword sep ucIdentifier optsep
 "{" stmtsep
 typedefTypeStatement stmtsep
 *1(defaultStatement stmtsep)
 *1(formatStatement stmtsep)
 *1(unitsStatement stmtsep)
 statusStatement stmtsep
 descriptionStatement stmtsep
 *1(referenceStatement stmtsep)
 "}" optsep ";"

 identityStatement = identityStmtKeyword sep lcIdentifier optsep
 "{" stmtsep
 *1(parentStatement stmtsep)
 statusStatement stmtsep
 descriptionStatement stmtsep
 *1(referenceStatement stmtsep)
 "}" optsep ";"

 classStatement = classKeyword sep ucIdentifier optsep

Strauss & Schoenwaelder Expires June 15, 2004 [Page 55]

Internet-Draft SMIng December 2003

 "{" stmtsep
 *1(extendsStatement stmtsep)
 *(attributeStatement stmtsep)
 *1(uniqueStatement stmtsep)
 *(eventStatement stmtsep)
 statusStatement stmtsep
 descriptionStatement stmtsep
 *1(referenceStatement stmtsep)
 "}" optsep ";"

 attributeStatement = attributeKeyword sep
 lcIdentifier optsep
 "{" stmtsep
 typeStatement stmtsep
 *1(accessStatement stmtsep)
 *1(defaultStatement stmtsep)
 *1(formatStatement stmtsep)
 *1(unitsStatement stmtsep)
 statusStatement stmtsep
 descriptionStatement stmtsep
 *1(referenceStatement stmtsep)
 "}" optsep ";"

 uniqueStatement = uniqueKeyword optsep
 "(" optsep qlcIdentifierList
 optsep ")" optsep ";"

 eventStatement = eventKeyword sep lcIdentifier
 optsep "{" stmtsep
 statusStatement stmtsep
 descriptionStatement stmtsep
 *1(referenceStatement stmtsep)
 "}" optsep ";"

 importStatement = importKeyword sep ucIdentifier optsep
 "(" optsep
 identifierList optsep
 ")" optsep ";"

 revisionStatement = revisionKeyword optsep "{" stmtsep
 dateStatement stmtsep
 descriptionStatement stmtsep
 "}" optsep ";"

 typedefTypeStatement = typeKeyword sep refinedBaseType optsep ";"

 typeStatement = typeKeyword sep
 (refinedBaseType / refinedType) optsep ";"

Strauss & Schoenwaelder Expires June 15, 2004 [Page 56]

Internet-Draft SMIng December 2003

 parentStatement = parentKeyword sep qlcIdentifier optsep ";"

 extendsStatement = extendsKeyword sep qucIdentifier optsep ";"

 dateStatement = dateKeyword sep date optsep ";"

 organizationStatement = organizationKeyword sep text optsep ";"

 contactStatement = contactKeyword sep text optsep ";"

 formatStatement = formatKeyword sep format optsep ";"

 unitsStatement = unitsKeyword sep units optsep ";"

 statusStatement = statusKeyword sep status optsep ";"

 accessStatement = accessKeyword sep access optsep ";"

 defaultStatement = defaultKeyword sep anyValue optsep ";"

 descriptionStatement = descriptionKeyword sep text optsep ";"

 referenceStatement = referenceKeyword sep text optsep ";"

 abnfStatement = abnfKeyword sep text optsep ";"

 ;;
 ;;
 ;;

 refinedBaseType = ObjectIdentifierKeyword /
 OctetStringKeyword *1(optsep numberSpec) /
 PointerKeyword *1(optsep pointerSpec) /
 Integer32Keyword *1(optsep numberSpec) /
 Unsigned32Keyword *1(optsep numberSpec) /
 Integer64Keyword *1(optsep numberSpec) /
 Unsigned64Keyword *1(optsep numberSpec) /
 Float32Keyword *1(optsep floatSpec) /
 Float64Keyword *1(optsep floatSpec) /
 Float128Keyword *1(optsep floatSpec) /
 EnumerationKeyword
 optsep namedSignedNumberSpec /
 BitsKeyword optsep namedNumberSpec

 refinedType = qucIdentifier *1(optsep anySpec)

 anySpec = pointerSpec / numberSpec / floatSpec

Strauss & Schoenwaelder Expires June 15, 2004 [Page 57]

Internet-Draft SMIng December 2003

 pointerSpec = "(" optsep qlcIdentifier optsep ")"

 numberSpec = "(" optsep numberElement
 *furtherNumberElement
 optsep ")"

 furtherNumberElement = optsep "|" optsep numberElement

 numberElement = signedNumber *1numberUpperLimit

 numberUpperLimit = optsep ".." optsep signedNumber

 floatSpec = "(" optsep floatElement
 *furtherFloatElement
 optsep ")"

 furtherFloatElement = optsep "|" optsep floatElement

 floatElement = floatValue *1floatUpperLimit

 floatUpperLimit = optsep ".." optsep floatValue

 namedNumberSpec = "(" optsep namedNumberList optsep ")"

 namedNumberList = namedNumberItem
 *(optsep "," optsep namedNumberItem)

 namedNumberItem = lcIdentifier optsep "(" optsep number
 optsep ")"

 namedSignedNumberSpec = "(" optsep namedSignedNumberList optsep ")"

 namedSignedNumberList = namedSignedNumberItem
 *(optsep "," optsep
 namedSignedNumberItem)

 namedSignedNumberItem = lcIdentifier optsep "(" optsep signedNumber
 optsep ")"

 identifierList = identifier
 *(optsep "," optsep identifier)

 qIdentifierList = qIdentifier
 *(optsep "," optsep qIdentifier)

 qlcIdentifierList = qlcIdentifier
 *(optsep "," optsep qlcIdentifier)

Strauss & Schoenwaelder Expires June 15, 2004 [Page 58]

Internet-Draft SMIng December 2003

 bitsValue = "(" optsep bitsList optsep ")"

 bitsList = *1(lcIdentifier
 *(optsep "," optsep lcIdentifier))

 ;;
 ;; Other basic rules.
 ;;

 identifier = ucIdentifier / lcIdentifier

 qIdentifier = qucIdentifier / qlcIdentifier

 ucIdentifier = ucAlpha *63(ALPHA / DIGIT / "-")

 qucIdentifier = *1(ucIdentifier "::") ucIdentifier

 lcIdentifier = lcAlpha *63(ALPHA / DIGIT / "-")

 qlcIdentifier = *1(ucIdentifier "::") lcIdentifier

 attrIdentifier = lcIdentifier *("." lcIdentifier)

 qattrIdentifier = *1(ucIdentifier ".") attrIdentifier

 cattrIdentifier = ucIdentifier "."
 lcIdentifier *("." lcIdentifier)

 qcattrIdentifier = qucIdentifier "."
 lcIdentifier *("." lcIdentifier)

 text = textSegment *(optsep textSegment)

 textSegment = DQUOTE *textAtom DQUOTE
 ; See Section 4.2.

 textAtom = textVChar / HTAB / SP / lineBreak

 date = DQUOTE 4DIGIT "-" 2DIGIT "-" 2DIGIT
 *1(" " 2DIGIT ":" 2DIGIT)
 DQUOTE
 ; always in UTC

 format = textSegment

 units = textSegment

 anyValue = bitsValue /

Strauss & Schoenwaelder Expires June 15, 2004 [Page 59]

Internet-Draft SMIng December 2003

 signedNumber /
 hexadecimalNumber /
 floatValue /
 text /
 objectIdentifier
 ; Note: `objectIdentifier' includes the
 ; syntax of enumeration labels and
 ; identities.
 ; They are not named literally to
 ; avoid reduce/reduce conflicts when
 ; building LR parsers based on this
 ; grammar.

 status = currentKeyword /
 deprecatedKeyword /
 obsoleteKeyword

 access = eventonlyKeyword /
 readonlyKeyword /
 readwriteKeyword

 objectIdentifier = (qlcIdentifier / subid "." subid)
 *127("." subid)

 subid = decimalNumber

 number = hexadecimalNumber / decimalNumber

 negativeNumber = "-" decimalNumber

 signedNumber = number / negativeNumber

 decimalNumber = "0" / (nonZeroDigit *DIGIT)

 zeroDecimalNumber = 1*DIGIT

 hexadecimalNumber = %x30 %x78 ; "0x" with x only lower-case
 1*(HEXDIG HEXDIG)

 floatValue = neginfKeyword /
 posinfKeyword /
 snanKeyword /
 qnanKeyword /
 signedNumber "." zeroDecimalNumber
 *1("E" ("+"/"-") zeroDecimalNumber)

 ;;
 ;; Rules to skip unknown statements

Strauss & Schoenwaelder Expires June 15, 2004 [Page 60]

Internet-Draft SMIng December 2003

 ;; with arbitrary arguments and blocks.
 ;;

 unknownStatement = unknownKeyword optsep *unknownArgument
 optsep ";"

 unknownArgument = ("(" optsep unknownList optsep ")") /
 ("{" optsep *unknownStatement optsep "}") /
 qucIdentifier /
 anyValue /
 anySpec

 unknownList = namedNumberList /
 qIdentifierList

 unknownKeyword = lcIdentifier

 ;;
 ;; Keyword rules.
 ;;
 ;; Typically, keywords are represented by tokens returned from the
 ;; lexical analyzer. Note, that the lexer has to be stateful to
 ;; distinguish keywords from identifiers depending on the context
 ;; position in the input stream.
 ;;

 moduleKeyword = %x6D %x6F %x64 %x75 %x6C %x65
 importKeyword = %x69 %x6D %x70 %x6F %x72 %x74
 revisionKeyword = %x72 %x65 %x76 %x69 %x73 %x69 %x6F %x6E
 dateKeyword = %x64 %x61 %x74 %x65
 organizationKeyword = %x6F %x72 %x67 %x61 %x6E %x69 %x7A %x61 %x74
 %x69 %x6F %x6E
 contactKeyword = %x63 %x6F %x6E %x74 %x61 %x63 %x74
 descriptionKeyword = %x64 %x65 %x73 %x63 %x72 %x69 %x70 %x74 %x69
 %x6F %x6E
 referenceKeyword = %x72 %x65 %x66 %x65 %x72 %x65 %x6E %x63 %x65
 extensionKeyword = %x65 %x78 %x74 %x65 %x6E %x73 %x69 %x6F %x6E
 typedefKeyword = %x74 %x79 %x70 %x65 %x64 %x65 %x66
 typeKeyword = %x74 %x79 %x70 %x65
 parentKeyword = %x70 %x61 %x72 %x65 %x6E %x74
 identityStmtKeyword = %x69 %x64 %x65 %x6E %x74 %x69 %x74 %x79
 classKeyword = %x63 %x6C %x61 %x73 %x73
 extendsKeyword = %x65 %x78 %x74 %x65 %x6E %x64 %x73
 attributeKeyword = %x61 %x74 %x74 %x72 %x69 %x62 %x75 %x74 %x65
 uniqueKeyword = %x75 %x6E %x69 %x71 %x75 %x65
 eventKeyword = %x65 %x76 %x65 %x6E %x74
 formatKeyword = %x66 %x6F %x72 %x6D %x61 %x74
 unitsKeyword = %x75 %x6E %x69 %x74 %x73

Strauss & Schoenwaelder Expires June 15, 2004 [Page 61]

Internet-Draft SMIng December 2003

 statusKeyword = %x73 %x74 %x61 %x74 %x75 %x73
 accessKeyword = %x61 %x63 %x63 %x65 %x73 %x73
 defaultKeyword = %x64 %x65 %x66 %x61 %x75 %x6C %x74
 abnfKeyword = %x61 %x62 %x6E %x66

 ;; Base type keywords.

 OctetStringKeyword = %x4F %x63 %x74 %x65 %x74 %x53 %x74 %x72 %x69
 %x6E %x67
 PointerKeyword = %x50 %x6F %x69 %x6E %x74 %x65 %x72
 ObjectIdentifierKeyword = %x4F %x62 %x6A %x65 %x63 %x74 %x49 %x64
 %x65 %x6E %x74 %x69 %x66 %x69 %x65 %x72
 Integer32Keyword = %x49 %x6E %x74 %x65 %x67 %x65 %x72 %x33 %x32
 Unsigned32Keyword = %x55 %x6E %x73 %x69 %x67 %x6E %x65 %x64 %x33
 %x32
 Integer64Keyword = %x49 %x6E %x74 %x65 %x67 %x65 %x72 %x36 %x34
 Unsigned64Keyword = %x55 %x6E %x73 %x69 %x67 %x6E %x65 %x64 %x36
 %x34
 Float32Keyword = %x46 %x6C %x6F %x61 %x74 %x33 %x32
 Float64Keyword = %x46 %x6C %x6F %x61 %x74 %x36 %x34
 Float128Keyword = %x46 %x6C %x6F %x61 %x74 %x31 %x32 %x38
 BitsKeyword = %x42 %x69 %x74 %x73
 EnumerationKeyword = %x45 %x6E %x75 %x6D %x65 %x72 %x61 %x74 %x69
 %x6F %x6E

 ;; Status keywords.

 currentKeyword = %x63 %x75 %x72 %x72 %x65 %x6E %x74
 deprecatedKeyword = %x64 %x65 %x70 %x72 %x65 %x63 %x61 %x74 %x65
 %x64
 obsoleteKeyword = %x6F %x62 %x73 %x6F %x6C %x65 %x74 %x65

 ;; Access keywords.

 eventonlyKeyword = %x65 %x76 %x65 %x6E %x74 %x6F %x6E %x6C %x79
 readonlyKeyword = %x72 %x65 %x61 %x64 %x6F %x6E %x6C %x79
 readwriteKeyword = %x72 %x65 %x61 %x64 %x77 %x72 %x69 %x74 %x65

 ;; Special floating point values' keywords.

 neginfKeyword = %x6E %x65 %x67 %x69 %x6E %x66
 posinfKeyword = %x70 %x6F %x73 %x69 %x6E %x66
 snanKeyword = %x73 %x6E %x61 %x6E
 qnanKeyword = %x71 %x6E %x61 %x6E

 ;;
 ;; Some low level rules.
 ;; These tokens are typically skipped by the lexical analyzer.

Strauss & Schoenwaelder Expires June 15, 2004 [Page 62]

Internet-Draft SMIng December 2003

 ;;

 sep = 1*(comment / lineBreak / WSP)
 ; unconditional separator

 optsep = *(comment / lineBreak / WSP)

 stmtsep = *(comment /
 lineBreak /
 WSP /
 unknownStatement)

 comment = "//" *(WSP / VCHAR) lineBreak

 lineBreak = CRLF / LF

 ;;
 ;; Encoding specific rules.
 ;;

 textVChar = %x21 / %x23-7E
 ; any VCHAR except DQUOTE

 ucAlpha = %x41-5A

 lcAlpha = %x61-7A

 nonZeroDigit = %x31-39

 ;;
 ;; RFC 2234 core rules.
 ;;

 ALPHA = %x41-5A / %x61-7A
 ; A-Z / a-z

 CR = %x0D
 ; carriage return

 CRLF = CR LF
 ; Internet standard newline

 DIGIT = %x30-39
 ; 0-9

 DQUOTE = %x22
 ; " (Double Quote)

https://datatracker.ietf.org/doc/html/rfc2234

Strauss & Schoenwaelder Expires June 15, 2004 [Page 63]

Internet-Draft SMIng December 2003

 HEXDIG = DIGIT /
 %x61 / %x62 / %x63 / %x64 / %x65 / %x66
 ; only lower-case a..f

 HTAB = %x09
 ; horizontal tab

 LF = %x0A
 ; linefeed

 SP = %x20
 ; space

 VCHAR = %x21-7E
 ; visible (printing) characters

 WSP = SP / HTAB
 ; white space

 ;; End of ABNF

Strauss & Schoenwaelder Expires June 15, 2004 [Page 64]

Internet-Draft SMIng December 2003

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF's procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

Full Copyright Statement

 Copyright (C) The Internet Society (2003). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assignees.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION

https://datatracker.ietf.org/doc/html/bcp11

Strauss & Schoenwaelder Expires June 15, 2004 [Page 65]

Internet-Draft SMIng December 2003

 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Strauss & Schoenwaelder Expires June 15, 2004 [Page 66]

