
Network Working Group J. Schoenwaelder
Internet-Draft TU Braunschweig
Expires: October 10, 2001 April 11, 2001

SNMP Payload Compression
draft-irtf-nmrg-snmp-compression-01.txt

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on October 10, 2001.

Copyright Notice

 Copyright (C) The Internet Society (2001). All Rights Reserved.

Abstract

 This memo defines a mechanism for lossless compression of SNMP
 payloads. Compression is especially useful when retrieving large
 amounts of data or when SNMP encryption is being used over a
 transport which provides data compression.

Schoenwaelder Expires October 10, 2001 [Page 1]

https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft SNMP Payload Compression April 2001

Table of Contents

1. Introduction . 3
2. Requirements . 3
3. Identifying Compressed Payload 4
3.1 Compression as an SNMPv3 Encryption Algorithm 4
3.2 Indicating Compression in the msgFlags 4
3.3 Compression as a new PDU Type 5
4. Negotiating Compression Algorithms 6
5. Compression Algorithms 6
5.1 DEFLATE . 7
5.2 OID Delta Compression (ODC) 7
5.2.1 ODC Algorithm . 7
5.2.2 ODC Examples . 10
5.2.2.1 Simple Substitutions 10
5.2.2.2 Range Substitutions 11
5.2.2.3 Substitutions and Truncations 12
6. Acknowledgments . 14

 References . 14
 Author's Address . 14
 Full Copyright Statement 15

Schoenwaelder Expires October 10, 2001 [Page 2]

Internet-Draft SNMP Payload Compression April 2001

1. Introduction

 This memo defines mechanisms for lossless compression of SNMP
 payloads. Compression is useful when retrieving large amounts of
 management data since the BER encoding used by SNMP is not very space
 efficient and the payload tends to have a high degree of redundancy.

 SNMP payload compression is especially useful when retrieving large
 amounts of data. In particular, compression allows command
 responders to put more data into responses to bulk retrieval
 requests, which can significantly reduce the overall number of
 transactions needed to retrieve a certain amount of data [5].

 SNMP payload compression is also useful when SNMP encryption is used.
 Encrypting the SNMP payload causes the data to be random in nature,
 rendering compression at lower protocol layers (e.g., IP Payload
 Compression Protocol [2]) ineffective. If both compression and
 encryption are required, then compression should be applied before
 encryption.

2. Requirements

 A solution for SNMP payload compression has to satisfy the following
 requirements:

 1. Compression must happen before encryption if compression is used
 together with encryption. Compression is most useful if there
 are regular patterns in the data. It is the nature of encryption
 algorithms to destroy any regular pattern and hence encrypted
 data does not compress very well.

 2. SNMP payload compression should be able to support multiple
 compression algorithms. This implies that SNMP engines must be
 able to negotiate the compression algorithm they are using.
 Instead of carrying a compression algorithm identifier in every
 protocol message, it seems more effective to indicate compression
 algorithms in a MIB module (similar to authentication or
 encryption algorithms in SNMPv3).

 3. Each SNMP message is compressed and decompressed by itself
 without any relation to other SNMP messages ("stateless
 compression"), as SNMP messages may arrive out of order or not
 arrive at all.

 4. The size of a compressed SNMP message must never exceed the size
 of the uncompressed SNMP message ("non-expansion policy"). A
 sender may send an uncompressed SNMP message if an attempt to
 compress the message produces a result which is longer than the

Schoenwaelder Expires October 10, 2001 [Page 3]

Internet-Draft SNMP Payload Compression April 2001

 uncompressed SNMP message. An SNMP engine configured to receive
 compressed SNMP messages must thus also accept uncompressed SNMP
 messages.

 5. The abstract syntax of compressed SNMP messages must be defined
 using ASN.1. This ensures that a compressed SNMP message has a
 valid ASN.1/BER encoding which simplifies the integration into
 existing SNMP toolkits.

 6. It is desirable to define common compression algorithms in order
 to achieve interoperability. The compression algorithms should
 be openly available and they should represent different trade-
 offs between compression efficiency and CPU efficiency.

3. Identifying Compressed Payload

 It is necessary to distinguish between compressed and uncompressed
 SNMP payload. There are several ways to implement this. The
 following sections discuss alternatives that have been considered.

3.1 Compression as an SNMPv3 Encryption Algorithm

 The idea behind the first approach is to treat compression as an
 additional SNMPv3 encryption algorithm. In fact, compression as well
 as encryption can both be treated as a loss-less data transformation.
 This approach has the following advantages / disadvantages:

 + No change required to the SNMPv3 specifications.

 + Compression of the complete ScopedPDU.

 - Support of N encryption algorithms and M compression algorithms
 leads to N*M possible combinations.

 - Compression requires authentication since there is no noAuthPriv
 security level.

 - Does not work with older and widely deployed versions of SNMP
 (SNMPv1, SNMPv2c).

3.2 Indicating Compression in the msgFlags

 To avoid some of the drawbacks of the previous approach, one can
 treat compression independent of encryption by allocating an unused
 bit in the msgFlags [3]) to indicate whether compression is used or
 not. However, RFC 2572 [3]) says in section 6.4:

https://datatracker.ietf.org/doc/html/rfc2572

Schoenwaelder Expires October 10, 2001 [Page 4]

Internet-Draft SNMP Payload Compression April 2001

 The remaining bits in msgFlags are reserved, and must be set to zero
 when sending a message and should be ignored when receiving a
 message.

 Similarly, RFC 2572 [3] specifies in section 7.1 step 7) and in
section 7.2 step 5) that other bits in the msgFlags are set to zero

 or ignored. This means that this alternative can not be supported by
 an implementation which is strictly compliant to RFC 2572 [3].

 In summary, this approach has the following advantages /
 disadvantages:

 + Combination of M compression and N encryption algorithms possible
 without having to define N*M algorithms.

 + Compression can be used with or without encryption or
 authentication.

 + Compression of the complete ScopedPDU.

 - Not strictly compliant to the current SNMPv3 specifications.

 - Does not work with older widely deployed versions of SNMP (SNMPv1,
 SNMPv2c).

3.3 Compression as a new PDU Type

 The third alternative is to restrict compression to PDUs rather than
 ScopedPDUs and to introduce a new PDU type for compressed payloads.

RFC 1157 [4] defines the SNMPv1 message header as follows:

 Message ::= SEQUENCE {
 version INTEGER { version-1(0) },
 community OCTET STRING,
 data ANY -- e.g., PDUs if trivial authentication
 -- is being used
 }

 Similarly, RFC 2572 [3] defines the ScopedPDU as follows:

 ScopedPDU ::= SEQUENCE {
 contextEngineID OCTET STRING,
 contextName OCTET STRING,
 data ANY -- e.g., PDUs as defined in RFC 1905
 }

 This means that a new PDU could be defined which holds the compressed

https://datatracker.ietf.org/doc/html/rfc2572
https://datatracker.ietf.org/doc/html/rfc2572
https://datatracker.ietf.org/doc/html/rfc1157
https://datatracker.ietf.org/doc/html/rfc2572
https://datatracker.ietf.org/doc/html/rfc1905

Schoenwaelder Expires October 10, 2001 [Page 5]

Internet-Draft SNMP Payload Compression April 2001

 version of a PDU:

 CompressedPDU ::= [42] IMPLICIT OCTET STRING
 -- contains a compressed PDU

 It is important to analyze how a compliant SNMP implementation
 behaves when it receives an unknown PDU type. From a formal point of
 view, any PDU which is a valid BER serialization of an ASN.1 type
 must be accepted since the data portion is of the ASN.1 type ANY. In
 practice, most SNMP implementations will only recognize the PDU types
 defined in the SNMP specifications.

 The SNMPv3 message processing model [3] defines in section 7.2 step
 7) that parse errors while decoding the ScopedPDU cause the packet to
 be discarded after incrementing snmpInASNParseErrs. Even an
 implementation which is capable to decode arbitrary PDUs will have
 problems to determine the pduType as defined in section 7.2 step 9).
 This basically means that a compliant SNMPv3 engine will simply
 discard compressed PDUs.

 The SNMPv1 specification [4] defines in section 4.1 second step (4)
 that parse errors while decoding the PDU will cause the SNMP engine
 to drop the PDU. Hence, it can be expected that most implementations
 will simply drop a compressed PDU.

 In summary, this approach has the following advantages /
 disadvantages:

 + Combination of M compression and N encryption algorithms possible
 without having to define N*M algorithms.

 + Compression can be used with or without encryption or
 authentication.

 + Works with every version of SNMP.

 - Not strictly compliant to the current SNMPv3 specifications.

 - Compression of the PDU rather than the ScopedPDU.

4. Negotiating Compression Algorithms

 [TBD]

5. Compression Algorithms

Schoenwaelder Expires October 10, 2001 [Page 6]

Internet-Draft SNMP Payload Compression April 2001

5.1 DEFLATE

 The DEFLATE algorithm is a well-know compression algorithm which
 achieves good compression ratios and which is used for example in RFC

2394 for IP payload compression. It is also used on the World Wide
 Web to compress documents before transmission over HTTP.

 Using DEFLATE for SNMP payload compression however shows some
 undesirable aspects. First, DEFLATE compression is relatively CPU
 intensive. Furthermore, the DEFLATE algorithm requires to transmit a
 dictionary, which reduces the compression efficiency for small
 messages. On the other hand, DEFLATE compresses both names and
 values and may achieve particularly good compression if the encoded
 values show a similar structure.

 Experiments with DEFLATE show that it should not be used on
 relatively short SNMP messages. Furthermore, DEFLATE introduces
 significant delays due to the compression computations. Finally,
 estimating message sizes is hard with DEFLATE since there is no upper
 bound for the message length addition if one adds another varbind.
 This has impacts in particular on the getbulk PDU implementation. It
 is therefore not recommended to adopt DEFLATE compression.

5.2 OID Delta Compression (ODC)

 SNMP payloads use OIDs to represent the names of SNMP variables. The
 amount of space used for encoding these OIDs frequently exceeds the
 space needed to represent the values identified by the OIDs.
 Furthermore, subsequent OIDs usually have many sub-identifier in
 common.

 The OID Delta Compression (ODC) algorithm has been designed to reduce
 the OID overhead inherent in SNMP messages. The general idea is to
 encode an OID as a delta to the previous OID. The ODC algorithm only
 achieves a reduction in the SNMP naming information. It does not
 compress the data of MIB variables, even if the value itself is an
 OID. (The reason for not compressing OID values is that they are (a)
 relatively infrequent and (b) compressing value OIDs has negative
 impact on the compression achieved for the following variable name.)
 In many cases (e.g., when retrieving large tables which basically
 contain numbers), the achieved compression ratio is significant while
 the CPU cycles spent on the compression algorithm itself are very
 small.

5.2.1 ODC Algorithm

 The ODC algorithm encodes OID deltas using three mechansisms:

https://datatracker.ietf.org/doc/html/rfc2394
https://datatracker.ietf.org/doc/html/rfc2394

Schoenwaelder Expires October 10, 2001 [Page 7]

Internet-Draft SNMP Payload Compression April 2001

 1. Substitution of a single sub-identifier values at a certain
 position. A sub-identifier substitution is encoded as follows:

 0 7 8
 +---------------+--------------------------//-+
 | s-offset | BER encoded sub-identifier |
 +---------------+--------------------------//-+

 s-offset Defines the offset of the sub-identifier to
 substitute. The offset value is in the range
 0-0x7f. The value 0 refers to the first OID
 sub-identifier.

 2. Substitution of ranges of sub-identifiers at a given starting
 position. A substitution of a range of sub-identifiers is
 encoded as follows:

 0 7 8 15 16
 +---------------+---------------+--------------------------//-+
 | r-offset | r-length | BER encoded sub-identifiers |
 +---------------+---------------+--------------------------//-+

 r-offset Defines the offset of the sub-identifier range
 to substitute. The offset value has the most
 significant bit set and is in the range
 0x80-0xff. The value 0x80 refers to the first
 OID sub-identifier.
 r-length Defines the number of BER encoded sub-identifiers
 that follow the r-length field and which will
 be substituted. The range of the r-length field
 is 0x01-0x7f.

 3. Truncation of OIDs (which may shorten or enlarge OIDs). A
 truncation, which may only appear at the end, is encoded as
 follows:

 0 7
 +---------------+
 | t-length |
 +---------------+

 t-length Defines the new length of the OID in the range
 0x01-0x7f. The t-length value specifies the number
 if sub-identifiers minus 1. Hence, the value 0x01
 identifies an OID which consists of two
 sub-identifiers. Truncation may be used to shorten
 or enlarge an OID. New sub-identifiers will have
 the value 0 if an OID is enlarged.

Schoenwaelder Expires October 10, 2001 [Page 8]

Internet-Draft SNMP Payload Compression April 2001

 An ODC compressed OID is simply the combination of several sub-
 identifier or sub-identifier range substitutions followed by an
 optional truncation. Note that substitutions can increase the size
 of the OID if the offset or range specifies sub-identifier positions
 outside of the previous OID. New sub-identifiers without an explicit
 value assignement will have the value 0. An ODC compressed OID is
 distinguished from a normal OID by introducing the following new
 ASN.1 type:

 CompOID ::= [42] IMPLICIT OCTET STRING

 A high-level description of the compression algorithm is as follows:

 1. Loop through the SNMP PDU until you find an OID name value pair
 (varbind).

 2. If it is the first varbind, make a copy of the OID, pass it to
 the output buffer and continue with the next varbind.

 3. Otherwise, compute the delta to the last OID and BER encode it
 into the CompOID value.

 4. If the CompOID representation is larger than the OID, pass the
 OID to the output buffer, else pass the CompOID to the output
 buffer.

 5. Update the last OID and goto step 2 if there are additional
 varbinds.

 Some SNMP implementations use a reverse encoding scheme where PDUs
 are encoded from the end to the beginning. The ODC algorithm can
 also be used efficiently in this case by using an OID look-ahead of 1
 varbind.

 A high-level description of the decompression algorithm is as
 follows:

 1. Loop through the SNMP PDU until you find an OID name value pair
 (varbind).

 2. If the varbind name contains an uncompressed OID, pass it to the
 output buffer and continue with the next varbind.

 3. Otherwise, if the varbind name contains a compressed OID, loop
 through the compressed OID value doing the following:

 1. If the first byte is in the range 0-0x7f and there are more
 bytes, then decode the following byte(s) as a BER encoded

Schoenwaelder Expires October 10, 2001 [Page 9]

Internet-Draft SNMP Payload Compression April 2001

 sub-identifier and perform a sub-identifier substitution.

 2. If the first byte is in the range 0x80-0xff, then read the
 following byte as the r-length value. Decode the following
 r-length BER encoded sub-identifier and perform a range
 substitution.

 3. If the first byte is in the range 0x01-0x7f and there are no
 more bytes, then perform a truncation.

 4. Pass the decoded OID to the output buffer.

 5. Update the last OID and goto step 2 if there are additional
 varbinds.

5.2.2 ODC Examples

 This section shows some example ODC encodings. It is provided to
 better understand how ODC encodings work. It is not intended to give
 a formal analysis of the compression ratios that can be achieved on
 arbitrary SNMP payload.

5.2.2.1 Simple Substitutions

 Lets assume a command generator uses getbulk operations to retrieve
 the tcpConnTable of the TCP-MIB. A good manager will do that by
 retrieving the tcpConnState column. The command responder will
 return a sequence of tcpConnState (1.3.6.1.2.1.6.13.1.1) values:

 tcpConnState.0.0.0.0.21.0.0.0.0.0 = listen(2)
 tcpConnState.0.0.0.0.22.0.0.0.0.0 = listen(2)
 tcpConnState.0.0.0.0.23.0.0.0.0.0 = listen(2)
 tcpConnState.0.0.0.0.98.0.0.0.0.0 = listen(2)

 The BER encoding of this varbind list is the following sequence of
 bytes:

 30:18 // sequence
 06:13:2B:06:01:02:01:06:0D:01:01: // tcpConnState
 00:00:00:00:15:00:00:00:00:00 // instance identifier
 02:01:02 // value
 30:18 // sequence
 06:13:2B:06:01:02:01:06:0D:01:01: // tcpConnState
 00:00:00:00:16:00:00:00:00:00 // instance identifier
 02:01:02 // value
 30:18 // sequence
 06:13:2B:06:01:02:01:06:0D:01:01: // tcpConnState

Schoenwaelder Expires October 10, 2001 [Page 10]

Internet-Draft SNMP Payload Compression April 2001

 00:00:00:00:17:00:00:00:00:00 // instance identifier
 02:01:02 // value
 30:18 // sequence
 06:13:2B:06:01:02:01:06:0D:01:01: // tcpConnState
 00:00:00:00:62:00:00:00:00:00 // instance identifier
 02:01:02 // value

 Using ODC compression, the following sequence of bytes would be used:

 30:18 // sequence
 06:13:2B:06:01:02:01:06:0D:01:01: // tcpConnState
 00:00:00:00:15:00:00:00:00:00 // instance identifier
 02:01:02 // value
 30:07 // sequence
 2a:02:0E:16 // substitution
 02:02:02 // value
 30:07 // sequence
 2a:02:0E:17 // substitution
 02:01:02 // value
 30:07 // sequence
 2a:02:0E:62 // substitution
 02:01:02 // value

 In this particular example, the total size of the encoded varbind
 list drops from 104 bytes to 53 bytes.

5.2.2.2 Range Substitutions

 This example expands the previous example by showing how range
 substitutions work. In this example, we assume that the command
 responder will return a sequence of tcpConnState values with
 different IP addresses in the instance identifier:

 tcpConnState.134.169.34.190.50054.130.240.64.53.80 = closeWait(8)
 tcpConnState.134.169.34.190.50366.212.185.76.85.80 = closeWait(8)
 tcpConnState.134.169.34.190.53370.134.169.34.117.6000 = established(5)
 tcpConnState.134.169.34.190.56398.134.169.34.190.120 = closeWait(8)

 The BER encoding of this varbind list is the following sequence of
 bytes:

 30:1F // sequence
 06:1A:2B:06:01:02:01:06:0D:01:01: // tcpConnState
 81:06:81:29:22:81:3E:83:87:06: // instance
 81:02:81:70:40:35:50 // identifier
 02:01:08 // value
 30:1F // sequence
 06:1A:2B:06:01:02:01:06:0D:01:01: // tcpConnState

Schoenwaelder Expires October 10, 2001 [Page 11]

Internet-Draft SNMP Payload Compression April 2001

 81:06:81:29:22:81:3E:83:89:3E: // instance
 81:54:81:39:4C:55:50 // identifier
 02:01:08 // value
 30:20 // sequence
 06:1B:2B:06:01:02:01:06:0D:01:01: // tcpConnState
 81:06:81:29:22:81:3E:83:A0:7A: // instance
 81:06:81:29:22:75:AE:70 // identifier
 02:01:05 // value
 30:20 // sequence
 06:1B:2B:06:01:02:01:06:0D:01:01: // tcpConnState
 81:06:81:29:22:81:3E:83:B8:4E: // instance
 81:06:81:29:22:81:3E:78 // identifier
 02:01:08 // value

 Using ODC compression, the following sequence of bytes would be used:

 30:1F // sequence
 06:1A:2B:06:01:02:01:06:0D:01:01: // tcpConnState
 81:06:81:29:22:81:3E:83:87:06: // instance
 81:02:81:70:40:35:50 // identifier
 02:01:08 // value
 30:10 // sequence
 2A:0B:8E:05: // range
 83:89:3E:81:54:81:39:4C:55 // substitution
 02:01:08 // value
 30:12 // sequence
 2A:0D:8E:06: // range
 83:A0:7A:81:06:81:29:22:75:AE:70 // substitution
 02:01:05 // value
 30:0E // sequence
 2A:09:0E:83:A0:7A // substitution
 92:02:81:3E:78 // range substitution
 02:01:08 // value

 In this particular example, the total size of the encoded varbind
 list drops from 134 bytes to 87 bytes.

5.2.2.3 Substitutions and Truncations

 This example assumes that a command generator retrieves the
 ipNetToMediaTable defined in the IP-MIB using a getbulk on
 ipNetToMediaPhysAddress (1.3.6.1.2.1.4.22.1.2) and ipNetToMediaType
 (1.3.6.1.2.1.4.22.1.4) pairs. The following values might be returned
 for a system which only has one entry in the cache:

 ipNetToMediaPhysAddress.2.224.8.8.0 = 01:00:5E:08:08:00
 ipNetToMediaType.2.224.8.8.0 = dynamic(3)
 ipNetToMediaNetAddress.2.224.8.8.0 = 224.8.8.0

Schoenwaelder Expires October 10, 2001 [Page 12]

Internet-Draft SNMP Payload Compression April 2001

 ipRoutingDiscards.0 = 0

 Note that the getbulk overshoots and retrieves the following
 instances in lexicographic order, which is an ipNetToMediaNetAddress
 (1.3.6.1.2.1.4.22.1.3) and an ipRoutingDiscards (1.3.6.1.2.1.4.23)
 instance.

 The BER encoding of this varbind list is the following sequence of
 bytes:

 30:19 // sequence
 06:0F:2B:06:01:02:01:04:16:01:02: // ipNetToMediaPhysAddress
 02:81:60:08:08:00 // instance identifier
 04:06:01:00:5E:08:08:00 // value
 30:14 // sequence
 06:0F:2B:06:01:02:01:04:16:01:04: // ipNetToMediaType
 02:81:60:08:08:00 // instance identifier
 02:01:03 // value
 30:17 // sequence
 06:10:2B:06:01:02:01:04:16:01:03: // ipNetToMediaNetAddress
 02:81:60:08:08:00 // instance identifier
 40:04:E0:08:08:00 // value
 30:0D // sequence
 06:08:2B:06:01:02:01:04:17 // ipRoutingDiscards
 00 // instance identifier
 41:01:00 // value

 Using ODC compression, the following sequence of bytes would be used:

 30:19 // sequence
 06:0F:2B:06:01:02:01:04:16:01:02: // ipNetToMediaPhysAddress
 02:81:60:08:08:00 // instance identifier
 04:06:01:00:5E:08:08:00 // value
 30:07 // sequence
 2A:02:09:04 // substitution
 02:01:03 // value
 30:0A // sequence
 2A:02:09:04 // substitutions
 40:04:E0:08:08:00 // value
 30:0A // sequence
 2A:05:87:02:23:00: // range substitution
 08 // truncation
 41:01:00 // value

 In this particular example, the total size of the encoded varbind
 list drops from 89 bytes to 60 bytes.

Schoenwaelder Expires October 10, 2001 [Page 13]

Internet-Draft SNMP Payload Compression April 2001

6. Acknowledgments

 This document is the result of discussions within the Network
 Management Research Group (NMRG). of the Internet Research Task
 Force[6] (IRTF). Special thanks go to Luca Deri, Wes Hardacker,
 Jean-Philippe Martin-Flatin, Joe Marzot, Aiko Pras, Ron Sprenkels,
 Frank Strauss, and Bert Wijnen for their comments and suggestions.

References

 [1] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [2] Shacham, A., Monsour, R., Pereira, R. and M. Thomas, "IP Payload
 Compression Protocol (IPComp)", RFC 2393, December 1998.

 [3] Case, J., Harrington, D., Presuhn, R. and B. Wijnen, "Message
 Processing and Dispatching for the Simple Network Management
 Protocol (SNMP)", RFC 2572, April 1999.

 [4] Case, J., Fedor, M., Schoffstall, M. and J. Davin, "A Simple
 Network Management Protocol (SNMP)", STD 15, RFC 1157, May 1990.

 [5] Sprenkels, R. and J. Martin-Flatin, "Bulk Transfers of MIB
 Data", Simple Times 7(1), March 1999.

 [6] <http://www.irtf.org/>

Author's Address

 Juergen Schoenwaelder
 TU Braunschweig
 Bueltenweg 74/75
 38106 Braunschweig
 Germany

 Phone: +49 531 391-3289
 EMail: schoenw@ibr.cs.tu-bs.de

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2393
https://datatracker.ietf.org/doc/html/rfc2572
https://datatracker.ietf.org/doc/html/rfc1157
http://www.irtf.org/

Schoenwaelder Expires October 10, 2001 [Page 14]

Internet-Draft SNMP Payload Compression April 2001

Full Copyright Statement

 Copyright (C) The Internet Society (2001). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Schoenwaelder Expires October 10, 2001 [Page 15]

