
Workgroup: NWCRG

Internet-Draft: draft-irtf-nwcrg-tetrys-00

Published: 17 December 2021

Intended Status: Experimental

Expires: 20 June 2022

Authors: J. Detchart

ISAE-SUPAERO

E. Lochin

ENAC

J. Lacan

ISAE-SUPAERO

V. Roca

INRIA

Tetrys, an On-the-Fly Network Coding protocol

Abstract

This document is a product of the Coding for Efficient Network

Communications Research Group (NWCRG). It conforms to the directions

found in the NWCRG taxonomy [RFC8406] .

This document describes Tetrys, an On-The-Fly Network Coding (NC)

protocol that can be used to transport delay and loss-sensitive data

over a lossy network. Tetrys can recover from erasures within an

RTT-independent delay, thanks to the transmission of coded packets.

It can be used for both unicast, multicast and anycast

communications.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 20 June 2022.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Requirements Notation

2. Definitions, Notations and Abbreviations

3. Architecture

3.1. Use Cases

3.2. Overview

4. Packet Format

4.1. Common Header Format

4.1.1. Header Extensions

4.2. Source Packet Format

4.3. Coded Packet Format

4.4. Acknowledgement Packet Format

5. The Coding Coefficient Generator Identifiers

5.1. Definition

5.2. Table of Identifiers

6. Tetrys Basic Functions

6.1. Encoding

6.1.1. Encoding Vector Formats

6.2. The Elastic Encoding Window

6.3. Decoding

7. Research Issues

7.1. Interaction with Existing Congestion-Controlled Transport

Protocol

7.2. Adaptive Coding Rate

7.3. Using Tetrys Above The IP Layer For Tunneling

8. Security Considerations

9. Privacy Considerations

10. IANA Considerations

11. Acknowledgments

12. References

12.1. Normative References

12.2. Informative References

Authors' Addresses

1. Introduction

This document describes Tetrys, a novel network coding protocol.

Network codes were introduced in the early 2000s [AHL-00] to address

the limitations of transmission over the Internet (delay, capacity

and packet loss). While the use of network codes is fairly recent in

the Internet community, the use of application layer erasure codes

in the IETF has already been standardized in the RMT [RFC3452] and

¶

the FECFRAME [RFC8680] working groups. The protocol presented here

can be seen as a network coding extension to standards solutions.

The current proposal can be considered a combination of network

erasure coding and feedback mechanisms [Tetrys] .

The main innovation of the Tetrys protocol is in the generation of

coded packets from an elastic encoding window. This window is filled

by any source packets coming from an input flow and is periodically

updated with the receiver's feedbacks. These feedbacks return to the

sender the highest sequence number received or rebuilt, which allows

to flush the corresponding source packets stored in the window. The

size of this window can be fixed or dynamically updated. If the

window is full, incoming source packets are dropped. As a matter of

fact, its limit should be correctly sized. Finally, Tetrys allows to

deal with losses on both the forward and return paths and in

particular, is resilient to acknowledgment losses.

With Tetrys, a coded packet is a linear combination over a finite

field of the data source packets belonging to the coding window. The

coefficients finite field's choice is a trade-off between the best

performance (with non-binary coefficients) and the system

constraints (binary codes in an energy-constrained environment) and

is driven by the application.

Thanks to the elastic encoding window, the coded packets are built

on-the-fly, by using an algorithm or a function to choose the

coefficients. The redundancy ratio can be dynamically adjusted, and

the coefficients can be generated in different ways along with a

transmission. Compared to FEC block codes, this allows reducing the

bandwidth use and the decoding delay.

1.1. Requirements Notation

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119] .

2. Definitions, Notations and Abbreviations

Source symbol: a symbol that has to be transmitted between the

ingress and egress of the network.

Coded symbol: a linear combination over a finite field of a set

of source symbols.

Source symbol ID: a sequence number to identify the source

symbols.

Coded symbol ID: a sequence number to identify the coded symbols.

¶

¶

¶

¶

¶

¶

¶

¶

¶

Encoding coefficients: elements of the finite field

characterizing the linear combination used to generate coded

symbols.

Encoding vector: a set of the coding coefficients and input

source symbol IDs.

Source packet: a source packet contains a source symbol with its

associated IDs.

Coded packet: a coded packet contains a coded symbol, the coded

symbol's ID, and encoding vector.

Input symbol: a symbol at the input of the Tetrys Encoding

Building Block.

Output symbol: a symbol generated by the Tetrys Encoding Building

Block. For a non-systematic mode, all output symbols are coded

symbols. For a systematic mode, output symbols can be the input

symbols and a number of coded symbols that are linear

combinations of the input symbols + the encoding vectors.

Feedback packet: a feedback packet is a packet containing

information about the decoded or received source symbols. It can

also bring additional information about the Packet Error Rate or

the number of various packets in the receiver decoding window.

Elastic Encoding Window: an encoder-side buffer that stores all

the non-acknowledged source packets of the input flow involved in

the coding process.

Coding Coefficient Generator Identifier: a unique identifier that

defines a function or an algorithm allowing to generate the

encoding vector.

Code rate: Define the rate between the number of input symbols

and the number of output symbols.

3. Architecture

The notation used in this document is based on the NWCRG taxonomy

[RFC8406] .

3.1. Use Cases

Tetrys is well suited, but not limited to the use case where there

is a single flow originated by a single source, with intra stream

coding at a single encoding node. Note that the input stream can be

a multiplex of several upper layer streams. Transmission can be over

a single path or multiple paths. Besides, the flow can be sent in

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

unicast, multicast, or anycast mode. This is the simplest use-case,

that is very much aligned with currently proposed scenarios for end-

to-end streaming.

3.2. Overview

Figure 1: Tetrys Architecture

The Tetrys protocol features several key functionalities. The

mandatory features are :

on-the-fly encoding;

decoding;

signaling, to carry in particular the symbol identifiers in the

encoding window and the associated coding coefficients when

meaningful, in a manner that was previously used in FEC;

feedback management;

elastic window management;

Tetrys packet header creation and processing;

and the optional features are :

channel estimation;

dynamic adjustment of the code rate and flow control;

¶

 +----------+ +----------+

 | | | |

 | App | | App |

 | | | |

 +----------+ +----------+

 | ^

 | source source |

 | symbols symbols |

 | |

 v |

 +----------+ +----------+

 | | output packets | |

 | Tetrys |--------------->| Tetrys |

 | Encoder |feedback packets| Decoder |

 | |<---------------| |

 +----------+ +----------+

¶

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

congestion control management (if appropriate). See Section

Section 7.1 for further details;

Several building blocks provide these functionalities:

The Tetrys Building Block: this BB is used during encoding, and

decoding processes. It must be noted that Tetrys does not mandate

a specific building block. Instead, any building block compatible

with the elastic encoding window feature of Tetrys can be used.

The Window Management Building Block: this building block is in

charge of managing the encoding window at a Tetrys sender.

Other ?

To ease the addition of future components and services, Tetrys adds

a header extension mechanism, compatible with that of LCT

[RFC5651] , NORM [RFC5740] , FECFRAME [RFC8680] .

4. Packet Format

4.1. Common Header Format

All types of Tetrys packets share the same common header format (see

Figure 2).

Figure 2: Common Header Format

As already noted above in the document, this format is compatible

with LCT and inherits from the LCT header format [RFC5651] with

slight modifications.

Tetrys version number (V): 4 bits. Indicates the Tetrys version

number. The Tetrys version number for this specification is 1.

*

¶

¶

*

¶

*

¶

* ¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| V | C |S| Reserved | HDR_LEN | Packet Type |

+-+

| Congestion Control Information (CCI, length = 32*C bits) |

| ... |

+-+

| Transport Session Identifier (TSI, length = 32*S bits) |

+-+

| Header Extensions (if applicable) |

| ... |

+-+

¶

*

¶

Congestion control flag (C): 2 bits. C=0 indicates the Congestion

Control Information (CCI) field is 0 bits in length. C=1

indicates the CCI field is 32 bits in length. C=2 indicates the

CCI field is 64 bits in length. C=3 indicates the CCI field is 96

bits in length.

Transport Session Identifier flag (S): 1 bit. This is the number

of full 32-bit words in the TSI field. The TSI field is 32*S bits

in length, i.e., the length is either 0 bits or 32 bits.

Reserved (Resv): 9 bits. These bits are reserved. In this version

of the specification, they MUST be set to zero by senders and

MUST be ignored by receivers.

Header length (HDR_LEN): 8 bits. The total length of the Tetrys

header in units of 32-bit words. The length of the Tetrys header

MUST be a multiple of 32 bits. This field can be used to directly

access the portion of the packet beyond the Tetrys header, i.e.,

to the first next header if it exists, or to the packet payload

if it exists and there is no other header, or to the end of the

packet if there are no other headers or packet payload.

Packet Type: 8 bits. Type of packet.

Congestion Control Information (CCI): 0, 32, 64, or 96 bits Used

to carry congestion control information. For example, the

congestion control information could include layer numbers,

logical channel numbers, and sequence numbers. This field is

opaque for this specification. This field MUST be 0 bits (absent)

if C=0. This field MUST be 32 bits if C=1. This field MUST be 64

bits if C=2. This field MUST be 96 bits if C=3.

Transport Session Identifier (TSI): 0 or 32 bits The TSI uniquely

identifies a session among all sessions from a particular sender.

The TSI is scoped by the IP address of the sender, and thus the

IP address of the sender and the TSI together uniquely identify

the session. Although a TSI in conjunction with the IP address of

the sender always uniquely identifies a session, whether or not

the TSI is included in the Tetrys header depends on what is used

as the TSI value. If the underlying transport is UDP, then the

16-bit UDP source port number MAY serve as the TSI for the

session. If there is no underlying TSI provided by the network,

transport or any other layer, then the TSI MUST be included in

the Tetrys header.

4.1.1. Header Extensions

Header Extensions are used in Tetrys to accommodate optional header

fields that are not always used or have variable size. The presence

of Header Extensions can be inferred by the Tetrys header length

*

¶

*

¶

*

¶

*

¶

* ¶

*

¶

*

¶

(HDR_LEN). If HDR_LEN is larger than the length of the standard

header, then the remaining header space is taken by Header

Extensions.

If present, Header Extensions MUST be processed to ensure that they

are recognized before performing any congestion control procedure or

otherwise accepting a packet. The default action for unrecognized

Header Extensions is to ignore them. This allows the future

introduction of backward-compatible enhancements to Tetrys without

changing the Tetrys version number. Non-backward-compatible Header

Extensions CANNOT be introduced without changing the Tetrys version

number.

There are two formats for Header Extensions, as depicted in Figure

3 . The first format is used for variable-length extensions, with

Header Extension Type (HET) values between 0 and 127. The second

format is used for fixed-length (one 32-bit word) extensions, using

HET values from 128 to 255.

Figure 3: Header Extension Format

Header Extension Type (HET): 8 bits The type of the Header

Extension. This document defines several possible types.

Additional types may be defined in future versions of this

specification. HET values from 0 to 127 are used for variable-

length Header Extensions. HET values from 128 to 255 are used for

fixed-length 32-bit Header Extensions.

Header Extension Length (HEL): 8 bits The length of the whole

Header Extension field, expressed in multiples of 32-bit words.

This field MUST be present for variable-length extensions (HETs

between 0 and 127) and MUST NOT be present for fixed-length

extensions (HETs between 128 and 255).

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| HET (<=127) | HEL | |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +

. .

. Header Extension Content (HEC) .

+-+

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| HET (>=128) | Header Extension Content (HEC) |

+-+

*

¶

*

¶

Header Extension Content (HEC): variable length The content of

the Header Extension. The format of this sub-field depends on the

Header Extension Type. For fixed-length Header Extensions, the

HEC is 24 bits. For variable-length Header Extensions, the HEC

field has variable size, as specified by the HEL field. Note that

the length of each Header Extension MUST be a multiple of 32

bits. Also, note that the total size of the Tetrys header,

including all Header Extensions and all optional header fields,

cannot exceed 255 32-bit words.

4.2. Source Packet Format

A source packet is a Common Packet Header encapsulation, a Source

Symbol ID and a source symbol (payload). The source symbols can have

variable sizes.

Figure 4: Source Packet Format

Common Packet Header: a common packet header (as common header

format) where Packet Type=0.

Source Symbol ID: the sequence number to identify a source symbol.

Payload: the payload (source symbol)

4.3. Coded Packet Format

A coded packet is the encapsulation of a Common Packet Header, a

Coded Symbol ID, the associated Encoding Vector, and a coded symbol

(payload). As the source symbols CAN have variable sizes, each

source symbol size need to be encoded. The result must be stored in

the coded packet as the Encoded Payload Size (16 bits): as it is an

optional field, the encoding vector MUST signal the use of variable

source symbol sizes with the field V (see Section 6.1.1.2).

*

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| |

/ Common Packet Header /

| |

+-+

| Source Symbol ID |

+-+

| |

/ Payload /

| |

+-+

¶

¶

¶

¶

Figure 5: Coded Packet Format

Common Packet Header: a common packet header (as common header

format) where Packet Type=1.

Coded Symbol ID: the sequence number to identify a coded symbol.

Encoding Vector: an encoding vector to define the linear combination

used (coefficients and source symbols).

Encoded Payload Size: the coded payload size used if the source

symbols have a variable size (optional, Section 6.1.1.2)).

Payload: the coded symbol.

4.4. Acknowledgement Packet Format

A Tetrys Decoding Building Block MAY send back to another building

block some Acknowledgement packets. They contain information about

what it has received and/or decoded, and other information such as a

packet loss rate or the size of the decoding buffers. The

acknowledgment packets are OPTIONAL hence they could be omitted or

lost in transmission without impacting the protocol behavior.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| |

/ Common Packet Header /

| |

+-+

| Coded Symbol ID |

+-+

| |

/ Encoding Vector /

| |

+-+

| Encoded Payload Size | |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +

| |

/ Payload /

| |

+-+

¶

¶

¶

¶

¶

¶

Figure 6: Acknowledgement Packet Format

Common Packet Header: a common packet header (as common header

format) where Packet Type=2.

Nb missing source symbols: the number of missing source symbols in

the receiver since the beginning of the session.

Nb of not already used coded symbols: the number of coded symbols at

the receiver that have not already been used for decoding (e.g., the

linear combinations contain at least 2 unknown source symbols).

First Source Symbol ID: ID of the first source symbol to consider

for acknowledgment.

PLR: packet loss ratio expressed as a percentage normalized to a 8-

bit unsigned integer. For example, 2.5 % will be stored as floor(2.5

* 256/100). This value is used in the case of dynamic code rate or

for statistical purpose. The choice of calculation is left to the

appreciation of the developer but should be the PLR seen before

decoding.

SACK size: the size of the SACK vector in 32-bit words. For

instance, with value 2, the SACK vector is 64 bits long.

SACK vector: bit vector indicating the acknowledged symbols from the

first source symbol ID. The "First Source Symbol" is included in

this bit vector. A bit equal to 1 at the i-th position means that

this acknowledgment packet acknowledges the source symbol of ID

equal to "First Source Symbol ID" + i.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| |

/ Common Packet Header /

| |

+-+

| Nb of missing source symbols |

+-+

| Nb of not already used coded symbols |

+-+

| First Source Symbol ID |

+-+

| PLR | SACK size | |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +

| |

/ SACK Vector /

| |

+-+

¶

¶

¶

¶

¶

¶

¶

5. The Coding Coefficient Generator Identifiers

5.1. Definition

The Coding Coefficient Generator Identifiers define a function or an

algorithm to build the coding coefficients used to generate the

coded symbols. They MUST be known by all the Tetrys encoders or

decoders.

5.2. Table of Identifiers

0000: Vandermonde based coefficients over a finite field with 2^^4

elements,defined by the primitive polynomial 1+x+x^^4. Each

coefficient is built as alpha^((source_symbol_id*coded-symbol_id) %

16), with alpha the root of the primitive polynomial.

0001: Vandermonde based coefficients over a finite field with 2^^8

elements,defined by the primitive polynomial 1+x^^2+x^^3+x^^4+x^^8.

Each coefficient is built as alpha^((source_symbol_id*coded-

symbol_id) % 256), with alpha the root of the primitive polynomial.

6. Tetrys Basic Functions

6.1. Encoding

At the beginning of a transmission, a Tetrys Encoding Building Block

or MUST choose an initial code rate (added redundancy) as it doesn't

know the packet loss rate of the channel. In the steady state,

depending on the code-rate, the Tetrys Encoding Building Block CAN

generate coded symbols when it receives a source symbol from the

application or some feedback from the decoding blocks.

When a Tetrys Encoding Building Block needs to generate a coded

symbol, it considers the set of source symbols stored in the Elastic

Encoding Window. These source symbols are the set of source symbols

that are not yet acknowledged by the receiver.

A Tetrys Encoding Building Block SHOULD set a limit to the Elastic

Encoding Window maximum size. This controls the algorithmic

complexity at the encoder and decoder by limiting the size of linear

combinations. It is also needed in situations where acknowledgment

packets are all lost or absent.

At the generation of a coded symbol, the Tetrys Encoding Building

Block generates an encoding vector containing the IDs of the source

symbols stored in the Elastic Encoding Window. For each source

symbol, a finite field coefficient is determined using a Coding

Coefficient Generator. This generator CAN take as input the source

symbol ID and the coded symbol ID and CAN determine a coefficient in

a deterministic way. A typical example of such a deterministic

¶

¶

¶

¶

¶

¶

function is a generator matrix where the rows are indexed by the

source symbol IDs and the columns by the coded symbol IDs. For

example, the entries of this matrix can be built from a Vandermonde

structure, like Reed-Solomon codes, or a sparse binary matrix, like

Low-Density Generator Matrix codes. Finally, the coded symbol is the

sum of the source symbols multiplied by their corresponding

coefficients.

6.1.1. Encoding Vector Formats

Each coded packet contains an encoding vector. The encoding vectors

CAN contain the ID and/or coefficient of each source symbol

contained in the coded symbol.

6.1.1.1. Transmitting the source symbol IDs

The source symbol IDs are organized as a sorted list of 32-bit

unsigned integers. Depending on the feedback, the source symbol IDs

can be successive or not in the list.

If they are successive, the boundaries are stored in the encoding

vector: it just needs 2*32-bit of information.

If not, the edge blocks CAN be stored directly, or a differential

transform to reduce the number of bits needed to represent an ID CAN

be used.

6.1.1.1.1. Compressed list of Source symbol IDs

Assume the symbol IDs used in the combination are: [1..3],[5..6],

[8..10].

Keep the first element in the packet as the first_source_id: 1.

Apply a differential transform to the others elements

([3,5,6,8,10]) which removes the element i-1 to the element i,

starting with the first_source_id as i0, and get the list L =>

[2,2,1,2,2]

Compute b, the number of bits needed to store all the elements,

which is ceil(log2(max(L))): here, 2 bits.

Write b in the corresponding field, and write all the b * [(2 *

NB blocks) - 1] elements in a bit vector, here: 10 10 01 10 10.

¶

¶

¶

¶

¶

¶

1. ¶

2.

¶

3.

¶

4.

¶

6.1.1.1.2. Decompressing the Source symbol IDs

When a Tetrys Decoding Building Block wants to reverse the

operations, this algorithm is used:

Rebuild the list of the transmitted elements by reading the bit

vector and b: [10 10 01 10 10] => [2,2,1,2,2]

Apply the reverse transform by adding successively the

elements, starting with first_source_id: [1,1+2,(1+2)+2,

(1+2+2)+1,...] => [1,3,5,6,8,10]

Rebuild the blocks using the list and first_source_id: [1..3],

[5..6],[8..10].

6.1.1.2. Encoding Vector Format

The encoding vector CAN be used to store the source symbol IDs

included in the associated coded symbol, the coefficients used in

the combination, or both. It CAN be used to send only the number of

source symbols included in the coded symbol.

If the source IDs are stored, the number of blocks MUST be different

from 0.

The encoding vector format uses a 4-bit Coding Coefficient Generator

Identifier to identify the algorithm to generate the coefficients.

It contains a set of blocks for the source symbol IDs used in the

combination. In this format, the number of blocks is stored as a 8-

bit unsigned integer. To reduce the overhead, a compressed way to

store the symbol IDs is used: the IDs are not stored as themselves

but stored as the difference between the previous.

¶

1.

¶

2.

¶

3.

¶

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| EV_LEN | CCGI | I |C|V| NB_IDS | NB_COEFS |

+-+

| FIRST_SOURCE_ID |

+-+

| b_id | |

+-+-+-+-+-+-+-+-+ id_bit_vector +-+-+-+-+-+-+-+

| | Padding |

+-+

| |

+ coef_bit_vector +-+-+-+-+-+-+-+

| | Padding |

+-+

Figure 7: Encoding Vector Format

Encoding Vector Length (EV_LEN) (8-bits): size in units of 32-bit

words.

Coding Coefficient Generator Identifier (CCGI): 4-bit ID to

identify the algorithm or the function used to generate the

coefficients (see Section 5). As a CCGI is included in each

encoded vector, it can dynamically change between the generation

of 2 coded symbols.

Store the Source symbol IDs (I) (2 bits):

00 means there is no source symbol ID information.

01 means the encoding vector contains the edge blocks of the

source symbol IDs without compression.

10 means the encoding vector contains the compressed list of

the source symbol IDs.

11 means the encoding vector contains the compressed edge

blocks of the source symbol IDs.

Store the coefficients (C): 1 bit to know if an encoding vector

contains information about the coefficients used.

Having source symbols with variable size (V): set V to 1 if the

combination which refers to the encoding vector is a combination

of source symbols with variable sizes. In this case, the coded

packets MUST have the 'Encoded Payload Size' field.

Number of IDs used to store the source symbol IDs (NB_IDS): the

number of IDs stored (depending on I).

Number of coefficients (NB_COEFS): The number of the coefficients

used to generate the associated coded symbol.

The first source Identifier (FIRST_SOURCE_ID): the first source

symbol ID used in the combination.

Number of bits for each edge block (b_id): the number of bits

needed to store the edge (see Section 6.1.1.1).

Information about the source symbol IDs (id_bit_vector): if I=01,

store the edge blocks as b_id * (NB_IDS * 2 - 1). If I=10, store

in a compressed way the edge blocks.

The coefficients (coef_bit_vector): The coefficients stored

depending on the CCGI (4 or 8 bits for each coeffecient).

*

¶

*

¶

* ¶

- ¶

-

¶

-

¶

-

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

Padding: padding to have an Encoding Vector size multiple of 32-

bit (for the id and coefficient part).

6.2. The Elastic Encoding Window

When an input source symbol is passed to a Tetrys Encoding Building

Block, it is added to the Elastic Encoding Window. This window MUST

have a limit set by the encoding building Block (depending on the

use case: unicast, multicast, file transfer, real-time transfer,

...). If the Elastic Encoding Window reached its limit, the window

slides over the symbols: the first (oldest) symbols are removed.

Then, a packet containing this symbol can be sent onto the network.

As an element of the coding window, this symbol is included in the

next linear combinations created to generate the coded symbols.

As explained below, the receiver sends periodic feedback indicating

the received or decoded source symbols. In the case of unicast

transmission, when the sender receives the information that a source

symbol was received and/or decoded by the receiver, it removes this

symbol from the coding window.

In a multicast transmission:

If the acknowledgment packets are not enabled, the coding window

grows up to a limit. When the limit is reached, the oldest

symbols are removed from the coding window.

If the acknowledgment packets are enabled, a source symbol is

removed from the coding window when all the receivers have

received or decoded it or when the coding window reaches its

limit.

6.3. Decoding

A classical matrix inversion is sufficient to recover the source

symbols.

7. Research Issues

The design of Tetrys protocol presented in this document provides

the baseline allowing communication between a Tetrys encoder and a

Tetrys decoder. At this stage, the detailed specifications only

focus on the coding and decoding aspects. The objective of this

document is first to provide guidelines to implement Tetrys as a

standalone protocol or to embed Tetrys inside an existing protocol

at the application layer or the IP layer. However, both cases raise

manifold research efforts to come up with a complete protocol

specification. Despite mandatory communication protocol operations

such as opening/closing procedures and timeout/reset, we identified

the following research issues that would need further discussion.

*

¶

¶

¶

¶

*

¶

*

¶

¶

¶

7.1. Interaction with Existing Congestion-Controlled Transport

Protocol

Tetrys coding and congestion control can be seen as two separate

channels. In practice, implementations may mix the signals exchanged

on these channels. This raises several concerns that must be tackled

when considering using Tetrys conjointly with a congestion-

controlled transport protocol. All these numerous research issues

are discussed in a separate document [I-D.irtf-nwcrg-coding-and-

congestion] . In particular, this document investigates end-to-end

unicast data transfer with FEC coding in the application (above the

transport), within the transport, or directly below the transport;

the relationship between transport layer and application

requirements; and the case of transport multipath and multi-streams

applications.

7.2. Adaptive Coding Rate

In a particular context, a redundancy adaptation algorithm might be

considered helpful or mandatory when the network condition (e.g.,

delay, loss rate) strongly varies over time. Hence, it requires an

enhanced mechanism for erasure codes to adapt to network dynamics

similarly to [A-FEC] . However, the dynamic adaptation of an on-the-

fly coding rate is slightly more complex than a block code.

Furthermore, this adaptation can be done conjointly with the network

as proposed in [RED-FEC] . In this paper, the authors propose a

Random Early Detection FEC mechanism in the context of video

transmission over wireless networks. In brief, the idea is to add

more redundancy packets if the queue at the access point is less

occupied and vice versa. A first theoretical attempt for video

delivery has been proposed [THAI] with Tetrys. However, this kind of

algorithms should deserve more research to be deployed in practice.

7.3. Using Tetrys Above The IP Layer For Tunneling

The use of Tetrys to protect from losses an aggregate of flows raise

various issues. This occurs when an encoding mechanism is enabled

below the IP layer and builds redundancy without flows

differentiation. This is typically the case in a tunnel. The main

problem relates to head-of-line blocking when decoding multiple

flows. The number of source packets might vary following their own

loss probability and lead to decoding blocking in waiting for source

data packets to be suppressed from a given repair packet. This kind

of issue could lead to a decrease of the decoding performance and

should be further investigated. Note this research issue joins the

topics discussed in the IRTF LOOPS working group [I-D.li-tsvwg-

loops-problem-opportunities] .

¶

¶

¶

[RFC2119]

[RFC3452]

[RFC5651]

[RFC5740]

8. Security Considerations

Tetrys inherits a subset of the security issues described as those

described in FECFRAME [RFC8680] and in particular in sections

"9.2.2. Content Corruption" and "9.3. Attacks against the FEC

Parameters". As an application layer end-to-end protocol, security

considerations of Tetrys should also be comparable to those of HTTP/

2 with TLS. The considerations from Section 10 of HTTP2 [RFC7540]

also apply in addition to those listed here.

9. Privacy Considerations

N/A

10. IANA Considerations

N/A

11. Acknowledgments

First, the authors want to sincerely thank Marie-Jose Montpetit for

continuous help and support on Tetrys. Marie-Jo, many thanks!

The authors also wish to thank NWCRG group members for numerous

discussions on on-the-fly coding that helped finalize this document.

12. References

12.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Luby, M., Vicisano, L., Gemmell, J., Rizzo, L., Handley,

M., and J. Crowcroft, "Forward Error Correction (FEC)

Building Block", RFC 3452, DOI 10.17487/RFC3452, December

2002, <https://www.rfc-editor.org/info/rfc3452>.

Luby, M., Watson, M., and L. Vicisano, "Layered Coding

Transport (LCT) Building Block", RFC 5651, DOI 10.17487/

RFC5651, October 2009, <https://www.rfc-editor.org/info/

rfc5651>.

Adamson, B., Bormann, C., Handley, M., and J. Macker,

"NACK-Oriented Reliable Multicast (NORM) Transport

Protocol", RFC 5740, DOI 10.17487/RFC5740, November 2009,

<https://www.rfc-editor.org/info/rfc5740>.

¶

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3452
https://www.rfc-editor.org/info/rfc5651
https://www.rfc-editor.org/info/rfc5651
https://www.rfc-editor.org/info/rfc5740

[RFC7540]

[RFC8406]

[RFC8680]

[A-FEC]

[AHL-00]

[I-D.irtf-nwcrg-coding-and-congestion]

[I-D.li-tsvwg-loops-problem-opportunities]

[RED-FEC]

Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext

Transfer Protocol Version 2 (HTTP/2)", RFC 7540, DOI

10.17487/RFC7540, May 2015, <https://www.rfc-editor.org/

info/rfc7540>.

Adamson, B., Adjih, C., Bilbao, J., Firoiu, V., Fitzek,

F., Ghanem, S., Lochin, E., Masucci, A., Montpetit, M-J.,

Pedersen, M., Peralta, G., Roca, V., Ed., Saxena, P.,

and S. Sivakumar, "Taxonomy of Coding Techniques for

Efficient Network Communications", RFC 8406, DOI

10.17487/RFC8406, June 2018, <https://www.rfc-editor.org/

info/rfc8406>.

Roca, V. and A. Begen, "Forward Error Correction (FEC)

Framework Extension to Sliding Window Codes", RFC 8680,

DOI 10.17487/RFC8680, January 2020, <https://www.rfc-

editor.org/info/rfc8680>.

12.2. Informative References

Bolot, J., Fosse-Parisis, S., and D. Towsley, "Adaptive

FEC-based error control for Internet telephony", IEEE

INFOCOM 99, pp. 1453-1460 vol. 3 DOI 10.1109/INFCOM.

1999.752166, 1999.

Ahlswede, R., Ning Cai, Li, S.-Y.R., and R.W. Yeung,

"Network information flow", IEEE Transactions on

Information Theory vol.46, no.4, pp.1204,1216, July 2000.

Kuhn, N., Lochin, E., Michel,

F., and M. Welzl, "Coding and congestion control in

transport", Work in Progress, Internet-Draft, draft-irtf-

nwcrg-coding-and-congestion-09, 25 June 2021, <https://

www.ietf.org/archive/id/draft-irtf-nwcrg-coding-and-

congestion-09.txt>.

Li, Y., Zhou, X., Boucadair, M., Wang, J., and F. Qin,

"LOOPS (Localized Optimizations on Path Segments) Problem

Statement and Opportunities for Network-Assisted

Performance Enhancement", Work in Progress, Internet-

Draft, draft-li-tsvwg-loops-problem-opportunities-06, 13

July 2020, <https://www.ietf.org/archive/id/draft-li-

tsvwg-loops-problem-opportunities-06.txt>.

Lin, C., Shieh, C., Chilamkurti, N. K., Ke, C., and H. S.

Hwang, "A RED-FEC Mechanism for Video Transmission Over

WLANs", IEEE Transactions on Broadcasting, vol. 54, no.

https://www.rfc-editor.org/info/rfc7540
https://www.rfc-editor.org/info/rfc7540
https://www.rfc-editor.org/info/rfc8406
https://www.rfc-editor.org/info/rfc8406
https://www.rfc-editor.org/info/rfc8680
https://www.rfc-editor.org/info/rfc8680
https://www.ietf.org/archive/id/draft-irtf-nwcrg-coding-and-congestion-09.txt
https://www.ietf.org/archive/id/draft-irtf-nwcrg-coding-and-congestion-09.txt
https://www.ietf.org/archive/id/draft-irtf-nwcrg-coding-and-congestion-09.txt
https://www.ietf.org/archive/id/draft-li-tsvwg-loops-problem-opportunities-06.txt
https://www.ietf.org/archive/id/draft-li-tsvwg-loops-problem-opportunities-06.txt

[Tetrys]

[THAI]

3, pp. 517-524 DOI 10.1109/TBC.2008.2001713, September

2008.

Lacan, J. and E. Lochin, "Rethinking reliability for

long-delay networks", International Workshop on Satellite

and Space Communications 2008 (IWSSC08), October 2008.

Tran-Thai, T., Lacan, J., and E. Lochin, "Joint on-the-

fly network coding/video quality adaptation for real-time

delivery", Signal Processing: Image Communication, vol.

29 (no. 4), pp. 449-461 ISSN 0923-5965, 2014.

Authors' Addresses

Jonathan Detchart

ISAE-SUPAERO

10, avenue Edouard Belin

BP 54032

31055 Toulouse CEDEX 4

France

Email: jonathan.detchart@isae-supaero.fr

Emmanuel Lochin

ENAC

7, avenue Edouard Belin

31400 Toulouse

France

Email: emmanuel.lochin@enac.fr

Jerome Lacan

ISAE-SUPAERO

10, avenue Edouard Belin

BP 54032

31055 Toulouse CEDEX 4

France

Email: jerome.lacan@isae-supaero.fr

Vincent Roca

INRIA

655, avenue de l'Europe

Inovallee; Montbonnot

38334 ST ISMIER cedex

France

Email: vincent.roca@inria.fr

mailto:jonathan.detchart@isae-supaero.fr
mailto:emmanuel.lochin@enac.fr
mailto:jerome.lacan@isae-supaero.fr
mailto:vincent.roca@inria.fr

	Tetrys, an On-the-Fly Network Coding protocol
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Notation

	2. Definitions, Notations and Abbreviations
	3. Architecture
	3.1. Use Cases
	3.2. Overview

	4. Packet Format
	4.1. Common Header Format
	4.1.1. Header Extensions

	4.2. Source Packet Format
	4.3. Coded Packet Format
	4.4. Acknowledgement Packet Format

	5. The Coding Coefficient Generator Identifiers
	5.1. Definition
	5.2. Table of Identifiers

	6. Tetrys Basic Functions
	6.1. Encoding
	6.1.1. Encoding Vector Formats
	6.1.1.1. Transmitting the source symbol IDs
	6.1.1.1.1. Compressed list of Source symbol IDs
	6.1.1.1.2. Decompressing the Source symbol IDs

	6.1.1.2. Encoding Vector Format

	6.2. The Elastic Encoding Window
	6.3. Decoding

	7. Research Issues
	7.1. Interaction with Existing Congestion-Controlled Transport Protocol
	7.2. Adaptive Coding Rate
	7.3. Using Tetrys Above The IP Layer For Tunneling

	8. Security Considerations
	9. Privacy Considerations
	10. IANA Considerations
	11. Acknowledgments
	12. References
	12.1. Normative References
	12.2. Informative References

	Authors' Addresses

