
Internet Research Task Force (IRTF) F. Gont
Internet-Draft SI6 Networks
Intended status: Informational I. Arce
Expires: November 15, 2020 Quarkslab
 May 14, 2020

On the Generation of Transient Numeric Identifiers
draft-irtf-pearg-numeric-ids-generation-02

Abstract

 This document performs an analysis of the security and privacy
 implications of different types of "numeric identifiers" used in IETF
 protocols, and tries to categorize them based on their
 interoperability requirements and the associated failure severity
 when such requirements are not met. Subsequently, it provides advice
 on possible algorithms that could be employed to satisfy the
 interoperability requirements of each identifier category, while
 minimizing the security and privacy implications, thus providing
 guidance to protocol designers and protocol implementers. Finally,
 this describes a number of algorithms that have been employed in real
 implementations to generate transient numeric identifiers and
 analyzes their security and privacy properties.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 15, 2020.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Gont & Arce Expires November 15, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft Generation of Transient Numeric IDs May 2020

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Table of Contents

1. Introduction . 3
2. Terminology . 4
3. Threat Model . 5
4. Issues with the Specification of Identifiers 5
5. Protocol Failure Severity 6
6. Categorizing Identifiers 6

 7. Common Algorithms for Transient Numeric Identifier Generation 9
7.1. Category #1: Uniqueness (soft failure) 9
7.2. Category #2: Uniqueness (hard failure) 11

 7.3. Category #3: Uniqueness, stable within context (soft
 failure) . 12
 7.4. Category #4: Uniqueness, monotonically increasing within
 context (hard failure) 13
 8. Common Vulnerabilities Associated with Transient Numeric
 Identifiers . 19

8.1. Network Activity Correlation 19
8.2. Information Leakage 20

 8.3. Exploitation of Semantics of Transient Numeric
 Identifiers . 21
 8.4. Exploitation of Collisions of Transient Numeric
 Identifiers . 21

8.5. Cryptanalysis . 21
 9. Vulnerability Analysis of Specific Transient Numeric
 Identifiers Categories 22

9.1. Category #1: Uniqueness (soft failure) 22
9.2. Category #2: Uniqueness (hard failure) 23

 9.3. Category #3: Uniqueness, stable within context (soft
 failure) . 23
 9.4. Category #4: Uniqueness, monotonically increasing within
 context (hard failure) 23

10. IANA Considerations . 25
11. Security Considerations 25
12. Acknowledgements . 26
13. References . 26
13.1. Normative References 26
13.2. Informative References 27

Appendix A. Flawed Algorithms 30
A.1. Predictable Linear Identifiers Algorithm 30
A.2. Random-Increments Algorithm 32

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Gont & Arce Expires November 15, 2020 [Page 2]

Internet-Draft Generation of Transient Numeric IDs May 2020

 Authors' Addresses . 34

1. Introduction

 Network protocols employ a variety of numeric identifiers for
 different protocol entities, ranging from DNS Transaction IDs (TxIDs)
 to transport protocol ports (e.g. TCP ports) or IPv6 Interface
 Identifiers (IIDs). These identifiers usually have specific
 properties (e.g. uniqueness during a specified period of time) that
 must be satisfied such that they do not result in negative
 interoperability implications, and an associated failure severity
 when such properties are not met, ranging from soft to hard failures.

 For more than 30 years, a large number of implementations of the TCP/
 IP protocol suite have been subject to a variety of attacks, with
 effects ranging from Denial of Service (DoS) or data injection, to
 information leakages that could be exploited for pervasive monitoring
 [RFC7258]. The root cause of these issues has been, in many cases,
 the poor selection of transient numeric identifiers in such
 protocols, usually as a result of insufficient or misleading
 specifications. While it is generally trivial to identify an
 algorithm that can satisfy the interoperability requirements of a
 given identifier, empirical evidence exists that doing so without
 negatively affecting the security and/or privacy properties of the
 aforementioned protocols is prone to error
 [I-D.irtf-pearg-numeric-ids-history].

 For example, implementations have been subject to security and/or
 privacy issues resulting from:

 o Predictable TCP Initial Sequence Numbers (ISNs)

 o Predictable transport protocol ephemeral port numbers

 o Predictable IPv4 or IPv6 Fragment Identifiers (Fragment IDs)

 o Predictable IPv6 Interface Identifiers (IIDs)

 o Predictable DNS Transaction Identifiers (TxIDs)

 Recent history indicates that when new protocols are standardized or
 new protocol implementations are produced, the security and privacy
 properties of the associated identifiers tend to be overlooked, and
 inappropriate algorithms to generate transient numeric identifiers
 are either suggested in the specification or selected by
 implementers. As a result, it should be evident that advice in this
 area is warranted.

https://datatracker.ietf.org/doc/html/rfc7258

Gont & Arce Expires November 15, 2020 [Page 3]

Internet-Draft Generation of Transient Numeric IDs May 2020

 This document contains a non-exhaustive survey of identifiers
 employed in various IETF protocols, and aims to categorize such
 identifiers based on their interoperability requirements, and the
 associated failure severity when such requirements are not met.
 Subsequently, it provides advice on possible algorithms that could be
 employed to satisfy the interoperability requirements of each
 category, while minimizing the associated security and privacy
 implications. Finally, it analyzes several algorithms that have been
 employed in real implementations to meet such requirements and
 analyzes their security and privacy properties.

2. Terminology

 Transient Numeric Identifier:
 A data object in a protocol specification that can be used to
 definitely distinguish a protocol object (a datagram, network
 interface, transport protocol endpoint, session, etc) from all
 other objects of the same type, in a given context. Transient
 numeric identifiers are usually defined as a series of bits, and
 represented using integer values. These identifiers are typically
 dynamically selected, as opposed to statically-assigned numeric
 identifiers (see e.g. [IANA-PROT]). We note that different
 identifiers may have additional requirements or properties
 depending on their specific use in a protocol. We use the term
 "transient numeric identifier" (or simply "numeric identifier" or
 "identifier" as short forms) as a generic term to refer to any
 data object in a protocol specification that satisfies the
 identification property stated above.

 Failure Severity:
 The consequences of a failure to comply with the interoperability
 requirements of a given identifier. Severity considers the worst
 potential consequence of a failure, determined by the system
 damage and/or time lost to repair the failure. In this document
 we define two types of failure severity: "soft failure" and "hard
 failure".

 Soft Failure:
 A soft failure is a recoverable condition in which a protocol does
 not operate in the prescribed manner but normal operation can be
 resumed automatically in a short period of time. For example, a
 simple packet-loss event that is subsequently recovered with a
 retransmission can be considered a soft failure.

 Hard Failure:
 A hard failure is a non-recoverable condition in which a protocol
 does not operate in the prescribed manner or it operates with
 excessive degradation of service. For example, an established TCP

Gont & Arce Expires November 15, 2020 [Page 4]

Internet-Draft Generation of Transient Numeric IDs May 2020

 connection that is aborted due to an error condition constitutes,
 from the point of view of the transport protocol, a hard failure,
 since it enters a state from which normal operation cannot be
 resumed.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

3. Threat Model

 Throughout this document, we assume an attacker does not have
 physical or logical access to the device(s) being attacked. We
 assume the attacker can simply send any traffic to the target
 device(s), to e.g. sample identifiers employed by such device(s).

4. Issues with the Specification of Identifiers

 While assessing protocol specifications regarding the use of
 identifiers, we found that most of the issues discussed in this
 document arise as a result of one of the following conditions:

 o Protocol specifications which under-specify the requirements for
 their identifiers

 o Protocol specifications that over-specify their identifiers

 o Protocol implementations that simply fail to comply with the
 specified requirements

 A number of protocol specifications (too many of them) have simply
 overlooked the security and privacy implications of transient numeric
 identifiers [I-D.irtf-pearg-numeric-ids-history]. Examples of them
 are the specification of TCP port numbers in [RFC0793], the
 specification of TCP sequence numbers in [RFC0793], or the
 specification of the DNS TxID in [RFC1035].

 On the other hand, there are a number of protocol specifications that
 over-specify some of their associated transient numeric identifiers.
 For example, [RFC4291] essentially overloads the semantics of IPv6
 Interface Identifiers (IIDs) by embedding link-layer addresses in the
 IPv6 IIDs, when the interoperability requirement of uniqueness could
 be achieved in other ways that do not result in negative security and
 privacy implications [RFC7721]. Similarly, [RFC2460] suggested the
 use of a global counter for the generation of Fragment Identification
 values, when the interoperability properties of uniqueness per {Src
 IP, Dst IP} could be achieved with other algorithms that do not
 result in negative security and privacy implications [RFC7739].

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc4291
https://datatracker.ietf.org/doc/html/rfc7721
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc7739

Gont & Arce Expires November 15, 2020 [Page 5]

Internet-Draft Generation of Transient Numeric IDs May 2020

 Finally, there are protocol implementations that simply fail to
 comply with existing protocol specifications. For example, some
 popular operating systems (notably Microsoft Windows) still fail to
 implement transport protocol ephemeral port randomization, as
 recommended in [RFC6056].

5. Protocol Failure Severity

Section 2 defines the concept of "Failure Severity", along with two
 types of failure severities that we employ throughout this document:
 soft and hard.

 Our analysis of the severity of a failure is performed from the point
 of view of the protocol in question. However, the corresponding
 severity on the upper application or protocol may not be the same as
 that of the protocol in question. For example, a TCP connection that
 is aborted may or may not result in a hard failure of the upper
 application protocol: if the upper application can establish a new
 TCP connection without any impact on the application, a hard failure
 at the TCP protocol may have no severity at the application level.
 On the other hand, if a hard failure of a TCP connection results in
 excessive degradation of service at the application layer, it will
 also result in a hard failure at the application.

6. Categorizing Identifiers

 This section includes a non-exhaustive survey of transient numeric
 identifiers, and proposes a number of categories that can accommodate
 these identifiers based on their interoperability requirements and
 their failure modes (soft or hard)

https://datatracker.ietf.org/doc/html/rfc6056

Gont & Arce Expires November 15, 2020 [Page 6]

Internet-Draft Generation of Transient Numeric IDs May 2020

 +--------------+------------------------------------+---------------+
 | Identifier | Interoperability Requirements | Failure |
 | | | Severity |
 +--------------+------------------------------------+---------------+
 | IPv6 Frag ID | Uniqueness (for IP address pair) | Soft/Hard (1) |
 +--------------+------------------------------------+---------------+
 | IPv6 IID | Uniqueness (and stable within IPv6 | Soft (3) |
 | | prefix) (2) | |
 +--------------+------------------------------------+---------------+
 | TCP ISN | Monotonically-increasing | Hard (4) |
 +--------------+------------------------------------+---------------+
 | TCP eph. | Uniqueness (for connection ID) | Hard |
 | port | | |
 +--------------+------------------------------------+---------------+
 | IPv6 Flow | Uniqueness | None (5) |
 | Label | | |
 +--------------+------------------------------------+---------------+
 | DNS TxID | Uniqueness | None (6) |
 +--------------+------------------------------------+---------------+

 Table 1: Survey of Identifiers

 Notes:

 (1)
 While a single collision of Fragment ID values would simply lead
 to a single packet drop (and hence a "soft" failure), repeated
 collisions at high data rates might trash the Fragment ID space,
 leading to a hard failure [RFC4963].

 (2)
 While the interoperability requirements are simply that the
 Interface ID results in a unique IPv6 address, for operational
 reasons it is typically desirable that the resulting IPv6 address
 (and hence the corresponding Interface ID) be stable within each
 network [RFC7217] [RFC8064].

 (3)
 While IPv6 Interface IDs must result in unique IPv6 addresses,
 IPv6 Duplicate Address Detection (DAD) [RFC4862] allows for the
 detection of duplicate addresses, and hence such Interface ID
 collisions can be recovered.

 (4)
 In theory, there are no interoperability requirements for TCP
 Initial Sequence Numbers (ISNs), since the TIME-WAIT state and
 TCP's "quiet time" concept take care of old segments from previous
 incarnations of the connection. However, a widespread

https://datatracker.ietf.org/doc/html/rfc4963
https://datatracker.ietf.org/doc/html/rfc7217
https://datatracker.ietf.org/doc/html/rfc8064
https://datatracker.ietf.org/doc/html/rfc4862

Gont & Arce Expires November 15, 2020 [Page 7]

Internet-Draft Generation of Transient Numeric IDs May 2020

 optimization allows for a new incarnation of a previous connection
 to be created if the ISN of the incoming SYN is larger than the
 last sequence number seen in that direction for the previous
 incarnation of the connection. Thus, monotonically-increasing TCP
 sequence numbers allow for such optimization to work as expected
 [RFC6528], since otherwise such connections-establishment attempts
 would fail.

 (5)
 The IPv6 Flow Label is typically employed for load sharing
 [RFC7098], along with the Source and Destination IPv6 addresses.
 Reuse of a Flow Label value for the same set {Source Address,
 Destination Address} would typically cause both flows to be
 multiplexed onto the same link. However, as long as this does not
 occur deterministically, it will not result in any negative
 implications.

 (6)
 DNS TxIDs are employed, together with the Source Address,
 Destination Address, Source Port, and Destination Port, to match
 DNS requests and responses. However, since an implementation
 knows which DNS requests were sent for that set of {Source
 Address, Destination Address, Source Port, and Destination Port,
 DNS TxID}, a collision of TxID would result, if anything, in a
 small performance penalty (the response would nevertheless be
 discarded when it is found that it does not answer the query sent
 in the corresponding DNS query).

 Based on the survey above, we can categorize identifiers as follows:

 +-----+---------------------------------------+---------------------+
 | Cat | Category | Sample Proto IDs |
 | # | | |
 +-----+---------------------------------------+---------------------+
 | 1 | Uniqueness (soft failure) | IPv6 Flow L., DNS |
 | | | TxIDs |
 +-----+---------------------------------------+---------------------+
 | 2 | Uniqueness (hard failure) | IPv6 Frag ID, TCP |
 | | | ephemeral port |
 +-----+---------------------------------------+---------------------+
 | 3 | Uniqueness, stable within context | IPv6 IIDs |
 | | (soft failure) | |
 +-----+---------------------------------------+---------------------+
 | 4 | Uniqueness, monotonically increasing | TCP ISN |
 | | within context (hard failure) | |
 +-----+---------------------------------------+---------------------+

 Table 2: Identifier Categories

https://datatracker.ietf.org/doc/html/rfc6528
https://datatracker.ietf.org/doc/html/rfc7098

Gont & Arce Expires November 15, 2020 [Page 8]

Internet-Draft Generation of Transient Numeric IDs May 2020

 We note that Category #4 could be considered a generalized case of
 category #3, in which a monotonically increasing element is added to
 a stable (within context) element, such that the resulting
 identifiers are monotonically increasing within a specified context.
 That is, the same algorithm could be employed for both #3 and #4,
 given appropriate parameters.

7. Common Algorithms for Transient Numeric Identifier Generation

 The following subsections describe some sample algorithms that can be
 employed for generating transient numeric identifiers for each of the
 categories above.

7.1. Category #1: Uniqueness (soft failure)

 The requirement of uniqueness with a soft failure mode can be
 complied with a Pseudo-Random Number Generator (PRNG). In scenarios
 where ongoing use of previously selected numeric IDs is possible and
 desirable, an implementation may opt to select the next available
 identifier in the same sequence, or select another random number.

Section 7.1.1 is an implementation of the former strategy, while
Section 7.1.2 is an implementation of the later.

 We note that since the premise is that collisions of numeric
 identifiers of this category only leads to soft failures, in many (if
 not most) cases, the algorithm will not need to check the suitability
 of a selected identifier (i.e., check_suitable_id() would always be
 "true").

7.1.1. Simple Randomization Algorithm

Gont & Arce Expires November 15, 2020 [Page 9]

Internet-Draft Generation of Transient Numeric IDs May 2020

 /* Numeric ID selection function */

 id_range = max_id - min_id + 1;
 next_id = min_id + (random() % id_range);
 count = next_id;

 do {
 if(check_suitable_id(next_id))
 return next_id;

 if (next_id == max_id) {
 next_id = min_id;
 } else {
 next_id++;
 }

 count--;
 } while (count > 0);

 return ERROR;

 NOTE:
 random() is a function that returns a pseudo-random unsigned
 integer number of appropriate size. Note that the output needs to
 be unpredictable, and typical implementations of the POSIX
 random() function do not necessarily meet this requirement. See
 [RFC4086] for randomness requirements for security. Beware that
 that "adapting" the length of the output of random() with a modulo
 operator (e.g., C language's "%") may change the distribution of
 the PRNG.

 The function check_suitable_id() can check, when possible and
 desirable, whether this identifier is suitable (e.g. it is not
 already in use). Depending on how/where the numeric identifier is
 used, it may or may not be possible (or even desirable) to check
 whether the numeric identifier is in use (or whether it has been
 recently been employed). When an identifier is found to be
 unsuitable, this algorithm selects the next available numeric
 identifier in sequence.

 All the variables (in this and all the algorithms discussed in
 this document) are unsigned integers.

 This algorithm does not suffer from any of the issues discussed in
Section 8.

https://datatracker.ietf.org/doc/html/rfc4086

Gont & Arce Expires November 15, 2020 [Page 10]

Internet-Draft Generation of Transient Numeric IDs May 2020

7.1.2. Another Simple Randomization Algorithm

 The following pseudo-code illustrates another algorithm for selecting
 a random numeric identifier which, in the event a selected identifier
 is found to be unsuitable (e.g., already in use), another identifier
 is randomly selected:

 /* Numeric ID selection function */

 id_range = max_id - min_id + 1;
 next_id = min_id + (random() % id_range);
 count = id_range;

 do {
 if(check_suitable_id(next_id))
 return next_id;

 next_id = min_id + (random() % id_range);
 count--;
 } while (count > 0);

 return ERROR;

 This algorithm might be unable to select an identifier (i.e., return
 "ERROR") even if there are suitable identifiers available, in cases
 where a large number of identifiers are unsuitable (e.g. "in use").

 The same considerations from Section 7.1.1 with respect to the
 properties of random() and the adaptation of its output length apply
 to this algorithm.

 This algorithm does not suffer from any of the issues discussed in
Section 8.

7.2. Category #2: Uniqueness (hard failure)

 One of the most trivial approaches for achieving uniqueness for an
 identifier (with a hard failure mode) is to reduce the identifier
 reuse frequency by generating the numeric identifiers with a linear
 function. As a result, all of the algorithms described in

Section 7.4 ("Category #4: Uniqueness, monotonically increasing
 within context (hard failure)") can be readily employed for complying
 with the requirements of this numeric identifier category.

Gont & Arce Expires November 15, 2020 [Page 11]

Internet-Draft Generation of Transient Numeric IDs May 2020

7.3. Category #3: Uniqueness, stable within context (soft failure)

 The goal of the following algorithm is to produce identifiers that
 are stable for a given context (identified by "CONTEXT"), but that
 change when the aforementioned context changes.

 In order to avoid storing in memory the numeric identifier computed
 for each CONTEXT value, the following algorithm employs a calculated
 technique (as opposed to keeping state in memory) to generate a
 stable identifier for each given context.

 /* Numeric ID selection function */

 id_range = max_id - min_id + 1;

 counter = 0;

 do {
 offset = F(CONTEXT, counter, secret_key);
 next_id = min_id + (offset % id_range);

 if(check_suitable_id(next_id))
 return next_id;

 counter++;

 } while (counter <= MAX_RETRIES);

 return ERROR;

 In the following algorithm, the function F() provides a stateless and
 stable per-CONTEXT numeric identifier, where CONTEXT is the
 concatenation of all the elements that define the given context.

 For example, if this algorithm is expected to produce IPv6 IIDs
 that are unique per network interface card (NIC) and SLAAC
 autoconfiguration prefix, the CONTEXT should be the concatenation
 of e.g. the interface index and the SLAAC autoconfiguration prefix
 (please see [RFC7217] for an implementation of this algorithm for
 generation of stable IPv6 IIDs).

 F() must be a cryptographically-secure hash function (e.g. SHA-256
 [FIPS-SHS]), that is computed over the concatenation of its
 arguments. The result of F() is no more secure than the secret key,
 and therefore 'secret_key' must be unknown to the attacker, and must
 be of a reasonable length. 'secret_key' must remain stable for a
 given CONTEXT, since otherwise the numeric identifiers generated by

https://datatracker.ietf.org/doc/html/rfc7217

Gont & Arce Expires November 15, 2020 [Page 12]

Internet-Draft Generation of Transient Numeric IDs May 2020

 this algorithm would not have the desired stability properties (i.e.,
 stable for a given CONTEXT). In most cases, 'secret_key' can be
 selected with a PRNG (see [RFC4086] for recommendations on choosing
 secrets) at an appropriate time, and stored in stable or volatile
 storage for future use.

 The result of F() is stored in the variable 'offset', which may take
 any value within the storage type range, since we are restricting the
 resulting identifier to be in the range [min_id, max_id] in a similar
 way as in the algorithm described in Section 7.1.1.

 check_suitable_id() checks that the candidate identifier has suitable
 uniqueness properties. Collisions (i.e., an identifier that is not
 unique) are recovered by incrementing the 'counter' variable and
 recomputing F().

 For obvious reasons, the transient network identifiers generated with
 this algorithm allow for network activity correlation within
 "CONTEXT". However, this is essentially a design goal of this
 category of transient numeric identifiers.

7.4. Category #4: Uniqueness, monotonically increasing within context
 (hard failure)

7.4.1. Per-context Counter Algorithm

 One possible way to achieve low identifier reuse frequency while
 still avoiding predictable sequences would be to employ a per-context
 counter, as opposed to a global counter. Such an algorithm could be
 described as follows:

https://datatracker.ietf.org/doc/html/rfc4086

Gont & Arce Expires November 15, 2020 [Page 13]

Internet-Draft Generation of Transient Numeric IDs May 2020

 /* Initialization code */
 id_inc = 1;

 /* Numeric ID selection function */

 count = max_id - min_id + 1;

 if(lookup_counter(CONTEXT) == ERROR){
 create_counter(CONTEXT);
 }

 next_id = lookup_counter(CONTEXT);

 do {
 if (next_id == max_id) {
 next_id = min_id;
 }
 else {
 next_id = next_id + id_inc;
 }

 if (check_suitable_id(next_id)){
 store_counter(CONTEXT, next_id);
 return next_id;
 }

 count--;

 } while (count > 0);

 store_counter(CONTEXT, next_id);
 return ERROR;

 NOTE:
 lookup_counter() returns the current counter for a given context,
 or an error condition if such a counter does not exist.

 create_counter() creates a counter for a given context, and
 initializes such counter to a random value.

 store_counter() saves (updates) the current counter for a given
 context.

 check_suitable_id() is a function that checks whether the
 resulting identifier is acceptable (e.g., whether it is not
 already in use, etc.).

Gont & Arce Expires November 15, 2020 [Page 14]

Internet-Draft Generation of Transient Numeric IDs May 2020

 Essentially, whenever a new identifier is to be selected, the
 algorithm checks whether there there is a counter for the
 corresponding context. If there is, such counter is incremented to
 obtain the new identifier, and the new identifier updates the
 corresponding counter. If there is no counter for such context, a
 new counter is created an initialized to a random value, and used as
 the new identifier. This algorithm produces a per-context counter,
 which results in one linear function for each context. Since each
 counter is initialized to a random value, the resulting values are
 unpredictable by an off-path attacker.

 This algorithm has the following drawbacks:

 o This algorithm requires an implementation to store each per-
 CONTEXT counter in memory. If, as a result of resource
 management, the counter for a given context must be removed, the
 last identifier value used for that context will be lost. Thus,
 if subsequently an identifier needs to be generated for the same
 context, that counter will need to be recreated and reinitialized
 to random value, thus possibly leading to reuse/collision of
 numeric identifiers.

 o An implementation may map more than one context to the same
 counter, such the amount of memory required to store counters is
 reduce, at the expense of a possible unnecessary increase in the
 numeric identifier reuse frequency. In such cases, if the
 identifiers are predictable by the destination system (e.g., the
 destination host represents the "context"), a vulnerable host
 might possibly leak to third parties the identifiers used by other
 hosts to send traffic to it (i.e., a vulnerable Host B could leak
 to Host C the identifier values that Host A is using to send
 packets to Host B). Appendix A of [RFC7739] describes one
 possible scenario for such leakage in detail.

 Otherwise, the identifiers produced by this algorithm do not suffer
 from the other issues discussed in Section 8.

7.4.2. Simple Hash-Based Algorithm

 The goal of this algorithm is to produce monotonically-increasing
 sequences, with a randomized initial value, for each given context.
 For example, if the identifiers being generated must be unique for
 each {src IP, dst IP} set, then each possible combination of {src IP,
 dst IP} should have a corresponding "next_id" value.

 Keeping one counter for each possible "context" may in many cases be
 considered too onerous in terms of memory requirements. As a
 workaround, the following algorithm employs a calculated technique

https://datatracker.ietf.org/doc/html/rfc7739#appendix-A

Gont & Arce Expires November 15, 2020 [Page 15]

Internet-Draft Generation of Transient Numeric IDs May 2020

 (as opposed to keeping state in memory) to maintain the random offset
 for each possible context.

 In the following algorithm, the function F() provides a (stateless)
 unpredictable offset for each given context (as identified by
 'CONTEXT').

 /* Initialization code */
 counter = 0;

 /* Numeric ID selection function */

 id_range = max_id - min_id + 1;
 offset = F(CONTEXT, secret_key);
 count = id_range;

 do {
 next_id = min_id +
 (counter + offset) % id_range;

 counter++;

 if(check_suitable_id(next_id))
 return next_id;

 count--;

 } while (count > 0);

 return ERROR;

 The function F() provides a "per-CONTEXT" fixed offset within the
 numeric identifier "space". Both the 'offset' and 'counter'
 variables may take any value within the storage type range since we
 are restricting the resulting identifier to be in the range [min_id,
 max_id] in a similar way as in the algorithm described in

Section 7.1.1. This allows us to simply increment the 'counter'
 variable and rely on the unsigned integer to wrap around.

 The function F() should be a cryptographically-secure hash function
 (e.g. SHA-256 [FIPS-SHS]). CONTEXT is the concatenation of all the
 elements that define a given context. For example, if this algorithm
 is expected to produce identifiers that are monotonically-increasing
 for each set (Source IP Address, Destination IP Address), CONTEXT
 should be the concatenation of these two IP addresses.

Gont & Arce Expires November 15, 2020 [Page 16]

Internet-Draft Generation of Transient Numeric IDs May 2020

 The result of F() is no more secure than the secret key, and
 therefore 'secret_key' must be unknown to the attacker, and must be
 of a reasonable length. 'secret_key' must remain stable for a given
 CONTEXT, since otherwise the numeric identifiers generated by this
 algorithm would not have the desired stability properties (i.e.,
 stable for a given CONTEXT). In most cases, 'secret_key' can be
 selected with a PRNG (see [RFC4086] for recommendations on choosing
 secrets) at an appropriate time, and stored in stable or volatile
 storage for future use.

 It should be noted that, since this algorithm uses a global counter
 ("counter") for selecting identifiers (i.e., all counters share the
 same increments space), this algorithm produces an information
 leakage (as described in Section 8.2). For example, if this
 algorithm were used for selecting TCP ephemeral ports, and an
 attacker could force a client to periodically establish a new TCP
 connection to an attacker-controlled machine (or through an attacker-
 observable routing path), the attacker could subtract consecutive
 source port values to obtain the number of outgoing TCP connections
 established globally by the target host within that time period (up
 to wrap-around issues and five-tuple collisions, of course).

7.4.3. Double-Hash Algorithm

 A trade-off between maintaining a single global 'counter' variable
 and maintaining 2**N 'counter' variables (where N is the width of the
 result of F()), could be achieved as follows. The system would keep
 an array of TABLE_LENGTH integers, which would provide a separation
 of the increment space into multiple buckets. This improvement could
 be incorporated into the algorithm from Section 7.4.2 as follows:

https://datatracker.ietf.org/doc/html/rfc4086

Gont & Arce Expires November 15, 2020 [Page 17]

Internet-Draft Generation of Transient Numeric IDs May 2020

 /* Initialization code */

 for(i = 0; i < TABLE_LENGTH; i++)
 table[i] = random();

 id_inc = 1;

 /* Numeric ID selection function */

 id_range = max_id - min_id + 1;
 offset = F(CONTEXT, secret_key1);
 index = G(CONTEXT, secret_key2) % TABLE_LENGTH;
 count = id_range;

 do {
 next_id = min_id + (offset + table[index]) % id_range;
 table[index] = table[index] + id_inc;

 if(check_suitable_id(next_id))
 return next_id;

 count--;

 } while (count > 0);

 return ERROR;

 'table[]' could be initialized with random values, as indicated by
 the initialization code in the pseudo-code above.

 Both F() and G() should be a cryptographically-secure hash functions
 (e.g. SHA-256 [FIPS-SHS]) computed over the concatenation of each of
 their respective arguments. Both F() and G() would employ the same
 CONTEXT (the concatenation of all the elements that define a given
 context), and would use separate secreted keys (secret_key1, and
 secret_key2, respectively).

 The results of F() and G() are no more secure than their respective
 secret keys ('secret_key1' and 'secret_key2', respectively), and
 therefore both secret keys must be unknown to the attacker, and must
 be of a reasonable length. Both secret keys must remain stable for
 the given CONTEXT, since otherwise the numeric identifiers generated
 by this algorithm would not have the desired stability properties
 (i.e., stable for a given CONTEXT). In most cases, both secret keys
 can be selected with a PRNG (see [RFC4086] for recommendations on

https://datatracker.ietf.org/doc/html/rfc4086

Gont & Arce Expires November 15, 2020 [Page 18]

Internet-Draft Generation of Transient Numeric IDs May 2020

 choosing secrets) at an appropriate time, and stored in stable or
 volatile storage for future use.

 The array 'table[]' assures that successive identifiers for a given
 context will be monotonically-increasing. However, the increments
 space is separated into TABLE_LENGTH different spaces, and thus
 identifier reuse frequency will be (probabilistically) lower than
 that of the algorithm in Section 7.4.2. That is, the generation of
 an identifier for one given context will not necessarily result in
 increments in the identifier sequence for other contexts. It is
 interesting to note that the size of 'table[]' does not limit the
 number of different identifier sequences, but rather separates the
 increments into TABLE_LENGTH different spaces. The identifier
 sequence will result from adding the corresponding entry of 'table[]'
 to the variable 'offset', which selects the actual identifier
 sequence (as in the algorithm from Section 7.4.2).

 An attacker can perform traffic analysis for any "increment space"
 (i.e., context) into which the attacker has "visibility" -- namely,
 the attacker can force a node to generate identifiers where
 G(CONTEXT, secret_key2) identifies the target "increment space".
 However, the attacker's ability to perform traffic analysis is very
 reduced when compared to the predictable linear identifiers
 (described in Appendix A.1) and the hash-based identifiers (described
 in Section 7.4.2). Additionally, an implementation can further limit
 the attacker's ability to perform traffic analysis by further
 separating the increment space (that is, using a larger value for
 TABLE_LENGTH) and/or by randomizing the increments.

 Otherwise, this algorithm does not suffer from the issues discussed
 in Section 8.

8. Common Vulnerabilities Associated with Transient Numeric Identifiers

8.1. Network Activity Correlation

 An identifier that is predictable or stable within a given context
 allows for network activity correlation within that context.

 For example, a stable IPv6 Interface Identifier allows for network
 activity to be correlated for the context in which that address is
 stable [RFC7721]. A stable-per-network IPv6 Interface Identifier (as
 in [RFC7217]) allows for network activity correlation within a
 network, whereas a constant IPv6 Interface Identifier (that remains
 the same across networks) allows not only network activity
 correlation within the same network, but also across networks ("host
 tracking").

https://datatracker.ietf.org/doc/html/rfc7721
https://datatracker.ietf.org/doc/html/rfc7217

Gont & Arce Expires November 15, 2020 [Page 19]

Internet-Draft Generation of Transient Numeric IDs May 2020

 Similarly, a node that generates TCP ISNs with a global counter could
 allow network activity correlation across networks, since the
 communicating nodes could infer the identity of the node based on the
 TCP ISNs employed for subsequent communication instances. Similarly,
 a node that generates predictable IPv6 Fragment Identification values
 could be subject to network activity correlation (see e.g.
 [Bellovin2002]).

8.2. Information Leakage

 Transient numeric identifiers that are not randomized can leak out
 information to other communicating nodes. For example, it is common
 to generate identifiers like:

 ID = offset(CONTEXT_1) + linear(CONTEXT_2);

 This generic expression generates identifiers by adding a linear
 function to an offset. The offset is stable within a given context,
 whereas linear() is a linear function for a given context (possibly
 different to that of offset()). Identifiers generated with this
 expression will generally be predictable within CONTEXT_1. Thus,
 CONTEXT_1 essentially specifies the context within which information
 will be "leaked". When both CONTEXT_1 and CONTEXT_2 are a constant
 value, then all the corresponding transient numeric identifiers
 become predictable in all contexts.

 NOTE: If offset() has a global context and the specific value is
 known, the resulting identifiers may leak even more information.
 For example, the if Fragment Identification values are generated
 with the generic function above, and CONTEXT_1 is "global", then
 the corresponding identifiers will leak the number of fragmented
 datagrams sent for CONTEXT_2. If both CONTEXT_1 and CONTEXT_2 are
 "global", then Fragment Identification values would be generated
 with a global counter (initialized to offset()), and thus each
 generated Fragment Identification value would leak the number of
 fragmented datagrams transmitted by the node since it has been
 bootstrapped.

 On the other hand, linear() will be predictable within CONTEXT_2.
 The predictability of linear(), irrespective of the context and/or
 predictability of offset(), can leak out information that is of use
 to attackers. For example, a node that selects ephemeral port
 numbers on as in:

 ephemeral_port = offset(Dest_IP) + linear()

 that is, with a per-destination offset, but global linear() function
 (e.g., a global counter), will leak information about the number of

Gont & Arce Expires November 15, 2020 [Page 20]

Internet-Draft Generation of Transient Numeric IDs May 2020

 outgoing connections that have been issued between any two issued
 outgoing connections.

 Similarly, a node that generates Fragment Identification values as
 in:

 Frag_ID = offset(Srd_IP, Dst_IP) + linear()

 will leak out information about the number of fragmented packets that
 have been transmitted between any two other transmitted fragmented
 packets. The vulnerabilities described in [Sanfilippo1998a],
 [Sanfilippo1998b], and [Sanfilippo1999] are all associated with the
 use of a global linear() function (i.e., a global CONTEXT_2).

8.3. Exploitation of Semantics of Transient Numeric Identifiers

 Identifiers that are not semantically opaque tend to be more
 predictable than semantically-opaque identifiers. For example, a MAC
 address contains an OUI (Organizationally-Unique Identifier) which
 identifies the vendor that manufactured the underlying network
 interface card. This fact may be leveraged by an attacker meaning to
 "guess" MAC addresses and who has some knowledge about the possible
 NIC vendor.

 [RFC7707] discusses a number of techniques to reduce the search space
 when performing IPv6 address-scanning attacks by leveraging the
 semantics of the IIDs produced by a number by traditional IID-
 generation algorithms that embed MAC addresses (now replaced by
 [RFC8064] with [RFC7217]).

8.4. Exploitation of Collisions of Transient Numeric Identifiers

 In many cases, the collision of transient network identifiers can
 have a hard failure severity (or result in a hard failure severity if
 an attacker can cause multiple collisions deterministically, one
 after another). For example, predictable Fragment Identification
 values open the door to Denial of Service (DoS) attacks (see e.g.
 [RFC5722]. Similarly, predictable TCP ISNs open the door to trivial
 connection-reset and data injection attacks (see e.g.
 [Joncheray1995]).

8.5. Cryptanalysis

 A number of algorithms discussed in this document (such as
Section 7.4.2 and Section 7.4.3 rely on cryptographically-secure hash

 functions. Implementations that employ weak hash functions and keys
 of inappropriate size may be subject to cryptanalysis, where an

https://datatracker.ietf.org/doc/html/rfc8064
https://datatracker.ietf.org/doc/html/rfc7217
https://datatracker.ietf.org/doc/html/rfc5722

Gont & Arce Expires November 15, 2020 [Page 21]

Internet-Draft Generation of Transient Numeric IDs May 2020

 attacker may be able to obtain the secret key employed for the hash
 algorithms, predict numeric identifiers, etc.

 Futhermore, an implementation that overloads the semantics of the
 secret key may result in more trivial cryptanalysis, possibly
 resulting in the leakage of the value employed for the secret key.

 NOTE:
 [IPID-DEV] describes two vulnerable numeric ID generators that
 employ cryptographically-weak hash functions. Additionally, one
 of such implementations employs a 32-bits of a kernel address as
 the secret key for a hash function, and therefore successful
 cryptanalysis leaks the aforementioned kernel address, allowing
 for Kernel Address Space Layout Randomization (KASLR) [KASLR]
 bypass.

9. Vulnerability Analysis of Specific Transient Numeric Identifiers
 Categories

 The following subsections analyze common vulnerabilities associated
 with the generation of identifiers for each of the categories
 identified in Section 6.

9.1. Category #1: Uniqueness (soft failure)

 Possible vulnerabilities associated with identifiers of this category
 are:

 o Use of trivial algorithms (e.g. global counters) that generate
 predictable identifiers

 o Use of flawed PRNGs (please see e.g. [Zalewski2001],
 [Zalewski2002] and [Klein2007])

 Since the only interoperability requirement for these identifiers is
 uniqueness (with an associated soft failure), the obvious approach to
 generate them is to employ a PRNG. An implementer should consult
 [RFC4086] regarding randomness requirements for security, and consult
 relevant documentation when employing a PRNG provided by the
 underlying system.

 Use of algorithms other than PRNGs for generating identifiers of this
 category is discouraged.

https://datatracker.ietf.org/doc/html/rfc4086

Gont & Arce Expires November 15, 2020 [Page 22]

Internet-Draft Generation of Transient Numeric IDs May 2020

9.2. Category #2: Uniqueness (hard failure)

 As noted in Section 7.2 this category typically employs the same
 algorithms as Category #4, since a monotonically-increasing sequence
 tends to minimize the identifier reuse frequency. Therefore, the
 vulnerability analysis of Section 9.4 applies to this category.

9.3. Category #3: Uniqueness, stable within context (soft failure)

 There are three main vulnerabilities that may be associated with
 identifiers of this category:

 1. Use algorithms or sources that result in predictable identifiers

 2. Use cryptographically-weak hash functions, or inappropriate
 secret key sizes that allow for cryptanalysis

 3. Employing the same identifier across contexts in which stability
 is not required (overloading the numeric identifier)

 At times, an implementation or specification may be tempted to employ
 a source for the numeric identifiers which is known to provide unique
 values, that may have other properties such as being predictable or
 leaking information about the node in question. For example, as
 noted in [RFC7721], embedding link-layer addresses for generating
 IPv6 IIDs not only results in predictable values, but also leaks
 information about the manufacturer of the network interface card.

 Employing cryptographically-weak hash functions or inappropriate
 secret key sizes may allow for cryptanalysis, which may eventually be
 exploited by an attacker to predict future numeric identifiers and
 perform a variety of attacks.

 On the other hand, using an identifier across contexts where
 stability is not required can be leveraged for correlation of
 activities. On of the most trivial examples of this is the use of
 IPv6 IIDs that are stable across networks (such as IIDs that embed
 the underlying link-layer address).

9.4. Category #4: Uniqueness, monotonically increasing within context
 (hard failure)

 A simple way to generalize algorithms employed for generating
 identifiers of Category #4 would be as follows:

https://datatracker.ietf.org/doc/html/rfc7721

Gont & Arce Expires November 15, 2020 [Page 23]

Internet-Draft Generation of Transient Numeric IDs May 2020

 /* Numeric ID selection function */

 count = max_id - min_id + 1;

 do {
 linear(CONTEXT_2)= linear(CONTEXT_2) + increment();
 next_id = offset(CONTEXT_1) + linear(CONTEXT_2);

 if(check_suitable_id(next_id))
 return next_id;

 count--;
 } while (count > 0);

 return ERROR;

 Essentially, an identifier (next_id) is generated by adding a linear
 function (linear()) to an offset value, which is unknown to the
 attacker, and stable for given context (CONTEXT_1).

 The following aspects of the algorithm should be considered:

 o For the most part, it is the offset() function that results in
 identifiers that are unpredictable by an off-path attacker. While
 the resulting sequence will be monotonically-increasing, the use
 of an offset value that is unknown to the attacker makes the
 resulting values unknown to the attacker.

 o The most straightforward "stateless" implementation of offset
 would be that in which offset() is the result of a
 cryptographically-secure hash-function that takes the values that
 identify the context and a "secret_key" (not shown in the figure
 above) as arguments.

 o Another possible (but stateful) approach would be to simply
 generate a random "per-context" "counter" and store it in memory,
 and then look-up the corresponding context when a new identifier
 is to be selected, and increment the counter to obtain the
 transient numeric identifier. The algorithm in Section 7.4.1 is
 essentially an implementation of this type.

 o The linear function is incremented according to increment(). In
 the most trivial case increment() could always return the constant
 "1". But it could also possibly return small random integers such
 the increments are unpredictable.

Gont & Arce Expires November 15, 2020 [Page 24]

Internet-Draft Generation of Transient Numeric IDs May 2020

 Considering the generic algorithm illustrated above we can identify
 the following possible vulnerabilities:

 o All the vulnerabilities discussed in Section 9.3 ("Category #3:
 Uniqueness, stable within context (soft failure)") since the
 algorithms for this category are similar to those of Section 9.3,
 with the addition of a linear function.

 o The function linear() could be seen as representing the number of
 identifiers that have so far been generated for a given context
 (CONTEXT_2). If linear() spans more than the necessary context,
 the "increments" could be leaked to other parties, thus disclosing
 information about the number of identifiers that have so far been
 generated. For example, an implementation in which linear() is
 implemented as a single global counter will unnecessarily leak
 information the number of identifiers that have been produced.
 [Fyodor2004] is one example of how such information leakages can
 be exploited. However, limiting the span of the increments space
 will require a larger number of counters to be stored in memory
 (i.e., a larger size for the TABLE_LENGTH parameter of the
 algorithm in Section 7.4.3.

 o increment() determines the increments of linear() for each
 identifier that is selected. In the most trivial case,
 increment() will return the integer "1". However, an
 implementation may have increment() return a "small" random
 integer value such that even if the current value employed by the
 generator is guessed (see Appendix A of [RFC7739]), the exact next
 identifier to be selected will be slightly harder to identify.

10. IANA Considerations

 There are no IANA registries within this document. The RFC-Editor
 can remove this section before publication of this document as an
 RFC.

11. Security Considerations

 The entire document is about the security and privacy implications of
 transient numeric identifiers.
 [I-D.gont-numeric-ids-sec-considerations] formally requires protocol
 specifications to include an appropriate analysis of the
 interoperability, security, and privacy implications of the transient
 numeric identifiers they specify and employ, while this document
 analyzes possible algorithms (and their implications) that could be
 employed to comply with the interoperability properties of a
 transient numeric identifier, while mitigating the possible security
 and privacy implications.

https://datatracker.ietf.org/doc/html/rfc7739#appendix-A

Gont & Arce Expires November 15, 2020 [Page 25]

Internet-Draft Generation of Transient Numeric IDs May 2020

12. Acknowledgements

 The authors would like to thank (in alphabetical order) Steven
 Bellovin, Joseph Lorenzo Hall, Gre Norcie, Shivan Sahib, and Martin
 Thomson, for providing valuable comments on earlier versions of this
 document.

 The authors would like to thank Diego Armando Maradona for his magic
 and inspiration.

13. References

13.1. Normative References

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, DOI 10.17487/RFC0793, September 1981,

 <https://www.rfc-editor.org/info/rfc793>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, DOI 10.17487/RFC2460,
 December 1998, <https://www.rfc-editor.org/info/rfc2460>.

 [RFC4086] Eastlake 3rd, D., Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106, RFC 4086,
 DOI 10.17487/RFC4086, June 2005,
 <https://www.rfc-editor.org/info/rfc4086>.

 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, DOI 10.17487/RFC4291, February
 2006, <https://www.rfc-editor.org/info/rfc4291>.

 [RFC4862] Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless
 Address Autoconfiguration", RFC 4862,
 DOI 10.17487/RFC4862, September 2007,
 <https://www.rfc-editor.org/info/rfc4862>.

 [RFC5722] Krishnan, S., "Handling of Overlapping IPv6 Fragments",
RFC 5722, DOI 10.17487/RFC5722, December 2009,

 <https://www.rfc-editor.org/info/rfc5722>.

 [RFC6528] Gont, F. and S. Bellovin, "Defending against Sequence
 Number Attacks", RFC 6528, DOI 10.17487/RFC6528, February
 2012, <https://www.rfc-editor.org/info/rfc6528>.

https://datatracker.ietf.org/doc/html/rfc793
https://www.rfc-editor.org/info/rfc793
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2460
https://www.rfc-editor.org/info/rfc2460
https://datatracker.ietf.org/doc/html/bcp106
https://datatracker.ietf.org/doc/html/rfc4086
https://www.rfc-editor.org/info/rfc4086
https://datatracker.ietf.org/doc/html/rfc4291
https://www.rfc-editor.org/info/rfc4291
https://datatracker.ietf.org/doc/html/rfc4862
https://www.rfc-editor.org/info/rfc4862
https://datatracker.ietf.org/doc/html/rfc5722
https://www.rfc-editor.org/info/rfc5722
https://datatracker.ietf.org/doc/html/rfc6528
https://www.rfc-editor.org/info/rfc6528

Gont & Arce Expires November 15, 2020 [Page 26]

Internet-Draft Generation of Transient Numeric IDs May 2020

 [RFC7217] Gont, F., "A Method for Generating Semantically Opaque
 Interface Identifiers with IPv6 Stateless Address
 Autoconfiguration (SLAAC)", RFC 7217,
 DOI 10.17487/RFC7217, April 2014,
 <https://www.rfc-editor.org/info/rfc7217>.

 [RFC8064] Gont, F., Cooper, A., Thaler, D., and W. Liu,
 "Recommendation on Stable IPv6 Interface Identifiers",

RFC 8064, DOI 10.17487/RFC8064, February 2017,
 <https://www.rfc-editor.org/info/rfc8064>.

13.2. Informative References

 [Bellovin2002]
 Bellovin, S., "A Technique for Counting NATted Hosts",
 IMW'02 Nov. 6-8, 2002, Marseille, France, 2002.

 [CPNI-TCP]
 Gont, F., "Security Assessment of the Transmission Control
 Protocol (TCP)", United Kingdom's Centre for the
 Protection of National Infrastructure (CPNI) Technical
 Report, 2009, <https://www.gont.com.ar/papers/tn-03-09-

security-assessment-TCP.pdf>.

 [FIPS-SHS]
 FIPS, "Secure Hash Standard (SHS)", Federal Information
 Processing Standards Publication 180-4, August 2015,
 <https://nvlpubs.nist.gov/nistpubs/FIPS/

NIST.FIPS.180-4.pdf>.

 [Fyodor2004]
 Fyodor, "Idle scanning and related IP ID games", 2004,
 <http://www.insecure.org/nmap/idlescan.html>.

 [I-D.gont-numeric-ids-sec-considerations]
 Gont, F. and I. Arce, "Security Considerations for
 Transient Numeric Identifiers Employed in Network
 Protocols", draft-gont-numeric-ids-sec-considerations-04
 (work in progress), July 2019.

 [I-D.irtf-pearg-numeric-ids-history]
 Gont, F. and I. Arce, "Unfortunate History of Transient
 Numeric Identifiers", draft-irtf-pearg-numeric-ids-

history-02 (work in progress), April 2020.

 [IANA-PROT]
 IANA, "Protocol Registries",
 <https://www.iana.org/protocols>.

https://datatracker.ietf.org/doc/html/rfc7217
https://www.rfc-editor.org/info/rfc7217
https://datatracker.ietf.org/doc/html/rfc8064
https://www.rfc-editor.org/info/rfc8064
https://www.gont.com.ar/papers/tn-03-09-security-assessment-TCP.pdf
https://www.gont.com.ar/papers/tn-03-09-security-assessment-TCP.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
http://www.insecure.org/nmap/idlescan.html
https://datatracker.ietf.org/doc/html/draft-gont-numeric-ids-sec-considerations-04
https://datatracker.ietf.org/doc/html/draft-irtf-pearg-numeric-ids-history-02
https://datatracker.ietf.org/doc/html/draft-irtf-pearg-numeric-ids-history-02
https://www.iana.org/protocols

Gont & Arce Expires November 15, 2020 [Page 27]

Internet-Draft Generation of Transient Numeric IDs May 2020

 [IPID-DEV]
 Klein, A. and B. Pinkas, "From IP ID to Device ID and
 KASLR Bypass (Extended Version)", June 2019,
 <https://arxiv.org/pdf/1906.10478.pdf>.

 [Joncheray1995]
 Joncheray, L., "A Simple Active Attack Against TCP", Proc.
 Fifth Usenix UNIX Security Symposium, 1995.

 [KASLR] PaX Team, "Address Space Layout Randomization",
 <https://pax.grsecurity.net/docs/aslr.txt>.

 [Klein2007]
 Klein, A., "OpenBSD DNS Cache Poisoning and Multiple O/S
 Predictable IP ID Vulnerability", 2007,
 <http://www.trusteer.com/files/OpenBSD_DNS_Cache_Poisoning

_and_Multiple_OS_Predictable_IP_ID_Vulnerability.pdf>.

 [Morris1985]
 Morris, R., "A Weakness in the 4.2BSD UNIX TCP/IP
 Software", CSTR 117, AT&T Bell Laboratories, Murray Hill,
 NJ, 1985,
 <https://pdos.csail.mit.edu/~rtm/papers/117.pdf>.

 [RFC1035] Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
 November 1987, <https://www.rfc-editor.org/info/rfc1035>.

 [RFC4963] Heffner, J., Mathis, M., and B. Chandler, "IPv4 Reassembly
 Errors at High Data Rates", RFC 4963,
 DOI 10.17487/RFC4963, July 2007,
 <https://www.rfc-editor.org/info/rfc4963>.

 [RFC6056] Larsen, M. and F. Gont, "Recommendations for Transport-
 Protocol Port Randomization", BCP 156, RFC 6056,
 DOI 10.17487/RFC6056, January 2011,
 <https://www.rfc-editor.org/info/rfc6056>.

 [RFC7098] Carpenter, B., Jiang, S., and W. Tarreau, "Using the IPv6
 Flow Label for Load Balancing in Server Farms", RFC 7098,
 DOI 10.17487/RFC7098, January 2014,
 <https://www.rfc-editor.org/info/rfc7098>.

 [RFC7258] Farrell, S. and H. Tschofenig, "Pervasive Monitoring Is an
 Attack", BCP 188, RFC 7258, DOI 10.17487/RFC7258, May
 2014, <https://www.rfc-editor.org/info/rfc7258>.

https://arxiv.org/pdf/1906.10478.pdf
https://pax.grsecurity.net/docs/aslr.txt
http://www.trusteer.com/files/OpenBSD_DNS_Cache_Poisoning_and_Multiple_OS_Predictable_IP_ID_Vulnerability.pdf
http://www.trusteer.com/files/OpenBSD_DNS_Cache_Poisoning_and_Multiple_OS_Predictable_IP_ID_Vulnerability.pdf
https://pdos.csail.mit.edu/~rtm/papers/117.pdf
https://datatracker.ietf.org/doc/html/rfc1035
https://www.rfc-editor.org/info/rfc1035
https://datatracker.ietf.org/doc/html/rfc4963
https://www.rfc-editor.org/info/rfc4963
https://datatracker.ietf.org/doc/html/bcp156
https://datatracker.ietf.org/doc/html/rfc6056
https://www.rfc-editor.org/info/rfc6056
https://datatracker.ietf.org/doc/html/rfc7098
https://www.rfc-editor.org/info/rfc7098
https://datatracker.ietf.org/doc/html/bcp188
https://datatracker.ietf.org/doc/html/rfc7258
https://www.rfc-editor.org/info/rfc7258

Gont & Arce Expires November 15, 2020 [Page 28]

Internet-Draft Generation of Transient Numeric IDs May 2020

 [RFC7707] Gont, F. and T. Chown, "Network Reconnaissance in IPv6
 Networks", RFC 7707, DOI 10.17487/RFC7707, March 2016,
 <https://www.rfc-editor.org/info/rfc7707>.

 [RFC7721] Cooper, A., Gont, F., and D. Thaler, "Security and Privacy
 Considerations for IPv6 Address Generation Mechanisms",

RFC 7721, DOI 10.17487/RFC7721, March 2016,
 <https://www.rfc-editor.org/info/rfc7721>.

 [RFC7739] Gont, F., "Security Implications of Predictable Fragment
 Identification Values", RFC 7739, DOI 10.17487/RFC7739,
 February 2016, <https://www.rfc-editor.org/info/rfc7739>.

 [Sanfilippo1998a]
 Sanfilippo, S., "about the ip header id", Post to Bugtraq
 mailing-list, Mon Dec 14 1998,
 <http://seclists.org/bugtraq/1998/Dec/48>.

 [Sanfilippo1998b]
 Sanfilippo, S., "Idle scan", Post to Bugtraq mailing-list,
 1998, <https://github.com/antirez/hping/blob/master/docs/

SPOOFED_SCAN.txt>.

 [Sanfilippo1999]
 Sanfilippo, S., "more ip id", Post to Bugtraq mailing-
 list, 1999,
 <https://github.com/antirez/hping/raw/master/docs/MORE-

FUN-WITH-IPID>.

 [Shimomura1995]
 Shimomura, T., "Technical details of the attack described
 by Markoff in NYT", Message posted in USENET's
 comp.security.misc newsgroup Message-ID:
 <3g5gkl$5j1@ariel.sdsc.edu>, 1995,
 <https://www.gont.com.ar/docs/post-shimomura-usenet.txt>.

 [Silbersack2005]
 Silbersack, M., "Improving TCP/IP security through
 randomization without sacrificing interoperability",
 EuroBSDCon 2005 Conference, 2005,
 <http://citeseerx.ist.psu.edu/viewdoc/

download?doi=10.1.1.91.4542&rep=rep1&type=pdf>.

 [TCPT-uptime]
 McDanel, B., "TCP Timestamping - Obtaining System Uptime
 Remotely", March 2001,
 <https://securiteam.com/securitynews/5np0c153pi/>.

https://datatracker.ietf.org/doc/html/rfc7707
https://www.rfc-editor.org/info/rfc7707
https://datatracker.ietf.org/doc/html/rfc7721
https://www.rfc-editor.org/info/rfc7721
https://datatracker.ietf.org/doc/html/rfc7739
https://www.rfc-editor.org/info/rfc7739
http://seclists.org/bugtraq/1998/Dec/48
https://github.com/antirez/hping/blob/master/docs/SPOOFED_SCAN.txt
https://github.com/antirez/hping/blob/master/docs/SPOOFED_SCAN.txt
https://github.com/antirez/hping/raw/master/docs/MORE-FUN-WITH-IPID
https://github.com/antirez/hping/raw/master/docs/MORE-FUN-WITH-IPID
https://www.gont.com.ar/docs/post-shimomura-usenet.txt
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.4542&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.4542&rep=rep1&type=pdf
https://securiteam.com/securitynews/5np0c153pi/

Gont & Arce Expires November 15, 2020 [Page 29]

Internet-Draft Generation of Transient Numeric IDs May 2020

 [Zalewski2001]
 Zalewski, M., "Strange Attractors and TCP/IP Sequence
 Number Analysis", 2001,
 <http://lcamtuf.coredump.cx/oldtcp/tcpseq.html>.

 [Zalewski2002]
 Zalewski, M., "Strange Attractors and TCP/IP Sequence
 Number Analysis - One Year Later", 2001,
 <http://lcamtuf.coredump.cx/newtcp/>.

Appendix A. Flawed Algorithms

 The following subsections document algorithms with known negative
 security and privacy implications.

A.1. Predictable Linear Identifiers Algorithm

 One of the most trivial ways to achieve uniqueness with a low
 identifier reuse frequency is to produce a linear sequence.

 For example, the following algorithm has been employed (see e.g.
 [Morris1985], [Shimomura1995], [Silbersack2005] and [CPNI-TCP]) in a
 number of operating systems for selecting IP fragment IDs, TCP
 ephemeral ports, etc.:

http://lcamtuf.coredump.cx/oldtcp/tcpseq.html
http://lcamtuf.coredump.cx/newtcp/

Gont & Arce Expires November 15, 2020 [Page 30]

Internet-Draft Generation of Transient Numeric IDs May 2020

 /* Initialization code */

 next_id = min_id;
 id_inc= 1;

 /* Numeric ID selection function */

 count = max_id - min_id + 1;

 do {
 if (next_id == max_id) {
 next_id = min_id;
 }
 else {
 next_id = next_id + id_inc;
 }

 if (check_suitable_id(next_id))
 return next_id;

 count--;

 } while (count > 0);

 return ERROR;

 Note:
 check_suitable_id() is a function that checks whether the
 resulting identifier is acceptable (e.g., whether it's in use,
 etc.).

 For obvious reasons, this algorithm results in predicable sequences.
 If a global counter is used (such as "next_id" in the example above),
 a node that learns one numeric identifier can also learn or guess
 values employed by past and future protocol instances. On the other
 hand, when the value of increments is known (such as "1" in this
 case), an attacker can sample two values, and learn the number of
 identifiers that were generated in-between. Furthermore, if the
 counter is initialized e.g. when the system its bootstrapped to some
 known value, it will likely leak information (for example, the number
 of transmitted in the case of an IP ID generator [Sanfilippo1998a],
 or the system uptime in the case of TCP timestamps [TCPT-uptime]).

 Where identifier reuse would lead to a hard failure, one typical
 approach to generate unique identifiers (while minimizing the
 security and privacy implications of predictable identifiers) is to
 obfuscate the resulting numeric identifiers by either:

Gont & Arce Expires November 15, 2020 [Page 31]

Internet-Draft Generation of Transient Numeric IDs May 2020

 o Replacing the global counter with multiple counters (initialized
 to a random value)

 o Randomizing the "increments"

 Avoiding global counters essentially means that learning one
 identifier for a given context (e.g., one TCP ephemeral port for a
 given {src IP, Dst IP, Dst Port}) is of no use for learning or
 guessing identifiers for a different context (e.g., TCP ephemeral
 ports that involve other peers). However, this may imply keeping one
 additional variables/counter per contexts, which may be prohibitive
 in some environments.

 The choice of id_inc has implications on both the security and
 privacy properties of the resulting identifiers, but also on the
 corresponding interoperability properties. On one hand, minimizing
 the increments (as in "id_inc = 1" in our case) generally minimizes
 the identifier reuse frequency, albeit at increased predictability.
 On the other hand, if the increments are randomized, predictability
 of the resulting identifiers is reduced, and the information leakage
 produced by global constant increments is mitigated. However, using
 larger increments than necessary can result in higher identifier
 reuse frequency.

A.2. Random-Increments Algorithm

 This algorithm offers a middle ground between the algorithms that
 select numeric identifiers randomly (such as those described in

Section 7.1.1 and Section 7.1.2), and those that offer obfuscation
 but no randomization (such as those described in Section 7.4.2 and

Section 7.4.3).

Gont & Arce Expires November 15, 2020 [Page 32]

Internet-Draft Generation of Transient Numeric IDs May 2020

 /* Initialization code */

 next_id = random(); /* Initialization value */
 id_inc = 500; /* Determines the trade-off */

 /* Numeric ID selection function */

 id_range = max_id - min_id + 1;

 count = id_range;

 do {
 /* Random increment */
 next_id = next_id + (random() % id_inc) + 1;

 /* Keep the identifier within acceptable range */
 next_id = min_id + (next_id % id_range);

 if(check_suitable_id(next_id))
 return next_id;

 count--;
 } while (count > 0);

 return ERROR;

 This algorithm aims at producing a monotonically-increasing sequence
 of numeric identifiers, while avoiding the use of fixed increments,
 which would lead to trivially predictable sequences. The value
 "id_inc" allows for direct control of the trade-off between the level
 of obfuscation and the identifier reuse frequency. The smaller the
 value of "id_inc", the more similar this algorithm is to a
 predicable, global monotonically-increasing ID generation algorithm.
 The larger the value of "id_inc", the more similar this algorithm is
 to the algorithm described in Section 7.1.1 of this document.

 When the identifiers wrap, there is the risk of collisions of
 identifiers (i.e., identifier reuse). Therefore, "id_inc" should be
 selected according to the following criteria:

 o It should maximize the wrapping time of the identifier space.

 o It should minimize identifier reuse frequency.

 o It should maximize obfuscation.

Gont & Arce Expires November 15, 2020 [Page 33]

Internet-Draft Generation of Transient Numeric IDs May 2020

 Clearly, these are competing goals, and the decision of which value
 of "id_inc" to use is a trade-off. Therefore, the value of "id_inc"
 should be configurable so that system administrators can make the
 trade-off for themselves. We note that the alternative algorithms
 discussed throughout this document offer better interoperability,
 security and privacy implications than this algorithm, and hence
 implementation of this algorithm is discouraged.

Authors' Addresses

 Fernando Gont
 SI6 Networks
 Evaristo Carriego 2644
 Haedo, Provincia de Buenos Aires 1706
 Argentina

 Email: fgont@si6networks.com
 URI: https://www.si6networks.com

 Ivan Arce
 Quarkslab

 Email: iarce@quarkslab.com
 URI: https://www.quarkslab.com

https://www.si6networks.com
https://www.quarkslab.com

Gont & Arce Expires November 15, 2020 [Page 34]

