
Internet Research Task Force (IRTF) F. Gont
Internet-Draft SI6 Networks
Intended status: Informational I. Arce
Expires: August 6, 2021 Quarkslab
 February 2, 2021

On the Generation of Transient Numeric Identifiers
draft-irtf-pearg-numeric-ids-generation-07

Abstract

 This document performs an analysis of the security and privacy
 implications of different types of "transient numeric identifiers"
 used in IETF protocols, and tries to categorize them based on their
 interoperability requirements and their associated failure severity
 when such requirements are not met. Subsequently, it provides advice
 on possible algorithms that could be employed to satisfy the
 interoperability requirements of each identifier category, while
 minimizing the negative security and privacy implications, thus
 providing guidance to protocol designers and protocol implementers.
 Finally, it describes a number of algorithms that have been employed
 in real implementations to generate transient numeric identifiers,
 and analyzes their security and privacy properties. This document is
 a product of the Privacy Enhancement and Assessment Research Group
 (PEARG) in the IRTF.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 6, 2021.

Gont & Arce Expires August 6, 2021 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft Generation of Transient Numeric IDs February 2021

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Table of Contents

1. Introduction . 3
2. Terminology . 5
3. Threat Model . 5

 4. Issues with the Specification of Transient Numeric
 Identifiers . 6

5. Protocol Failure Severity 7
6. Categorizing Transient Numeric Identifiers 7

 7. Common Algorithms for Transient Numeric Identifier Generation 10
7.1. Category #1: Uniqueness (soft failure) 10
7.2. Category #2: Uniqueness (hard failure) 13

 7.3. Category #3: Uniqueness, stable within context (soft
 failure) . 13
 7.4. Category #4: Uniqueness, monotonically increasing within
 context (hard failure) 15
 8. Common Vulnerabilities Associated with Transient Numeric
 Identifiers . 21

8.1. Network Activity Correlation 21
8.2. Information Leakage 22
8.3. Fingerprinting . 23

 8.4. Exploitation of the Semantics of Transient Numeric
 Identifiers . 24
 8.5. Exploitation of Collisions of Transient Numeric
 Identifiers . 24
 8.6. Exploitation of Predictable Transient Numeric Identifiers
 for Injection Attacks 24

8.7. Cryptanalysis . 25
9. Vulnerability Assessment of Transient Numeric Identifiers . . 26
9.1. Category #1: Uniqueness (soft failure) 26
9.2. Category #2: Uniqueness (hard failure) 26

 9.3. Category #3: Uniqueness, stable within context (soft
 failure) . 27
 9.4. Category #4: Uniqueness, monotonically increasing within
 context (hard failure) 27

10. IANA Considerations . 30

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Gont & Arce Expires August 6, 2021 [Page 2]

Internet-Draft Generation of Transient Numeric IDs February 2021

11. Security Considerations 30
12. Acknowledgements . 30
13. References . 30
13.1. Normative References 30
13.2. Informative References 32

Appendix A. Algorithms and Techniques with Known Issues 37
A.1. Predictable Linear Identifiers Algorithm 37
A.2. Random-Increments Algorithm 39
A.3. Re-using Identifiers Across Different Contexts 40

 Authors' Addresses . 40

1. Introduction

 Networking protocols employ a variety of transient numeric
 identifiers for different protocol objects, such as IPv4 and IPv6
 Fragment Identifiers [RFC0791] [RFC8200], IPv6 Interface Identifiers
 (IIDs) [RFC4291], transport protocol ephemeral port numbers
 [RFC6056], TCP Initial Sequence Numbers (ISNs) [RFC0793], and DNS
 Transaction IDs (TxIDs) [RFC1035]. These identifiers usually have
 specific interoperability requirements (e.g. uniqueness during a
 specified period of time) that must be satisfied such that they do
 not result in negative interoperability implications, and an
 associated failure severity when such requirements are not met,
 ranging from soft to hard failures.

 For more than 30 years, a large number of implementations of the TCP/
 IP protocol suite have been subject to a variety of attacks, with
 effects ranging from Denial of Service (DoS) or data injection, to
 information leakages that could be exploited for pervasive monitoring
 [RFC7258]. The root cause of these issues has been, in many cases,
 the poor selection of transient numeric identifiers in such
 protocols, usually as a result of insufficient or misleading
 specifications. While it is generally trivial to identify an
 algorithm that can satisfy the interoperability requirements of a
 given transient numeric identifier, empirical evidence exists that
 doing so without negatively affecting the security and/or privacy
 properties of the aforementioned protocols is prone to error
 [I-D.irtf-pearg-numeric-ids-history].

 For example, implementations have been subject to security and/or
 privacy issues resulting from:

 o Predictable IPv4 or IPv6 Fragment Identifiers (see e.g.
 [Sanfilippo1998a], [RFC6274], and [RFC7739])

 o Predictable IPv6 IIDs (see e.g. [RFC7721], [RFC7707], and
 [RFC7217])

https://datatracker.ietf.org/doc/html/rfc0791
https://datatracker.ietf.org/doc/html/rfc8200
https://datatracker.ietf.org/doc/html/rfc4291
https://datatracker.ietf.org/doc/html/rfc6056
https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc7258
https://datatracker.ietf.org/doc/html/rfc6274
https://datatracker.ietf.org/doc/html/rfc7739
https://datatracker.ietf.org/doc/html/rfc7721
https://datatracker.ietf.org/doc/html/rfc7707
https://datatracker.ietf.org/doc/html/rfc7217

Gont & Arce Expires August 6, 2021 [Page 3]

Internet-Draft Generation of Transient Numeric IDs February 2021

 o Predictable transport protocol ephemeral port numbers (see e.g.
 [RFC6056] and [Silbersack2005])

 o Predictable TCP Initial Sequence Numbers (ISNs) (see e.g.
 [Morris1985], [Bellovin1989], and [RFC6528])

 o Predictable initial timestamp in TCP timestamps Options (see e.g.
 [TCPT-uptime] and [RFC7323])

 o Predictable DNS TxIDs (see e.g. [Schuba1993] and [Klein2007])

 Recent history indicates that when new protocols are standardized or
 new protocol implementations are produced, the security and privacy
 properties of the associated transient numeric identifiers tend to be
 overlooked, and inappropriate algorithms to generate transient
 numeric identifiers are either suggested in the specifications or
 selected by implementers. As a result, it should be evident that
 advice in this area is warranted.

 We note that the use of cryptographic techniques may readily mitigate
 some of the issues arising from predictable transient numeric
 identifiers. For example, cryptographic integrity and authentication
 can readily mitigate data injection attacks even in the presence of
 predictable transient numeric identifiers (such as "sequence
 numbers"). However, use of flawed algorithms (such as global
 counters) for generating transient numeric identifiers could still
 result in information leakages even when cryptographic techniques are
 employed.

 This document contains a non-exhaustive survey of transient numeric
 identifiers employed in various IETF protocols, and aims to
 categorize such identifiers based on their interoperability
 requirements, and the associated failure severity when such
 requirements are not met. Subsequently, it provides advice on
 possible algorithms that could be employed to satisfy the
 interoperability requirements of each category, while minimizing
 negative security and privacy implications. Finally, it analyzes
 several algorithms that have been employed in real implementations to
 meet such requirements, and analyzes their security and privacy
 properties.

 This document represents the consensus of the Privacy Enhancement and
 Assessment Research Group (PEARG).

https://datatracker.ietf.org/doc/html/rfc6056
https://datatracker.ietf.org/doc/html/rfc6528
https://datatracker.ietf.org/doc/html/rfc7323

Gont & Arce Expires August 6, 2021 [Page 4]

Internet-Draft Generation of Transient Numeric IDs February 2021

2. Terminology

 Transient Numeric Identifier:
 A data object in a protocol specification that can be used to
 definitely distinguish a protocol object (a datagram, network
 interface, transport protocol endpoint, session, etc.) from all
 other objects of the same type, in a given context. Transient
 numeric identifiers are usually defined as a series of bits, and
 represented using integer values. These identifiers are typically
 dynamically selected, as opposed to statically-assigned numeric
 identifiers (see e.g. [IANA-PROT]). We note that different
 transient numeric identifiers may have additional requirements or
 properties depending on their specific use in a protocol. We use
 the term "transient numeric identifier" (or simply "numeric
 identifier" or "identifier" as short forms) as a generic term to
 refer to any data object in a protocol specification that
 satisfies the identification property stated above.

 Failure Severity:
 The consequences of a failure to comply with the interoperability
 requirements of a given identifier. Severity considers the worst
 potential consequence of a failure, determined by the system
 damage and/or time lost to repair the failure. In this document
 we define two types of failure severity: "soft failure" and "hard
 failure".

 Soft Failure:
 A soft failure is a recoverable condition in which a protocol does
 not operate in the prescribed manner but normal operation can be
 resumed automatically in a short period of time. For example, a
 simple packet-loss event that is subsequently recovered with a
 packet-retransmission can be considered a soft failure.

 Hard Failure:
 A hard failure is a non-recoverable condition in which a protocol
 does not operate in the prescribed manner or it operates with
 excessive degradation of service. For example, an established TCP
 connection that is aborted due to an error condition constitutes,
 from the point of view of the transport protocol, a hard failure,
 since it enters a state from which normal operation cannot be
 resumed.

3. Threat Model

 Throughout this document, we assume an attacker does not have
 physical or logical access to the system(s) being attacked, and
 cannot observe the packets being transferred between the sender and
 the receiver(s) of the target protocol (if any). However, we assume

Gont & Arce Expires August 6, 2021 [Page 5]

Internet-Draft Generation of Transient Numeric IDs February 2021

 the attacker can send any traffic to the target device(s), to e.g.
 sample transient numeric identifiers employed by such device(s).

4. Issues with the Specification of Transient Numeric Identifiers

 While assessing protocol specifications regarding the use of
 transient numeric identifiers, we have found that most of the issues
 discussed in this document arise as a result of one of the following
 conditions:

 o Protocol specifications that under-specify the requirements for
 their transient numeric identifiers

 o Protocol specifications that over-specify their transient numeric
 identifiers

 o Protocol implementations that simply fail to comply with the
 specified requirements

 A number of protocol specifications (too many of them) have simply
 overlooked the security and privacy implications of transient numeric
 identifiers [I-D.irtf-pearg-numeric-ids-history]. Examples of them
 are the specification of TCP ephemeral ports in [RFC0793], the
 specification of TCP sequence numbers in [RFC0793], or the
 specification of the DNS TxID in [RFC1035].

 On the other hand, there are a number of protocol specifications that
 over-specify some of their associated transient numeric identifiers.
 For example, [RFC4291] essentially overloads the semantics of IPv6
 Interface Identifiers (IIDs) by embedding link-layer addresses in the
 IPv6 IIDs, when the interoperability requirement of uniqueness could
 be achieved in other ways that do not result in negative security and
 privacy implications [RFC7721]. Similarly, [RFC2460] suggested the
 use of a global counter for the generation of Fragment Identification
 values, when the interoperability properties of uniqueness per {IPv6
 Source Address, IPv6 Destination Address} could be achieved with
 other algorithms that do not result in negative security and privacy
 implications [RFC7739].

 Finally, there are protocol implementations that simply fail to
 comply with existing protocol specifications. For example, some
 popular operating systems (notably Microsoft Windows) still fail to
 implement transport protocol ephemeral port randomization, as
 recommended in [RFC6056].

https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc4291
https://datatracker.ietf.org/doc/html/rfc7721
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc7739
https://datatracker.ietf.org/doc/html/rfc6056

Gont & Arce Expires August 6, 2021 [Page 6]

Internet-Draft Generation of Transient Numeric IDs February 2021

5. Protocol Failure Severity

Section 2 defines the concept of "Failure Severity", along with two
 types of failure severities that we employ throughout this document:
 soft and hard.

 Our analysis of the severity of a failure is performed from the point
 of view of the protocol in question. However, the corresponding
 severity on the upper protocol (or application) might not be the same
 as that of the protocol in question. For example, a TCP connection
 that is aborted might or might not result in a hard failure of the
 upper application: if the upper application can establish a new TCP
 connection without any impact on the application, a hard failure at
 the TCP protocol may have no severity at the application level. On
 the other hand, if a hard failure of a TCP connection results in
 excessive degradation of service at the application layer, it will
 also result in a hard failure at the application.

6. Categorizing Transient Numeric Identifiers

 This section includes a non-exhaustive survey of transient numeric
 identifiers, and proposes a number of categories that can accommodate
 these identifiers based on their interoperability requirements and
 their associated failure severity (soft or hard)

 +------------------+---------------------------------+--------------+
 | Identifier | Interoperability Requirements | Failure |
 | | | Severity |
 +------------------+---------------------------------+--------------+
 | IPv6 Frag ID | Uniqueness (for IP address | Soft/Hard |
 | | pair) | (1) |
 +------------------+---------------------------------+--------------+
 | IPv6 IID | Uniqueness (and stable within | Soft (3) |
 | | IPv6 prefix) (2) | |
 +------------------+---------------------------------+--------------+
 | TCP ISN | Monotonically-increasing (4) | Hard (4) |
 +------------------+---------------------------------+--------------+
 | TCP initial | Monotonically-increasing (5) | Hard (5) |
 | timestamps | | |
 +------------------+---------------------------------+--------------+
 | TCP eph. port | Uniqueness (for connection ID) | Hard |
 +------------------+---------------------------------+--------------+
 | IPv6 Flow Label | Uniqueness | None (6) |
 +------------------+---------------------------------+--------------+
 | DNS TxID | Uniqueness | None (7) |
 +------------------+---------------------------------+--------------+

 Table 1: Survey of Transient Numeric Identifiers

Gont & Arce Expires August 6, 2021 [Page 7]

Internet-Draft Generation of Transient Numeric IDs February 2021

 NOTE:

 (1)
 While a single collision of Fragment ID values would simply lead
 to a single packet drop (and hence a "soft" failure), repeated
 collisions at high data rates might trash the Fragment ID space,
 leading to a hard failure [RFC4963].

 (2)
 While the interoperability requirements are simply that the
 Interface ID results in a unique IPv6 address, for operational
 reasons it is typically desirable that the resulting IPv6 address
 (and hence the corresponding Interface ID) be stable within each
 network [RFC7217] [RFC8064].

 (3)
 While IPv6 Interface IDs must result in unique IPv6 addresses,
 IPv6 Duplicate Address Detection (DAD) [RFC4862] allows for the
 detection of duplicate addresses, and hence such Interface ID
 collisions can be recovered.

 (4)
 In theory, there are no interoperability requirements for TCP
 Initial Sequence Numbers (ISNs), since the TIME-WAIT state and
 TCP's "quiet time" concept take care of old segments from previous
 incarnations of a connection. However, a widespread optimization
 allows for a new incarnation of a previous connection to be
 created if the ISN of the incoming SYN is larger than the last
 sequence number seen in that direction for the previous
 incarnation of the connection. Thus, monotonically-increasing TCP
 ISNs allow for such optimization to work as expected [RFC6528],
 and can help avoid connection-establishment failures.

 (5)
 Strictly speaking, there are no interoperability requirements for
 the *initial* TCP timestamp employed by a TCP instance (i.e., the
 TS Value (TSval) in a segment with the SYN bit set). However,
 some TCP implementations allow a new incarnation of a previous
 connection to be created if the TSval of the incoming SYN is
 larger than the last TSval seen in that direction for the previous
 incarnation of the connection (please see [RFC6191]). Thus,
 monotonically-increasing TCP initial timestamps (across
 connections to the same endpoint) allow for such optimization to
 work as expected [RFC6191], and can help avoid connection-
 establishment failures.

 (6)

https://datatracker.ietf.org/doc/html/rfc4963
https://datatracker.ietf.org/doc/html/rfc7217
https://datatracker.ietf.org/doc/html/rfc8064
https://datatracker.ietf.org/doc/html/rfc4862
https://datatracker.ietf.org/doc/html/rfc6528
https://datatracker.ietf.org/doc/html/rfc6191
https://datatracker.ietf.org/doc/html/rfc6191

Gont & Arce Expires August 6, 2021 [Page 8]

Internet-Draft Generation of Transient Numeric IDs February 2021

 The IPv6 Flow Label is typically employed for load sharing
 [RFC7098], along with the Source and Destination IPv6 addresses.
 Reuse of a Flow Label value for the same set {Source Address,
 Destination Address} would typically cause both flows to be
 multiplexed onto the same link. However, as long as this does not
 occur deterministically, it will not result in any negative
 implications.

 (7)
 DNS TxIDs are employed, together with the Source Address,
 Destination Address, Source Port, and Destination Port, to match
 DNS requests and responses. However, since an implementation
 knows which DNS requests were sent for that set of {Source
 Address, Destination Address, Source Port, and Destination Port,
 DNS TxID}, a collision of TxID would result, if anything, in a
 small performance penalty (the response would nevertheless be
 discarded when it is found that it does not answer the query sent
 in the corresponding DNS query).

 Based on the survey above, we can categorize identifiers as follows:

 +-----+---------------------------------------+---------------------+
 | Cat | Category | Sample Proto IDs |
 | # | | |
 +-----+---------------------------------------+---------------------+
 | 1 | Uniqueness (soft failure) | IPv6 Flow L., DNS |
 | | | TxIDs |
 +-----+---------------------------------------+---------------------+
 | 2 | Uniqueness (hard failure) | IPv6 Frag ID, TCP |
 | | | ephemeral port |
 +-----+---------------------------------------+---------------------+
 | 3 | Uniqueness, stable within context | IPv6 IIDs |
 | | (soft failure) | |
 +-----+---------------------------------------+---------------------+
 | 4 | Uniqueness, monotonically increasing | TCP ISN, TCP |
 | | within context (hard failure) | initial timestamps |
 +-----+---------------------------------------+---------------------+

 Table 2: Identifier Categories

 We note that Category #4 could be considered a generalized case of
 category #3, in which a monotonically increasing element is added to
 a stable (within context) element, such that the resulting
 identifiers are monotonically increasing within a specified context.
 That is, the same algorithm could be employed for both #3 and #4,
 given appropriate parameters.

https://datatracker.ietf.org/doc/html/rfc7098

Gont & Arce Expires August 6, 2021 [Page 9]

Internet-Draft Generation of Transient Numeric IDs February 2021

7. Common Algorithms for Transient Numeric Identifier Generation

 The following subsections describe some sample algorithms that can be
 employed for generating transient numeric identifiers for each of the
 categories above.

 All of the variables employed in the algorithms of the following
 subsections are of "unsigned integer" type, except for the "retry"
 variable, that is of (signed) "integer" type.

7.1. Category #1: Uniqueness (soft failure)

 The requirement of uniqueness with a soft failure severity can be
 complied with a Pseudo-Random Number Generator (PRNG).

 We note that since the premise is that collisions of transient
 numeric identifiers of this category only leads to soft failures, in
 many cases, the algorithm might not need to check the suitability of
 a selected identifier (i.e., suitable_id() could always return
 "true").

 In scenarios where e.g. simultaneous use of a given numeric ID is
 undesirable and the implementation detects such condition, an
 implementation may opt to select the next available identifier in the
 same sequence, or select another random number. Section 7.1.1 is an
 implementation of the former strategy, while Section 7.1.2 is an
 implementation of the later. Typically, the algorithm in

Section 7.1.2 results in a more uniform distribution of the generated
 transient numeric identifiers. However, for transient numeric
 identifiers where an implementation typically keeps local state about
 unsuitable/used identifiers, the algorithm in Section 7.1.2 may
 require many more iterations than the algorithm in Section 7.1.1 to
 generate a suitable transient numeric identifier. This will usually
 be affected by the current usage ratio of transient numeric
 identifiers (i.e., number of numeric identifiers considered suitable
 / total number of numeric identifiers) and other parameters.
 Therefore, in such cases many implementations tend to prefer the
 algorithm in Section 7.1.1 over the algorithm in Section 7.1.2.

7.1.1. Simple Randomization Algorithm

Gont & Arce Expires August 6, 2021 [Page 10]

Internet-Draft Generation of Transient Numeric IDs February 2021

 /* Transient Numeric ID selection function */

 id_range = max_id - min_id + 1;
 next_id = min_id + (random() % id_range);
 retry = id_range;

 do {
 if (suitable_id(next_id)) {
 return next_id;
 }

 if (next_id == max_id) {
 next_id = min_id;
 } else {
 next_id++;
 }

 retry--;

 } while (retry > 0);

 return ERROR;

 NOTE:
 random() is a function that returns a pseudo-random unsigned
 integer number of appropriate size. Note that the output needs to
 be unpredictable, and typical implementations of the POSIX
 random() function do not necessarily meet this requirement. See
 [RFC4086] for randomness requirements for security. Beware that
 "adapting" the length of the output of random() with a modulo
 operator (e.g., C language's "%") may change the distribution of
 the PRNG.

 The function suitable_id() can check, when possible and desirable,
 whether a selected transient numeric identifier is suitable (e.g.
 it is not already in use). Depending on how/where the numeric
 identifier is used, it may or may not be possible (or even
 desirable) to check whether the numeric identifier is in use (or
 whether it has been recently employed). When an identifier is
 found to be unsuitable, this algorithm selects the next available
 numeric identifier in sequence.

 Even when this algorithm selects numeric IDs randomly, it is
 biased towards the first available numeric ID after a sequence of
 unavailable numeric IDs. For example, if this algorithm is
 employed for transport protocol ephemeral port randomization
 [RFC6056] and the local list of unsuitable port numbers (e.g.,
 registered port numbers that should not be used for ephemeral

https://datatracker.ietf.org/doc/html/rfc4086
https://datatracker.ietf.org/doc/html/rfc6056

Gont & Arce Expires August 6, 2021 [Page 11]

Internet-Draft Generation of Transient Numeric IDs February 2021

 ports) is significant, an attacker may actually have a
 significantly better chance of guessing a port number.

 All the variables (in this and all the algorithms discussed in
 this document) are unsigned integers.

 Assuming the randomness requirements for the PRNG are met (see
 [RFC4086]), this algorithm does not suffer from any of the issues
 discussed in Section 8.

7.1.2. Another Simple Randomization Algorithm

 The following pseudo-code illustrates another algorithm for selecting
 a random transient numeric identifier which, in the event a selected
 identifier is found to be unsuitable (e.g., already in use), another
 identifier is randomly selected:

 /* Transient Numeric ID selection function */

 id_range = max_id - min_id + 1;
 retry = id_range;

 do {
 next_id = min_id + (random() % id_range);

 if (suitable_id(next_id)) {
 return next_id;
 }

 retry--;

 } while (retry > 0);

 return ERROR;

 This algorithm might be unable to select a transient numeric
 identifier (i.e., return "ERROR") even if there are suitable
 identifiers available, in cases where a large number of identifiers
 are found to be unsuitable (e.g. "in use").

 The same considerations from Section 7.1.1 with respect to the
 properties of random() and the adaptation of its output length apply
 to this algorithm.

 Assuming the randomness requirements for the PRNG are met (see
 [RFC4086]), this algorithm does not suffer from any of the issues
 discussed in Section 8.

https://datatracker.ietf.org/doc/html/rfc4086
https://datatracker.ietf.org/doc/html/rfc4086

Gont & Arce Expires August 6, 2021 [Page 12]

Internet-Draft Generation of Transient Numeric IDs February 2021

7.2. Category #2: Uniqueness (hard failure)

 One of the most trivial approaches for generating unique transient
 numeric identifier (with a hard failure severity) is to reduce the
 identifier reuse frequency by generating the numeric identifiers with
 a monotonically-increasing function (e.g. linear). As a result, any
 of the algorithms described in Section 7.4 ("Category #4: Uniqueness,
 monotonically increasing within context (hard failure)") can be
 readily employed for complying with the requirements of this
 transient numeric identifier category.

 In cases where suitability (e.g. uniqueness) of the selected
 identifiers can be definitely assessed by the local system, any of
 the algorithms described in Section 7.1 ("Category #1: Uniqueness
 (soft failure)") can be readily employed for complying with the
 requirements of this numeric identifier category.

 NOTE:
 In the case of e.g. TCP ephemeral ports or TCP ISNs, a transient
 numeric identifier that might seem suitable from the perspective
 of the local system, might actually be unsuitable from the
 perspective of the remote system (e.g., because there is state
 associated with the selected identifier at the remote system).
 Therefore, in such cases it is not possible employ the algorithms
 from Section 7.1 ("Category #1: Uniqueness (soft failure)").

7.3. Category #3: Uniqueness, stable within context (soft failure)

 The goal of the following algorithm is to produce identifiers that
 are stable for a given context (identified by "CONTEXT"), but that
 change when the aforementioned context changes.

 In order to avoid storing in memory the transient numeric identifiers
 computed for each CONTEXT, the following algorithm employs a
 calculated technique (as opposed to keeping state in memory) to
 generate a stable transient numeric identifier for each given
 context.

Gont & Arce Expires August 6, 2021 [Page 13]

Internet-Draft Generation of Transient Numeric IDs February 2021

 /* Transient Numeric ID selection function */

 id_range = max_id - min_id + 1;

 retry = 0;

 do {
 offset = F(CONTEXT, retry, secret_key);
 next_id = min_id + (offset % id_range);

 if (suitable_id(next_id)) {
 return next_id;
 }

 retry++;

 } while (retry <= MAX_RETRIES);

 return ERROR;

 In this algorithm, the function F() provides a stateless and stable
 per-CONTEXT offset, where CONTEXT is the concatenation of all the
 elements that define the given context.

 For example, if this algorithm is expected to produce IPv6 IIDs
 that are unique per network interface and SLAAC autoconfiguration
 prefix, the CONTEXT should be the concatenation of e.g. the
 network interface index and the SLAAC autoconfiguration prefix
 (please see [RFC7217] for an implementation of this algorithm for
 generation of stable IPv6 IIDs).

 F() is a pseudorandom function (PRF). It must not computable from
 the outside (without knowledge of the secret key). F() must also be
 difficult to reverse, such that it resists attempts to obtain the
 secret_key, even when given samples of the output of F() and
 knowledge or control of the other input parameters. F() should
 produce an output of at least as many bits as required for the
 transient numeric identifier. SipHash-2-4 (128-bit key, 64-bit
 output) [SipHash] and BLAKE3 (256-bit key, arbitrary-length output)
 [BLAKE3] are two possible options for F(). Alternatively, F() could
 be implemented with a keyed-hash message authentication code (HMAC)
 [RFC2104]. HMAC-SHA-256 [FIPS-SHS] would be one possible option for
 such implementation alternative. Note: Use of HMAC-MD5 [RFC1321] is
 not recommended for F() [RFC6151].

 The result of F() is no more secure than the secret key, and
 therefore 'secret_key' must be unknown to the attacker, and must be

https://datatracker.ietf.org/doc/html/rfc7217
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc6151

Gont & Arce Expires August 6, 2021 [Page 14]

Internet-Draft Generation of Transient Numeric IDs February 2021

 of a reasonable length. 'secret_key' must remain stable for a given
 CONTEXT, since otherwise the numeric identifiers generated by this
 algorithm would not have the desired stability properties (i.e.,
 stable for a given CONTEXT). In most cases, 'secret_key' should be
 selected with a PRNG (see [RFC4086] for recommendations on choosing
 secrets) at an appropriate time, and stored in stable or volatile
 storage (as necessary) for future use.

 The result of F() is stored in the variable 'offset', which may take
 any value within the storage type range, since we are restricting the
 resulting identifier to be in the range [min_id, max_id] in a similar
 way as in the algorithm described in Section 7.1.1.

 suitable_id() checks whether the candidate identifier has suitable
 uniqueness properties. Collisions (i.e., an identifier that is not
 unique) are recovered by incrementing the 'retry' variable and
 recomputing F(), up to a maximum of MAX_RETRIES times. However,
 recovering from collisions will usually result in identifiers that
 fail to remain constant for the specified context. This is normally
 acceptable when the probability of collisions is small, as in the
 case of e.g. IPv6 IIDs resulting from SLAAC [RFC7217] [RFC4941].

 For obvious reasons, the transient numeric identifiers generated with
 this algorithm allow for network activity correlation and
 fingerprinting within "CONTEXT". However, this is essentially a
 design goal of this category of transient numeric identifiers.

7.4. Category #4: Uniqueness, monotonically increasing within context
 (hard failure)

7.4.1. Per-context Counter Algorithm

 One possible way of selecting unique monotonically-increasing
 identifiers (per context) is to employ a per-context counter. Such
 an algorithm could be described as follows:

https://datatracker.ietf.org/doc/html/rfc4086
https://datatracker.ietf.org/doc/html/rfc7217
https://datatracker.ietf.org/doc/html/rfc4941

Gont & Arce Expires August 6, 2021 [Page 15]

Internet-Draft Generation of Transient Numeric IDs February 2021

 /* Transient Numeric ID selection function */

 id_range = max_id - min_id + 1;
 retry = id_range;
 id_inc = increment() % id_range;

 if((next_id = lookup_counter(CONTEXT)) == ERROR){
 next_id = min_id + random() % id_range;
 }

 do {
 if ((max_id - next_id) >= id_inc){
 next_id = next_id + id_inc;
 }
 else {
 next_id = min_id + id_inc - (max_id - next_id);
 }

 if (suitable_id(next_id)){
 store_counter(CONTEXT, next_id);
 return next_id;
 }

 retry = retry - id_inc;

 } while (retry > 0);

 return ERROR;

 NOTE:
 increment() returns a small integer that is employed to increment
 the current counter value to obtain the next transient numeric
 identifier. This value must be much smaller than the number of
 possible values for the numeric IDs (i.e., "id_range"). Most
 implementations of this algorithm employ a constant increment of
 1. Using a value other than 1 can help mitigate some information
 leakages (please see below), at the expense of a possible increase
 in the numeric ID reuse frequency.

 The code above makes sure that the increment employed in the
 algorithm (id_inc) is always smaller than the number of possible
 values for the numeric IDs (i.e., "max_id - min_d + 1"). However,
 as noted above, this value must also be much smaller than the
 number of possible values for the numeric IDs.

 lookup_counter() is a function that returns the current counter
 for a given context, or an error condition if that counter does
 not exist.

Gont & Arce Expires August 6, 2021 [Page 16]

Internet-Draft Generation of Transient Numeric IDs February 2021

 store_counter() is a function that saves a counter value for a
 given context.

 suitable_id() is a function that checks whether the resulting
 identifier is acceptable (e.g., whether it is not already in use,
 etc.).

 Essentially, whenever a new identifier is to be selected, the
 algorithm checks whether a counter for the corresponding context
 exists. If does, the value of such counter is incremented to obtain
 the new transient numeric identifier, and the counter is updated. If
 no counter exists for such context, a new counter is created and
 initialized to a random value, and used as the selected transient
 numeric identifier. This algorithm produces a per-context counter,
 which results in one monotonically-increasing function for each
 context. Since each counter is initialized to a random value, the
 resulting values are unpredictable by an off-path attacker.

 The choice of id_inc has implications on both the security and
 privacy properties of the resulting identifiers, but also on the
 corresponding interoperability properties. On one hand, minimizing
 the increments generally minimizes the identifier reuse frequency,
 albeit at increased predictability. On the other hand, if the
 increments are randomized, predictability of the resulting
 identifiers is reduced, and the information leakage produced by
 global constant increments is mitigated. However, using larger
 increments than necessary can result in higher numeric ID reuse
 frequency.

 This algorithm has the following drawbacks:

 o It requires an implementation to store each per-CONTEXT counter in
 memory. If, as a result of resource management, the counter for a
 given context must be removed, the last transient numeric
 identifier value used for that context will be lost. Thus, if
 subsequently an identifier needs to be generated for the same
 context, the corresponding counter will need to be recreated and
 reinitialized to a random value, thus possibly leading to reuse/
 collision of numeric identifiers.

 o Keeping one counter for each possible "context" may in some cases
 be considered too onerous in terms of memory requirements.

 Otherwise, the identifiers produced by this algorithm do not suffer
 from the other issues discussed in Section 8.

Gont & Arce Expires August 6, 2021 [Page 17]

Internet-Draft Generation of Transient Numeric IDs February 2021

7.4.2. Simple PRF-Based Algorithm

 The goal of this algorithm is to produce monotonically-increasing
 transient numeric identifiers (for each given context), with a
 randomized initial value. For example, if the identifiers being
 generated must be monotonically-increasing for each {IP Source
 Address, IP Destination Address} set, then each possible combination
 of {IP Source Address, IP Destination Address} should have a separate
 monotonically-increasing sequence, that starts at a different random
 value.

 Instead of maintaining a per-context counter (as in the algorithm
 from Section 7.4.1), the following algorithm employs a calculated
 technique to maintain a random offset for each possible context.

 /* Initialization code */
 counter = 0;

 /* Transient Numeric ID selection function */

 id_range = max_id - min_id + 1;
 id_inc = increment() % id_range;
 offset = F(CONTEXT, secret_key);
 retry = id_range;

 do {
 next_id = min_id + (offset + counter) % id_range;
 counter = counter + id_inc;

 if (suitable_id(next_id)) {
 return next_id;
 }

 retry = retry - id_inc;

 } while (retry > 0);

 return ERROR;

 In the algorithm above, the function F() provides a (stateless)
 unpredictable offset for each given context (as identified by
 'CONTEXT').

 F() is a PRF, with the same properties as those specified for F() in
Section 7.3.

Gont & Arce Expires August 6, 2021 [Page 18]

Internet-Draft Generation of Transient Numeric IDs February 2021

 CONTEXT is the concatenation of all the elements that define a given
 context. For example, if this algorithm is expected to produce
 identifiers that are monotonically-increasing for each set (Source IP
 Address, Destination IP Address), CONTEXT should be the concatenation
 of these two IP addresses.

 The function F() provides a "per-CONTEXT" fixed offset within the
 numeric identifier "space". Both the 'offset' and 'counter'
 variables may take any value within the storage type range since we
 are restricting the resulting identifier to be in the range [min_id,
 max_id] in a similar way as in the algorithm described in

Section 7.1.1. This allows us to simply increment the 'counter'
 variable and rely on the unsigned integer to wrap around.

 The result of F() is no more secure than the secret key, and
 therefore 'secret_key' must be unknown to the attacker, and must be
 of a reasonable length. 'secret_key' must remain stable for a given
 CONTEXT, since otherwise the numeric identifiers generated by this
 algorithm would not have the desired stability properties (i.e.,
 monotonically-increasing for a given CONTEXT). In most cases,
 'secret_key' should be selected with a PRNG (see [RFC4086] for
 recommendations on choosing secrets) at an appropriate time, and
 stored in stable or volatile storage (as necessary) for future use.

 It should be noted that, since this algorithm uses a global counter
 ("counter") for selecting identifiers (i.e., all counters share the
 same increments space), this algorithm results in an information
 leakage (as described in Section 8.2). For example, if this
 algorithm were used for selecting TCP ephemeral ports, and an
 attacker could force a client to periodically establish a new TCP
 connection to an attacker-controlled system (or through an attacker-
 observable routing path), the attacker could subtract consecutive
 source port values to obtain the number of outgoing TCP connections
 established globally by the victim host within that time period (up
 to wrap-around issues and five-tuple collisions, of course). This
 information leakage could be partially mitigated by employing small
 random values for the increments (i.e., increment() function),
 instead of having increment() return the constant "1".

 We nevertheless note that an improved mitigation of this information
 leakage could be more successfully achieved by employing the
 algorithm from Section 7.4.3, instead.

7.4.3. Double-PRF Algorithm

 A trade-off between maintaining a single global 'counter' variable
 and maintaining 2**N 'counter' variables (where N is the width of the
 result of F()), could be achieved as follows. The system would keep

https://datatracker.ietf.org/doc/html/rfc4086

Gont & Arce Expires August 6, 2021 [Page 19]

Internet-Draft Generation of Transient Numeric IDs February 2021

 an array of TABLE_LENGTH values, which would provide a separation of
 the increment space into multiple buckets. This improvement could be
 incorporated into the algorithm from Section 7.4.2 as follows:

 /* Initialization code */

 for(i = 0; i < TABLE_LENGTH; i++) {
 table[i] = random();
 }

 /* Transient Numeric ID selection function */

 id_range = max_id - min_id + 1;
 id_inc = increment() % id_range;
 offset = F(CONTEXT, secret_key1);
 index = G(CONTEXT, secret_key2) % TABLE_LENGTH;
 retry = id_range;

 do {
 next_id = min_id + (offset + table[index]) % id_range;
 table[index] = table[index] + id_inc;

 if (suitable_id(next_id)) {
 return next_id;
 }

 retry = retry - id_inc;

 } while (retry > 0);

 return ERROR;

 'table[]' could be initialized with random values, as indicated by
 the initialization code in the pseudo-code above.

 Both F() and G() are PRFs, with the same properties as those required
 for F() in Section 7.3.

 The results of F() and G() are no more secure than their respective
 secret keys ('secret_key1' and 'secret_key2', respectively), and
 therefore both secret keys must be unknown to the attacker, and must
 be of a reasonable length. Both secret keys must remain stable for
 the given CONTEXT, since otherwise the transient numeric identifiers
 generated by this algorithm would not have the desired stability
 properties (i.e., monotonically-increasing for a given CONTEXT). In
 most cases, both secret keys should be selected with a PRNG (see
 [RFC4086] for recommendations on choosing secrets) at an appropriate

https://datatracker.ietf.org/doc/html/rfc4086

Gont & Arce Expires August 6, 2021 [Page 20]

Internet-Draft Generation of Transient Numeric IDs February 2021

 time, and stored in stable or volatile storage (as necessary) for
 future use.

 The 'table[]' array assures that successive transient numeric
 identifiers for a given context will be monotonically-increasing.
 Since the increments space is separated into TABLE_LENGTH different
 spaces, the identifier reuse frequency will be (probabilistically)
 lower than that of the algorithm in Section 7.4.2. That is, the
 generation of an identifier for one given context will not
 necessarily result in increments in the identifier sequence of other
 contexts. It is interesting to note that the size of 'table[]' does
 not limit the number of different identifier sequences, but rather
 separates the *increment space* into TABLE_LENGTH different spaces.
 The selected transient numeric identifier sequence will be obtained
 by adding the corresponding entry from 'table[]' to the value in the
 'offset' variable, which selects the actual identifier sequence space
 (as in the algorithm from Section 7.4.2).

 An attacker can perform traffic analysis for any "increment space"
 (i.e., context) into which the attacker has "visibility" -- namely,
 the attacker can force a system to generate identifiers for
 G(CONTEXT, secret_key2), where the result of G() identifies the
 target "increment space". However, the attacker's ability to perform
 traffic analysis is very reduced when compared to the simple PRF-
 based identifiers (described in Section 7.4.2) and the predictable
 linear identifiers (described in Appendix A.1). Additionally, an
 implementation can further limit the attacker's ability to perform
 traffic analysis by further separating the increment space (that is,
 using a larger value for TABLE_LENGTH) and/or by randomizing the
 increments (i.e., increment() returning a small random number as
 opposed to the constant "1").

 Otherwise, this algorithm does not suffer from the issues discussed
 in Section 8.

8. Common Vulnerabilities Associated with Transient Numeric Identifiers

8.1. Network Activity Correlation

 An identifier that is predictable within a given context allows for
 network activity correlation within that context.

 For example, a stable IPv6 Interface Identifier allows for network
 activity to be correlated within the context in which the Interface
 Identifier is stable [RFC7721]. A stable-per-network IPv6 Interface
 Identifier (as in [RFC7217]) allows for network activity correlation
 within a network, whereas a constant IPv6 Interface Identifier (that
 remains constant across networks) allows not only network activity

https://datatracker.ietf.org/doc/html/rfc7721
https://datatracker.ietf.org/doc/html/rfc7217

Gont & Arce Expires August 6, 2021 [Page 21]

Internet-Draft Generation of Transient Numeric IDs February 2021

 correlation within the same network, but also across networks ("host
 tracking").

 Similarly, an implementation that generates TCP ISNs with a global
 counter could allow for fingerprinting and network activity
 correlation across networks, since an attacker could passively infer
 the identity of the victim based on the TCP ISNs employed for
 subsequent communication instances. Similarly, an implementation
 that generates predictable IPv6 Fragment Identification values could
 be subject to fingerprinting attacks (see e.g. [Bellovin2002]).

8.2. Information Leakage

 Transient numeric identifiers that result in specific patterns can
 produce an information leakage to other communicating entities. For
 example, it is common to generate transient numeric identifiers with
 an algorithm such as:

 ID = offset(CONTEXT) + mono(CONTEXT);

 This generic expression generates identifiers by adding a
 monotonically-increasing function (e.g. linear) to a randomized
 offset. offset() is constant within a given context, whereas mono()
 produces a monotonically-increasing sequence for the given context.
 Identifiers generated with this expression will generally be
 predictable within CONTEXT.

 The predictability of mono(), irrespective of the predictability of
 offset(), can leak information that may be of use to attackers. For
 example, a node that selects ephemeral port numbers as in:

 ephemeral_port = offset(Dest_IP) + mono()

 that is, with a per-destination offset, but a global mono() function
 (e.g., a global counter), will leak information about total number of
 outgoing connections that have been issued by the vulnerable
 implementation.

 Similarly, a node that generates Fragment Identification values as
 in:

 Frag_ID = offset(IP_src_addr, IP_dst_addr) + mono()

 will leak out information about the total number of fragmented
 packets that have been transmitted by the vulnerable implementation.
 The vulnerabilities described in [Sanfilippo1998a],
 [Sanfilippo1998b], and [Sanfilippo1999] are all associated with the
 use of a global mono() function (i.e., with a global and constant

Gont & Arce Expires August 6, 2021 [Page 22]

Internet-Draft Generation of Transient Numeric IDs February 2021

 "context") -- particularly when it is a linear function (constant
 increments of 1).

 Predicting transient numeric identifiers can be of help for other
 types of attacks. For example, predictable TCP ISNs can open the
 door to trivial connection-reset and data injection attacks (see

Section 8.6).

8.3. Fingerprinting

 Fingerprinting is the capability of an attacker to identify or re-
 identify a visiting user, user agent or device via configuration
 settings or other observable characteristics. Observable protocol
 objects and characteristics can be employed to identify/re-identify a
 variety of entities, ranging from the underlying hardware or
 Operating System (vendor, type and version), to the user itself (i.e.
 his/her identity). [EFF] illustrates web browser-based
 fingerprinting, but similar techniques can be applied at other layers
 and protocols, whether alternatively or in conjunction with it.

 Transient numeric identifiers are one of the observable protocol
 components that could be leveraged for fingerprinting purposes. That
 is, an attacker could sample transient numeric identifiers to infer
 the algorithm (and its associated parameters, if any) for generating
 such identifiers, possibly revealing the underlying Operating System
 (OS) vendor, type, and version. This information could possibly be
 further leveraged in conjunction with other fingerprinting techniques
 and sources.

 Evasion of protocol-stack fingerprinting can prove to be a very
 difficult task: most systems make use of a wide variety of protocols,
 each of which have a large number of parameters that can be set to
 arbitrary values or generated with a variety of algorithms with
 multiple parameters.

 NOTE:
 General protocol-based fingerprinting is discussed in [RFC6973],
 along with guidelines to mitigate the associated vulnerability.
 [Fyodor1998] and [Fyodor2006] are classic references on Operating
 System detection via TCP/IP stack fingerprinting. Nmap [nmap] is
 probably the most popular tool for remote OS identification via
 active TCP/IP stack fingerprinting. p0f [Zalewski2012], on the
 other hand, is a tool for performing remote OS detection via
 passive TCP/IP stack fingerprinting. Finally, [TBIT] is a TCP
 fingerprinting tool that aims at characterizing the behaviour of a
 remote TCP peer based on active probes, and which has been widely
 used in the research community.

https://datatracker.ietf.org/doc/html/rfc6973

Gont & Arce Expires August 6, 2021 [Page 23]

Internet-Draft Generation of Transient Numeric IDs February 2021

 Algorithms that, from the perspective of an observer (e.g., the
 legitimate communicating peer), result in specific values or
 patterns, will allow for at least some level of fingerprinting. For
 example, the algorithm from Section 7.3 will typically allow
 fingerprinting within the context where the resulting identifiers are
 stable. Similarly, the algorithms from Section 7.4 will result in a
 monotonically-increasing sequences within a given context, thus
 allowing for at least some level of fingerprinting (when the other
 communicating entity can correlate different sampled identifiers as
 belonging to the same monotonically-increasing sequence).

 Thus, where possible, algorithms from Section 7.1 should be preferred
 over algorithms that result in specific values or patterns.

8.4. Exploitation of the Semantics of Transient Numeric Identifiers

 Identifiers that are not semantically opaque tend to be more
 predictable than semantically-opaque identifiers. For example, a MAC
 address contains an OUI (Organizationally-Unique Identifier) which
 identifies the vendor that manufactured the corresponding network
 interface card. This can be leveraged by an attacker trying to
 "guess" MAC addresses, who has some knowledge about the possible NIC
 vendor.

 [RFC7707] discusses a number of techniques to reduce the search space
 when performing IPv6 address-scanning attacks by leveraging the
 semantics of the IIDs produced by traditional SLAAC algorithms
 (eventually replaced by [RFC7217]) that embed MAC addresses in the
 IID of IPv6 addresses.

8.5. Exploitation of Collisions of Transient Numeric Identifiers

 In many cases, the collision of transient network identifiers can
 have a hard failure severity (or result in a hard failure severity if
 an attacker can cause multiple collisions deterministically, one
 after another). For example, predictable Fragment Identification
 values open the door to Denial of Service (DoS) attacks (see e.g.
 [RFC5722].).

8.6. Exploitation of Predictable Transient Numeric Identifiers for
 Injection Attacks

 Some protocols rely on "sequence numbers" for the validation of
 incoming packets. For example, TCP employs sequence numbers for
 reassembling TCP segments, while IPv4 and IPv6 employ Fragment
 Identification values for reassembling IPv4 and IPv6 fragments
 (respectively). Lacking built-in cryptographic mechanisms for
 validating packets, these protocols are therefore vulnerable to on-

https://datatracker.ietf.org/doc/html/rfc7217
https://datatracker.ietf.org/doc/html/rfc5722

Gont & Arce Expires August 6, 2021 [Page 24]

Internet-Draft Generation of Transient Numeric IDs February 2021

 path data (see e.g. [Joncheray1995]) and/or control-information (see
 e.g. [RFC4953] and [RFC5927]) injection attacks. The extent to
 which these protocols may resist off-path (i.e. "blind") injection
 attacks depends on whether the associated "sequence numbers" are
 predictable, and effort required to successfully predict a valid
 "sequence number" (see e.g. [RFC4953] and [RFC5927]).

 We note that the use of unpredictable "sequence numbers" is a
 completely-ineffective mitigation for on-path injection attacks, and
 also a mostly-ineffective mitigation for off-path (i.e. "blind")
 injection attacks. However, many legacy protocols (such as TCP) do
 not natively incorporate cryptographic mitigations, but rather only
 as optional features (see e.g. [RFC5925]), if at all available.
 Additionally, ad-hoc use of cryptographic mitigations might not be
 sufficient to relieve a protocol implementation of generating
 appropriate transient numeric identifiers. For example, use of the
 Transport Layer Security (TLS) protocol [RFC8446] with TCP will
 protect the application protocol, but will not help to mitigate e.g.
 TCP-based connection-reset attacks (see e.g. [RFC4953]). Similarly,
 use of SEcure Neighbor Discovery (SEND) [RFC3971] will still imply
 reliance on the successful reassembly of IPv6 fragments in those
 cases where SEND packets do not fit into the link Maximum
 Transmission Unit (MTU) (see [RFC6980]).

8.7. Cryptanalysis

 A number of algorithms discussed in this document (such as those
 described in Section 7.4.2 and Section 7.4.3) rely on PRFs.
 Implementations that employ weak PRFs or keys of inappropriate size
 can be subject to cryptanalysis, where an attacker can obtain the
 secret key employed for the PRF, predict numeric identifiers, etc.

 Furthermore, an implementation that overloads the semantics of the
 secret key can result in more trivial cryptanalysis, possibly
 resulting in the leakage of the value employed for the secret key.

 NOTE:
 [IPID-DEV] describes two vulnerable transient numeric ID
 generators that employ cryptographically-weak hash functions.
 Additionally, one of such implementations employs 32-bits of a
 kernel address as the secret key for a hash function, and
 therefore successful cryptanalysis leaks the aforementioned kernel
 address, allowing for Kernel Address Space Layout Randomization
 (KASLR) [KASLR] bypass.

https://datatracker.ietf.org/doc/html/rfc4953
https://datatracker.ietf.org/doc/html/rfc5927
https://datatracker.ietf.org/doc/html/rfc4953
https://datatracker.ietf.org/doc/html/rfc5927
https://datatracker.ietf.org/doc/html/rfc5925
https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc4953
https://datatracker.ietf.org/doc/html/rfc3971
https://datatracker.ietf.org/doc/html/rfc6980

Gont & Arce Expires August 6, 2021 [Page 25]

Internet-Draft Generation of Transient Numeric IDs February 2021

9. Vulnerability Assessment of Transient Numeric Identifiers

 The following subsections analyze possible vulnerabilities associated
 with the algorithms described in Section 7.

9.1. Category #1: Uniqueness (soft failure)

 Possible vulnerabilities associated with the algorithms from
Section 7.1 include:

 o Use of flawed PRNGs (please see e.g. [Zalewski2001],
 [Zalewski2002] and [Klein2007]),

 o Inadvertently affecting the distribution of an otherwise suitable
 PRNG.

 An implementer should consult [RFC4086] regarding randomness
 requirements for security, and consult relevant documentation when
 employing a PRNG provided by the underlying system.

 When employing a PRNG, many implementations "adapt" the length of its
 output with a modulo operator (e.g., C language's "%"), possibly
 changing the distribution of the output of the PRNG.

 For example, consider an implementation that employs the following
 code:

 id = random() % 50000;

 This example implementation means to obtain a transient numeric
 identifier in the range 0-49000. If random() produces e.g. a
 pseudorandom number of 16 bits (with uniform distribution), the
 selected numeric ID will have a non-uniform distribution with the
 numbers in the range 0-15535 having double-frequency as the numbers
 in the range 15536-49000. This effect is reduced if the PRNG
 produces an output that is much longer than the length implied by the
 modulo operation.

 Use of algorithms other than PRNGs for generating identifiers of this
 category is discouraged.

9.2. Category #2: Uniqueness (hard failure)

 As noted in Section 7.2, this category can employ the same algorithms
 as Category #4, since a monotonically-increasing sequence tends to
 minimize the transient numeric identifier reuse frequency.
 Therefore, the vulnerability analysis in Section 9.4 also applies to
 this category.

https://datatracker.ietf.org/doc/html/rfc4086

Gont & Arce Expires August 6, 2021 [Page 26]

Internet-Draft Generation of Transient Numeric IDs February 2021

 Additionally, as noted in Section 7.2, some transient numeric
 identifiers of this category might be able to use the algorithms from

Section 7.1, in which case the same considerations as in Section 9.1
 would apply.

9.3. Category #3: Uniqueness, stable within context (soft failure)

 Possible vulnerabilities associated with the algorithms from
Section 7.3 are:

 1. Use of weak PRFs, or inappropriate secret keys (whether
 inappropriate selection or inappropriate size) could allow for
 cryptanalysis, which could eventually be exploited by an attacker
 to predict future transient numeric identifiers.

 2. Since the algorithm generates a unique and stable identifier
 within a specified context, it may allow for network activity
 correlation and fingerprinting within the specified context.

9.4. Category #4: Uniqueness, monotonically increasing within context
 (hard failure)

 The algorithm described in Section 7.4.1 for generating identifiers
 of Category #4 will result in an identifiable pattern (i.e. a
 monotonically-increasing sequence) for the transient numeric
 identifiers generated for each CONTEXT, and thus will allow for
 fingerprinting and network activity correlation within each CONTEXT.

 On the other hand, a simple way to generalize and analyze the
 algorithms described in Section 7.4.2 and Section 7.4.3 for
 generating identifiers of Category #4, is as follows:

Gont & Arce Expires August 6, 2021 [Page 27]

Internet-Draft Generation of Transient Numeric IDs February 2021

 /* Transient Numeric ID selection function */

 id_range = max_id - min_id + 1;
 retry = id_range;
 id_inc = increment() % id_range;

 do {
 update_mono(CONTEXT, id_inc);
 next_id = min_id + (offset(CONTEXT) + \
 mono(CONTEXT)) % id_range;

 if (suitable_id(next_id)) {
 return next_id;
 }

 retry = retry - id_inc;

 } while (retry > 0);

 return ERROR;

 NOTE:
 increment() returns a small integer that is employed to generate a
 monotonically-increasing function. Most implementations employ a
 constant value for "increment()" (usually 1). The value returned
 by increment() must be much smaller than the value computed for
 "id_range".

 update_mono(CONTEXT, id_inc) increments the counter corresponding
 to CONTEXT by "id_inc".

 mono(CONTEXT) reads the counter corresponding to CONTEXT.

 Essentially, an identifier (next_id) is generated by adding a
 monotonically-increasing function (mono()) to an offset value,
 unknown to the attacker and stable for given context (CONTEXT).

 The following aspects of the algorithm should be considered:

 o For the most part, it is the offset() function that results in
 identifiers that are unpredictable by an off-patch attacker.
 While the resulting sequence is known to be monotonically-
 increasing, the use of a randomized offset value makes the
 resulting values unknown to the attacker.

Gont & Arce Expires August 6, 2021 [Page 28]

Internet-Draft Generation of Transient Numeric IDs February 2021

 o The most straightforward "stateless" implementation of offset() is
 with a PRF that takes the values that identify the context and a
 "secret_key" (not shown in the figure above) as arguments.

 o One possible implementation of mono() would be to have mono()
 internally employ a single counter (as in the algorithm from

Section 7.4.2), or map the increments for different contexts into
 a number of counters/buckets, such that the number of counters
 that need to be maintained in memory is reduced (as in the
 algorithm from algorithm in Section 7.4.3).

 o In all cases, a monotonically increasing function is implemented
 by incrementing the previous value of a counter by increment()
 units. In the most trivial case, increment() could return the
 constant "1". But increment() could also be implemented to return
 small random integers such that the increments are unpredictable
 (see Appendix A of [RFC7739]). This represents a tradeoff between
 the unpredictability of the resulting transient numeric IDs and
 the transient numeric ID reuse frequency.

 Considering the generic algorithm illustrated above, we can identify
 the following possible vulnerabilities:

 o Since the algorithms for this category are similar to those of
Section 9.3, with the addition of a monotonically-increasing

 function, all the issues discussed in Section 9.3 ("Category #3:
 Uniqueness, stable within context (soft failure)") also apply to
 this case.

 o mono() can be correlated to the number of identifiers generated
 for a given context (CONTEXT). Thus, if mono() spans more than
 the necessary context, the "increments" could be leaked to other
 parties, thus disclosing information about the number of
 identifiers that have been generated by the algorithm for all
 contexts. This is information disclosure becomes more evident
 when an implementation employs a constant increment of 1. For
 example, an implementation where mono() is actually a single
 global counter, will unnecessarily leak information the number of
 identifiers that have been generated by the algorithm (globally,
 for all contexts). [Fyodor2003] is one example of how such
 information leakages can be exploited. We note that limiting the
 span of the increments space will require a larger number of
 counters to be stored in memory (i.e., a larger value for the
 TABLE_LENGTH parameter of the algorithm in Section 7.4.3).

 o Transient numeric identifiers generated with the algorithms
 described in Section 7.4.2 and Section 7.4.3 will normally allow
 for fingerprinting within CONTEXT since, for such context, the

https://datatracker.ietf.org/doc/html/rfc7739#appendix-A

Gont & Arce Expires August 6, 2021 [Page 29]

Internet-Draft Generation of Transient Numeric IDs February 2021

 resulting identifiers will have an identifiable pattern (i.e. a
 monotonically-increasing sequence).

10. IANA Considerations

 This document has no IANA actions.

11. Security Considerations

 The entire document is about the security and privacy implications of
 transient numeric identifiers.
 [I-D.gont-numeric-ids-sec-considerations] recommends that protocol
 specifications specify the interoperability requirements of their
 transient numeric identifiers, perform a vulnerability assessment of
 their transient numeric identifiers, and suggest an algorithm for
 generating each of their transient numeric identifiers. This
 document analyzes possible algorithms (and their implications) that
 could be employed to comply with the interoperability properties of
 most common categories of transient numeric identifiers, while
 minimizing the associated negative security and privacy implications.

12. Acknowledgements

 The authors would like to thank (in alphabetical order) Bernard
 Aboba, Jean-Philippe Aumasson, Steven Bellovin, Luis Leon Cardenas
 Graide, Guillermo Gont, Joseph Lorenzo Hall, Gre Norcie, Shivan
 Sahib, Rich Salz, Martin Thomson, and Michael Tuexen, for providing
 valuable comments on earlier versions of this document.

 The authors would like to thank Shivan Sahib and Christopher Wood,
 for their guidance during the publication process of this document.

 The authors would like to thank Jean-Philippe Aumasson and Mathew D.
 Green (John Hopkins University) for kindly answering a number of
 questions.

 The authors would like to thank Diego Armando Maradona for his magic
 and inspiration.

13. References

13.1. Normative References

 [RFC0791] Postel, J., "Internet Protocol", STD 5, RFC 791,
 DOI 10.17487/RFC0791, September 1981,
 <https://www.rfc-editor.org/info/rfc791>.

https://datatracker.ietf.org/doc/html/rfc791
https://www.rfc-editor.org/info/rfc791

Gont & Arce Expires August 6, 2021 [Page 30]

Internet-Draft Generation of Transient Numeric IDs February 2021

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, DOI 10.17487/RFC0793, September 1981,

 <https://www.rfc-editor.org/info/rfc793>.

 [RFC1035] Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
 November 1987, <https://www.rfc-editor.org/info/rfc1035>.

 [RFC1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
 DOI 10.17487/RFC1321, April 1992,
 <https://www.rfc-editor.org/info/rfc1321>.

 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, DOI 10.17487/RFC2460,
 December 1998, <https://www.rfc-editor.org/info/rfc2460>.

 [RFC4086] Eastlake 3rd, D., Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106, RFC 4086,
 DOI 10.17487/RFC4086, June 2005,
 <https://www.rfc-editor.org/info/rfc4086>.

 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, DOI 10.17487/RFC4291, February
 2006, <https://www.rfc-editor.org/info/rfc4291>.

 [RFC4862] Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless
 Address Autoconfiguration", RFC 4862,
 DOI 10.17487/RFC4862, September 2007,
 <https://www.rfc-editor.org/info/rfc4862>.

 [RFC4941] Narten, T., Draves, R., and S. Krishnan, "Privacy
 Extensions for Stateless Address Autoconfiguration in
 IPv6", RFC 4941, DOI 10.17487/RFC4941, September 2007,
 <https://www.rfc-editor.org/info/rfc4941>.

 [RFC5722] Krishnan, S., "Handling of Overlapping IPv6 Fragments",
RFC 5722, DOI 10.17487/RFC5722, December 2009,

 <https://www.rfc-editor.org/info/rfc5722>.

 [RFC5925] Touch, J., Mankin, A., and R. Bonica, "The TCP
 Authentication Option", RFC 5925, DOI 10.17487/RFC5925,
 June 2010, <https://www.rfc-editor.org/info/rfc5925>.

 [RFC6056] Larsen, M. and F. Gont, "Recommendations for Transport-
 Protocol Port Randomization", BCP 156, RFC 6056,
 DOI 10.17487/RFC6056, January 2011,
 <https://www.rfc-editor.org/info/rfc6056>.

https://datatracker.ietf.org/doc/html/rfc793
https://www.rfc-editor.org/info/rfc793
https://datatracker.ietf.org/doc/html/rfc1035
https://www.rfc-editor.org/info/rfc1035
https://datatracker.ietf.org/doc/html/rfc1321
https://www.rfc-editor.org/info/rfc1321
https://datatracker.ietf.org/doc/html/rfc2460
https://www.rfc-editor.org/info/rfc2460
https://datatracker.ietf.org/doc/html/bcp106
https://datatracker.ietf.org/doc/html/rfc4086
https://www.rfc-editor.org/info/rfc4086
https://datatracker.ietf.org/doc/html/rfc4291
https://www.rfc-editor.org/info/rfc4291
https://datatracker.ietf.org/doc/html/rfc4862
https://www.rfc-editor.org/info/rfc4862
https://datatracker.ietf.org/doc/html/rfc4941
https://www.rfc-editor.org/info/rfc4941
https://datatracker.ietf.org/doc/html/rfc5722
https://www.rfc-editor.org/info/rfc5722
https://datatracker.ietf.org/doc/html/rfc5925
https://www.rfc-editor.org/info/rfc5925
https://datatracker.ietf.org/doc/html/bcp156
https://datatracker.ietf.org/doc/html/rfc6056
https://www.rfc-editor.org/info/rfc6056

Gont & Arce Expires August 6, 2021 [Page 31]

Internet-Draft Generation of Transient Numeric IDs February 2021

 [RFC6151] Turner, S. and L. Chen, "Updated Security Considerations
 for the MD5 Message-Digest and the HMAC-MD5 Algorithms",

RFC 6151, DOI 10.17487/RFC6151, March 2011,
 <https://www.rfc-editor.org/info/rfc6151>.

 [RFC6191] Gont, F., "Reducing the TIME-WAIT State Using TCP
 Timestamps", BCP 159, RFC 6191, DOI 10.17487/RFC6191,
 April 2011, <https://www.rfc-editor.org/info/rfc6191>.

 [RFC6528] Gont, F. and S. Bellovin, "Defending against Sequence
 Number Attacks", RFC 6528, DOI 10.17487/RFC6528, February
 2012, <https://www.rfc-editor.org/info/rfc6528>.

 [RFC7217] Gont, F., "A Method for Generating Semantically Opaque
 Interface Identifiers with IPv6 Stateless Address
 Autoconfiguration (SLAAC)", RFC 7217,
 DOI 10.17487/RFC7217, April 2014,
 <https://www.rfc-editor.org/info/rfc7217>.

 [RFC7323] Borman, D., Braden, B., Jacobson, V., and R.
 Scheffenegger, Ed., "TCP Extensions for High Performance",

RFC 7323, DOI 10.17487/RFC7323, September 2014,
 <https://www.rfc-editor.org/info/rfc7323>.

 [RFC8064] Gont, F., Cooper, A., Thaler, D., and W. Liu,
 "Recommendation on Stable IPv6 Interface Identifiers",

RFC 8064, DOI 10.17487/RFC8064, February 2017,
 <https://www.rfc-editor.org/info/rfc8064>.

 [RFC8200] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", STD 86, RFC 8200,
 DOI 10.17487/RFC8200, July 2017,
 <https://www.rfc-editor.org/info/rfc8200>.

13.2. Informative References

 [Bellovin1989]
 Bellovin, S., "Security Problems in the TCP/IP Protocol
 Suite", Computer Communications Review, vol. 19, no. 2,
 pp. 32-48, 1989,
 <https://www.cs.columbia.edu/~smb/papers/ipext.pdf>.

 [Bellovin2002]
 Bellovin, S., "A Technique for Counting NATted Hosts",
 IMW'02 Nov. 6-8, 2002, Marseille, France, 2002,
 <https://www.cs.columbia.edu/~smb/papers/fnat.pdf>.

https://datatracker.ietf.org/doc/html/rfc6151
https://www.rfc-editor.org/info/rfc6151
https://datatracker.ietf.org/doc/html/bcp159
https://datatracker.ietf.org/doc/html/rfc6191
https://www.rfc-editor.org/info/rfc6191
https://datatracker.ietf.org/doc/html/rfc6528
https://www.rfc-editor.org/info/rfc6528
https://datatracker.ietf.org/doc/html/rfc7217
https://www.rfc-editor.org/info/rfc7217
https://datatracker.ietf.org/doc/html/rfc7323
https://www.rfc-editor.org/info/rfc7323
https://datatracker.ietf.org/doc/html/rfc8064
https://www.rfc-editor.org/info/rfc8064
https://datatracker.ietf.org/doc/html/rfc8200
https://www.rfc-editor.org/info/rfc8200
https://www.cs.columbia.edu/~smb/papers/ipext.pdf
https://www.cs.columbia.edu/~smb/papers/fnat.pdf

Gont & Arce Expires August 6, 2021 [Page 32]

Internet-Draft Generation of Transient Numeric IDs February 2021

 [BLAKE3] O'Connor, J., Aumasson, J., Neves, S., and Z. Wilcox-
 O'Hearn, "BLAKE3: one function, fast everywhere", 2020,
 <https://blake3.io/>.

 [CPNI-TCP]
 Gont, F., "Security Assessment of the Transmission Control
 Protocol (TCP)", United Kingdom's Centre for the
 Protection of National Infrastructure (CPNI) Technical
 Report, 2009, <https://www.gont.com.ar/papers/tn-03-09-

security-assessment-TCP.pdf>.

 [EFF] EFF, "Cover your tracks: See how trackers view your
 browser", 2020, <https://coveryourtracks.eff.org/>.

 [FIPS-SHS]
 NIST, "Secure Hash Standard (SHS)", Federal Information
 Processing Standards Publication 180-4, August 2015,
 <https://nvlpubs.nist.gov/nistpubs/FIPS/

NIST.FIPS.180-4.pdf>.

 [Fyodor1998]
 Fyodor, "Remote OS Detection via TCP/IP Stack
 Fingerprinting", Phrack Magazine, Volume 9, Issue 54,
 1998, <http://www.phrack.org/archives/issues/54/9.txt>.

 [Fyodor2003]
 Fyodor, "Idle scanning and related IP ID games", 2003,
 <https://nmap.org/presentations/CanSecWest03/CD_Content/

idlescan_paper/idlescan.html>.

 [Fyodor2006]
 Lyon, G., "Chapter 8. Remote OS Detection", 2006,
 <https://nmap.org/book/osdetect.html>.

 [I-D.gont-numeric-ids-sec-considerations]
 Gont, F. and I. Arce, "Security Considerations for
 Transient Numeric Identifiers Employed in Network
 Protocols", draft-gont-numeric-ids-sec-considerations-06
 (work in progress), December 2020.

 [I-D.irtf-pearg-numeric-ids-history]
 Gont, F. and I. Arce, "Unfortunate History of Transient
 Numeric Identifiers", draft-irtf-pearg-numeric-ids-

history-06 (work in progress), January 2021.

 [IANA-PROT]
 IANA, "Protocol Registries",
 <https://www.iana.org/protocols>.

https://blake3.io/
https://www.gont.com.ar/papers/tn-03-09-security-assessment-TCP.pdf
https://www.gont.com.ar/papers/tn-03-09-security-assessment-TCP.pdf
https://coveryourtracks.eff.org/
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
http://www.phrack.org/archives/issues/54/9.txt
https://nmap.org/presentations/CanSecWest03/CD_Content/idlescan_paper/idlescan.html
https://nmap.org/presentations/CanSecWest03/CD_Content/idlescan_paper/idlescan.html
https://nmap.org/book/osdetect.html
https://datatracker.ietf.org/doc/html/draft-gont-numeric-ids-sec-considerations-06
https://datatracker.ietf.org/doc/html/draft-irtf-pearg-numeric-ids-history-06
https://datatracker.ietf.org/doc/html/draft-irtf-pearg-numeric-ids-history-06
https://www.iana.org/protocols

Gont & Arce Expires August 6, 2021 [Page 33]

Internet-Draft Generation of Transient Numeric IDs February 2021

 [IPID-DEV]
 Klein, A. and B. Pinkas, "From IP ID to Device ID and
 KASLR Bypass (Extended Version)", June 2019,
 <https://arxiv.org/pdf/1906.10478.pdf>.

 [Joncheray1995]
 Joncheray, L., "A Simple Active Attack Against TCP", Proc.
 Fifth Usenix UNIX Security Symposium, 1995, <https://www.u

senix.org/legacy/publications/library/proceedings/
security95/full_papers/joncheray.pdf>.

 [KASLR] PaX Team, "Address Space Layout Randomization",
 <https://pax.grsecurity.net/docs/aslr.txt>.

 [Klein2007]
 Klein, A., "OpenBSD DNS Cache Poisoning and Multiple O/S
 Predictable IP ID Vulnerability", 2007,
 <https://dl.packetstormsecurity.net/papers/attack/OpenBSD_

DNS_Cache_Poisoning_and_Multiple_OS_Predictable_IP_ID_Vuln
erability.pdf>.

 [Morris1985]
 Morris, R., "A Weakness in the 4.2BSD UNIX TCP/IP
 Software", CSTR 117, AT&T Bell Laboratories, Murray Hill,
 NJ, 1985,
 <https://pdos.csail.mit.edu/~rtm/papers/117.pdf>.

 [nmap] nmap, "Nmap: Free Security Scanner For Network Exploration
 and Audit", 2020, <https://www.insecure.org/nmap>.

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 DOI 10.17487/RFC2104, February 1997,
 <https://www.rfc-editor.org/info/rfc2104>.

 [RFC3971] Arkko, J., Ed., Kempf, J., Zill, B., and P. Nikander,
 "SEcure Neighbor Discovery (SEND)", RFC 3971,
 DOI 10.17487/RFC3971, March 2005,
 <https://www.rfc-editor.org/info/rfc3971>.

 [RFC4953] Touch, J., "Defending TCP Against Spoofing Attacks",
RFC 4953, DOI 10.17487/RFC4953, July 2007,

 <https://www.rfc-editor.org/info/rfc4953>.

 [RFC4963] Heffner, J., Mathis, M., and B. Chandler, "IPv4 Reassembly
 Errors at High Data Rates", RFC 4963,
 DOI 10.17487/RFC4963, July 2007,
 <https://www.rfc-editor.org/info/rfc4963>.

https://arxiv.org/pdf/1906.10478.pdf
https://www.usenix.org/legacy/publications/library/proceedings/security95/full_papers/joncheray.pdf
https://www.usenix.org/legacy/publications/library/proceedings/security95/full_papers/joncheray.pdf
https://www.usenix.org/legacy/publications/library/proceedings/security95/full_papers/joncheray.pdf
https://pax.grsecurity.net/docs/aslr.txt
https://dl.packetstormsecurity.net/papers/attack/OpenBSD_DNS_Cache_Poisoning_and_Multiple_OS_Predictable_IP_ID_Vulnerability.pdf
https://dl.packetstormsecurity.net/papers/attack/OpenBSD_DNS_Cache_Poisoning_and_Multiple_OS_Predictable_IP_ID_Vulnerability.pdf
https://dl.packetstormsecurity.net/papers/attack/OpenBSD_DNS_Cache_Poisoning_and_Multiple_OS_Predictable_IP_ID_Vulnerability.pdf
https://pdos.csail.mit.edu/~rtm/papers/117.pdf
https://www.insecure.org/nmap
https://datatracker.ietf.org/doc/html/rfc2104
https://www.rfc-editor.org/info/rfc2104
https://datatracker.ietf.org/doc/html/rfc3971
https://www.rfc-editor.org/info/rfc3971
https://datatracker.ietf.org/doc/html/rfc4953
https://www.rfc-editor.org/info/rfc4953
https://datatracker.ietf.org/doc/html/rfc4963
https://www.rfc-editor.org/info/rfc4963

Gont & Arce Expires August 6, 2021 [Page 34]

Internet-Draft Generation of Transient Numeric IDs February 2021

 [RFC5927] Gont, F., "ICMP Attacks against TCP", RFC 5927,
 DOI 10.17487/RFC5927, July 2010,
 <https://www.rfc-editor.org/info/rfc5927>.

 [RFC6274] Gont, F., "Security Assessment of the Internet Protocol
 Version 4", RFC 6274, DOI 10.17487/RFC6274, July 2011,
 <https://www.rfc-editor.org/info/rfc6274>.

 [RFC6973] Cooper, A., Tschofenig, H., Aboba, B., Peterson, J.,
 Morris, J., Hansen, M., and R. Smith, "Privacy
 Considerations for Internet Protocols", RFC 6973,
 DOI 10.17487/RFC6973, July 2013,
 <https://www.rfc-editor.org/info/rfc6973>.

 [RFC6980] Gont, F., "Security Implications of IPv6 Fragmentation
 with IPv6 Neighbor Discovery", RFC 6980,
 DOI 10.17487/RFC6980, August 2013,
 <https://www.rfc-editor.org/info/rfc6980>.

 [RFC7098] Carpenter, B., Jiang, S., and W. Tarreau, "Using the IPv6
 Flow Label for Load Balancing in Server Farms", RFC 7098,
 DOI 10.17487/RFC7098, January 2014,
 <https://www.rfc-editor.org/info/rfc7098>.

 [RFC7258] Farrell, S. and H. Tschofenig, "Pervasive Monitoring Is an
 Attack", BCP 188, RFC 7258, DOI 10.17487/RFC7258, May
 2014, <https://www.rfc-editor.org/info/rfc7258>.

 [RFC7707] Gont, F. and T. Chown, "Network Reconnaissance in IPv6
 Networks", RFC 7707, DOI 10.17487/RFC7707, March 2016,
 <https://www.rfc-editor.org/info/rfc7707>.

 [RFC7721] Cooper, A., Gont, F., and D. Thaler, "Security and Privacy
 Considerations for IPv6 Address Generation Mechanisms",

RFC 7721, DOI 10.17487/RFC7721, March 2016,
 <https://www.rfc-editor.org/info/rfc7721>.

 [RFC7739] Gont, F., "Security Implications of Predictable Fragment
 Identification Values", RFC 7739, DOI 10.17487/RFC7739,
 February 2016, <https://www.rfc-editor.org/info/rfc7739>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

https://datatracker.ietf.org/doc/html/rfc5927
https://www.rfc-editor.org/info/rfc5927
https://datatracker.ietf.org/doc/html/rfc6274
https://www.rfc-editor.org/info/rfc6274
https://datatracker.ietf.org/doc/html/rfc6973
https://www.rfc-editor.org/info/rfc6973
https://datatracker.ietf.org/doc/html/rfc6980
https://www.rfc-editor.org/info/rfc6980
https://datatracker.ietf.org/doc/html/rfc7098
https://www.rfc-editor.org/info/rfc7098
https://datatracker.ietf.org/doc/html/bcp188
https://datatracker.ietf.org/doc/html/rfc7258
https://www.rfc-editor.org/info/rfc7258
https://datatracker.ietf.org/doc/html/rfc7707
https://www.rfc-editor.org/info/rfc7707
https://datatracker.ietf.org/doc/html/rfc7721
https://www.rfc-editor.org/info/rfc7721
https://datatracker.ietf.org/doc/html/rfc7739
https://www.rfc-editor.org/info/rfc7739
https://datatracker.ietf.org/doc/html/rfc8446
https://www.rfc-editor.org/info/rfc8446

Gont & Arce Expires August 6, 2021 [Page 35]

Internet-Draft Generation of Transient Numeric IDs February 2021

 [Sanfilippo1998a]
 Sanfilippo, S., "about the ip header id", Post to Bugtraq
 mailing-list, Mon Dec 14 1998,
 <http://seclists.org/bugtraq/1998/Dec/48>.

 [Sanfilippo1998b]
 Sanfilippo, S., "Idle scan", Post to Bugtraq mailing-list,
 1998, <https://github.com/antirez/hping/raw/master/docs/

SPOOFED_SCAN.txt>.

 [Sanfilippo1999]
 Sanfilippo, S., "more ip id", Post to Bugtraq mailing-
 list, 1999,
 <https://github.com/antirez/hping/raw/master/docs/MORE-

FUN-WITH-IPID>.

 [Schuba1993]
 Schuba, C., "ADDRESSING WEAKNESSES IN THE DOMAIN NAME
 SYSTEM PROTOCOL", 1993,
 <http://ftp.cerias.purdue.edu/pub/papers/christoph-schuba/

schuba-DNS-msthesis.pdf>.

 [Shimomura1995]
 Shimomura, T., "Technical details of the attack described
 by Markoff in NYT", Message posted in USENET's
 comp.security.misc newsgroup Message-ID:
 <3g5gkl$5j1@ariel.sdsc.edu>, 1995,
 <https://www.gont.com.ar/docs/post-shimomura-usenet.txt>.

 [Silbersack2005]
 Silbersack, M., "Improving TCP/IP security through
 randomization without sacrificing interoperability",
 EuroBSDCon 2005 Conference, 2005,
 <https://citeseerx.ist.psu.edu/viewdoc/

download?doi=10.1.1.91.4542&rep=rep1&type=pdf>.

 [SipHash] Aumasson, J. and D. Bernstein, "SipHash: a fast short-
 input PRF", 2012, <https://github.com/veorq/SipHash>.

 [TBIT] TBIT, "TBIT, the TCP Behavior Inference Tool", 2001,
 <https://www.icir.org/tbit/>.

 [TCPT-uptime]
 McDanel, B., "TCP Timestamping - Obtaining System Uptime
 Remotely", March 2001,
 <https://securiteam.com/securitynews/5np0c153pi/>.

http://seclists.org/bugtraq/1998/Dec/48
https://github.com/antirez/hping/raw/master/docs/SPOOFED_SCAN.txt
https://github.com/antirez/hping/raw/master/docs/SPOOFED_SCAN.txt
https://github.com/antirez/hping/raw/master/docs/MORE-FUN-WITH-IPID
https://github.com/antirez/hping/raw/master/docs/MORE-FUN-WITH-IPID
http://ftp.cerias.purdue.edu/pub/papers/christoph-schuba/schuba-DNS-msthesis.pdf
http://ftp.cerias.purdue.edu/pub/papers/christoph-schuba/schuba-DNS-msthesis.pdf
https://www.gont.com.ar/docs/post-shimomura-usenet.txt
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.4542&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.4542&rep=rep1&type=pdf
https://github.com/veorq/SipHash
https://www.icir.org/tbit/
https://securiteam.com/securitynews/5np0c153pi/

Gont & Arce Expires August 6, 2021 [Page 36]

Internet-Draft Generation of Transient Numeric IDs February 2021

 [Zalewski2001]
 Zalewski, M., "Strange Attractors and TCP/IP Sequence
 Number Analysis", 2001,
 <https://lcamtuf.coredump.cx/oldtcp/tcpseq.html>.

 [Zalewski2002]
 Zalewski, M., "Strange Attractors and TCP/IP Sequence
 Number Analysis - One Year Later", 2001,
 <https://lcamtuf.coredump.cx/newtcp/>.

 [Zalewski2012]
 Zalewski, M., "p0f v3 (version 3.09b)", 2012,
 <https://lcamtuf.coredump.cx/p0f.shtml>.

Appendix A. Algorithms and Techniques with Known Issues

 The following subsections discuss algorithms and techniques with
 known negative security and privacy implications.

 NOTE:
 As discussed in Section 1, the use of cryptographic techniques
 might allow for the safe use of some of these algorithms and
 techniques. However, this should be evaluated on a case by case
 basis.

A.1. Predictable Linear Identifiers Algorithm

 One of the most trivial ways to achieve uniqueness with a low
 identifier reuse frequency is to produce a linear sequence. This
 type of algorithm has been employed in the past to generate
 identifiers of Categories #1, #2, and #4 (please see Section 6 for an
 analysis of these categories).

 For example, the following algorithm has been employed (see e.g.
 [Morris1985], [Shimomura1995], [Silbersack2005] and [CPNI-TCP]) in a
 number of operating systems for selecting IP fragment IDs, TCP
 ephemeral ports, etc.:

https://lcamtuf.coredump.cx/oldtcp/tcpseq.html
https://lcamtuf.coredump.cx/newtcp/
https://lcamtuf.coredump.cx/p0f.shtml

Gont & Arce Expires August 6, 2021 [Page 37]

Internet-Draft Generation of Transient Numeric IDs February 2021

 /* Initialization code */

 next_id = min_id;
 id_inc= 1;

 /* Transient Numeric ID selection function */

 id_range = max_id - min_id + 1;
 retry = id_range;

 do {
 if (next_id == max_id) {
 next_id = min_id;
 }
 else {
 next_id = next_id + id_inc;
 }

 if (suitable_id(next_id)) {
 return next_id;
 }

 retry--;

 } while (retry > 0);

 return ERROR;

 NOTE:
 suitable_id() is a function that checks whether the resulting
 identifier is acceptable (e.g., whether it's in use, etc.).

 For obvious reasons, this algorithm results in predictable sequences.
 Since a global counter is used to generate the transient numeric
 identifiers ("next_id" in the example above), an entity that learns
 one numeric identifier can infer past numeric identifiers and predict
 future values to be generated by the same algorithm. Since the value
 employed for the increments is known (such as "1" in this case), an
 attacker can sample two values, and learn the number of identifiers
 that have been were generated in-between the two sampled values.
 Furthermore, if the counter is initialized e.g. when the system its
 bootstrapped to some known value, the algorithm will leak additional
 information, such as the number of transmitted fragmented datagrams
 in the case of an IP ID generator [Sanfilippo1998a], or the system
 uptime in the case of TCP timestamps [TCPT-uptime].

Gont & Arce Expires August 6, 2021 [Page 38]

Internet-Draft Generation of Transient Numeric IDs February 2021

A.2. Random-Increments Algorithm

 This algorithm offers a middle ground between the algorithms that
 generate randomized transient numeric identifiers (such as those
 described in Section 7.1.1 and Section 7.1.2), and those that
 generate identifiers with a predictable monotonically-increasing
 function (see Appendix A.1).

 /* Initialization code */

 next_id = random(); /* Initialization value */
 id_rinc = 500; /* Determines the trade-off */

 /* Transient Numeric ID selection function */

 id_range = max_id - min_id + 1;
 retry = id_range;

 do {
 /* Random increment */
 id_inc = (random() % id_rinc) + 1;

 if ((max_id - next_id) >= id_inc){
 next_id = next_id + id_inc;
 }
 else {
 next_id = min_id + id_inc - (max_id - next_id);
 }

 if (suitable_id(next_id)) {
 return next_id;
 }

 retry = retry - id_inc;

 } while (retry > 0);

 return ERROR;

 This algorithm aims at producing a global monotonically-increasing
 sequence of transient numeric identifiers, while avoiding the use of
 fixed increments, which would lead to trivially predictable
 sequences. The value "id_inc" allows for direct control of the
 trade-off between unpredictability and identifier reuse frequency.
 The smaller the value of "id_inc", the more similar this algorithm is

Gont & Arce Expires August 6, 2021 [Page 39]

Internet-Draft Generation of Transient Numeric IDs February 2021

 to a predicable, global linear ID generation algorithm (as the one in
Appendix A.1). The larger the value of "id_inc", the more similar

 this algorithm is to the algorithm described in Section 7.1.1 of this
 document.

 When the identifiers wrap, there is a risk of collisions of transient
 numeric identifiers (i.e., identifier reuse). Therefore, "id_inc"
 should be selected according to the following criteria:

 o It should maximize the wrapping time of the identifier space.

 o It should minimize identifier reuse frequency.

 o It should maximize unpredictability.

 Clearly, these are competing goals, and the decision of which value
 of "id_inc" to use is a trade-off. Therefore, the value of "id_inc"
 is at times a configurable parameter so that system administrators
 can make the trade-off for themselves. We note that the alternative
 algorithms discussed throughout this document offer better
 interoperability, security and privacy properties than this
 algorithm, and hence implementation of this algorithm is discouraged.

A.3. Re-using Identifiers Across Different Contexts

 Employing the same identifier across contexts in which stability is
 not required (i.e. overloading the semantics of transient numeric
 identifier) usually has negative security and privacy implications.

 For example, in order to generate transient numeric identifiers of
 Category #2 or Category #3, an implementation or specification might
 be tempted to employ a source for the numeric identifiers which is
 known to provide unique values, but that may also be predictable or
 leak information related to the entity generating the identifier.
 This technique has been employed in the past for e.g. generating IPv6
 IIDs by re-using the MAC address of the underlying network interface.
 However, as noted in [RFC7721] and [RFC7707], embedding link-layer
 addresses in IPv6 IIDs not only results in predictable values, but
 also leaks information about the manufacturer of the underlying
 network interface card, allows for network activity correlation, and
 makes address-based scanning attacks feasible.

Authors' Addresses

https://datatracker.ietf.org/doc/html/rfc7721
https://datatracker.ietf.org/doc/html/rfc7707

Gont & Arce Expires August 6, 2021 [Page 40]

Internet-Draft Generation of Transient Numeric IDs February 2021

 Fernando Gont
 SI6 Networks
 Evaristo Carriego 2644
 Haedo, Provincia de Buenos Aires 1706
 Argentina

 Email: fgont@si6networks.com
 URI: https://www.si6networks.com

 Ivan Arce
 Quarkslab

 Email: iarce@quarkslab.com
 URI: https://www.quarkslab.com

https://www.si6networks.com
https://www.quarkslab.com

Gont & Arce Expires August 6, 2021 [Page 41]

