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STATUS OF THIS MEMO

   This document is an Internet-Draft and is in full conformance with
   all provisions of Section 10 of RFC2026.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF), its areas, and its working groups.  Note that
   other groups may also distribute working documents as Internet-
   Drafts.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference mate-
   rial or to cite them other than as "work in progress".

     The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

     The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Abstract

   This document describes a key management mechanism for multicast
   communication sessions that is based on the 'Subset-Difference'
   algorithm. The Subset-Difference algorithm is a new revocation
   scheme which allows a Center (such as a Group Controller/ Key Manager)
   to send a message so that *every* authorized receiver, but
   none of the revoked receivers, can decrypt. This message consists of only 2r
   keys, where r is the number of revoked group members.
   In this draft we first describe this new revocation scheme, and
   then then discuss how it can be used for key management
   in Secure Multicast applications. Its main advantage is that it
   eliminates the need for a mechanism that allows individual updates in
   case a user did not receive or did not perform the required re-keing
   operations. This is particularly useful in settings with unreliable
   communication or high rates of packet loss. It also provides
   an elegant and efficient solution for the backward secrecy
   problem. The algorithm guarantees complete secure multicast
   communication even if all revoked users (non group-members)
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   collude their keys.

1 Introduction and Motivation

    The problem of a Center (or Group Controller/Key Server)
    transmitting data to a large group of
    receivers so that only a predefined subset is able to decrypt the
    data is at the heart of a growing number of applications. Among
    them are pay-TV applications, IP multicast communication, secure
    distribution of copyright-protected material (e.g. music) and
    audio streaming. The area of Broadcast Encryption deals with
    methods to efficiently broadcast information to a dynamically
    changing group of users who are allowed to receive the data. It is
    often convenient to think of it as a Revocation Scheme,
    which addresses the case where some subset of the users are
    excluded from receiving the information.

    One special case is when the receivers are stateless. In
    such a scenario, a (legitimate) receiver is not capable of
    recording the past history of transmissions and change its state
    accordingly. Instead, its operation must be based on the current
    transmission and its initial configuration. Stateless receivers
    are particularly important for the case where the receiver is a
    device that is
    not constantly on-line, such as a media player (e.g. a CD or DVD
    player where the ``transmission" is the current disc), a satellite
    receiver (GPS).

    Recently a new revocation scheme, called the 'Subset-Difference'
    scheme, has been proposed [NNL01]. The Subset-Difference algorithm
    is especially suitable for stateless receivers. Its main advantage
    over the previous is that it requires to transmit only 2r (or 1.25
    on average) keys instead of 2rlogN keys in order to revoke r users
    from a set of N users, regardless of the coalition size,
    while maintaining a single decryption at the user's end.
    In return, it requires every receiver to store log^2N keys
    instead of logN keys. The receiver needs to employ 1 decryption for every
    re-keying event plus logN applications of a pseudo-random
    generator.

    In Multicast applications the Center can be viewed as the
    Group Controller/Key Server which transmits key updates.
    Receivers are typically perceived as statefull, namely they may
    update their configuration between transmission. However,
    this requires all users to be connected during a re-keying
    event and to change the internal state accordingly. This is
    not a realistic assumption in scenarios with a high loss rate
    of packets. The natural approach to solve this problem is to
    introduce a mechanism that allows an individual update [RFC2627][WGL].
    Taking the stateless approach gets rid of the need for such
    mechanism.
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    This draft introduces the new Subset-Difference revocation
    algorithm(in Sections 2 and 3) and shows its applicability to
    the problem of Secure Multicast(Section 4).
    Specifically, it proposes a few modes in which the new Subset-Difference
    revocation scheme can be used to provide secure group communication.
    When applied to Key Management in multicast scenarios, it requires
    a transmission of 2r keys at a re-keying event, where r is the number of
    revoked-members. This automatically
        (i) avoids individual re-keying events due to lack/failure in
        communication,
        (ii) achieves backward secrecy in a straightforward manner.

    Notation: We denote by N the total number of users in
    the system and by r the size of the revoked set R.

    1.1 Previous Work

    The area of Broadcast Encryption was first formally studied (and
    coined) by Fiat and Naor in [FN] and has received much attention
    since then. In principle any scheme that works for the connected
    mode, where receivers can remember past communication, may be
    converted to a scheme for stateless receivers (such a conversion
    may require to include with any transmission the entire `history'
    of revocation events). An overview of previous algorithms to this
    problem, especially when adapted to the stateless receiver
    scenario, can be found in [NNL].

    The logical-tree-hierarchy (LKH) scheme, suggested independently
    by Wallner et. al. [RFC2627] and Wong et. al. [WGL], is designed
    for the connected mode for multicast re-keying applications. It
    revokes a single user at a time, and updates the keys of all
    remaining users. This requires a transmission of 2logN keys to
    revoke a single user, or 2rlogN keys to revoke r users; each user
    should store log N keys and the amount of work each user should do
    is log N encryptions or rlogN for r revocations (the expected
    number is O(r) for an average user). These bounds are improved in
    [CGIMNP],[CMN],[MS], but unless the storage at the user is
    extremely high they still require a transmission of length rlogN.

    2. Subset-Cover Algorithms

    This section describes a family of revocation algorithms called the
    Subset-Cover algorithms, which the 'Subset-Difference' belongs
    to.

    2.1 Preliminaries - Problem Definition

    Let N be the set of all users |N|=n, and R be a group of r users
    whose decryption privileges should be revoked. The goal of a
    revocation algorithm is to allow a center to transmit a message
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    M to all users such that any non-revoked user u can decrypt the message
    correctly, while even a coalition consisting  of all members of
    R cannot decrypt it.

    A system consists of three parts: (1) An initiation scheme, which
    is a  method for assigning the receivers secret information that
    will allow them to decrypt. (2) The broadcast algorithm - given a
    message M and the set R of users that should be revoked,
    outputs  a ciphertext message M' that is broadcast to all
    receivers. (3) A decryption algorithm - a (non-revoked) user that
    receives ciphertext M' using its secret information should
    produce the original message M. If receivers are stateless,
    the output of the decryption should be based on the
    current message and the secret information only.

    2.2 A Subset-Cover Algorithm and its Components

    A Subset-Cover algorithm defines a collection of subsets
    S_1, ... , S_w of users. Each subset
    S_j is assigned (perhaps implicitly) a long-lived key L_j;
    each member u of S_j should be able to deduce L_j from
    its secret information. Given a revoked set R, the remaining
    users N\R are partitioned into disjoint subsets
    S_i1, ..., S_im so that the union of these subsets is N\R
    and a session key K is encrypted m times with L_i1, ..., L_im.

    Specifically, the algorithm uses two encryption schemes:
        i. A method F_K: {0,1}* -> {0,1}* to encrypt the message
        itself. The key K used will be chosen fresh for each message M
        - a session key - as a random bit string. F_K should be a fast
        method and should not expand the plaintext. The simplest
        implementation is to Xor the message M with a stream cipher
        generated by K.
        ii. A method to deliver the session key to the receivers, for which we
        will employ an encryption scheme. The keys L here are
        long-lived. The simplest implementation is to make
        E_L:{0,1}^l -> {0,1}^l a block cipher.

    The algorithm consists of three components:
    i. Scheme Initiation :
        Every receiver u is assigned private information I_u. For all
        1<=i<=w such that u is in S_i, I_u allows u to
        deduce the key L_i corresponding to the set S_i.
        Note that the keys L_i can be chosen as a function of other
        (secret) information, which is the case in the subset-
        difference algorithm.

    ii. The Broadcast Algorithm at the Center:
        - Choose a session encryption key K.
        - Given a set R of revoked receivers, the center finds a partition
        of the users in N\R into disjoint subsets S_i1, ..., S_im.



        Let L_i1, ...L_im be the keys associated with the above subsets.
        - The center encrypts K with keys L_i1, ..., L_im
        and sends the ciphertext

        [ i1,i2,...,im, E_L_i1(K), E_L_i2(K),...,E_L_im(K) ], F_K (M)

        The portion in square brackets preceding F_K (M) is called the
        'Header' and F_K (M) is called the 'Body'.

    iii. The Decryption step at the receiver u, upon receiving a broadcast 
message
         [ i1, i2,...,im, C_1,  C_2,..., C_m ] , M'

            - Find ij such that u is in S_ij (in case u is revoked the result 
is null).
            - Extract the corresponding key L_ij from I_u.
            - Compute D_L_ij(C_j) to obtain K.
            - Compute D_K(M') to obtain and output M.

    Below we specify the implementation of these components by the
    Subset-Difference algorithm. The algorithm is evaluated based
    upon three parameters:
        - Message Length - the length of the header that is attached to
        F_{K}(M), which is proportional to m, the  number of sets in
        the partition covering N\R.
        - Storage size at the receiver - how much private information
        (typically, keys) does a receiver need to store. For instance,
        I_u could simply consist of all the keys of the subsets that
        u  belongs to, or if the key assignment is more sophisticated it should
        allow the computation of all such keys.
        - Message processing time at receiver. We often distinguish between
        decryption and other types of operations.

    2.3 Comparison to the Logical Key Hierarchy (LKH) approach of
    [RFC2627] and [WGL]

    Readers familiar with the Logical Key Hierarchy approach, in
    particular the tree method of [RFC2627] and [WGL], may find it
    instructive to compare it with the Subset-Cover algorithm
    approach. In LKH receivers are viewed as leaves in a full binary
    tree and are grouped into subsets according to subtrees in the
    full tree. An independent label is assigned to each node in the
    binary tree, thus providing a key for each subset of leaves that
    form a subtree. However, these labels are used quite differently -
    the re-keying employed by the LKH scheme changes some of these
    labels at every revocation. In the Subset-Cover framework, labels
    correspond to the long-term keys and therefore are static (never
    change); what changes is a single session key. The separation of
    the labels and the session key has a consequence on the message
    length as shown in [NNL].
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    One can extend the LKH approach to handle r revocations at a time
    in the following manner: For a batch of r revocations, no label is
    changed more than once, i.e. only the "latest" value is
    transmitted and used. We call it the 'clumped re-keying method'.
    In this variant the number of encryptions is roughly rlongN/r, but
    it requires log N decryptions at the user, (as opposed to a single
    decryption in our framework).

    3. The Subset-Difference Algorithm

    The subset-difference algorithm falls under the subset-cover
    framework. Its main advantage is that it partitions the non-revoked
    users into at most 2r-1 subsets (or 1.25r on average), whereas
    previously known algorithm required O(rlog N) subsets, effectively
    reducing the message length accordingly. In return, the number
    of keys stored by each receiver is 0.5log^2N, an increase by a factor of
    of 0.5log N from previous known algorithms. The
    key characteristic of the Subset-Difference method, which
    essentially leads to the reduction in message length, is that in
    this method any user belongs to a substantially large number
    of subsets (O(N) subsets). The challenge is to devise an efficient
    procedure to succinctly encode this large set of keys at the user.

    3.1 The subset description

    The receivers are viewed as leaves in a complete binary tree.
    The collection of subsets S_1,..., S_w defined by this
    algorithm corresponds to subsets of the form
    "a group of receivers G_1 minus another group G_2", where G_2 is
    a subset of G_1. The two groups G_1, G_2 correspond to leaves in
    two full binary subtrees. Therefore a valid subset S is
    represented by two nodes in the tree (v_i, v_j) such that v_i
    is an ancestor of v_j. We denote such subset as S_{i,j}.
        - A leaf u is in S_{i,j} iff it is in the subtree rooted at v_i
        but not in the subtree rooted at v_j,
    or in other words
        - u is in S_{i,j} iff v_i is an ancestor of u but v_j is not.
    Figure 1 depicts S_{i,j}. Note that every subtree is also a subset
    in this collection: specifically, a subtree appears here as the
    difference between its parent and its sibling. The only exception
    is the full tree itself, and we will add a special subset for
    that. We postpone the description of the  key assignment till
    later; for the time being assume that each subset S_{i,j} has an
    associated key L_{i,j}.

        Figure 1 - The Subset Difference Method.
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      Figure 1: Subset S_{i,j} contains all leaves O that are not excluded 
(x'ed).

    3.2 The Cover

    For a given set R of revoked receivers, let u_1,...,u_r be the
    leaves corresponding to the elements in R. The Cover is a
    collection of disjoint subsets S_{i1,j1}, S_{i2,j2},...,S_{im,jm}
    which partitions N\R. Below is an algorithm for finding the cover,
    followed by an example, and an analysis of its size (number of
    subsets).

    Finding the Cover:

    The method partitions N\R into disjoint subsets S_{i1,j1},
    S_{i2,j2},...,S_{im,jm} as follows: consider the backbone tree T
    induced by the set R of vertices and the root, i.e. the minimal
    subtree of the full binary tree that connects all the leaves in R.
    We build the subsets collection iteratively, maintaining a the
    backbone tree T with the property that any u in N\R that is below
    a leaf of T has been covered. We start with the initial backbone
    tree T and then iteratively remove nodes from T (while adding
    subsets to the collection) until T consists of just a single node:

        (i) Find two leaves v_i and v_j in T such that the
        least-common-ancestor v of v_i and v_j does not contain any
        other leaf of T in its subtree. Let v_l and v_k be the two
        children of v such that v_i a descendant of v_l and v_j a
        descendant of v_k. (If there is only  one leaf left, make
        v_i=v_j to the leaf, v to be the root of T and v_l=v_k=v.)
        (ii) If v_l is not v_i then add the subset S_{l,i} to the
        collection; likewise, if v_k is not v_j add  the subset S_{k,j}
        to the collection.
        (iii) Remove from T all the descendants of v and make it a leaf.



    An alternative description of the cover algorithm is as follows:

    Consider maximal chains of nodes with outdegree 1 in T. More
    precisely, each such chain is of the form [v_i1, v_i2,... v_il]
    where (i) all of v_i1, v_i2,...,v_il-1 have outdegree 1 in T (ii)
    v_il is either a leaf or a node with outdegree 2 and (iii) the
    parent of v_i1 is either a node of outdegree 2 or the root. For
    each such chain where l<=2 add a subsets S_{i1,il} to the cover.
    Note that all nodes of outdegree 1 in T are members of precisely
    one such chain.

    3.2.1 Example.

    For example, consider the 5-level tree depicted below with 32 leaves, 12 of
    which are revoked (marked with X). The cover consists of 6
    subset-differences which are
    S_{a,b} , S_{c,d} , S_{e,f} , S_{g,h} , S_{i,j} , S_{k,l}
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    In the above example, subset S_{g,h} demonstrates the case in
    which the reduction in cover size obtained due the definition of
    subsets as *differences* is the most dramatic. The revoked leaf h
    is a 'singleton' within the subtree rooted at g; hence a single
    subset S_{g,h} suffices to cover the remaining leaves in the
    subtree. A method that groups leaves according to subtrees would
    require 3 subsets (or in general, the order of logN subsets) to
    cover these remaining leaves.

    3.3 The cover size:

    A cover can contain at most 2r-1 subsets for any set of r revocations.
    Every iteration  increases the number of subsets by at most two
    (in step (2)) and reduces the number of the Steiner



    leaves by one (in Step (3)), except the last iteration
    that may not reduce the number of leaves but adds only one subset.
    Starting with r leaves, the process generates the total of 2r-1
    subsets. Moreover, every non-revoked $u$ is in exactly one
    subset, the one defined by the first chain of nodes of outdegree
    1 in ST(R) that is encountered while moving from u towards
    the root. This encounter must hit a non-empty chain, since the
    path from u to the root cannot join ST(R) in an outdegree 2
    node, since this implies that u is in R.

    The above analysis is a worst-case analysis and
    there are instances which actually require 2r-1 sets. However,
    if the set of revoked leaves is random, then both analytical
    analysis and experimental results show tighter bounds. In fact,
    the average number of subsets in a cover is 1.25r.

    3.4 Key assignment to the subsets

    We now define what information each receiver must store. If
    each receiver needs to store explicitly the keys of
    all the subsets it belongs to, the storage requirements would
    expand tremendously: consider a receiver u; for each complete
    subtree T_k it belongs to, u must store a number of keys
    proportional to the number of nodes in the subtree T_k that are
    not on the path from the root of T_k to u. There are
    log N such trees, one for each height  1<=k<=log N,
    yielding  the total of O(N) keys.

    We therefore devise a key assignment method that requires a
    receiver to store only O(log N) keys per subtree, for the total
    of O(log^2 N) keys.

    While the total number of subsets to which a user u belongs is
    O(N), these can be grouped into logN clusters defined by the
    first subset i (from which another subsets is subtracted). The
    way we proceed with the keys assignment is to choose for each
    1<=i<=N-1 corresponding to an internal node in the full
    binary tree a random and independent value LABEL_i. This
    value should *induce* the keys for all legitimate subsets of
    the form S_{i,j} using pseudo-random functions.

    Let G be a (cryptographic) pseudo-random sequence generator
    that *triples* the input, i.e. whose output length is three times
    the length of the input; let G_L(S) denote the left third of the
    output of G on seed S, G_R(S) the right third and G_M(S)
    the middle third.

    Consider now the subtree T_i (rooted at v_i). We will use the
    following top-down  labeling process: the root is assigned a label
    LABEL_i. Given that a parent was labeled S, its two
    children are labeled G_L(S) and G_R(S) respectively. Let



    LABEL_{i,j} be the label of node v_j derived in the subtree
    T_i from LABEL_i. Following such a labeling, the key
    L_{i,j} assigned to set S_{i,j} is G_M of LABEL_{i,j}.
    Note that each label induces three parts:
        G_L - the label for the left child,
        G_R - the label for the right child, and
        G_M - the key at the node.
    The process of generating labels and keys for a particular subtree
    is depicted in Figure 2. For such a labeling process, given
    the label of a node it is possible to compute the labels (and
    keys) of all its descendants. On the other hand, without receiving
    the label of an ancestor of a node, its label is pseudo-random and
    for a node j, given  the labels of all its descendants (but not
    including itself) the key L_{i,j} is pseudo-random (LABEL_{i,j},
    the label of v_j, is not pseudo-random given this
    information simply because one can check for consistency of the
    labels). It is important to note that given LABEL_i,
    computing L_{i,j} requires at most log N invocations of G.

        Figure 2 - Key Assignment to the Subsets.
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        Figure 2 - Generation of LABEL_{i,j} and the key L_{i,j}.

    We now describe the information I_u that each receiver u gets
    in order to derive the key assignment described above. For each
    subtree T_i such that u is a leaf of T_i the receiver u
    should be able to compute L_{i,j} iff j is not an
    ancestor of u. Consider the path from v_i to u and let
    v_i1,v_i2,...,v_ik be the nodes just ``hanging



    off" the path, i.e. they are adjacent to the path but not
    ancestors of u (see Figure 3). Each j in T_i that
    is not an ancestor of u is a descendant of one of these nodes.
    Therefore if u receives the labels of v_i1,v_i2,...,v_ik
    as part of I_u, then invoking G at most log N
    times suffices to compute L_{i,j} for any j that is not an
    ancestor of u.

        Figure 3 - Key Assignment to Receivers
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        Figure 3 - Leaf u receives the labels of v_{i_1},...,v_{i_k}
                   (marked with @) that are induced by the label LABEL_i of 
v_i.

    As for the total number of keys (in fact, labels) stored by
    receiver u, each tree T_i of depth k that contains u
    contributes k-1 keys (plus one  key for the case where there are
    no revocations), so the total is 0.5log^2 N +0.5log N + 1.

    3.5 Decryption Step:

    At decryption time, a receiver u first finds the subset
    S_{i,j} such that u is in S_{i,j}, and computes the key
    corresponding to L_{i,j}. The evaluation of the
    subset  key takes now at most log N applications of a
    pseudo-random generator. After that, a single decryption is
    needed.

    3.5 Hierarchical Revocation

    Suppose that the receivers are grouped in a hierarchical manner,
    and that it is desirable to revoke  a group that consists of the
    subordinates of some entity, without paying a price proportional
    to the group size (for instance all the players of a certain
    manufacturer). The subset-difference algorithm lends



    itself to hierarchical revocation naturally, given the tree
    structure. If the hierarchy corresponds to the tree employed by
    the methods, then to revoke the receivers below a certain node
    counts as just a single user revocation.

    It can be shown that we can remove any collection of m subsets and
    cover the rest with 3m-1 subsets. Hence, the hierarchical
    revocation can be performed by first constructing m sets that
    cover all revoked devices, and then covering all the rest with
    3m-1, yielding the total of 4m sets.

    3.5 Storage at the Key Server

    In the proposed algorithm a unique label is associated with each node in
    the tree. Storing these labels explicitly at the Center can become
    a serious constraint. However, these labels can be generated at the center 
by
    applying a secret pseudo-random function on the name of the node without
    affecting the security of the scheme. This reduces the storage
    required by at the Key Server to the single key of the
    pseudo-random function.

    Furthermore, it may be desirable to distribute the center between
    several servers with the objective of avoiding a single or few  points of
    attack. In such a case the distributed pseudo-random functions of
    [NPR] may be used to define the labels.

    4. Applications to Multicast

    4.1. Stateless receivers in Multicast

    In Secure multicast, the Center corresponds to the Group
    Controller/Key Server. Typically, in such applications it is
    assumed that receivers may update their keys [WGL][RFPC2527]. This
    update is referred to as a re-keying event and it requires all
    users to be connected during this event and change their internal
    state (keys) accordingly. However, even in the multicast scenario
    it is not reasonable to assume that all the users receive all the
    messages and perform the required update. Therefore some mechanism
    that allows individual update must be in place. Taking the
    stateless approach eliminates the need for such a mechanism, as
    discussed below. In case the number of revocations is not too
    large this may yield a more manageable solution. This is
    especially relevant when there is a single source for the
    sending messages or when public-keys are used.

    4.2. Backward secrecy

    Revocation in itself lacks backward secrecy in the following
    sense: a constantly listening user that has been revoked from the
    system records all future transmission (which it can't decrypt



    anymore) and keeps all ciphertexts. At a later point it gains a
    valid new key (by re-registering) which allows decryption of all
    past communication. Hence, a newly acquired user-key can be used
    to decrypt all past session keys and ciphertexts. The way that LKH
    multicast key assignment protocols propose to achieve backward
    secrecy is to perform re-keying when new users are added to the
    group (such a re-keying may be reduced to only one way chaining,
    known as {LKH+}), thus making such operations non-trivial. We
    point out that in the subset-difference algorithm it may be
    easier:  At any given point of the system include in the set of
    revoked receivers all identities that have not been assigned yet.
    As a result, a newly assigned user-key cannot help in decrypting
    an earlier ciphertext. Note that this is feasible since we assume
    that new users are assigned keys in a consecutive order of the
    leaves in the tree, so unassigned keys are consecutive leaves in
    the complete tree and can be covered by at most log N sets. Hence,
    the unassigned leaves can be treated with the hierarchical
    revocation technique, resulting in adding at most log N
    revocations to the message.

    We note that, unlike the methods of [WGL][RFPC2527], the keys
    associated with a revoked leaf can not be re-assigned  to a new
    user at a later point. This requires the initial design to have
    some assumption the maximum number of anticipated users throughout
    the lifetime of the system. A tree height of 32 provides an ample
    number of users (about 4 billion of them) that is appropriate for
    most systems.

    4.3. Using the Subset-Difference Revocation for Group Communication

    There are a number of modes in which the Subset-Difference
    algorithm can be applied.

    4.3.1. The Centralized Group-Key Update Mode

        In the most natural mode, we assume the existence of a
        Group Controller/Key Server which issues a new "Group Key"
        when necessary. The receivers communicate among each other
        using the current "Group Key". A new Group key is issued to
        all by multicasting a new Header (recall that a Header is essentially
        a new session key, encrypted with all subsets in the
        cover). The header is generated by the Group Controller/Key
        Server, while revoking all receivers that are currently *not* members
        of the group, including the 'unassigned' ones (leaves that have
        not been assigned yet to actual receivers; recall that this
        can be done 'cheaply' with our method).

        A group-key update requires bandwidth of at most 2r keys (or
        1.25r keys on the average). This operation should be done
        every time an existing member is revoked, or terminated, or
        when a new member joins the group.



        Every member who has been disconnected for some time and
        missed (possible a few) group updates can simply request the
        current Header from the Group Controller/Key Server. Note that
        this Header can be sent in the clear, without any
        point-to-point encryption, provided that the server is
        authenticated, as only currently authorized receivers can decrypt the
        Header.

        The later is the main advantage of the proposed scheme over
        the traditional LKH approach, which requires to transmit to
        a disconnected member *all the history* of re-keying events
        since the receiver has last been connected (logN keys per
        re-keying event). However, a group-key update now requires
        bandwidth of 2r keys, instead of 2logN keys.

    4.3.2 The 'Floating Header' Mode

        Again, we assume the existence of a current "Group Key", and
        its corresponding Header, at any given time. However, in this
        mode the Header is attached to *every* message in the
        system (not only those involving the Key Server) by the party
        sending the message.

        With this approach, Group Key updates take place naturally;
        whenever needed, the Group Controller issues a new Header by
        multicasting to all and connected receivers update their
        current Header. It does not require a disconnected server
        wishing to listen to incoming message to update
        its Header upon reconnecting - it can simply wait for the next
        message to arrive. The only exception occurs when such
        receiver needs to send a message before it gets a new one;
        this involves a request for a Header from any connected member
        of the group, including but not necessarily, the Key
        Server itself. Note
        that a message authentication is in place, as the Header which
        is part of the message needs to be authenticated.

        The disadvantage of this mode is the additive increase in
        bandwidth - now every message requires 2r extra keys,
        in addition to the message body itself.

    4.3.3 The Hybrid Mode

        The hybrid mode does not attach the Header with every message;
        it assumes that all authorized parties have an access to the
        current, most updated, group-key. It therefore calls for a
        mechanism for an individual to obtain the most current group
        key.

        A possible solution is for the Key Server to have a certain



        authenticated location (e.g. a url) that 'posts' the current
        Header. In the straightforward implementation, a sender is then 
required
        to fetch the Header from this location before sending
        the message and encrypt the message with the session key
        provided by the Header; analogously, the receiver fetches the
        recent Header and decrypts the message.

        This approach avoids the need for a synchronized re-keying
        event; it puts the burden on the senders/receivers to obtain the
        most current group key for every encryption and decryption,
        including a receiver that has been disconnected for some time.
        The disadvantage is the fact that the 'Header-posting'
        location has now become a bottleneck.

        Few optimization attempts are in place here. The most
        important one is to reduce the load on the posting location
        via mirroring or other techniques. Alternatively, one may try
        to minimize the accesses to the location by putting a
        mechanism allowing a receiver to quickly determine whether the
        posted Header had changed since its last lookup, or whether
        its most updated session key decrypts the message.
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