
Internet Research Task Force Jeff Lotspiech(IBM)
IRTF SMUG Internet Draft Moni Naor(Weizmann Institute)
draft-irtf-smug-subsetdifference-00.txt Dalit Naor(IBM)
July 2001

Subset-Difference based Key Management for Secure Multicast

 <draft-irtf-smug-subsetdifference-00.txt>

STATUS OF THIS MEMO

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference mate-
 rial or to cite them other than as "work in progress".

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Abstract

 This document describes a key management mechanism for multicast
 communication sessions that is based on the 'Subset-Difference'
 algorithm. The Subset-Difference algorithm is a new revocation
 scheme which allows a Center (such as a Group Controller/ Key Manager)
 to send a message so that *every* authorized receiver, but
 none of the revoked receivers, can decrypt. This message consists of only 2r
 keys, where r is the number of revoked group members.
 In this draft we first describe this new revocation scheme, and
 then then discuss how it can be used for key management
 in Secure Multicast applications. Its main advantage is that it
 eliminates the need for a mechanism that allows individual updates in
 case a user did not receive or did not perform the required re-keing
 operations. This is particularly useful in settings with unreliable
 communication or high rates of packet loss. It also provides
 an elegant and efficient solution for the backward secrecy
 problem. The algorithm guarantees complete secure multicast
 communication even if all revoked users (non group-members)

https://datatracker.ietf.org/doc/html/draft-irtf-smug-subsetdifference-00.txt
https://datatracker.ietf.org/doc/html/draft-irtf-smug-subsetdifference-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

 collude their keys.

1 Introduction and Motivation

 The problem of a Center (or Group Controller/Key Server)
 transmitting data to a large group of
 receivers so that only a predefined subset is able to decrypt the
 data is at the heart of a growing number of applications. Among
 them are pay-TV applications, IP multicast communication, secure
 distribution of copyright-protected material (e.g. music) and
 audio streaming. The area of Broadcast Encryption deals with
 methods to efficiently broadcast information to a dynamically
 changing group of users who are allowed to receive the data. It is
 often convenient to think of it as a Revocation Scheme,
 which addresses the case where some subset of the users are
 excluded from receiving the information.

 One special case is when the receivers are stateless. In
 such a scenario, a (legitimate) receiver is not capable of
 recording the past history of transmissions and change its state
 accordingly. Instead, its operation must be based on the current
 transmission and its initial configuration. Stateless receivers
 are particularly important for the case where the receiver is a
 device that is
 not constantly on-line, such as a media player (e.g. a CD or DVD
 player where the ``transmission" is the current disc), a satellite
 receiver (GPS).

 Recently a new revocation scheme, called the 'Subset-Difference'
 scheme, has been proposed [NNL01]. The Subset-Difference algorithm
 is especially suitable for stateless receivers. Its main advantage
 over the previous is that it requires to transmit only 2r (or 1.25
 on average) keys instead of 2rlogN keys in order to revoke r users
 from a set of N users, regardless of the coalition size,
 while maintaining a single decryption at the user's end.
 In return, it requires every receiver to store log^2N keys
 instead of logN keys. The receiver needs to employ 1 decryption for every
 re-keying event plus logN applications of a pseudo-random
 generator.

 In Multicast applications the Center can be viewed as the
 Group Controller/Key Server which transmits key updates.
 Receivers are typically perceived as statefull, namely they may
 update their configuration between transmission. However,
 this requires all users to be connected during a re-keying
 event and to change the internal state accordingly. This is
 not a realistic assumption in scenarios with a high loss rate
 of packets. The natural approach to solve this problem is to
 introduce a mechanism that allows an individual update [RFC2627][WGL].
 Taking the stateless approach gets rid of the need for such
 mechanism.

https://datatracker.ietf.org/doc/html/rfc2627

 This draft introduces the new Subset-Difference revocation
 algorithm(in Sections 2 and 3) and shows its applicability to
 the problem of Secure Multicast(Section 4).
 Specifically, it proposes a few modes in which the new Subset-Difference
 revocation scheme can be used to provide secure group communication.
 When applied to Key Management in multicast scenarios, it requires
 a transmission of 2r keys at a re-keying event, where r is the number of
 revoked-members. This automatically
 (i) avoids individual re-keying events due to lack/failure in
 communication,
 (ii) achieves backward secrecy in a straightforward manner.

 Notation: We denote by N the total number of users in
 the system and by r the size of the revoked set R.

 1.1 Previous Work

 The area of Broadcast Encryption was first formally studied (and
 coined) by Fiat and Naor in [FN] and has received much attention
 since then. In principle any scheme that works for the connected
 mode, where receivers can remember past communication, may be
 converted to a scheme for stateless receivers (such a conversion
 may require to include with any transmission the entire `history'
 of revocation events). An overview of previous algorithms to this
 problem, especially when adapted to the stateless receiver
 scenario, can be found in [NNL].

 The logical-tree-hierarchy (LKH) scheme, suggested independently
 by Wallner et. al. [RFC2627] and Wong et. al. [WGL], is designed
 for the connected mode for multicast re-keying applications. It
 revokes a single user at a time, and updates the keys of all
 remaining users. This requires a transmission of 2logN keys to
 revoke a single user, or 2rlogN keys to revoke r users; each user
 should store log N keys and the amount of work each user should do
 is log N encryptions or rlogN for r revocations (the expected
 number is O(r) for an average user). These bounds are improved in
 [CGIMNP],[CMN],[MS], but unless the storage at the user is
 extremely high they still require a transmission of length rlogN.

 2. Subset-Cover Algorithms

 This section describes a family of revocation algorithms called the
 Subset-Cover algorithms, which the 'Subset-Difference' belongs
 to.

 2.1 Preliminaries - Problem Definition

 Let N be the set of all users |N|=n, and R be a group of r users
 whose decryption privileges should be revoked. The goal of a
 revocation algorithm is to allow a center to transmit a message

https://datatracker.ietf.org/doc/html/rfc2627

 M to all users such that any non-revoked user u can decrypt the message
 correctly, while even a coalition consisting of all members of
 R cannot decrypt it.

 A system consists of three parts: (1) An initiation scheme, which
 is a method for assigning the receivers secret information that
 will allow them to decrypt. (2) The broadcast algorithm - given a
 message M and the set R of users that should be revoked,
 outputs a ciphertext message M' that is broadcast to all
 receivers. (3) A decryption algorithm - a (non-revoked) user that
 receives ciphertext M' using its secret information should
 produce the original message M. If receivers are stateless,
 the output of the decryption should be based on the
 current message and the secret information only.

 2.2 A Subset-Cover Algorithm and its Components

 A Subset-Cover algorithm defines a collection of subsets
 S_1, ... , S_w of users. Each subset
 S_j is assigned (perhaps implicitly) a long-lived key L_j;
 each member u of S_j should be able to deduce L_j from
 its secret information. Given a revoked set R, the remaining
 users N\R are partitioned into disjoint subsets
 S_i1, ..., S_im so that the union of these subsets is N\R
 and a session key K is encrypted m times with L_i1, ..., L_im.

 Specifically, the algorithm uses two encryption schemes:
 i. A method F_K: {0,1}* -> {0,1}* to encrypt the message
 itself. The key K used will be chosen fresh for each message M
 - a session key - as a random bit string. F_K should be a fast
 method and should not expand the plaintext. The simplest
 implementation is to Xor the message M with a stream cipher
 generated by K.
 ii. A method to deliver the session key to the receivers, for which we
 will employ an encryption scheme. The keys L here are
 long-lived. The simplest implementation is to make
 E_L:{0,1}^l -> {0,1}^l a block cipher.

 The algorithm consists of three components:
 i. Scheme Initiation :
 Every receiver u is assigned private information I_u. For all
 1<=i<=w such that u is in S_i, I_u allows u to
 deduce the key L_i corresponding to the set S_i.
 Note that the keys L_i can be chosen as a function of other
 (secret) information, which is the case in the subset-
 difference algorithm.

 ii. The Broadcast Algorithm at the Center:
 - Choose a session encryption key K.
 - Given a set R of revoked receivers, the center finds a partition
 of the users in N\R into disjoint subsets S_i1, ..., S_im.

 Let L_i1, ...L_im be the keys associated with the above subsets.
 - The center encrypts K with keys L_i1, ..., L_im
 and sends the ciphertext

 [i1,i2,...,im, E_L_i1(K), E_L_i2(K),...,E_L_im(K)], F_K (M)

 The portion in square brackets preceding F_K (M) is called the
 'Header' and F_K (M) is called the 'Body'.

 iii. The Decryption step at the receiver u, upon receiving a broadcast
message
 [i1, i2,...,im, C_1, C_2,..., C_m] , M'

 - Find ij such that u is in S_ij (in case u is revoked the result
is null).
 - Extract the corresponding key L_ij from I_u.
 - Compute D_L_ij(C_j) to obtain K.
 - Compute D_K(M') to obtain and output M.

 Below we specify the implementation of these components by the
 Subset-Difference algorithm. The algorithm is evaluated based
 upon three parameters:
 - Message Length - the length of the header that is attached to
 F_{K}(M), which is proportional to m, the number of sets in
 the partition covering N\R.
 - Storage size at the receiver - how much private information
 (typically, keys) does a receiver need to store. For instance,
 I_u could simply consist of all the keys of the subsets that
 u belongs to, or if the key assignment is more sophisticated it should
 allow the computation of all such keys.
 - Message processing time at receiver. We often distinguish between
 decryption and other types of operations.

 2.3 Comparison to the Logical Key Hierarchy (LKH) approach of
 [RFC2627] and [WGL]

 Readers familiar with the Logical Key Hierarchy approach, in
 particular the tree method of [RFC2627] and [WGL], may find it
 instructive to compare it with the Subset-Cover algorithm
 approach. In LKH receivers are viewed as leaves in a full binary
 tree and are grouped into subsets according to subtrees in the
 full tree. An independent label is assigned to each node in the
 binary tree, thus providing a key for each subset of leaves that
 form a subtree. However, these labels are used quite differently -
 the re-keying employed by the LKH scheme changes some of these
 labels at every revocation. In the Subset-Cover framework, labels
 correspond to the long-term keys and therefore are static (never
 change); what changes is a single session key. The separation of
 the labels and the session key has a consequence on the message
 length as shown in [NNL].

https://datatracker.ietf.org/doc/html/rfc2627
https://datatracker.ietf.org/doc/html/rfc2627

 One can extend the LKH approach to handle r revocations at a time
 in the following manner: For a batch of r revocations, no label is
 changed more than once, i.e. only the "latest" value is
 transmitted and used. We call it the 'clumped re-keying method'.
 In this variant the number of encryptions is roughly rlongN/r, but
 it requires log N decryptions at the user, (as opposed to a single
 decryption in our framework).

 3. The Subset-Difference Algorithm

 The subset-difference algorithm falls under the subset-cover
 framework. Its main advantage is that it partitions the non-revoked
 users into at most 2r-1 subsets (or 1.25r on average), whereas
 previously known algorithm required O(rlog N) subsets, effectively
 reducing the message length accordingly. In return, the number
 of keys stored by each receiver is 0.5log^2N, an increase by a factor of
 of 0.5log N from previous known algorithms. The
 key characteristic of the Subset-Difference method, which
 essentially leads to the reduction in message length, is that in
 this method any user belongs to a substantially large number
 of subsets (O(N) subsets). The challenge is to devise an efficient
 procedure to succinctly encode this large set of keys at the user.

 3.1 The subset description

 The receivers are viewed as leaves in a complete binary tree.
 The collection of subsets S_1,..., S_w defined by this
 algorithm corresponds to subsets of the form
 "a group of receivers G_1 minus another group G_2", where G_2 is
 a subset of G_1. The two groups G_1, G_2 correspond to leaves in
 two full binary subtrees. Therefore a valid subset S is
 represented by two nodes in the tree (v_i, v_j) such that v_i
 is an ancestor of v_j. We denote such subset as S_{i,j}.
 - A leaf u is in S_{i,j} iff it is in the subtree rooted at v_i
 but not in the subtree rooted at v_j,
 or in other words
 - u is in S_{i,j} iff v_i is an ancestor of u but v_j is not.
 Figure 1 depicts S_{i,j}. Note that every subtree is also a subset
 in this collection: specifically, a subtree appears here as the
 difference between its parent and its sibling. The only exception
 is the full tree itself, and we will add a special subset for
 that. We postpone the description of the key assignment till
 later; for the time being assume that each subset S_{i,j} has an
 associated key L_{i,j}.

 Figure 1 - The Subset Difference Method.

 O
 /
 Vi

 / \
 O O
 / \
 O O
 / \ \
 O Vj O
 / \ /\ / \
 O O O O O O

 O.....O xxxx O.......O leaves

 |_____| |_______|
 |__________|
 S_{i,j}

 Figure 1: Subset S_{i,j} contains all leaves O that are not excluded
(x'ed).

 3.2 The Cover

 For a given set R of revoked receivers, let u_1,...,u_r be the
 leaves corresponding to the elements in R. The Cover is a
 collection of disjoint subsets S_{i1,j1}, S_{i2,j2},...,S_{im,jm}
 which partitions N\R. Below is an algorithm for finding the cover,
 followed by an example, and an analysis of its size (number of
 subsets).

 Finding the Cover:

 The method partitions N\R into disjoint subsets S_{i1,j1},
 S_{i2,j2},...,S_{im,jm} as follows: consider the backbone tree T
 induced by the set R of vertices and the root, i.e. the minimal
 subtree of the full binary tree that connects all the leaves in R.
 We build the subsets collection iteratively, maintaining a the
 backbone tree T with the property that any u in N\R that is below
 a leaf of T has been covered. We start with the initial backbone
 tree T and then iteratively remove nodes from T (while adding
 subsets to the collection) until T consists of just a single node:

 (i) Find two leaves v_i and v_j in T such that the
 least-common-ancestor v of v_i and v_j does not contain any
 other leaf of T in its subtree. Let v_l and v_k be the two
 children of v such that v_i a descendant of v_l and v_j a
 descendant of v_k. (If there is only one leaf left, make
 v_i=v_j to the leaf, v to be the root of T and v_l=v_k=v.)
 (ii) If v_l is not v_i then add the subset S_{l,i} to the
 collection; likewise, if v_k is not v_j add the subset S_{k,j}
 to the collection.
 (iii) Remove from T all the descendants of v and make it a leaf.

 An alternative description of the cover algorithm is as follows:

 Consider maximal chains of nodes with outdegree 1 in T. More
 precisely, each such chain is of the form [v_i1, v_i2,... v_il]
 where (i) all of v_i1, v_i2,...,v_il-1 have outdegree 1 in T (ii)
 v_il is either a leaf or a node with outdegree 2 and (iii) the
 parent of v_i1 is either a node of outdegree 2 or the root. For
 each such chain where l<=2 add a subsets S_{i1,il} to the cover.
 Note that all nodes of outdegree 1 in T are members of precisely
 one such chain.

 3.2.1 Example.

 For example, consider the 5-level tree depicted below with 32 leaves, 12 of
 which are revoked (marked with X). The cover consists of 6
 subset-differences which are
 S_{a,b} , S_{c,d} , S_{e,f} , S_{g,h} , S_{i,j} , S_{k,l}

 O
 / \
 / \
 O O
 / \ / \
 / \ / \
 / \ / \
 a O g O
 / \ / \ / \ / \
 / \ / \ / \ / \
 O O c O O O O k
 / \ / \ / \ / \ / \ / \ / \ / \
 O b O O O d O e O O O O i O O O
 / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \
 O O X X O O O O O O X X X X X O O O O O X O O O O X X X O X O O
 f h j l

 In the above example, subset S_{g,h} demonstrates the case in
 which the reduction in cover size obtained due the definition of
 subsets as *differences* is the most dramatic. The revoked leaf h
 is a 'singleton' within the subtree rooted at g; hence a single
 subset S_{g,h} suffices to cover the remaining leaves in the
 subtree. A method that groups leaves according to subtrees would
 require 3 subsets (or in general, the order of logN subsets) to
 cover these remaining leaves.

 3.3 The cover size:

 A cover can contain at most 2r-1 subsets for any set of r revocations.
 Every iteration increases the number of subsets by at most two
 (in step (2)) and reduces the number of the Steiner

 leaves by one (in Step (3)), except the last iteration
 that may not reduce the number of leaves but adds only one subset.
 Starting with r leaves, the process generates the total of 2r-1
 subsets. Moreover, every non-revoked u is in exactly one
 subset, the one defined by the first chain of nodes of outdegree
 1 in ST(R) that is encountered while moving from u towards
 the root. This encounter must hit a non-empty chain, since the
 path from u to the root cannot join ST(R) in an outdegree 2
 node, since this implies that u is in R.

 The above analysis is a worst-case analysis and
 there are instances which actually require 2r-1 sets. However,
 if the set of revoked leaves is random, then both analytical
 analysis and experimental results show tighter bounds. In fact,
 the average number of subsets in a cover is 1.25r.

 3.4 Key assignment to the subsets

 We now define what information each receiver must store. If
 each receiver needs to store explicitly the keys of
 all the subsets it belongs to, the storage requirements would
 expand tremendously: consider a receiver u; for each complete
 subtree T_k it belongs to, u must store a number of keys
 proportional to the number of nodes in the subtree T_k that are
 not on the path from the root of T_k to u. There are
 log N such trees, one for each height 1<=k<=log N,
 yielding the total of O(N) keys.

 We therefore devise a key assignment method that requires a
 receiver to store only O(log N) keys per subtree, for the total
 of O(log^2 N) keys.

 While the total number of subsets to which a user u belongs is
 O(N), these can be grouped into logN clusters defined by the
 first subset i (from which another subsets is subtracted). The
 way we proceed with the keys assignment is to choose for each
 1<=i<=N-1 corresponding to an internal node in the full
 binary tree a random and independent value LABEL_i. This
 value should *induce* the keys for all legitimate subsets of
 the form S_{i,j} using pseudo-random functions.

 Let G be a (cryptographic) pseudo-random sequence generator
 that *triples* the input, i.e. whose output length is three times
 the length of the input; let G_L(S) denote the left third of the
 output of G on seed S, G_R(S) the right third and G_M(S)
 the middle third.

 Consider now the subtree T_i (rooted at v_i). We will use the
 following top-down labeling process: the root is assigned a label
 LABEL_i. Given that a parent was labeled S, its two
 children are labeled G_L(S) and G_R(S) respectively. Let

 LABEL_{i,j} be the label of node v_j derived in the subtree
 T_i from LABEL_i. Following such a labeling, the key
 L_{i,j} assigned to set S_{i,j} is G_M of LABEL_{i,j}.
 Note that each label induces three parts:
 G_L - the label for the left child,
 G_R - the label for the right child, and
 G_M - the key at the node.
 The process of generating labels and keys for a particular subtree
 is depicted in Figure 2. For such a labeling process, given
 the label of a node it is possible to compute the labels (and
 keys) of all its descendants. On the other hand, without receiving
 the label of an ancestor of a node, its label is pseudo-random and
 for a node j, given the labels of all its descendants (but not
 including itself) the key L_{i,j} is pseudo-random (LABEL_{i,j},
 the label of v_j, is not pseudo-random given this
 information simply because one can check for consistency of the
 labels). It is important to note that given LABEL_i,
 computing L_{i,j} requires at most log N invocations of G.

 Figure 2 - Key Assignment to the Subsets.

 O
 /
 Vi S=LABEL_i
 / \
 G_L(S) O O G_R(S)
 / \
 G_L(G_L(s)) O O
 / \ \
 O Vj O Label at Vj is
 / \ /\ / \ G_R(G_L(G_L(s)))
 O O O O O O

 O.....O xxxx O.......O leaves

 |_____| |_______|
 |__________|

 LABEL_{i,j} = G_R(G_L(G_L(s)))
 L_{i,j} = G_M(LABEL_{i,j})

 Figure 2 - Generation of LABEL_{i,j} and the key L_{i,j}.

 We now describe the information I_u that each receiver u gets
 in order to derive the key assignment described above. For each
 subtree T_i such that u is a leaf of T_i the receiver u
 should be able to compute L_{i,j} iff j is not an
 ancestor of u. Consider the path from v_i to u and let
 v_i1,v_i2,...,v_ik be the nodes just ``hanging

 off" the path, i.e. they are adjacent to the path but not
 ancestors of u (see Figure 3). Each j in T_i that
 is not an ancestor of u is a descendant of one of these nodes.
 Therefore if u receives the labels of v_i1,v_i2,...,v_ik
 as part of I_u, then invoking G at most log N
 times suffices to compute L_{i,j} for any j that is not an
 ancestor of u.

 Figure 3 - Key Assignment to Receivers

 O
 /
 LABEL_i O Vi
 / \
 O @ v_{i_1}
 / \
 v_{i_2} @ O
 / \
 O @ v_{i_3}
 / \
 @ O
 / \
 u O @ v_{i_k}

 Figure 3 - Leaf u receives the labels of v_{i_1},...,v_{i_k}
 (marked with @) that are induced by the label LABEL_i of
v_i.

 As for the total number of keys (in fact, labels) stored by
 receiver u, each tree T_i of depth k that contains u
 contributes k-1 keys (plus one key for the case where there are
 no revocations), so the total is 0.5log^2 N +0.5log N + 1.

 3.5 Decryption Step:

 At decryption time, a receiver u first finds the subset
 S_{i,j} such that u is in S_{i,j}, and computes the key
 corresponding to L_{i,j}. The evaluation of the
 subset key takes now at most log N applications of a
 pseudo-random generator. After that, a single decryption is
 needed.

 3.5 Hierarchical Revocation

 Suppose that the receivers are grouped in a hierarchical manner,
 and that it is desirable to revoke a group that consists of the
 subordinates of some entity, without paying a price proportional
 to the group size (for instance all the players of a certain
 manufacturer). The subset-difference algorithm lends

 itself to hierarchical revocation naturally, given the tree
 structure. If the hierarchy corresponds to the tree employed by
 the methods, then to revoke the receivers below a certain node
 counts as just a single user revocation.

 It can be shown that we can remove any collection of m subsets and
 cover the rest with 3m-1 subsets. Hence, the hierarchical
 revocation can be performed by first constructing m sets that
 cover all revoked devices, and then covering all the rest with
 3m-1, yielding the total of 4m sets.

 3.5 Storage at the Key Server

 In the proposed algorithm a unique label is associated with each node in
 the tree. Storing these labels explicitly at the Center can become
 a serious constraint. However, these labels can be generated at the center
by
 applying a secret pseudo-random function on the name of the node without
 affecting the security of the scheme. This reduces the storage
 required by at the Key Server to the single key of the
 pseudo-random function.

 Furthermore, it may be desirable to distribute the center between
 several servers with the objective of avoiding a single or few points of
 attack. In such a case the distributed pseudo-random functions of
 [NPR] may be used to define the labels.

 4. Applications to Multicast

 4.1. Stateless receivers in Multicast

 In Secure multicast, the Center corresponds to the Group
 Controller/Key Server. Typically, in such applications it is
 assumed that receivers may update their keys [WGL][RFPC2527]. This
 update is referred to as a re-keying event and it requires all
 users to be connected during this event and change their internal
 state (keys) accordingly. However, even in the multicast scenario
 it is not reasonable to assume that all the users receive all the
 messages and perform the required update. Therefore some mechanism
 that allows individual update must be in place. Taking the
 stateless approach eliminates the need for such a mechanism, as
 discussed below. In case the number of revocations is not too
 large this may yield a more manageable solution. This is
 especially relevant when there is a single source for the
 sending messages or when public-keys are used.

 4.2. Backward secrecy

 Revocation in itself lacks backward secrecy in the following
 sense: a constantly listening user that has been revoked from the
 system records all future transmission (which it can't decrypt

 anymore) and keeps all ciphertexts. At a later point it gains a
 valid new key (by re-registering) which allows decryption of all
 past communication. Hence, a newly acquired user-key can be used
 to decrypt all past session keys and ciphertexts. The way that LKH
 multicast key assignment protocols propose to achieve backward
 secrecy is to perform re-keying when new users are added to the
 group (such a re-keying may be reduced to only one way chaining,
 known as {LKH+}), thus making such operations non-trivial. We
 point out that in the subset-difference algorithm it may be
 easier: At any given point of the system include in the set of
 revoked receivers all identities that have not been assigned yet.
 As a result, a newly assigned user-key cannot help in decrypting
 an earlier ciphertext. Note that this is feasible since we assume
 that new users are assigned keys in a consecutive order of the
 leaves in the tree, so unassigned keys are consecutive leaves in
 the complete tree and can be covered by at most log N sets. Hence,
 the unassigned leaves can be treated with the hierarchical
 revocation technique, resulting in adding at most log N
 revocations to the message.

 We note that, unlike the methods of [WGL][RFPC2527], the keys
 associated with a revoked leaf can not be re-assigned to a new
 user at a later point. This requires the initial design to have
 some assumption the maximum number of anticipated users throughout
 the lifetime of the system. A tree height of 32 provides an ample
 number of users (about 4 billion of them) that is appropriate for
 most systems.

 4.3. Using the Subset-Difference Revocation for Group Communication

 There are a number of modes in which the Subset-Difference
 algorithm can be applied.

 4.3.1. The Centralized Group-Key Update Mode

 In the most natural mode, we assume the existence of a
 Group Controller/Key Server which issues a new "Group Key"
 when necessary. The receivers communicate among each other
 using the current "Group Key". A new Group key is issued to
 all by multicasting a new Header (recall that a Header is essentially
 a new session key, encrypted with all subsets in the
 cover). The header is generated by the Group Controller/Key
 Server, while revoking all receivers that are currently *not* members
 of the group, including the 'unassigned' ones (leaves that have
 not been assigned yet to actual receivers; recall that this
 can be done 'cheaply' with our method).

 A group-key update requires bandwidth of at most 2r keys (or
 1.25r keys on the average). This operation should be done
 every time an existing member is revoked, or terminated, or
 when a new member joins the group.

 Every member who has been disconnected for some time and
 missed (possible a few) group updates can simply request the
 current Header from the Group Controller/Key Server. Note that
 this Header can be sent in the clear, without any
 point-to-point encryption, provided that the server is
 authenticated, as only currently authorized receivers can decrypt the
 Header.

 The later is the main advantage of the proposed scheme over
 the traditional LKH approach, which requires to transmit to
 a disconnected member *all the history* of re-keying events
 since the receiver has last been connected (logN keys per
 re-keying event). However, a group-key update now requires
 bandwidth of 2r keys, instead of 2logN keys.

 4.3.2 The 'Floating Header' Mode

 Again, we assume the existence of a current "Group Key", and
 its corresponding Header, at any given time. However, in this
 mode the Header is attached to *every* message in the
 system (not only those involving the Key Server) by the party
 sending the message.

 With this approach, Group Key updates take place naturally;
 whenever needed, the Group Controller issues a new Header by
 multicasting to all and connected receivers update their
 current Header. It does not require a disconnected server
 wishing to listen to incoming message to update
 its Header upon reconnecting - it can simply wait for the next
 message to arrive. The only exception occurs when such
 receiver needs to send a message before it gets a new one;
 this involves a request for a Header from any connected member
 of the group, including but not necessarily, the Key
 Server itself. Note
 that a message authentication is in place, as the Header which
 is part of the message needs to be authenticated.

 The disadvantage of this mode is the additive increase in
 bandwidth - now every message requires 2r extra keys,
 in addition to the message body itself.

 4.3.3 The Hybrid Mode

 The hybrid mode does not attach the Header with every message;
 it assumes that all authorized parties have an access to the
 current, most updated, group-key. It therefore calls for a
 mechanism for an individual to obtain the most current group
 key.

 A possible solution is for the Key Server to have a certain

 authenticated location (e.g. a url) that 'posts' the current
 Header. In the straightforward implementation, a sender is then
required
 to fetch the Header from this location before sending
 the message and encrypt the message with the session key
 provided by the Header; analogously, the receiver fetches the
 recent Header and decrypts the message.

 This approach avoids the need for a synchronized re-keying
 event; it puts the burden on the senders/receivers to obtain the
 most current group key for every encryption and decryption,
 including a receiver that has been disconnected for some time.
 The disadvantage is the fact that the 'Header-posting'
 location has now become a bottleneck.

 Few optimization attempts are in place here. The most
 important one is to reduce the load on the posting location
 via mirroring or other techniques. Alternatively, one may try
 to minimize the accesses to the location by putting a
 mechanism allowing a receiver to quickly determine whether the
 posted Header had changed since its last lookup, or whether
 its most updated session key decrypts the message.

 5. REFERENCES

 [CGIMNP] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor
 and B. Pinkas, Multicast Security: A Taxonomy and Some Efficient
 Constructions. Proc. of INFOCOM '99, Vol. 2, pp. 708--716, New
 York, NY, March 1999.

 [CMN] R. Canetti, T. Malkin, K. Nissim, Efficient
 Communication-Storage Tradeoffs for Multicast Encryption.
 EUROCRYPT 1999: pp.\ 459--474.

 [FN] A. Fiat and M. Naor, Broadcast Encryption. In "Advances in
 Cryptology" - CRYPTO '93, Lecture Notes in Computer Science 773,
 Springer, 1994, pp.\ 480---491.

 [MS] D. McGrew, A.T. Sherman, "Key Establishment in Large Dynamic
 Groups Using One-Way Function Trees", submitted to IEEE
 Transactions on Software Engineering (May 20, 1998).

 [NNL] D. Naor, M. Naor and J. Lotspiech,
 Revocation and Tracing Schemes for Stateless Receivers,
 to appear in Crypto 2001. A full version of paper appears in

http://www.wisdom.weizmann.ac.il/~naor/

 [NPR] M. Naor, B. Pinkas and O. Reingold, Distributed
 Pseudo-random Functions and KDCs, Advances in Cryptology
 - EUROCRYPT 1999, Lecture Notes in Computer Science, vol.\ 1592
 Springer, 1999, pp.\ 327--346.

http://www.wisdom.weizmann.ac.il/~naor/

 [RFC2627] D. M. Wallner, E. Harder, R. C. Agee, Key Management for
 Multicast: Issues and Architectures, September 1998.

 [WGL] C. K. Wong, M. Gouda and S. Lam, Secure Group Communications
 Using Key Graphs, SIGCOMM 1998.

Author Address:

Jeff Lotspiech
650 Harry Rd., San Jose, CA 95120
lotspiech@almaden.ibm.com
office: 408-927-1851
fax: 408-927-3497

Moni Naor
Weitzman Institute

Dalit Naor
IBM Corporation

