
RTCWeb M. Isomaki
Internet-Draft Nokia
Intended status: Standards Track July 9, 2012
Expires: January 10, 2013

RTCweb Considerations for Mobile Devices
draft-isomaki-rtcweb-mobile-00

Abstract

 Web Real-time Communications (WebRTC) aims to provide web-based
 applications real-time and peer-to-peer communication capabilities.
 In many cases those applications are run in mobile devices connected
 to different types of mobile networks. This document gives an
 overview of the issues and challenges in implementing and deploying
 WebRTC in mobile environments. It also gives guidance on how to
 overcome those challenges.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 10, 2013.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Isomaki Expires January 10, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft RTCWeb for Mobile July 2012

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Common mobile networks and their properties 3
3. Specific issues and how to deal with them 5
3.1. Persistent connectivity to the Calling Site 5
3.2. Media and Data channels 6
3.3. Recovery from interface switching 7
3.4. Congestion avoidance 9

4. Security Considerations 9
5. Acknowledgements . 9
6. References . 10

 Author's Address . 10

Isomaki Expires January 10, 2013 [Page 2]

Internet-Draft RTCWeb for Mobile July 2012

1. Introduction

 Web Real-time Communications (WebRTC) provides web-based applications
 real-time and peer-to-peer communication capabilities. The
 applications can setup communication sessions that can carry audio,
 video, or any application specific data. To be reachable for
 incoming sessions setups or other messages, the applications must
 keep persistent connectivity with their "calling site".

 In the last few years, mobile devices, such as smartphones or
 tablets, have become relatively powerful in terms of processing and
 memory. Their browsers are becoming close to their desktop
 counterparts. So, from that perspective, it is feasible to run
 WebRTC applications in them. However, power consumption and highly
 diverse nature of the connectivity still remain as specific
 challenges. A lot of work is done to address these challenges in
 e.g. radio technologies and hardware components, but still by far the
 most important factor is how the applications and protocols and
 application programming interfaces are designed.

Section 2 of this document gives an overview of the characteristics
 of different mobile networks as background for further discussion.

Section 3 introduces the specific issues that WebRTC protocols and
 applications should take into consideration to be mobile-friendly.

 The current version of the document misses all references and lot of
 details. It may have some errors. Its purpose is to get attention
 to the topics it raises and start discussion about them.

2. Common mobile networks and their properties

 The most relevant mobile networks for WebRTC at the moment are Wi-Fi
 and the different variants of cellular technologies.

 Many characteristics of the cellular networks are covered in Section
3 in the context of the particular issue under discussion. The

 following is a very brief description of the power consumption
 related properties of WCDMA/HSPA networks. The details vary, but
 similar principles apply to other cellular networks, at least GPRS/
 EDGE and LTE.

 In simplified terms, the WCDMA/HSPA radio can be in three different
 types of states: The power-save state (IDLE, Cell_PCH, URA_PCH), a
 shared channel state (Cell_FACH) or a dedicated channel state
 (Cell_DCH). The power-save states consumes about two decades less
 power than the dedicated channel state, while the shared-channel
 state is somewhere in the middle. The state machine works so that if

Isomaki Expires January 10, 2013 [Page 3]

Internet-Draft RTCWeb for Mobile July 2012

 a device has only small packets (upto ~200-500 bytes) to send or
 receive, it will allocate a shared channel, that operates on low data
 rate. If there is more traffic (even a single full size IP packet),
 a dedicated channel is allocated. Starting from the power-save
 state, the channel allocation typically takes somewhere between 0.5
 and 2 seconds, depending on the network and the exact power-save
 state. Only after that, the first packet is really sent. If two
 cellular devices were to exchange packets with each other starting
 from the power-save state, the initial IP-level RTT could be easily
 3-4 seconds.

 The channel is kept for some time after the last packet has been sent
 or received. The dedicated channel drops to power-save via the
 shared channel. The timers from dedicated to shared and shared to
 power-save are network dependent, but typically somewhere between 5
 and 30 seconds. So, in some networks sending a single ping every 30
 secods is enough to keep the power consumption constantly at the
 maximum level, while in others the power-save state is entered much
 faster. The total radio power consumption does not actually depend
 so much on overall volume of traffic, but on how long a dedicated or
 shared channel is active. So, for instance a 1 kB keep-alive sent
 every 30 seconds for an hour (total ~100 kB of traffic) consumes much
 more (even an order or magnitude more!) than a single 10 MB download,
 assuming that will finish in a minute or two.

 The applications have no control over the radio states, but the
 Operating System and the Radio Modem software can do something about
 them. In the newer specifications (and devices and networks) it is
 possible for the device to explicily ask the radio channel to be
 abandoned even immediately after the last packet. For instance, if
 the device were somehow to know that no new packets are to be sent
 for some time, it could do such signaling and save power.

 The bottom line is that applications and protocols should keep as
 long intervals between traffic as possible, giving the radio as much
 low-power time as possible. The intervals that are more than a few
 seconds may help, but at least intervals that are longer than 30
 seconds will definitely help. On the other hand, the initial RTT
 after an interval will be long. This issue is covered in Sections
 3.1 and 3.2.

 The other key characteristic of cellular networks is that they have
 long buffers and run link-layer in "acknowledged" mode, meaning all
 lost packets are retransmitted. This means TCP will easily create
 long delays and ruins real-time traffic. This is covered in Section

3.4.

 The third characteristic is that mobile devices often change networks

Isomaki Expires January 10, 2013 [Page 4]

Internet-Draft RTCWeb for Mobile July 2012

 on the fly, typically between cellular and Wi-Fi. Most devices only
 run a single interface at a time. From networking perspective this
 means that the device's IP address changes, and e.g. all its TCP
 connections are lost. This is covered in Section 3.3.

3. Specific issues and how to deal with them

3.1. Persistent connectivity to the Calling Site

 Many WebRTC apps want to be reachable for incoming sessions (JSEP
 Offers) or other types of asynchronous messages. For this purpose
 they need some kind of a persistent communication channel with their
 "Calling Site". Two standard approaches for this are WebSockets and
 HTTP long-polling. In both of these cases a TCP connection is used
 as the underlying transport.

 Most cellular networks have a firewall preventing incoming TCP
 connections, even when they allocate public IPv4 or IPv6 addresses.
 Also NATs are becoming more popular with the exhaustion of IPv4
 address space. The firewall and NAT timers for TCP can range between
 1 and 60 minutes, depending on the network. To keep the TCP
 connection alive, the application needs to send some kind of a keep-
 alive packets with high enough frequency to avoid the timeout.

 If the WebRTC app intends to run for a long periods of time (even
 when the user is not actively interacting with it), it is of utmost
 importance to keep this keep-alive traffic as infrequent as possible.
 Every wake-up of the radio consumes a significant amount of power,
 even if it is needed just for sending and receiving a couple of IP
 packets. It makes a huge difference, if there are for instance 6 vs.
 60 of these wake-ups every hour. A naiive application may want to
 make it sure it sends frequently enough for all possible networks.
 That leads to unacceptable power consumption. A smarter application
 will try to figure out a suitable timeout for a given network it is
 using, and can save a lot of power in networks with longer timers.

 There are further strategies to manage the keep-alives so that they
 consume least amount of power. It is best to send as small keep-
 alive messages as possible. HSPA/WCDMA networks have a special
 shared radio channel (FACH) that can carry small amounts of traffic.
 Its power consumption is typically less than half of the dedicated
 channel. Depending on the network, a packet of a couple of hundred
 bytes will usually only require FACH, while a thousand byte packet
 will require the dedicated channel to be activated. So, a WebSocket
 PING-PONG is better than an HTTP POST or GET with all the Cookies and
 other headers attached. If there are multiple applications or
 connections to be kept alive, the Browser or the underlying platform

Isomaki Expires January 10, 2013 [Page 5]

Internet-Draft RTCWeb for Mobile July 2012

 should offer some kind of a synchronization for them, so that the
 radio is woken only once per cycle.

 The most efficient approach would be to multiplex the initial
 incoming messages for all applications over the same TCP connection.
 This would require the use of some kind of a gateway service in the
 network. Such "notification" services are available on many
 platforms, but at the moment they are not typically available for
 browsers or web applications. It would be useful to standardize or
 develop Javascript APIs for this purpose. There is W3C work on
 Server-sent events. Also, the Open Mobile Alliance (OMA) has started
 work on standardized "notification" services. Be the services
 standards based or proprietary, the most relevant part to get done
 would be to give WebRTC and other Web applications access to them.
 Such services are always subject to privacy concerns, so at minimum
 the messages passed over them should be end-to-end encrypted.
 (Traffic analysis threats would still remain.)

3.2. Media and Data channels

 Real-time media (audio, video) is typically sent and/or received
 constantly, while the media channel is established. This means radio
 needs to be on constantly, and there is little for the application to
 do to preserve power. (Choosing a hardware accelerated video codec
 over a non-HW-supported one is one thing the application may be able
 to influence.) At least in LTE there are techniques called
 Discontinuous Transmission/Reception (DTX, DRX), that operate even in
 the timeframe of tens of milliseconds and can affect power
 consumption e.g. for VoIP. It is an open issue if WebRTC stacks can
 be somehow optimized for them.

 The Data Channel may however be often low-volume or even idle for
 long periods of time. For instance an IM connection may be idle for
 minutes or even hours. There can be many apps that want to keep such
 a connection available just in case there is some traffic to be sent
 or received infrequently. The WebRTC Data Channel is based on SCTP
 over DTLS over UDP. This means it needs keepalives in the order of
 30 seconds in cellular networks, meaning the radio will be active
 most of the time even if no user traffic is sent. It is not possible
 to keep such a channel on for a long time due to power consumption.

 Applications can choose different strategies to deal with this
 problem. One approach is to avoid Data Channels completely for low-
 volume or infrequent traffic and send it via the Web servers over
 HTTP or WebSockets. This is probably the best approach. The other
 approach is to tear down the Data Channel after some timeout and re-
 establish it only when new traffic needs to be sent. This may create
 some lag in sending the first message after the interval. The third

Isomaki Expires January 10, 2013 [Page 6]

Internet-Draft RTCWeb for Mobile July 2012

 option is to transport the Data Channel over TCP, e.g. using a yet
 undefined "HTTP tunneling fallback" mechanism. This would be almost
 identical to the first approach, except that logically the
 application would still be using a WebRTC Data Channel. It is not
 yet clear if this will be feasible due to ICE concent refreshes that
 may need to occur frequetly as well (every 30 seconds?). They are
 sent end-to-end so one side of the Data Channel can not by itself
 even affect their rate.

3.3. Recovery from interface switching

 Most mobile platforms only support Internet connectivity over only
 one interface at a time. In practice this is either a cellular or a
 Wi-Fi interface. From radio hardware perspective there would be no
 need for such a limitation, but it is driven by simplicity and power
 preservation. The devices typically have a hard-coded or
 configurable priority order for different networks. The most common
 policy is that any known Wi-Fi network is always preferred over any
 cellular network, but even more complex policies are possible.

 When the device detects a higher priority network than the one
 currently in use, it will by default attach to that network
 automatically. After a successful attachment to the new network, the
 device turns the old network (and interface) off. In most platforms
 applications have no control over this. In a typical situation the
 switch-over leads to a change of IP address, and for instance all TCP
 connections becoming disconnected, and any state tied to them needs
 to be recreated.

 It is important that WebRTC applications are made robust enough to
 survive this behavior. Many native applications deal with it by
 listening to "disconnect" and "reconnect" events through the APIs
 they are using. For WebRTC apps the first priority is to re-
 establish its "signaling" connectivity to the "Calling Site". If
 that connectivity is based on a WebSocket, the application needs to
 react to the "onerror" event through the WebSocket API and establish
 a new connection and setup all state related to it. (Say, if the
 application was using SIP over WebSockets, it might have to re-
 REGISTER on the SIP level.) If the disconnect was caused by
 interface switching and the switch-over succeeded cleanly, it would
 be possible to setup the new connection immediately. In some cases
 the disconnect could last longer, and the application would have to
 retry the connection until connectivity is regained.

 It would be advisable to make the reconnect step as lightweight as
 possible in terms of RTTs required. For the browser and the web
 application platform, it is important that the "disconnect" event
 gets propagated to the applications as fast as possible.

Isomaki Expires January 10, 2013 [Page 7]

Internet-Draft RTCWeb for Mobile July 2012

 For HTTP long-polling, it would similarly be important to notice that
 the underlying TCP connection has become stale, and a new poll needs
 to be sent as quickly as possible.

 The application may also attempt to update any peer-to-peer sessions
 it is having at the time of the switch-over. At this point of RTCWeb
 standardization it is not yet clear how much control over this the
 protocols and APIs will exhibit. There are many layers on which the
 recovery can be done. It is possible to try to deal with it using
 ICE. This would require knowing when the currently used ICE
 candidate becomes unusable, as it is bound to a removed interface.
 The failure of ICE connectivity checks provide that information, but
 possibly after some delay. (Frequent connectivity checks are not an
 issue as long as media is actively sent or received, but would be
 costly over an idle or low-volume media channel, such as a Data
 Channel. If media traffic is infrequent, the speed of detection may
 not be that critical for user experience anyway.) If an interface
 really became unusable, it would be better to have an explicit event
 to signal that all ICE candidates bound to it are likely unusable as
 well, so the application could act immediately. If a new interface
 became available, the application could restart ICE and start using
 the new candidates gathered.

 The PeerConnection API offers a few events for these purposes, at
 least "icechange" and "renegotiationneeded". With these the
 application can learn about problems with the currently used
 candidates. There is also a method "updateIce" by which the
 application can restart the ICE candidate gathering process. It is
 however not yet entirely clear how these event handlers and methods
 should be best used to deal with an interface change, and whether
 they even are a feasible tool for dealing with it. It is also
 important to note that no new offers or answers could be sent or
 received until the "signaling channel" (e.g. the Websocket
 connection) was first re-established.

 If the lower-level instruments fail, the application could create a
 new PeerConnection, and recreate the media channels. This would be a
 heavier operation, but in some cases it might still be better than
 leaving the recovery entirely to the user, i.e. explicitly making a
 new call from the UI.

 There are certain things that the underlyind platform (Operating
 System, Connection Manager etc.) can also implement to make interface
 switching smoother for the applications. One possibility would be to
 keep the old interface available for a short duration even after a
 new higher priority interface becomes available. This would allow
 applications to deal with the change in a more proactive fashion.
 There are also protocols such as Multipath TCP that could be used to

Isomaki Expires January 10, 2013 [Page 8]

Internet-Draft RTCWeb for Mobile July 2012

 switch e.g. WebSocket connections to a new interface without always
 resorting to the application support.

3.4. Congestion avoidance

 Cellular mobile networks have notoriously large buffers. Their link
 layers also typically operate in an "acknowledged" mode, meaning that
 the lost frames (or packets) are retransmitted. Retransmission
 creates head of line blocking on the queue. This means packets are
 seldom lost, but delays grow large. The individual users or
 endpoints are often isolated from each other so that the network
 capacity is divided among them more or less evenly. However, all
 traffic to and from the same endpoint ends up in the same queue. In
 WebRTC context this means that plain TCP traffic will easily ruin
 real-time traffic due to the buffering.

 WebRTC protocols should be desinged to avoid this. If Data Channels
 transfer a lot of data in parallel to the real-time streams, they
 should not use the loss-driven (TCP) congestion control algorithms
 but something that reacts to queue growth much faster. IETF LEDBAT
 WG may have something to offer for this case. If the browser wants
 to protect its real-time strams in general against all TCP (HTTP,
 WebSocket) traffic, it might be best for it to also restrict the
 number of simultanous TCP connections in use, for instace to retrive
 a website. The HTTP 2.0 work done in IETF HTTPBIS WG should prove
 helpful in this case.

 Cellular networks also do have their in-built Quality of Service
 mechanisms that can be used to differentiate service for different
 packet flows. These are not widely used in HSPA/WCDMA, but LTE may
 change the situation to some extent. The QoS policy is enforced by
 the network, and requires a contract with the operator. It is thus
 likely only available for services with some relation to the access
 operator. How the WebRTC application or the browser deal with that
 is TBD. Technically DiffServ marking is probably the only dynamic
 approach to indicate the priority of a particular flow.

4. Security Considerations

 Not explicitly covered in this version.

5. Acknowledgements

 Bernard Aboba and Goeran Eriksson provided useful comments to the
 document. Dan Druta has worked on Web notifications in the context
 of WebRTC.

Isomaki Expires January 10, 2013 [Page 9]

Internet-Draft RTCWeb for Mobile July 2012

6. References

Author's Address

 Markus Isomaki
 Nokia
 Keilalahdentie 2-4
 FI-02150 Espoo
 Finland

 Email: markus.isomaki@nokia.com

Isomaki Expires January 10, 2013 [Page 10]

