
Network Working Group J. Iyengar
Internet-Draft Franklin and Marshall College
Intended status: Standards Track S. Cheshire
Expires: January 01, 2014 J. Graessley
 Apple
 June 30, 2013

Minion - Service Model and Conceptual API
draft-iyengar-minion-concept-00

Abstract

 Minion uses TCP-format packets on-the-wire, to provide full
 compatibility with existing NATs, Firewalls, and similar middleboxes,
 but provides a richer set of facilities to the application. Minion's
 richer facilities include a message-oriented API rather than TCP's
 unstructured byte-stream service model, multiplexing of multiple
 messages (or message streams) on a single connection, interleaving of
 multiplexed messages (to eliminate head-of-line blocking), message
 cancellation, request/reply support, ordered and unordered messages,
 chained messages, multiple priority levels with byte-granularity
 preemption, and DTLS Security.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 01, 2014.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents

Iyengar, et al. Expires January 01, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78

Internet-Draft Minion Conceptual API June 2013

 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

1. Conventions and Terminology Used in this Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 "Key words for use in RFCs to Indicate Requirement Levels" [RFC2119].

2. Introduction

 Back in 1983 application developers had the choice of UDP [RFC0768]
 or TCP [RFC0793]. UDP preserves message boundaries, but provides no
 reliability, ordering, flow control, or congestion control, and only
 supports small messages (typically UDP packets larger than 1468 bytes
 result in undesirable IP fragmentation). TCP provides these
 important facilities, and doesn't impose any message size limit --
 but only because it doesn't have any concept of messages, and doesn't
 claim to preserve message boundaries. Consequently, whichever base
 protocol the application developer chose, they were left building
 part of the transport-layer solution themselves.

 Thirty years later, in 2013, little has changed. Application
 developers on mainstream platforms like Android and iOS still have
 the same two choices -- UDP and TCP.

 Attempts to provide richer application facilities have failed to
 achieve widespread adoption. Protocols like SCTP are not supported
 by mainstream NAT gateways. Consequently, mainstream apps for
 platforms like Android and iOS don't use SCTP, because it would
 severely limit their real-world deployment. Consequently, operating
 systems like Android and iOS don't have in-kernel native
 implementations of SCTP, because there's little developer demand for
 a protocol they can't use. Consequently, there's little incentive
 for NAT gateway vendors to do the work to add support for a protocol
 that's neither supported in the popular operating systems nor used by
 mainstream applications.

http://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc0768
https://datatracker.ietf.org/doc/html/rfc0793

Iyengar, et al. Expires January 01, 2014 [Page 2]

Internet-Draft Minion Conceptual API June 2013

 Like SCTP, Minion goes beyond UDP and TCP by providing richer
 application facilities, making it possible to create applications
 that work better and more reliably (and can be brought to market
 quicker and easier) than is possible when each application has to re-
 create those facilities from scratch every time.

 However, unlike SCTP, Minion provides facilities that can be used by
 an application developer immediately, without having to wait for OS
 support or NAT gateway support. OS support and NAT gateway support
 can come later, and provide additional incremental improvements.
 This incremental deployment path -- which begins first with the
 application developer who can choose to use Minion and immediately
 reap the benefits of that decision -- is an important property of
 Minion, and removes one of the major obstacles that hindered SCTP
 adoption.

 When used without kernel support, Minion acts like a typical TCP-
 based application protocol, and as such, performs as well as any
 other TCP-based application protocol. However, unlike most
 application-specific protocols, Minion also offers the potential of
 kernel support giving better low-latency message performance and
 better prioritization. A general application protocol is unlikely to
 receive special-case kernel support tailored to support that one
 specific application, but as a general-purpose transport protocol
 built to support a wide range of applications, special kernel support
 for Minion is feasible.

 Minion preserves the important properties of TCP, like congestion
 control, while adding a range of richer application facilities:

 Message Oriented
 Rather than an unstructured byte stream, Minion supports messages.
 TCP provides an unstructured byte stream, but virtually every
 application needs to send and receive semantic messages, which
 means that virtually every application needs to build its own
 message framing mechanism on top of TCP. In contrast, Minion
 respects and preserves semantic boundaries. If an application
 writes a 27-byte message followed by a 53-byte message, then a
 27-byte message and a 53-byte message are delivered to the
 receiving client, not a single combined block of 80 bytes.

 Arbitrary Size Messages
 While most Minion messages are expected to be small, Minion itself
 imposes no upper limit on message size. For example, a 6 gigabyte
 movie download could be sent as a single Minion message. Messages
 do not have to fit in memory. A very large message can be
 generated incrementally by the sender, and will be delivered
 incrementally to the receiver.

Iyengar, et al. Expires January 01, 2014 [Page 3]

Internet-Draft Minion Conceptual API June 2013

 Multiplexing
 Multiple messages can be sent, in both directions, on a single
 Minion connection. Unlike protocols like HTTP/1.0 where each
 request used a separate connection, many Minion messages can share
 a connection.

 Interleaving
 When multiple (possibly large) messages are being sent
 concurrently on a single Minion connection, the connection
 bandwidth is shared round-robin between the messages. This avoids
 head-of-line blocking, where messages are blocked waiting for a
 large message to complete.

 Cancellation
 Messages do not have to be sent to completion. If either the
 sender or the receiver determines that a message is no longer
 needed, then that single message can be cancelled without having
 to tear down the entire Minion connection.

 Request/Reply Support
 Many application protocols are request/reply-oriented. Minion
 facilitates this by allowing an outgoing message to be explicitly
 identified as a reply to a previously-received message, which
 causes the reply message to be delivered automatically to the
 appropriate message handler at the receiving end.

 Replies do not have to be delivered in the same order that the
 requests were received. When multiple (possibly large) replies
 are in flight at the same time, the interleaving and bandwidth-
 sharing described above applies, as it does for all Minion
 messages.

 Replies can themselves generate further replies, resulting in an
 unbounded back-and-forth of ping-pong messages, each going to the
 appropriate reply handler on the receiving side.

 Unordered Messages
 One of the main arguments that is often presented to justify why a
 particular application protocol is built on UDP instead of TCP is
 that, "UDP is better for 'real time' applications." The
 supporting reasoning for this is often that, "TCP insists on
 continuing to retransmit data long after the client doesn't need
 any more." In truth the real problem is not retransmission; it is
 that the conventional TCP APIs don't allow received data to be
 delivered out of order. Suppose a TCP sender has 50 packets in
 flight at any given time (e.g. the bandwidth x delay product is 75
 kB) then the loss of a single packet causes all 49 following
 packets to stall at the receiver because the API doesn't allow for

Iyengar, et al. Expires January 01, 2014 [Page 4]

Internet-Draft Minion Conceptual API June 2013

 them to be delivered to the client until the missing packet has
 been received. A simple kernel extension (in the form of a new
 socket option) removes this limitation, and allows out-of-order
 data to be delivered to the client. This avoids the problem where
 a single lost TCP segment causes all the following TCP segments to
 be delayed.

 Note that this kernel extension is not *required* for a client to
 use Minion; it it an optional extension that provides better
 performance for real-time applications in situations where there
 is packet loss or reordering. For many applications it is an
 irrelevant benefit and they can operate perfectly well without it.
 For a few applications it is a significant benefit, and it allows
 Minion to provide the low-latency performance that often drives
 developers to use UDP.

 Receiver Ordering
 Although sometimes it can be desirable to receive messages out of
 order as they arrive, often it is not. In many cases the
 application cannot usefully use (certain) messages out of order,
 and delivering them potentially out of order would burden the
 application with the task of sorting the messages back into the
 correct order before processing them. In such cases, it is more
 convenient for the application to have Minion deliver messages to
 it in the right order. For this reason Minion supports ordered
 messages as well as unordered messages. Unordered messages and
 ordered messages are supported simultaneously on a single Minion
 connection.

 Other transport protocols support the notion of multiple message
 streams sharing a single connection. Minion takes this idea and
 generalizes it to the more expressive notion of Receiver Ordering
 Message Dependencies. Receiver Ordering Message Dependencies
 indicate that a dependent message must not be delivered before the
 message it depends upon.

 Traditional message streams can be created in Minion by using a
 sequence of Receiver Ordering Message Dependencies: If message B
 is specified to follow message A, and message C is specified to
 follow message B, and so on, then messages A,B,C... form an
 ordered "stream". Similarly, if at the same time message Q is
 specified to follow message P, and message R is specified to
 follow message Q, and so on, then messages P,Q,R... form another
 independent ordered "stream" of their own.

 In addition to such disjoint ordered streams (A,B,C... and
 P,Q,R...), Receiver Ordering Message Dependencies also allow
 richer relationships to be expressed. For example, in H.264

Iyengar, et al. Expires January 01, 2014 [Page 5]

Internet-Draft Minion Conceptual API June 2013

 video, P-frames reference I-frames, but P-frames do not reference
 other P-frames. If a single P-frame is lost or delayed, it is not
 necessary to delay all subsequent P-frames. Each P-frame has a
 time it is due to be displayed, and when that time arrives the
 frame should be displayed if possible, even if (or especially if)
 preceding P-frames did not arrive in time. However, there is no
 benefit in delivering a P-frame to the application before the
 I-frame it depends upon.

 To give another example, a web browser client may need to retrieve
 many resources to display a page, but it cannot display *any* of
 the page until it has received the style sheet. Consequently it
 would be beneficial if the web browser client could request all of
 the resources it needs, but for each one, indicate that it depends
 on the style sheet resource (or upon some other resource which
 depends by transitive closure on the sheet resource). This
 dependency information tells the sender that it should not devote
 any bytes of available bandwidth to delivering other resources
 until after it has completed sending the all-important style
 sheet.

 Sender Ordering
 Even in cases where the receiver does not have a strict ordering
 requirement, it may still be useful to cause data packets to be
 sent in a favourable order. For example, with a group of H.264
 video P-frames, the first frame of the group is likely to be
 needed for playback sooner than the last frame of the group.
 Therefore, delivering them all concurrently by sharing bandwidth
 between them may cause the first frame to be delivered too late to
 be played. In this case the sender uses Sender Ordering to
 indicate that a particular message should follow another message
 on the wire.

 Sender Ordering is more lightweight than Receiver Ordering; it is
 used solely to control the transmission order, and is not
 communicated to the receiver. If a message is lost or delayed in
 transit then following messages are still delivered to the
 application immediately, except when an explicit Receiver Ordering
 Message Dependency indicates that they should not be.

 Chained Messages
 Minion is intended to be used to deliver messages containing a
 single logical semantic unit. Although Minion can "stream" a
 message of unbounded size to the receiver, Minion is not generally
 intended to be used to batch multiple logical semantic units into
 single large message, which is then "streamed" to the receiver,
 which then parses the incoming "streamed" message as it arrives
 for the logical semantic units contained within it. Part of the

Iyengar, et al. Expires January 01, 2014 [Page 6]

Internet-Draft Minion Conceptual API June 2013

 purpose of Minion is to take the burden of message framing off the
 application writer; treating a single unbounded "streaming" Minion
 message like a TCP connection places the burden of parsing firmly
 back in the hands of the application developer.

 In the event that a logical message contains multiple related
 parts, like a header with an associated body, Minion can
 facilitate this structuring through the use of Chained Messages.

 Chained Messages are substantially similar to Receiver Ordering
 Message Dependencies, except that in addition to controlling the
 order of data transmission on the wire, and the order of message
 delivery to the client, the chained message relationship is also
 exposed to the client application at the receiving end. Instead
 of being delivered to the Minion connection's main message handler
 function, the way most messages are, Chained Messages are
 delivered instead to the Chained Message handler function of the
 previous message in the chain.

 The Chained Message mechanism allows an application to provide a
 main message handler function that receives and processes the
 "header" portion of each two-part message, and that main message
 handler function in turn provides a different message handler
 function that receives and processes the subsequent "body"
 portion.

 As with other messages, each component in a message chain can
 optionally generate an explicit reply, which is delivered to the
 reply handler for the originating message.

 If any message in a chain is cancelled by the sender or the
 receiver, then all subsequent messages in that chain are
 implicitly cancelled.

 The sender of a chain of messages may wait at each step for a
 reply confirming that the previous message was acceptable before
 sending the next message of the chain, or it may send the entire
 chain and let the receiver cancel the message chain if an error
 occurs.

 Priority Levels
 While Receiver Ordering, Sender Ordering, and Message Chaining
 allow relationships between messages to be adequately expressed
 where they are known in advance, sometimes there are urgent
 messages that need to be sent at short notice that are not known
 in advance. For example, consider a music application which is
 streaming out audio data with a generous playback buffer, and then
 the user performs a user-interface operation to change the volume

Iyengar, et al. Expires January 01, 2014 [Page 7]

Internet-Draft Minion Conceptual API June 2013

 level. We would like this volume change to be performed as
 promptly as possible, regardless of how much audio data is queued
 up in the transmit buffer. For this reason Minion supports four
 priority levels. A higher-priority message can preempt a lower-
 priority message at any arbitrary byte boundary in the lower-
 priority data stream. (This byte-granularity preemption is made
 possible by the Minion wire protocol [minprot]).

 Minion provides strict priorities, meaning that no lower-priority
 data at all is sent as long as there is higher-priority data
 waiting. This means that a sustained flow of higher-priority data
 can starve lower-priority data indefinitely. For this reason,
 Minion priorities are intended to support small amounts of high-
 priority data intermixed with larger amounts of lower-priority
 data. If the amount of high-priority data exceeds the current
 throughput of the Minion connection then all the available
 throughput will be consumed attempting to meet the high-priority
 data demand, and no lower-priority data will be sent. If this
 outcome is undesirable to the application, it should ensure that
 it does not generate sustained high-priority data at a rate
 exceeding the network throughput for a prolonged period of time.
 Minion does not attempt to provide proportional or weighted
 bandwidth allocation between different priority levels.

 The Minion model is that if message B has a Receiver Ordering or
 Sender Ordering dependency upon message A, then Minion should not
 expend any available throughput delivering any part of message B
 until after message A has been entirely sent. Similarly, if
 message C is higher priority than messages A and B, then Minion
 should not expend any available throughput delivering any part of
 messages A or B until after message C has been entirely sent.

 DTLS Security
 Minion includes security support. Because of the potential for
 out-of-order message reception, Minion uses DTLS (which includes
 an explicit record number) instead of TLS (which assumes strictly-
 ordered delivery over TCP).

3. Conceptual API

 While different implementations in different languages may provide
 APIs that differ in details and programming model, the common
 conceptual framework of Minion APIs is as follows:

 o Outbound Connections

 * Create new Minion Connection to remote peer, with handler
 function or object to receive incoming messages.

Iyengar, et al. Expires January 01, 2014 [Page 8]

Internet-Draft Minion Conceptual API June 2013

 * Close Minion Connection when it is no longer needed.

 o Inbound Connections

 * Listen on a port for incoming connections.

 * Upon receipt of incoming connection request, a new Minion
 Connection object (substantially similar to the Outbound Minion
 Connection object above) is generated, and delivered to the
 application.

 * Set handler function or object to handle incoming messages
 received on an inbound connection.

 * Stop listening for incoming connections.

 o Sending Messages

 * Create new Outbound Minion Message, associated with an existing
 connection (either outbound or inbound), specifying the
 priority level for the message.

 * Optionally, indicate Sender Ordering for this message by
 reference to some previously-created Minion message.

 * Optionally, indicate Receiver Ordering for this message, or
 Chaining for this message, or that this message is a reply to
 some previously received Minion message. Note that these three
 options are mutually exclusive. An outgoing message can be
 identified as a response to a received message, or a subsequent
 member of a multi-part message chain, or a message with a
 Receiver Ordering Message Dependency, but not more than one of
 these three things.

 * Optionally, provide a reply handler function or object to
 receive replies to this message.

 * Provide (possibly incomplete) data for the message.

 * Optionally, add further units of data to the message.

 * Indicate when message is complete. This tells the Minion
 implementation layer that it should now send the message.
 Alternatively, a message can also be cancelled if it is no
 longer needed.

 * Dispose of the message when it is no longer needed.

Iyengar, et al. Expires January 01, 2014 [Page 9]

Internet-Draft Minion Conceptual API June 2013

 o Receiving Messages

 * Upon receipt of a message, a handler function or object is
 handed a new inbound message:

 * If the message is a chained continuation message, and a
 specific handler exists for that chain, then that specific
 handler is invoked.

 * Else, if the message is a reply, and a specific handler exists
 for the originating message, then that specific handler is
 invoked.

 * Else, the Minion Connection's generic message handler is
 invoked.

 * Read data from the message. For large messages, this may not
 be the entire message. After one or more reads, a return code
 (or similar) indicates to the application when the message is
 complete (or alternatively, that is is incomplete, and will not
 be completed, because it has been cancelled by the sender).

 * The application may decide to reject a message before it has
 been entirely received, by canceling it.

 * The message handler may generate outbound messages in response
 to the received message, including outbound explicit reply
 messages, outbound chained messages, and simple outbound
 standalone messages.

 * Dispose of the received message when it is no longer needed.

4. Client Isolation

 Minion allows multiple messages to share the available throughput of
 a single connection. The sources of those multiple messages (if not
 the same application) are assumed to be mutually trusting. Minion
 does not attempt to prevent one message source on a connection from
 consuming an unfair share of the bandwidth, nor does Minion attempt
 to guard against a client that fails to read its messages, causing
 the receive window to close, thereby preventing any messages from
 being received.

 In the event that some proxy or similar technology allows multiple
 mutually untrusting clients to share a single Minion connection, that
 application-layer code that is allowing the single Minion connection
 to be shared is responsible for policing the traffic so that the
 single Minion connection is shared reasonably.

Iyengar, et al. Expires January 01, 2014 [Page 10]

Internet-Draft Minion Conceptual API June 2013

5. IANA Considerations

 No IANA actions are required by this document.

6. Security Considerations

 No new security risks occur as a result of using this protocol.

7. Acknowledgements

 Many thanks to Bryan Ford, Padma Bhooma and Anumita Biswas for their
 contributions to the development of the Minion API.

8. References

8.1. Normative References

 [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 August 1980.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7, RFC
793, September 1981.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

8.2. Informative References

 [minprot] Iyengar, J., "Minion - Wire Protocol", draft-iyengar-
minion-protocol-00 (work in progress), June 2013.

Authors' Addresses

 Janardhan Iyengar
 Franklin and Marshall College
 Mathematics and Computer Science
 PO Box 3003
 Lancaster, Pennsylvania 17604-3003
 USA

 Phone: +1 717 358 4774
 Email: janardhan.iyengar@fandm.edu

https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/draft-iyengar-minion-protocol-00
https://datatracker.ietf.org/doc/html/draft-iyengar-minion-protocol-00

Iyengar, et al. Expires January 01, 2014 [Page 11]

Internet-Draft Minion Conceptual API June 2013

 Stuart Cheshire
 Apple Inc.
 1 Infinite Loop
 Cupertino, California 95014
 USA

 Phone: +1 408 974 3207
 Email: cheshire@apple.com

 Josh Graessley
 Apple Inc.
 1 Infinite Loop
 Cupertino, California 95014
 USA

 Phone: +1 408 974 5710
 Email: jgraessley@apple.com

Iyengar, et al. Expires January 01, 2014 [Page 12]

