
Network Working Group J. Iyengar
Internet-Draft Franklin and Marshall College
Intended status: Standards Track S. Cheshire
Expires: April 24, 2014 J. Graessley
 Apple
 October 21, 2013

Minion - Wire Protocol
draft-iyengar-minion-protocol-02

Abstract

 Minion uses TCP-format packets on-the-wire, for compatibility with
 existing NATs, Firewalls, and similar middleboxes, but provides a
 richer set of facilities to the application, as described in the
 Minion Service Model document. This document specifies the details
 of the on-the-wire protocol used to provide those services.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 24, 2014.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Iyengar, et al. Expires April 24, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Minion Wire Protocol October 2013

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

1. Conventions and Terminology Used in this Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 "Key words for use in RFCs to Indicate Requirement Levels" [RFC2119].

 This document uses terminology like "kernel" and "user-level", as
 those terms pertain to many of today's Unix-like operating systems.
 Equivalent concepts apply to software that is built using a different
 architectural model than may not include such an obvious kernel/user
 split.

https://datatracker.ietf.org/doc/html/rfc2119

Iyengar, et al. Expires April 24, 2014 [Page 2]

Internet-Draft Minion Wire Protocol October 2013

2. Introduction

 Minion uses TCP-format packets on-the-wire, to provide full
 compatibility with existing NATs, Firewalls, and similar middleboxes,
 but provides a richer set of facilities to the application, described
 in the Minion Service Model and Conceptual API document [minserv].
 This document specifies the details of the on-the-wire protocol used
 to provide those services. Before reading this protocol
 specification document, familiarity with the Minion Service Model
 [minserv] is strongly recommended. That information is not repeated
 here.

 Minion runs over a standard TCP connection. Therefore, IP addresses
 and TCP ports are used just as they are with TCP [RFC0793].

 Minion is also designed to be able to use a modified TCP connection
 which supports out-of-order delivery, giving better low-latency
 performance on lossy networks, for use by the kinds of application
 that today would use UDP [RFC0768] to achieve low-latency delivery.
 The goal of providing low-latency delivery -- and consequently the
 need to be able to handle a data stream that may have gaps -- is
 reflected in various aspects of the Minion protocol design, such as
 the use of DTLS instead of TLS, and the use of Consistent Overhead
 Byte Stuffing [COBS] for reliably extracting messages from an
 incomplete data stream. Minion is able to take advantage of out-of-
 order delivery where the network stack offers that, but Minion does
 not require it. Minion still works correctly when the performance
 benefits of out-of-order delivery are not available.

 Minion supports messages of arbitrary size. Large messages are
 broken into chunks a little under 16 kilobytes each (the DTLS maximum
 record size, minus a few bytes for Minion header). At the receiving
 end the Minion chunks are reassembled into Minion messages and
 delivered to the client application. Small messages are sent in a
 single Minion chunk.

 Normally messages are sent by the client as a single atomic unit, and
 delivered to the receiving client as a single atomic unit. For
 messages too large to fit conveniently in memory, the message may be
 built incrementally by the sender, and delivered to the receiving
 client incrementally, a chunk at a time.

 When a Minion message is complete, or has at least one maximum Minion
 chunk size of data accumulated, then if it is eligible to be sent
 according to the message ordering facilities offered by the Minion
 Service Model [minserv] (Sender Ordering, Receiver Ordering, and
 Chaining) a Minion chunk is generated.

https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc0768

Iyengar, et al. Expires April 24, 2014 [Page 3]

Internet-Draft Minion Wire Protocol October 2013

 Each Minion chunk contains a Minion chunk header followed by the
 client's message data, as described in Section 3 "Minion Chunk
 Format".

 Each Minion chunk is encrypted using DTLS [RFC6347].

 Each encrypted DTLS payload is then framed using RECOBS, as described
 in Section 4 "Recursively Embeddable COBS", so that it begins with a
 00 byte and ends with an FF byte.

 The framed, encrypted chunk is then enqueued for transmission.

 If the kernel networking code supports multiple priorities, then the
 framed, encrypted chunk is placed in the transmission queue for the
 stated priority level. Any time the TCP congestion window and/or
 receive window rules allow more data to be sent, data is drawn from
 the highest-priority non-empty transmit buffer, assigned the next
 block of unused TCP sequence numbers, formed into a TCP segment, and
 transmitted on the wire. This just-in-time TCP sequencing mechanism
 has the effect of causing higher-priority data to be inserted right
 at the front of the conceptual combined transmit buffer, at the
 earliest possible byte boundary, unconstrained by message or chunk
 boundaries in the lower-priority messages. This is possible because
 the RECOBS framing is robust to pre-emption at any arbitrary byte
 boundary.

 Note that, when priorities are supported, chunks above the lowest
 priority MUST be delivered to the kernel in such a way that they are
 sent completely before the kernel resumes sending the lower-priority
 traffic. The RECOBS framing supports interrupting a lower priority
 stream with a higher-priority chunk, but not alternating back and
 forth between two priority levels. Once a higher-priority chunk
 interrupts lower-priority traffic, the higher-priority chunk must be
 completed before the lower-priority traffic resumes. Typically this
 is easily achieved by delivering the chunk to the kernel atomically
 in a single write call.

https://datatracker.ietf.org/doc/html/rfc6347

Iyengar, et al. Expires April 24, 2014 [Page 4]

Internet-Draft Minion Wire Protocol October 2013

2.1. Comparison of TCP and UDP NAT Traversal

 When connecting to a server with a globally routable address, TCP is
 generally preferable to UDP. TCP includes the SYN and FIN bits which
 tell a NAT gateway when a connection starts and ends. In particular,
 the FIN bit tells the NAT gateway when it can discard state related
 to that mapping. UDP has no defined connection start/end indicators,
 which means that unused UDP mappings are much more likely to
 accumulate, which means that NAT gateways tend to be more aggressive
 about timing out UDP mappings [Study], which means that clients using
 UDP need to be more aggressive about sending keepalive traffic, which
 is bad both for network efficiency and for battery life. Port
 Control Protocol (PCP) [RFC6887] offers some future hope of
 alleviating this problem by allowing clients to explicitly negotiate
 for longer mapping lifetimes, but PCP is not yet widely deployed. In
 the meantime, if use of UDP increases, NAT gateways are likely to be
 accumulating mappings even more rapidly, with no way to differentiate
 which are still required and which may be safely discarded, with the
 result that UDP mappings may have to be discarded even more
 aggressively. While a discarded UDP mapping can be recreated by
 another outgoing UDP packet, in the time between when the UDP mapping
 is discarded and then recreated, the client is cut off an unable to
 receive inbound communication from server or peer at the other end.
 Therefore, we believe that it is preferable to use TCP where
 possible.

 However, when connecting to a peer which is itself also behind a NAT
 gateway, in the absence of PCP support [RFC6887], techniques like
 Interactive Connectivity Establishment (ICE) [RFC5245] are used, and
 research has shown that there are cases where ICE works for UDP but
 not for TCP [RFC5128].

 To accomodate both usage scenarios, Minion is generally used with
 standard TCP format packets, but for peer-to-peer scenarios where TCP
 ICE is found not to work, Minion can be used encapsulated inside UDP
 [TCPoUDP] instead.

https://datatracker.ietf.org/doc/html/rfc6887
https://datatracker.ietf.org/doc/html/rfc6887
https://datatracker.ietf.org/doc/html/rfc5245
https://datatracker.ietf.org/doc/html/rfc5128

Iyengar, et al. Expires April 24, 2014 [Page 5]

Internet-Draft Minion Wire Protocol October 2013

3. Minion Chunk Format

 A Minion Chunk begins with an eight-byte header, followed by the
 client's message data:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |C| Code |Pri| This Minion Chunk ID |
 +-+
 | Reserved |RCP| Referenced Minion Chunk ID |
 +-+
 : :
 : Minion Chunk Data :
 : :
 +-+

 Figure 1: Minion Chunk Format

 If the Complete ('C') bit is zero, this message is incomplete; the
 receiver should expect to receive additional continuation chunks for
 this message. If the Complete bit is one, this message is complete;
 there will be no subsequent continuation chunks for this message.

 The seven-bit chunk code identifies what type of chunk this is, as
 described below.

 The two-bit priority field indicates the priority level for this
 message, with 0 being the highest priority and 3 being the default
 (lowest-level) priority.

 Every Minion chunk has a Chunk ID. This is a 22-bit value assigned
 from a monotonically increasing 22-bit cyclic counter. This means
 that Chunk IDs are reused every 2^22 chunks. At any given moment in
 time though, only a small portion of the 22-bit ID space is actively
 in use, so Chunk IDs are not ambiguous. Each of the four priority
 levels has its own 22-bit Chunk ID space, i.e., Priority 1 Chunk 7
 and Priority 2 Chunk 7 are different chunks. Also, the Chunk ID
 spaces in opposite directions on a connection are separate. Each
 sender is responsible for selecting the Chunk IDs for the chunks it
 sends.

 In some cases it is useful to refer to messages by ID, and the terms
 "Message ID" and "Chunk ID" are sometimes used interchangeably. For
 a message that is sent using a single chunk, the Message ID is the
 same as the Chunk ID. For a message that is sent using multiple
 chunks, the Message ID is the Chunk ID of the *final* chunk of the
 message. One implication of this is that a message's ID is undefined

Iyengar, et al. Expires April 24, 2014 [Page 6]

Internet-Draft Minion Wire Protocol October 2013

 until the message is complete.

 Because Chunk IDs are eventually reused, issues of ID lifetime must
 be carefully considered in the Minion protocol design. For example,
 since a remote peer could, in principle, wait an arbitrary long
 length of time before replying to a message, the Message ID of a
 request that is awaiting a response MUST NOT be reused until the
 response has been received, and the client has disposed of the
 request message. Otherwise, a reply could be ambiguous, if there
 were two outstanding request messages both using the same Message ID
 at the same time. Likewise, the last Chunk ID of an incomplete
 message MUST NOT be reused until some subsequent chunk has been added
 to that message, referencing the previous Chunk ID.

 The Reserved field MUST be set to zero on transmission, and MUST be
 ignored on reception.

 For chunk types that need to refer to some other chunk, the
 Referenced Minion Chunk Priority (RCP) and Referenced Minion Chunk ID
 fields identify the referenced chunk. Note that some chunk types
 refer to chunks going in the same direction (e.g., a continuation
 chunk) and some chunk types refer to chunks going in the reverse
 direction (e.g., a reply chunk). For chunk types that do not to
 refer to any other chunk, these two fields MUST be set to zero on
 transmission, and MUST be ignored on reception.

 The Minion Chunk payload data follows the Minion Chunk Header.

 There is no explicit length field in the Minion Chunk Header, because
 the chunk length is determined implicitly in the RECOBS decoding
 step.

Iyengar, et al. Expires April 24, 2014 [Page 7]

Internet-Draft Minion Wire Protocol October 2013

3.1. Minion Chunk Codes

 The seven-bit chunk code identifies what kind of chunk this is.
 There are 128 chunk codes available. The following eight chunk codes
 are currently defined:

 00 Continuation. This is a continuation of a previously incomplete
 message. The Referenced Minion Chunk ID identifies what
 previous chunk this is adding to. (If the Complete bit is one
 then this chunk is the final chunk and completes the message; no
 further chunks for this message will be arriving.)

 01 Cancellation. This is a cancellation of a previously incomplete
 message. The Referenced Minion Chunk ID identifies what
 previous chunk this is cancelling. In this case Complete bit is
 unused; the Complete bit MUST be set to zero on transmission,
 and MUST be ignored on reception.

 02 Unordered Message. This chunk begins a new unordered message.
 The Referenced Minion Chunk ID is unused, and MUST be set to
 zero on transmission, and MUST be ignored on reception.

 03 Sender Ordered Message. This chunk begins a new Sender Ordered
 message. If received out-of-order, it should nonetheless be
 delivered immediately to the receiving client. The Referenced
 Minion Chunk ID is used to deduce the Sender Ordering that
 should be applied if the receiving client generates a reply to
 this message. If the received message identifed by the
 Referenced Minion Chunk ID generated a reply A', then a reply to
 this message should have an automatic Sender Ordering dependency
 that it follow message A'.

 04 Receiver Ordered Message. This chunk begins a new Receiver
 Ordered message. This message is subject to Receiver Ordering;
 it MUST NOT be delivered to the receiving client until the
 message indicated by the Referenced Minion Chunk ID field has
 been delivered. If the receiving client generates a reply to
 this message, then the reply should have an automatic Receiver
 Ordering dependency that it follow the reply to the message
 indicated by the Referenced Minion Chunk ID field.

 05 Superseding Messages. This chunk begins a new message that
 supersedes a preceding message. The Referenced Minion Chunk ID
 identifies the preceding message. If the preceding message has
 not yet been received, then when it does arrive, it MUST be
 silently discarded.

Iyengar, et al. Expires April 24, 2014 [Page 8]

Internet-Draft Minion Wire Protocol October 2013

 06 Chained Message. This chunk begins a new message that chains on
 after a preceding message. The Referenced Minion Chunk ID
 identifies the preceding message. This message MUST NOT be
 delivered to the receiving client until the previous message of
 the chain as been delivered to the receiving client, and this
 message MUST be delivered to the receiving client in a manner
 that indicates to the client that it is related to the previous
 message.

 07 Reply/Acknowledge. This chunk begins a new message which is an
 explicit reply to a previously received message. The Referenced
 Minion Chunk ID identifies the received message to which this is
 a reply. A reply may be empty, in which case it serves as a
 simple acknowledgement that the request was received and
 accepted, or it may contain data. It is anticipated that future
 Minion protocol development will create additional Minion chunk
 codes to negotiate future protocol features. For these
 capability negotiation messages, an empty reply referencing the
 request serves as an acknowledgement that the requested protocol
 feature is supported.

 08 Reject. A Minion Reject code indicates that the referenced
 received message had an error or was not accepted for some other
 reason. A Reject Message may be empty, or may contain data
 giving information concerning the reason for the rejection. It
 is possible to reject an incomplete message that is still
 arriving, by sending a Reject referencing the most recent Chunk
 ID for that partial message. The sender will respond by sending
 a Cancellation for that message, confirming that no further
 chunks will be sent. When used for Minion protocol capability
 negotiation, a Reject message referencing the request indicates
 that the requested protocol feature is not supported.

 09 End Minion. It is anticipated that there will be existing
 application protocols that initially add Minion as an optional
 feature, which they use only when the remote peer indicates it
 also has Minion support, and otherwise they will communicate
 using the existing protocol without the Minion features. Such
 application protocols typically will first connect using their
 existing protocol, and then negotiate an "upgrade" to Minion
 framing. For symmetry, it would be good if such an "upgrade"
 were not an irreversible one-way path. We would like to offer
 the ability for applications to connect over raw TCP, switch to
 Minion for some message exchanges, and then drop back to raw TCP
 for some subsequent communication. This Minion chunk code
 exists to signal, "This is the final Minion-format message you
 will receive in this particular Minion session; after this
 you're on your own."

Iyengar, et al. Expires April 24, 2014 [Page 9]

Internet-Draft Minion Wire Protocol October 2013

4. Recursively Embeddable COBS

 Consistent Overhead Byte Stuffing [COBS] allows complete messages to
 be reliably located within an incomplete data stream that may contain
 gaps.

 COBS works by transforming the payload data to eliminate all
 occurrences of zero bytes. This is like PPP byte stuffing, but more
 efficient; COBS has a worst-case data size overhead below 0.5%.
 Having created a zero-free payload, the payloads can then be
 concatenated into a single byte stream, separated by single zero
 bytes, and the zero bytes unambiguously mark the boundaries between
 payloads, because we know the payloads themselves no longer contain
 any zero bytes. At the receiving end the transformation is reversed
 to recreate the original payload data.

 The transformation process [COBS] is, in effect, a simple run length
 encoding. An extremely simplified summary of the original 1997 COBS
 encoding is as follows:

 o If the payload begins with three nonzero bytes followed by a zero,
 then the output is the byte value 4 (the run length) followed by
 the three nonzero bytes, and the subsequent zero is skipped.

 o If that is followed by fifty nonzero bytes followed by a zero,
 then the output is the byte value 51 (the run length) followed by
 the fifty nonzero bytes, and the subsequent zero is skipped.

 o This process is repeated until the entire payload has been
 replaced by its zero-free equivalent.

 Recursively Embeddable COBS (RECOBS) is a derivative of the original
 1997 COBS encoding. RECOBS code bytes have the following meanings:

 00 New payload begins
 01 Represents a single zero byte
 02 Two bytes: a single nonzero byte, followed by a single zero byte
 03 Three bytes: two nonzero bytes, followed by a single zero byte
 n Represents n bytes: n-1 nonzero bytes, followed by a zero byte
 FD 253 bytes: 252 nonzero bytes, followed by a single zero byte
 FE 253 bytes: 253 nonzero bytes, with *no* following zero byte
 FF Payload ends

 This has the effect that, after encoding, every payload has
 unambiguous bookends; every payload begins with a single 00, and ends
 with a single FF. Using this encoding, recursive embedding becomes
 possible. At *any* point in the encoded byte stream it is now
 possible to interrupt the byte stream, insert a new RECOBS-encoded

Iyengar, et al. Expires April 24, 2014 [Page 10]

Internet-Draft Minion Wire Protocol October 2013

 payload, and then resume the previous byte stream.

 At the receiving end, the decoder is part-way through decoding a
 payload when the interruption occurs. The decoder sees a 00, which
 is not legal in RECOBS-encoded data, so the decoder knows a new
 payload is beginning. Because the decoder has not yet seen the FF
 end-marker for the previous payload, it knows that payload is
 incomplete, so it saves its decoding state for later resumption. The
 decoder then proceeds to decode the embedded payload. When the
 decoder sees the FF end-marker for the embedded payload, it delivers
 that fully decoded payload to the waiting client, and then resumes
 its decoding of the previously interrupted payload.

 In principle this recursive embedding could be nested arbitrarily
 deeply, limited only by the amount of storage the decoder has
 available for partially-received payloads and their associated
 decoding state.

 In practice, Minion limits RECOBS embedding to four levels (the base
 level plus three levels of nested interruption) to establish a
 defined upper bound on the amount of storage required by a decoder.

Iyengar, et al. Expires April 24, 2014 [Page 11]

Internet-Draft Minion Wire Protocol October 2013

5. Flow Control

 TCP [RFC0793] implements flow control in the form of the advertised
 receive window. This is to prevent a faster sender from overwhelming
 a slower receiver. Minion requires similar protection to prevent a
 slower receiver running out of memory trying to buffer messages
 arriving faster than it can handle them.

 For a pure user-level library implementation of Minion, this is
 achieved by having the library set an upper bound on the amount of
 memory it will use for storing received messages that have not yet
 been handled by the client. Once this limit is met, the library
 ceases reading TCP data from the kernel, which causes the TCP receive
 window to fill up, which causes the sender to stop sending. Once the
 client consumes some messages, the library then reads more data from
 the kernel, the TCP receive window opens up, and the sender is
 permitted to send more data.

 However, this means that there is some duplication of buffering --
 the TCP receive window in the kernel and additional buffering in the
 user-level library. For this reason a kernel extension is proposed
 where a client (the Minion library in this case) can read data from
 the connection *without* raising the TCP receive window. In a sense
 it is reading the data "secretly", without admitting to the sender at
 the other end that it has been read. Those bytes, even though read
 into user space, are still counted against the TCP receive window.
 Later, after the client application has actually consumed the
 message, another kernel call is made to acknowledge consumption of
 those bytes, and the TCP receive window is raised.

 This mechanism integrates message-level flow control with TCP's byte-
 level flow control, rather than having two independent flow control
 mechanisms happening concurrently at different levels, in ways that
 might interact badly with each other.

 Note that the Minion protocol design will have to consider possible
 deadlock situations. For example, suppose one Minion host is
 refusing to consume any more Minion Chunks because it wishes to send
 a Reject message for them, but it cannot, because the peer's receive
 window is closed. Suppose also that the reason the peer's receive
 window is closed is because the peer also is sitting on a pile of
 unwanted Minion Chunks that it refuses to consume until it can send a
 Reject message for them. Possible deadlocks such as these need to be
 considered, and mechanisms to avoid them created.

https://datatracker.ietf.org/doc/html/rfc0793

Iyengar, et al. Expires April 24, 2014 [Page 12]

Internet-Draft Minion Wire Protocol October 2013

6. Retransmission Policy

 One of the main arguments that is often presented to justify why a
 particular application protocol is built on UDP instead of TCP is
 that, "UDP is better for 'real time' applications." The supporting
 reasoning for this is often that, "TCP insists on continuing to
 retransmit data long after the client doesn't need any more." In
 truth the real problem is not retransmission; it is that the
 conventional TCP APIs don't allow received data to be delivered out
 of order. Suppose a TCP sender has 50 packets in flight at any given
 time (e.g., the bandwidth x delay product is 75 kB) then the loss of
 a single packet causes all 49 following packets to stall at the
 receiver because the API doesn't allow for them to be delivered to
 the client until the missing packet has been received.

 Minion solves this problem by allowing data to be delivered as it
 arrives, even if there are gaps. But the argument still remains that
 even after removing the ordering requirement at the receiver, it may
 still be a waste of bandwidth to retransmit data that will arrive too
 late to be useful. And indeed, it is possible with TCP to
 fraudulently acknowledge segments that were in fact not received, and
 this will cause the sender to not retransmit those segments.

 However, we chose not to use fraudulent acknowledgements to suppress
 retransmissions, because certain NATs, Firewalls and other
 middleboxes may block traffic if they observe implausible protocol
 actions which they find suspicious. One of the important goals of
 Minion is 100% compatibility with today's existing Internet devices,
 not 99% compatibility.

 We expect packet loss to be about 1% (at most a few percent) in a
 functioning network, and the cost of retransmitting those lost
 packets, even in the extreme case where *all* the retransmissions
 turn out to be unnecessary, is an overhead of about 1%. We argue
 that an overhead of about 1% is an acceptable price to pay in
 exchange for 100% compatibility with existing NATs, Firewalls and
 other middleboxes.

Iyengar, et al. Expires April 24, 2014 [Page 13]

Internet-Draft Minion Wire Protocol October 2013

7. Optional Kernel Extensions

 While Minion can be implemented entirely as a user-level library
 built on top of existing standard networking APIs like BSD sockets,
 it can also benefit from some optional kernel extensions:

 Send Priorities
 Normal TCP APIs transmit data strictly in the order is is given to
 the kernel. The addition of priority support allows a sendmsg()
 call to be used in conjunction with cmsg ancillary data to
 indicate the priority level of the data. For normal applications
 this capability would be of little use because it would most
 likely result in corruption of the data stream, but it is useful
 with Minion because the RECOBS encoding is robust against message
 insertion at arbitrary byte boundaries. An alternative way to
 achieve a similar effect is, instead of buffering data in the
 kernel, to keep the data in the user-space library for as long as
 possible. When the TCP congestion window and/or receive window
 rules allow more data to be sent, the kernel generates some kind
 of upcall (e.g., a kevent notification) to the user-space library
 informing it of the ability to transmit, and the user-space
 library responds by selecting which particular block of data to
 hand to the kernel next.

 Just-In-Time Data Generation
 Through operational experience, we have learned (not that this was
 any great surprise) that excessive buffering in the kernel leads
 to poor behaviors. For example, two messages at the same priority
 level are not interleaved effectively if the first message is
 swallowed whole by the kernel, and held in kernel buffers, before
 the second message is even created. When that happens, the result
 is that the first message is sent in its entirety, followed by the
 second message in its entirety, with no interleaving.

 To prevent this unintended serialization, we need to avoid
 irrevocably handing off data to the kernel prematurely. We want
 to give the kernel enough data to keep the pipeline full (an
 amount equal to the connection's Bandwidth Delay Product) but no
 more.

 To this end, rather than having the kernel indicate that a socket
 is writable any time the kernel has space available to buffer more
 data, we'd like the kernel to indicate that a socket is writable
 only when TCP (according its protocol rules, such as receive
 window, congestion window, and Nagle's Algorithm) would be willing
 to send data, but has no data available to send. When this
 situation occurs, the socket becomes writable, and the client (the
 user-level Minion library) is able to perform a just-in-time

Iyengar, et al. Expires April 24, 2014 [Page 14]

Internet-Draft Minion Wire Protocol October 2013

 determination of what data ought to be sent next.

 This just-in-time data generation could be achieved in the BSD
 sockets API by adding a new socket option. When using this new
 socket option, a socket will only be writable when TCP is actively
 waiting for new data. If the context-switching latency or
 software overhead is such that it takes the user-level code a
 little too long to generate data strictly on demand, then a middle
 ground can be achieved by modifying the new socket option such
 that a socket will only be writable when the socket has less data
 buffered than it expects to need imminently. For example, a TCP
 connection in slow start expects it will need four TCP segments
 when the next ack arrives. When used this way, if an incoming ACK
 allows TCP to send out four segments then those four segments are
 already buffered and ready in the kernel, and the socket then
 becomes writable again to allow the user-level code to generate
 the next four segments, so that they will be ready and waiting the
 next time TCP is able to transmit additional segments.

 We are currently experimenting with just-in-time data generation.
 If it proves to be as effective as we hope, it might even work
 well enough to provide effective priority support too, eliminating
 the need for the "Send Priorities" kernel extension.

 Immediate Receive
 Normal TCP APIs deliver data only in TCP sequence number order.
 The addition of support for new cmsg ancillary data in the
 recvmsg() call allows the user-space library to request *any*
 available data, not only in-order data. The cmsg ancillary data
 returned from the recvmsg() call indicates to the user-space
 library where in the TCP sequence space this particular block of
 data lies. A setsockopt() option (or equivalent) is also required
 to put the socket into this "Immediate Receive" mode, to inform
 the kernel that the client will accept out-of-order data on this
 socket, and therefore the client should be notified (via select(),
 kevent(), etc.), not only when there is in-order data available to
 be read, but also when there is out-of-order data available to be
 read.

 Integrated Receive Window
 Normal TCP APIs raise the receive window any time data is read out
 of the kernel into user space. The addition of new cmsg ancillary
 data in the recvmsg() call allows the user-space library to
 request that the kernel return received data *without* reflecting
 this in its receive window calculation. After the client
 application has consumed the message data from the user-space
 Minion library, the Minion library makes a subsequent recvmsg()
 call with appropriate cmsg ancillary data to inform the kernel how

Iyengar, et al. Expires April 24, 2014 [Page 15]

Internet-Draft Minion Wire Protocol October 2013

 many bytes to add back into its receive window. In essence, the
 receive window boundary is stretched outside the kernel to account
 for data held by *both* the kernel *and* the user-space Minion
 library.

 These optional kernel extensions are a key part of what makes Minion
 compelling. Minion can be adopted today by any application, using
 Minion as a purely user-space library. Such an application performs
 as well as any application can when it is built on top of standard
 TCP. However, unlike an application built on top of standard TCP,
 Minion offers the promise of future kernel support for even better
 performance. Any given application with its own application-specific
 protocol is unlikely to receive special kernel support to make just
 that one application work better. But when many applications all use
 the Minion protocol, it then becomes reasonable to add kernel support
 to improve all of those applications.

Iyengar, et al. Expires April 24, 2014 [Page 16]

Internet-Draft Minion Wire Protocol October 2013

8. TCP Deviations

 When implemented entirely as a user-level library, Minion naturally
 adheres to the TCP specifications (insofar as the underlying
 operating system adheres to the TCP specifications) because Minion is
 merely using the operating system's networking APIs.

 When optional kernel extensions are in use, they may allow Minion to
 deviate from classical TCP protocol rules. One such instance of this
 deviation has already been identified. The TCP protocol rules allow
 a sender to send a FIN to end a connection, and then follow it with
 additional data bytes (with higher TCP sequence numbers, so that they
 fall later in the data stream) which the receiver is expected to
 discard because it recognizes that they fall after the FIN in the
 data stream. When out-of-order delivery is enabled, it's possible
 that if the TCP segment containing the FIN is lost or delayed, then
 subsequent TCP segments containing data bytes could be incorrectly
 delivered to the client application, when the TCP protocol rules
 dictate that they should have been discarded. The ability to send
 data following the FIN that the receiver is expected to discard is
 incompatible with out-of-order delivery. Note that this is referring
 to data that follows the FIN in TCP sequence number space, not data
 that follows the FIN in transmission order. If, after the FIN has
 been sent, previously transmitted data is lost and needs to be
 retransmitted, then this does not cause any problems; the bytes in
 such retransmitted TCP segments fall *before* the FIN in TCP sequence
 number space, not after. As a result of this observation, TCP's
 protocol rules, when used with Minion traffic, are effectively
 modified as follows:

 o A client using Minion MUST NOT send new data on a connection after
 that connection has been closed (i.e. a FIN indication has been
 sequenced and sent).

 In reality we do not expect this to be a major burden to TCP
 implementations. We are not aware of TCP implementations that send
 data after a connection is closed and then rely on the receiver to
 discard that data.

9. IANA Considerations

 No IANA actions are required by this document.

Iyengar, et al. Expires April 24, 2014 [Page 17]

Internet-Draft Minion Wire Protocol October 2013

10. Security Considerations

 We take security seriously. As this work develops, this section will
 contain details of any known security issues and possible
 mitigations.

11. Acknowledgements

 Many thanks to Bryan Ford, Padma Bhooma and Anumita Biswas for their
 contributions to the development of Minion.

 Thanks to Joe Touch for pointing out that Minion restricts TCP's
 ability to send data, after a connection is closed, that will then be
 ignored by the receiver.

12. References

12.1. Normative References

 [COBS] Cheshire, S. and M. Baker, "Consistent Overhead Byte
 Stuffing", September 1997,
 <http://stuartcheshire.org/papers/COBSforToN.pdf>.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, September 1981.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, January 2012.

 [minserv] Iyengar, J., "Minion - Service Model and Conceptual API",
draft-iyengar-minion-concept-02 (work in progress),

 October 2013.

12.2. Informative References

 [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 August 1980.

 [RFC5128] Srisuresh, P., Ford, B., and D. Kegel, "State of Peer-to-
 Peer (P2P) Communication across Network Address
 Translators (NATs)", RFC 5128, March 2008.

 [RFC5245] Rosenberg, J., "Interactive Connectivity Establishment

http://stuartcheshire.org/papers/COBSforToN.pdf
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/draft-iyengar-minion-concept-02
https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/rfc5128

Iyengar, et al. Expires April 24, 2014 [Page 18]

Internet-Draft Minion Wire Protocol October 2013

 (ICE): A Protocol for Network Address Translator (NAT)
 Traversal for Offer/Answer Protocols", RFC 5245,
 April 2010.

 [RFC6887] Wing, D., Cheshire, S., Boucadair, M., Penno, R., and P.
 Selkirk, "Port Control Protocol (PCP)", RFC 6887,
 April 2013.

 [Study] Hatonen, S., Nyrhinen, A., Eggert, L., Strowes, S.,
 Sarolahti, P., and M. Kojo, "An Experimental Study of Home
 Gateway Characteristics", September 1997,
 <http://conferences.sigcomm.org/imc/2010/papers/p260.pdf>.

 [TCPoUDP] Cheshire, S., Graessley, J., and S. Cheshire,
 "Encapsulation of TCP and other Transport Protocols over
 UDP", draft-cheshire-tcp-over-udp-00 (work in progress),
 June 2013.

Authors' Addresses

 Janardhan Iyengar
 Franklin and Marshall College
 Mathematics and Computer Science
 PO Box 3003
 Lancaster, Pennsylvania 17604-3003
 USA

 Phone: +1 717 358 4774
 Email: janardhan.iyengar@fandm.edu

 Stuart Cheshire
 Apple Inc.
 1 Infinite Loop
 Cupertino, California 95014
 USA

 Phone: +1 408 974 3207
 Email: cheshire@apple.com

https://datatracker.ietf.org/doc/html/rfc5245
https://datatracker.ietf.org/doc/html/rfc6887
http://conferences.sigcomm.org/imc/2010/papers/p260.pdf
https://datatracker.ietf.org/doc/html/draft-cheshire-tcp-over-udp-00

Iyengar, et al. Expires April 24, 2014 [Page 19]

Internet-Draft Minion Wire Protocol October 2013

 Josh Graessley
 Apple Inc.
 1 Infinite Loop
 Cupertino, California 95014
 USA

 Phone: +1 408 974 5710
 Email: jgraessley@apple.com

Iyengar, et al. Expires April 24, 2014 [Page 20]

