
QUIC J. Iyengar
Internet-Draft Fastly
Intended status: Standards Track I. Swett
Expires: 25 July 2020 Google
 22 January 2020

Sender Control of Acknowledgement Delays in QUIC
draft-iyengar-quic-delayed-ack-00

Abstract

 This document describes a QUIC extension for an endpoint to control
 its peer's delaying of acknowledgements.

Note to Readers

 Discussion of this draft takes place on the QUIC working group
 mailing list (quic@ietf.org), which is archived at
 <https://mailarchive.ietf.org/arch/search/?email_list=quic>.

 Working Group information can be found at <https://github.com/
quicwg>; source code and issues list for this draft can be found at

 <https://github.com/quicwg/base-drafts/labels/-transport>.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 25 July 2020.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Iyengar & Swett Expires 25 July 2020 [Page 1]

https://mailarchive.ietf.org/arch/search/?email_list=quic
https://github.com/quicwg
https://github.com/quicwg
https://github.com/quicwg/base-drafts/labels/-transport
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft QUIC Delayed Acknowledgements January 2020

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/

license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Simplified BSD License text
 as described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Terms and Definitions 2

2. Motivation . 3
3. Negotiating Extension Use 4
4. ACK-FREQUENCY Frame . 5
5. Multiple ACK-FREQUENCY Frames 6
6. Sending Acknowledgments 6
6.1. Response to Reordering 7
6.2. Expediting Congestion Signals 7
6.3. Batch Processing of Packets 7

7. Computation of Probe Timeout Period 8
8. Security Considerations 8
9. IANA Considerations . 8
10. Normative References . 8
Appendix A. Change Log . 9

 Acknowledgments . 9
 Authors' Addresses . 9

1. Introduction

 This document describes a QUIC extension for an endpoint to control
 its peer's delaying of acknowledgements.

1.1. Terms and Definitions

 The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 In the rest of this document, "sender" refers to a QUIC data sender
 (and acknowledgement receiver). Similarly, "receiver" refers to a
 QUIC data receiver (and acknowledgement sender).

 An "acknowledgement packet" refers to a QUIC packet that contains
 only an ACK frame.

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Iyengar & Swett Expires 25 July 2020 [Page 2]

Internet-Draft QUIC Delayed Acknowledgements January 2020

 This document uses terms, definitions, and notational conventions
 described in Section 1.2 and Section 1.3 of [QUIC-TRANSPORT].

2. Motivation

 A receiver acknowledges received packets, but it can delay sending
 these acknowledgements. The delaying of acknowledgements can impact
 connection throughput, loss detection and congestion controller
 performance at a data sender, and CPU utilization at both a data
 sender and a data receiver.

 Reducing the frequency of acknowledgement packets can improve
 connection and endpoint performance in the following ways:

 * Sending UDP packets can be noticeably CPU intensive on some
 platforms. Reducing the number of packets that only contain
 acknowledgements can therefore reduce the amount of CPU consumed
 at a data receiver. Experience shows that this cost reduction can
 be significant for high bandwidth connections.

 * Similarly, receiving and processing UDP packets can also be CPU
 intensive, and reducing acknowledgement frequency reduces this
 cost at a data sender.

 * Severely asymmetric link technologies, such as DOCSIS, LTE, and
 satellite links, connection throughput in the data direction
 becomes constrained when the reverse bandwidth is filled by
 acknowledgment packets. When traversing such links, reducing the
 number of acknowledgments allows connection throughput to scale
 much further.

 Unfortunately, there are undesirable consequences to simply reducing
 the acknowledgement frequency, especially to an arbitrary fixed
 value, as follows:

 * A sender relies on receipt of acknowledgements to determine the
 amount of data in flight and to detect losses, see
 [QUIC-RECOVERY]. Consequently, how often a receiver sends
 acknowledgments dictates how long it takes for losses to be
 detected at the sender.

 * Starting a connection up quickly without inducing excess queue is
 important for latency reduction, for both short and long flows.
 The sender often needs frequent acknowledgments during this phase;
 see slow start and hystart.

 * Congestion controllers that are purely window based and strictly
 adherent to packet conservation, such as the one defined in

Iyengar & Swett Expires 25 July 2020 [Page 3]

Internet-Draft QUIC Delayed Acknowledgements January 2020

 [QUIC-RECOVERY], rely on receipt of acknowledgments to move the
 congestion window forward and release additional data. Such
 controllers suffer performance penalties when acknowledgements are
 not sent frequently enough. On the other hand, for long-running
 flows, congestion controllers that are not window-based, such as
 BBR, can perform well with very few acknowledgements per RTT.

 * New sender startup mechanisms, such as paced chirping, will need a
 way for the sender to increase the frequency of acknowledgements
 when fine-grained feedback is required.

 [QUIC-TRANSPORT] currently specifies a simple delayed acknowledgement
 mechanism that a receiver can use: send an acknowledgement for every
 other packet, and for every packet when reordering is observed. This
 simple mechanism does not allow a sender to signal its constraints,
 which in turn limits what a receiver can do to delay acknowledgements
 and reduce acknowledgement frequency. This extension provides a
 mechanism to solve this problem.

3. Negotiating Extension Use

 Endpoints advertise their support of the extension described in this
 document by sending the following transport parameter (Section 7.2 of
 [QUIC-TRANSPORT]):

 min_ack_delay (0xXXXX): A variable-length integer representing the
 minimum amount of time in microseconds by which the endpoint can
 delay an acknowledgement. Values of 0 and 2^24 or greater are
 invalid, and receipt of these values MUST be treated as a
 connection error of type PROTOCOL_VIOLATION.

 An endpoint's min_ack_delay MUST NOT be greater than the its
 max_ack_delay. Endpoints that support this extension MUST treat
 receipt of a min_ack_delay that is greater than the received
 max_ack_delay as a connection error of type PROTOCOL_VIOLATION. Note
 that while the endpoint's max_ack_delay transport parameter is in
 milliseconds (Section 18.2 of [QUIC-TRANSPORT]), min_ack_delay is
 specified in microseconds.

 This Transport Parameter is encoded as per Section 18 of
 [QUIC-TRANSPORT].

Iyengar & Swett Expires 25 July 2020 [Page 4]

Internet-Draft QUIC Delayed Acknowledgements January 2020

4. ACK-FREQUENCY Frame

 Delaying acknowledgements as much as possible reduces both work done
 by the endpoints and network load. An endpoint's loss detection and
 congestion control mechanisms however need to be tolerant of this
 delay at the peer. An endpoint signals its tolerance to its peer
 using an ACK-FREQUENCY frame, shown below:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 0xXX (i) ...
 +-+
 | Sequence Number (i) ...
 +-+
 | Packet Tolerance (i) ...
 +-+
 | Update Max Ack Delay (i) ...
 +-+

 Following the common frame format described in Section 12.4 of
 [QUIC-TRANSPORT], ACK-FREQUENCY frames have a type of 0xXX, and
 contain the following fields:

 Sequence Number: A variable-length integer representing the sequence
 number assigned to the ACK-FREQUENCY frame by the sender to allow
 receivers to ignore obsolete frames, see Section 5.

 Packet Tolerance: A variable-length integer representing the maximum
 number of ack-eliciting packets after which the receiver sends an
 acknowledgement. A value of 1 will result in an acknowledgement
 being sent for every ack-eliciting packet received. A value of 0
 is invalid.

 Update Max Ack Delay: A variable-length integer representing an
 update to the peer's "max_ack_delay" transport parameter
 (Section 18.2 of [QUIC-TRANSPORT]). The value of this field is in
 microseconds. Any value smaller than the "min_ack_delay"
 advertised by this endpoint is invalid.

 Receipt of invalid values in an ACK-FREQUENCY frame MUST be treated
 as a connection error of type FRAME_ENCODING_ERROR.

 ACK-FREQUENCY frames are ack-eliciting. However, their loss does not
 require retransmission.

 An endpoint MAY send ACK-FREQUENCY frames multiple times during a
 connection and with different values.

Iyengar & Swett Expires 25 July 2020 [Page 5]

Internet-Draft QUIC Delayed Acknowledgements January 2020

 An endpoint will have committed a "max_ack_delay" value to the peer,
 which specifies the maximum amount of time by which the endpoint will
 delay sending acknowledgments. When the endpoint receives an ACK-
 FREQUENCY frame, it MUST update this maximum time to the value
 proposed by the peer in the Update Max Ack Delay field.

5. Multiple ACK-FREQUENCY Frames

 An endpoint can send multiple ACK-FREQUENCY frames, and each one of
 them can have different values. An endpoint MUST use a sequence
 number of 0 for the first ACK-FREQUENCY frame it constructs and
 sends, and a strictly increasing value thereafter.

 An endpoint MUST allow reordered ACK-FREQUENCY frames to be received
 and processed, see Section 13.3 of [QUIC-TRANSPORT].

 On the first received ACK-FREQUENCY frame in a connection, an
 endpoint MUST immediately record all values from the frame. The
 sequence number of the frame is recorded as the largest seen sequence
 number. The new Packet Tolerance and Update Max Ack Delay values
 MUST be immediately used for delaying acknowledgements; see

Section 6.

 On a subsequently received ACK-FREQUENCY frame, the endpoint MUST
 check if this frame is more recent than any previous ones, as
 follows:

 * If the frame's sequence number is not greater than the largest one
 seen so far, the endpoint MUST ignore this frame.

 * If the frame's sequence number is greater than the largest one
 seen so far, the endpoint MUST immediately replace old recorded
 state with values received in this frame. The endpoint MUST start
 using the new values immediately for delaying acknowledgements;
 see Section 6. The endpoint MUST also replace the recorded
 sequence number.

6. Sending Acknowledgments

 Prior to receiving an ACK-FREQUENCY frame, endpoints send
 acknowledgements as specified in Section 13.2.1 of [QUIC-TRANSPORT].

 On receiving an ACK-FREQUENCY frame and updating its recorded
 "max_ack_delay" and "Packet Tolerance" values (Section 5), the
 endpoint MUST send an acknowledgement when one of the following
 conditions are met:

Iyengar & Swett Expires 25 July 2020 [Page 6]

Internet-Draft QUIC Delayed Acknowledgements January 2020

 * Since the last acknowledgement was sent, the number of received
 ack-eliciting packets is greater than or equal to the recorded
 "Packet Tolerance".

 * Since the last acknowledgement was sent, "max_ack_delay" amount of
 time has passed.

Section 6.1, Section 6.2, and Section 6.3 describe exceptions to this
 strategy.

 An endpoint is expected to bundle acknowledgements when possible.
 Every time an acknowledgement is sent, bundled or otherwise, all
 counters and timers related to delaying of acknowledgments are reset.

6.1. Response to Reordering

 As specified in Section 13.3.1 of [QUIC-TRANSPORT], endpoints SHOULD
 send an acknowledgement immediately on receiving a reordered ack-
 eliciting packet, unless the peer has sent a
 "disable_ack_on_reordering" transport parameter, described below:

 disable_ack_on_reordering (0xXXXX): This optional transport
 parameter is sent by an endpoint that is reordering tolerant or
 expects the connection to experience reordering. An endpoint that
 receives this transport parameter MUST NOT make the exception of
 sending an immediate acknowledgement when reordering is observed.
 This parameter is a zero-length value, and is encoded as per
 Section 18 of [QUIC-TRANSPORT].

6.2. Expediting Congestion Signals

 As specified in Section 13.3.1 of [QUIC-TRANSPORT], an endpoint
 SHOULD immediately acknowledge packets marked with the ECN Congestion
 Experienced (CE) codepoint in the IP header. Doing so reduces the
 peer's response time to congestion events.

6.3. Batch Processing of Packets

 For performance reasons, an endpoint can receive incoming packets
 from the underlying platform in a batch of multiple packets. This
 batch can contain enough packets to cause multiple acknowledgements
 to be sent.

 To avoid sending multiple acknowledgements in rapid succession, an
 endpoint MAY process all packets in a batch before determining
 whether a threshold has been met and an acknowledgement is to be sent
 in response.

Iyengar & Swett Expires 25 July 2020 [Page 7]

Internet-Draft QUIC Delayed Acknowledgements January 2020

7. Computation of Probe Timeout Period

 On sending an update to the peer's "max_ack_delay", an endpoint can
 use this new value in later computations of its Probe Timeout (PTO)
 period; see Section 5.2.1 of [QUIC-RECOVERY]. The endpoint MUST
 however wait until the ACK-FREQUENCY frame that carries this new
 value is acknowledged by the peer.

 Until the frame is acknowledged, the endpoint MUST use the greater of
 the current "max_ack_delay" and the value that is in flight when
 computing the PTO period. Doing so avoids spurious PTOs that can be
 caused by an update that increases the peer's "max_ack_delay".

 While it is expected that endpoints will have only one ACK-FREQUENCY
 frame in flight at any given time, this extension does not prohibit
 having more than one in flight. Generally, when using
 "max_ack_delay" for PTO computations, endpoints MUST use the maximum
 of the current value and all those in flight.

8. Security Considerations

 TBD.

9. IANA Considerations

 TBD.

10. Normative References

 [QUIC-RECOVERY]
 Iyengar, J., Ed. and I. Swett, Ed., "QUIC Loss Detection
 and Congestion Control", Work in Progress, Internet-Draft,

draft-ietf-quic-recovery-latest,
 <https://tools.ietf.org/html/draft-ietf-quic-recovery-

latest>.

 [QUIC-TRANSPORT]
 Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
 Multiplexed and Secure Transport", Work in Progress,
 Internet-Draft, draft-ietf-quic-transport-latest,
 <https://tools.ietf.org/html/draft-ietf-quic-transport-

latest>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-latest
https://tools.ietf.org/html/draft-ietf-quic-recovery-latest
https://tools.ietf.org/html/draft-ietf-quic-recovery-latest
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-latest
https://tools.ietf.org/html/draft-ietf-quic-transport-latest
https://tools.ietf.org/html/draft-ietf-quic-transport-latest
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119

Iyengar & Swett Expires 25 July 2020 [Page 8]

Internet-Draft QUIC Delayed Acknowledgements January 2020

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Appendix A. Change Log

 RFC Editor's Note: Please remove this section prior to
 publication of a final version of this document.

Acknowledgments

 The following people directly contributed key ideas that shaped this
 draft: Bob Briscoe, Kazuho Oku, Marten Seemann.

Authors' Addresses

 Jana Iyengar
 Fastly

 Email: jri.ietf@gmail.com

 Ian Swett
 Google

 Email: ian.swett@google.com

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174

Iyengar & Swett Expires 25 July 2020 [Page 9]

