
Network Working Group J. Iyengar
Internet-Draft I. Swett
Intended status: Informational Google
Expires: January 9, 2017 July 8, 2016

QUIC Congestion Control And Loss Recovery
draft-iyengar-quic-loss-recovery-00

Abstract

 QUIC is a new multiplexed and secure transport atop UDP. QUIC builds
 on decades of transport and security experience, and implements
 mechanisms that make it attractive as a modern general-purpose
 transport. QUIC implements the spirit of known TCP loss recovery
 mechanisms, described in RFCs, various Internet-drafts, and also
 those prevalent in the Linux TCP implementation. This document
 describes QUIC congestion control and loss recovery, and where
 applicable, attributes the TCP equivalent in RFCs, Internet-drafts,
 academic papers, and/or TCP implementations.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 9, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Iyengar & Swett Expires January 9, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft QUIC July 2016

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

1. Introduction

 QUIC is a new multiplexed and secure transport atop UDP. QUIC builds
 on decades of transport and security experience, and implements
 mechanisms that make it attractive as a modern general-purpose
 transport. The QUIC protocol is described in [draft-hamilton-quic-

transport-protocol].

 QUIC implements the spirit of known TCP loss recovery mechanisms,
 described in RFCs, various Internet-drafts, and also those prevalent
 in the Linux TCP implementation. This document describes QUIC
 congestion control and loss recovery, and where applicable,
 attributes the TCP equivalent in RFCs, Internet-drafts, academic
 papers, and/or TCP implementations.

 This document first describes parts of the QUIC transmission
 machinery that are necessary to describe the congestion control and
 loss recovery mechanisms. The document then describes QUIC's default
 congestion control and default loss recovery, followed by a list of
 the various TCP mechanisms that QUIC implements (in spirit) in its
 loss recovery mechanisms.

2. Design of the QUIC Transmission Machinery

 All transmissions in QUIC are sent with a packet-level header, which
 includes a packet sequence number (referred to below as a packet
 number). These packet numbers never repeat in the lifetime of a
 connection, and are monotonically increasing, which makes duplicate
 detection trivial. This fundamental design decision obviates the
 need for disambiguating between transmissions and retransmissions and
 eliminates significant complexity from QUIC's interpretation of TCP
 loss detection mechanisms.

 Every packet can contain several frames; we outline the frames that
 are important to the loss detection and congestion control machinery
 below.

 o STREAM frames contain application data. Crypto handshake data is
 also sent as STREAM data, and uses the reliability machinery of
 QUIC underneath.

 o ACK frames contain acknowledgment information. QUIC uses a SACK-
 based scheme, where the largest_acked packet number is explicitly

https://datatracker.ietf.org/doc/html/draft-hamilton-quic-transport-protocol
https://datatracker.ietf.org/doc/html/draft-hamilton-quic-transport-protocol

Iyengar & Swett Expires January 9, 2017 [Page 2]

Internet-Draft QUIC July 2016

 reported in the ACK frame, and packets with sequence numbers
 lesser than the largest_acked are reported as ACK ranges. The ACK
 frame also includes a receive timestamp for each packet newly
 acked.

 o To limit the ACK blocks to the ones that haven't yet been received
 by the sender, the sender periodically sends STOP_WAITING frames
 that signal the receiver to stop acking packets below a specified
 sequence number, raising the "least unacked" packet number at the
 receiver. A sender of an ACK frame thus reports only those ACK
 blocks between the received least unacked and the reported largest
 observed packet numbers. It is recommended for the sender to send
 the most recent largest acked packet it has received in an ack as
 the STOP_WAITING frame's least unacked value.

2.1. Relevant Differences Between QUIC and TCP

 There are some notable differences between QUIC and TCP which are
 important for reasoning about the differences between the loss
 recovery mechanisms employed by the two protocols. We briefly
 describe these differences below.

2.1.1. Monotonically Increasing Sequence Numbers

 TCP conflates transmission sequence number at the sender with
 delivery sequence number at the receiver, which results in
 retransmissions of the same data carrying the same sequence number,
 and consequently to problems caused by "retransmission ambiguity".
 QUIC separates the two: QUIC uses a packet transmission number
 (referred to as the "packet number") for transmissions, and any data
 that is to be delivered to the receiving application(s) is sent in
 one or more streams, with stream offsets encoded within STREAM frames
 inside of packets that determine delivery order.

 QUIC's packet sequence number is strictly increasing, and directly
 encodes transmission order. A higher QUIC sequence number signifies
 that the packet was sent later, and a lower QUIC sequence number
 signifies that the packet was sent earlier.

 This design point significantly simplifies loss detection mechanisms
 for QUIC. Most TCP mechanisms implicitly attempt to infer
 transmission ordering based on the TCP sequence numbers; a non-
 trivial task, especially when TCP timestamps are not available.

 QUIC resends lost packets with new packet sequence numbers when
 retransmission is necessary, removing ambiguity about which packet is
 acknowledged when an ACK is received. Consequently, more accurate
 RTT measurements can be made, spurious retransmissions are trivially

Iyengar & Swett Expires January 9, 2017 [Page 3]

Internet-Draft QUIC July 2016

 detected, and mechanisms such as Fast Retransmit can be applied
 universally, based only on sequence number.

2.1.2. No Reneging

 QUIC ACKs contain information that is equivalent to TCP SACK, but
 QUIC does not allow any acked packet to be reneged, greatly
 simplifying implementations on both sides and reducing memory
 pressure on the sender.

2.1.3. More ACK Ranges

 QUIC supports up to 255 ACK ranges, opposed to TCP's 3 SACK ranges.
 In high loss environments, this speeds recovery.

2.1.4. Explicit Correction For Delayed Acks

 QUIC ACKs explicitly encode the delay incurred at the receiver
 between when a packet is received and when the corresponding ACK is
 sent. This allows the receiver of the ACK to adjust for receiver
 delays, specifically the delayed ack timer, when estimating the path
 RTT. This mechanism also allows a receiver to measure and report the
 delay from when a packet was received by the OS kernel, which is
 useful in receivers which may incur delays such as context-switch
 latency before a userspace QUIC receiver processes a received packet.

3. An Overview of QUIC Loss Recovery

 We briefly describe QUIC's actions on packet transmission, ack
 reception, and timer expiration events.

3.1. On Sending a Packet

 A retransmission timer may be set based on the mode:

 o If the handshake has not completed, start a handshake timer.

 * 1.5x the SRTT, with exponential backoff.

 o If there are outstanding packets which have not been ACKed,
 possibly set the loss timer

 * Depends on the loss detection implementation, default is
 0.25RTT in the case of Early Retransmit.

 o If fewer than 2 TLPs have been sent, compute and restart TLP
 timer.

Iyengar & Swett Expires January 9, 2017 [Page 4]

Internet-Draft QUIC July 2016

 * Timer is set for max(10ms, 2*SRTT) if there are multiple
 packets in flight

 * Timer is set to max(1.5*SRTT + delayed ack timer, 2*SRTT) if
 there is only one packet in flight.

 o If 2 TLPs have been sent, set the RTO timer.

 * Timer is set to max(200ms, SRTT+4*RTTVAR) with exponential
 backoff after the first RTO.

3.2. On Receiving an ACK

 The following steps are performed when an ACK is received:

 o Validate the ack, including ignoring any out of order acks.

 o Update RTT measurements.

 o Sender marks unacked packets lower than the largest_observed and
 acked in this ACK frame as ACKED.

 o Packets with packet number lesser than the largest_observed that
 are not yet acked have missing_reports incremented based on
 FACK.(largest_observed - missing packet number)

 o Threshold is set to 3 by default.

 o Packets with missing_reports > threshold are marked for
 retransmission. This logic implements Fast Retransmission and
 FACK-based retransmission together.

 o If packets are outstanding and the largest observed is the largest
 sent packet, the retransmission timer will be set to 0.25SRTT,
 implementing Early Retransmit with timer.

 o Stop timers if no packets are outstanding.

3.3. On Timer Expiration

 QUIC uses one loss recovery timer, which when set, can be in one of
 several states. When the timer expires, the state determines the
 action to be performed. (TODO: describe when the timers are set)

 o Handshake state:

 * Retransmit any outstanding handshake packets.

Iyengar & Swett Expires January 9, 2017 [Page 5]

Internet-Draft QUIC July 2016

 o Loss timer state:

 * Lose the outstanding packets which have not yet been ACKed so
 far.

 * Report the loss to the congestion controller.

 * Retransmit as many as the congestion controller allows.

 o TLP state:

 * Retransmit the smallest outstanding packet which is
 retransmittable.

 * Do not mark any packets as lost until an ACK arrives.

 * Restart timer for a TLP or RTO.

 o RTO state:

 * Retransmit the two smallest outstanding packets which are
 retransmittable.

 * Do not collapse the congestion window (ie: set to 1 packet)
 until an ack arrives and confirms that the RTO was not
 spurious. Note that this step obviates the need to implement
 FRTO.

 * Restart the timer for next RTO (with exponential backoff.)

4. Congestion Control

 (describe NewReno-style congestion control for QUIC.)

5. TCP mechanisms in QUIC

 QUIC implements the spirit of a variety of RFCs, Internet drafts, and
 other well-known TCP loss recovery mechanisms, though the
 implementation details differ from the TCP implementations.

5.1. RFC 6298 (RTO computation)

 QUIC calculates SRTT and RTTVAR according to the standard formulas.
 An RTT sample is only taken if the delayed ack correction is smaller
 than the measured RTT (otherwise a negative RTT would result), and
 the ack's contains a new, larger largest observed packet number.
 min_rtt is only based on the observed RTT, but SRTT uses the delayed
 ack correction delta.

https://datatracker.ietf.org/doc/html/rfc6298

Iyengar & Swett Expires January 9, 2017 [Page 6]

Internet-Draft QUIC July 2016

 As described above, QUIC implements RTO with the standard timeout and
 CWND reduction. However, QUIC retransmits the earliest outstanding
 packets rather than the latest, because QUIC doesn't have
 retransmission ambiguity. QUIC uses the commonly accepted min RTO of
 200ms instead of the 1s the RFC specifies.

5.2. FACK Loss Recovery (paper)

 QUIC implements the algorithm for early loss recovery described in
 the FACK paper (and implemented in the Linux kernel.) QUIC uses the
 packet sequence number to measure the FACK reordering threshold.
 Currently QUIC does not implement an adaptive threshold as many TCP
 implementations(ie: the Linux kernel) do.

5.3. RFC 3782, RFC 6582 (NewReno Fast Recovery)

 QUIC only reduces its CWND once per congestion window, in keeping
 with the NewReno RFC. It tracks the largest outstanding packet at
 the time the loss is declared and any losses which occur before that
 packet number are considered part of the same loss event. It's worth
 noting that some TCP implementations may do this on a sequence number
 basis, and hence consider multiple losses of the same packet a single
 loss event.

5.4. TLP (draft)

 QUIC always sends two tail loss probes before RTO is triggered. QUIC
 invokes tail loss probe even when a loss is outstanding, which is
 different than some TCP implementations.

5.5. RFC 5827 (Early Retransmit) with Delay Timer

 QUIC implements early retransmit with a timer in order to minimize
 spurious retransmits. The timer is set to 1/4 SRTT after the final
 outstanding packet is acked.

5.6. RFC 5827 (F-RTO)

 QUIC implements F-RTO by not reducing the CWND and SSThresh until a
 subsequent ack is received and it's sure the RTO was not spurious.
 Conceptually this is similar, but it makes for a much cleaner
 implementation with fewer edge cases.

5.7. RFC 6937 (Proportional Rate Reduction)

 PRR-SSRB is implemented by QUIC in the epoch when recovering from a
 loss.

https://datatracker.ietf.org/doc/html/rfc3782
https://datatracker.ietf.org/doc/html/rfc6582
https://datatracker.ietf.org/doc/html/rfc5827
https://datatracker.ietf.org/doc/html/rfc5827
https://datatracker.ietf.org/doc/html/rfc6937

Iyengar & Swett Expires January 9, 2017 [Page 7]

Internet-Draft QUIC July 2016

5.8. TCP Cubic (draft) with optional RFC 5681 (Reno)

 TCP Cubic is the default congestion control algorithm in QUIC. Reno
 is also an easily available option which may be requested via
 connection options and is fully implemented.

5.9. Hybrid Slow Start (paper)

 QUIC implements hybrid slow start, but disables ack train detection,
 because it has shown to falsely trigger when coupled with packet
 pacing, which is also on by default in QUIC. Currently the minimum
 delay increase is 4ms, the maximum is 16ms, and within that range
 QUIC exits slow start if the min_rtt within a round increases by more
 than ⅛ of the connection min_rtt.

6. References

6.1. Normative References

 [RFC2119] Bradner, S., "Key Words for use in RFCs to Indicate
 Requirement Levels", March 1997.

6.2. Informative References

 [draft-hamilton-quic-transport-protocol]
 Hamilton, R., Iyengar, J., Swett, I., and A. Wilk, "QUIC:
 A UDP-Based Multiplexed and Secure Transport", July 2016.

Authors' Addresses

 Janardhan Iyengar
 Google

 Email: jri@google.com

 Ian Swett
 Google

 Email: ianswett@google.com

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/draft-hamilton-quic-transport-protocol

Iyengar & Swett Expires January 9, 2017 [Page 8]

