
Network Working Group J. Iyengar
Internet-Draft I. Swett
Intended status: Experimental Google
Expires: May 4, 2017 October 31, 2016

QUIC Congestion Control And Loss Recovery
draft-iyengar-quic-loss-recovery-01

Abstract

 QUIC is a new multiplexed and secure transport atop UDP. QUIC builds
 on decades of transport and security experience, and implements
 mechanisms that make it attractive as a modern general-purpose
 transport. QUIC implements the spirit of known TCP loss detection
 mechanisms, described in RFCs, various Internet-drafts, and also
 those prevalent in the Linux TCP implementation. This document
 describes QUIC loss detection and congestion control, and attributes
 the TCP equivalent in RFCs, Internet-drafts, academic papers, and TCP
 implementations.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 4, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Iyengar & Swett Expires May 4, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft QUIC October 2016

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

1. Introduction

 QUIC is a new multiplexed and secure transport atop UDP. QUIC builds
 on decades of transport and security experience, and implements
 mechanisms that make it attractive as a modern general-purpose
 transport. The QUIC protocol is described in [draft-hamilton-quic-

transport-protocol].

 QUIC implements the spirit of known TCP loss recovery mechanisms,
 described in RFCs, various Internet-drafts, and also those prevalent
 in the Linux TCP implementation. This document describes QUIC
 congestion control and loss recovery, and where applicable,
 attributes the TCP equivalent in RFCs, Internet-drafts, academic
 papers, and/or TCP implementations.

 This document first describes pre-requisite parts of the QUIC
 transmission machinery, then discusses QUIC's default congestion
 control and loss detection mechanisms, and finally lists the various
 TCP mechanisms that QUIC loss detection implements (in spirit.)

2. Design of the QUIC Transmission Machinery

 All transmissions in QUIC are sent with a packet-level header, which
 includes a packet sequence number (referred to below as a packet
 number). These packet numbers never repeat in the lifetime of a
 connection, and are monotonically increasing, which makes duplicate
 detection trivial. This fundamental design decision obviates the
 need for disambiguating between transmissions and retransmissions and
 eliminates significant complexity from QUIC's interpretation of TCP
 loss detection mechanisms.

 Every packet may contain several frames. We outline the frames that
 are important to the loss detection and congestion control machinery
 below.

 o Retransmittable frames are frames requiring reliable delivery.
 The most common are STREAM frames, which typically contain
 application data.

 o Crypto handshake data is also sent as STREAM data, and uses the
 reliability machinery of QUIC underneath.

https://datatracker.ietf.org/doc/html/draft-hamilton-quic-transport-protocol
https://datatracker.ietf.org/doc/html/draft-hamilton-quic-transport-protocol

Iyengar & Swett Expires May 4, 2017 [Page 2]

Internet-Draft QUIC October 2016

 o ACK frames contain acknowledgment information. QUIC uses a SACK-
 based scheme, where acks express up to 256 ranges. The ACK frame
 also includes a receive timestamp for each packet newly acked.

2.1. Relevant Differences Between QUIC and TCP

 There are some notable differences between QUIC and TCP which are
 important for reasoning about the differences between the loss
 recovery mechanisms employed by the two protocols. We briefly
 describe these differences below.

2.1.1. Monotonically Increasing Packet Numbers

 TCP conflates transmission sequence number at the sender with
 delivery sequence number at the receiver, which results in
 retransmissions of the same data carrying the same sequence number,
 and consequently to problems caused by "retransmission ambiguity".
 QUIC separates the two: QUIC uses a packet sequence number (referred
 to as the "packet number") for transmissions, and any data that is to
 be delivered to the receiving application(s) is sent in one or more
 streams, with stream offsets encoded within STREAM frames inside of
 packets that determine delivery order.

 QUIC's packet number is strictly increasing, and directly encodes
 transmission order. A higher QUIC packet number signifies that the
 packet was sent later, and a lower QUIC packet number signifies that
 the packet was sent earlier. When a packet containing frames is
 deemed lost, QUIC rebundles necessary frames in a new packet with a
 new packet number, removing ambiguity about which packet is
 acknowledged when an ACK is received. Consequently, more accurate
 RTT measurements can be made, spurious retransmissions are trivially
 detected, and mechanisms such as Fast Retransmit can be applied
 universally, based only on packet number.

 This design point significantly simplifies loss detection mechanisms
 for QUIC. Most TCP mechanisms implicitly attempt to infer
 transmission ordering based on TCP sequence numbers --- a non-trivial
 task, especially when TCP timestamps are not available.

2.1.2. No Reneging

 QUIC ACKs contain information that is equivalent to TCP SACK, but
 QUIC does not allow any acked packet to be reneged, greatly
 simplifying implementations on both sides and reducing memory
 pressure on the sender.

Iyengar & Swett Expires May 4, 2017 [Page 3]

Internet-Draft QUIC October 2016

2.1.3. More ACK Ranges

 QUIC supports up to 256 ACK ranges, opposed to TCP's 3 SACK ranges.
 In high loss environments, this speeds recovery.

2.1.4. Explicit Correction For Delayed Acks

 QUIC ACKs explicitly encode the delay incurred at the receiver
 between when a packet is received and when the corresponding ACK is
 sent. This allows the receiver of the ACK to adjust for receiver
 delays, specifically the delayed ack timer, when estimating the path
 RTT. This mechanism also allows a receiver to measure and report the
 delay from when a packet was received by the OS kernel, which is
 useful in receivers which may incur delays such as context-switch
 latency before a userspace QUIC receiver processes a received packet.

3. Loss Detection

 We now describe QUIC's loss detection as functions that should be
 called on packet transmission, when a packet is acked, and timer
 expiration events.

3.1. Variables of interest

 We first describe the variables required to implement the loss
 detection mechanisms described in this section.

 o loss_detection_alarm: Multi-modal alarm used for loss detection.

 o alarm_mode: QUIC maintains a single loss detection alarm, which
 switches between various modes. This mode is used to determine
 the duration of the alarm.

 o handshake_count: The number of times the handshake packets have
 been retransmitted without receiving an ack.

 o tlp_count: The number of times a tail loss probe has been sent
 without receiving an ack.

 o rto_count: The number of times an rto has been sent without
 receiving and ack.

 o smoothed_rtt: The smoothed RTT of the connection, computed as
 described in [RFC 6298]. TODO: Describe RTT computations.

 o reordering_threshold: The largest delta between the largest acked
 retransmittable packet and a packet containing retransmittable
 frames before it's declared lost.

https://datatracker.ietf.org/doc/html/rfc6298

Iyengar & Swett Expires May 4, 2017 [Page 4]

Internet-Draft QUIC October 2016

 o time_loss: When true, loss detection operates solely based on
 reordering threshold in time, rather than in packet number gaps.

3.2. Initialization

 At the beginning of the connection, initialize the loss detection
 variables as follows:

 loss_detection_alarm.reset();
 handshake_count = 0;
 tlp_count = 0;
 rto_count = 0;
 smoothed_rtt = 0;
 reordering_threshold = 3;
 time_loss = false;

3.3. Setting the Loss Detection Alarm

 QUIC loss detection uses a single alarm for all timer-based loss
 detection. The duration of the alarm is based on the alarm's mode,
 which is set in the packet and timer events further below. The
 function SetLossDetectionAlarm defined below shows how the single
 timer is set based on the alarm mode.

 Pseudocode for SetLossDetectionAlarm follows.

Iyengar & Swett Expires May 4, 2017 [Page 5]

Internet-Draft QUIC October 2016

 SetLossDetectionAlarm():
 if (retransmittable packets are outstanding):

 loss_detection_alarm.cancel();
 return;
 if (handshake packets are outstanding):

 alarm_duration = max(1.5 * smoothed_rtt, 10ms) << handshake_count;
 handshake_count++;
 else if (largest sent packet is acked):
 // Set alarm based on short timer for early retransmit.
 alarm_duration = 0.25 x smoothed_rtt;
 else if (tlp_count < 2):

 if (retransmittable_packets_outstanding = 1):
 alarm_duration = max(1.5 x smoothed_rtt + delayed_ack_timer,
 2 x smoothed_rtt);
 else:
 alarm_duration = max (10ms, 2 x smoothed_rtt);
 tlp_count++;
 else:

 if (rto_count = 0):
 alarm_duration = max(200ms, smoothed_rtt + 4 x rttvar);
 else:
 alarm_duration = loss_detection_alarm.get_delay() << 1;

 rto_count++;

 loss_detecton_alarm.set(now + alarm_duration);

3.4. On Sending a Packet

 After any packet is sent, be it a new transmission or a rebundled
 transmission, the following OnPacketSent function is called. The
 parameters to OnPacketSent are as follows.

 o packet_number: The packet number of the sent packet.

 o is_retransmittble: A boolean that indicates whether the packet
 contains at least one frame requiring reliable deliver. The
 retransmittability of various QUIC frames is described in [draft-

hamilton-quic-protocol]. If false, it is still acceptable for an
 ack to be received for this packet. However, a caller MUST NOT
 set is_retransmittable to true if an ack is not expected.

 Pseudocode for OnPacketSent follows.

https://datatracker.ietf.org/doc/html/draft-hamilton-quic-protocol
https://datatracker.ietf.org/doc/html/draft-hamilton-quic-protocol

Iyengar & Swett Expires May 4, 2017 [Page 6]

Internet-Draft QUIC October 2016

 OnPacketSent(packet_number, is_retransmittable):
 if is_retransmittable:
 SetLossDetectionAlarm()

3.5. On Packet Acknowledgment

 When a packet is acked for the first time, the following
 OnPacketAcked function is called. Note that a single ACK frame may
 newly acknowledge several packets. OnPacketAcked must be called once
 for each of these newly acked packets.

 OnPacketAcked takes one parameter, acked_packet, which is the packet
 number of the newly acked packet, and returns a list of packet
 numbers that are detected as lost.

 Pseudocode for OnPacketAcked follows.

 OnPacketAcked(acked_packet):
 handshake_count = 0;
 tlp_count = 0;
 rto_count = 0;
 UpdateRtt(); // TODO: document RTT estimator.
 DetectLostPackets(acked_packet);
 SetLossDetectionAlarm();

3.6. On Alarm Firing

 QUIC uses one loss recovery alarm, which when set, can be in one of
 several modes. When the alarm fires, the mode determines the action
 to be performed. OnAlarm returns a list of packet numbers that are
 detected as lost.

 Pseudocode for OnAlarm follows.

 OnAlarm(acked_packet):
 lost_packets = DetectLostPackets(acked_packet);
 MaybeRetransmitLostPackets();
 SetLossDetectionAlarm();

3.7. Detecting Lost Packets

 Packets in QUIC are only considered lost once a larger packet number
 is acknowledged. DetectLostPackets is called every time there is a
 new largest packet or if the loss detection alarm fires the previous
 largest acked packet is supplied.

Iyengar & Swett Expires May 4, 2017 [Page 7]

Internet-Draft QUIC October 2016

 DetectLostPackets takes one parameter, acked_packet, which is the
 packet number of the largest acked packet, and returns a list of
 packet numbers detected as lost.

 Pseudocode for DetectLostPackets follows.

 DetectLostPackets(acked_packet):
 lost_packets = {};
 foreach (unacked_packet less than acked_packet):
 if (unacked_packet.time_sent <
 acked_packet.time_sent - 1/8 * smoothed_rtt):
 lost_packets.insert(unacked_packet.packet_number);
 else if (unacked_packet.packet_number <
 acked_packet.packet_number - reordering_threshold)
 lost_packets.insert(unacked_packet.packet_number);
 return lost_packets;

4. Congestion Control

 (describe NewReno-style congestion control for QUIC.)

5. TCP mechanisms in QUIC

 QUIC implements the spirit of a variety of RFCs, Internet drafts, and
 other well-known TCP loss recovery mechanisms, though the
 implementation details differ from the TCP implementations.

5.1. RFC 6298 (RTO computation)

 QUIC calculates SRTT and RTTVAR according to the standard formulas.
 An RTT sample is only taken if the delayed ack correction is smaller
 than the measured RTT (otherwise a negative RTT would result), and
 the ack's contains a new, larger largest observed packet number.
 min_rtt is only based on the observed RTT, but SRTT uses the delayed
 ack correction delta.

 As described above, QUIC implements RTO with the standard timeout and
 CWND reduction. However, QUIC retransmits the earliest outstanding
 packets rather than the latest, because QUIC doesn't have
 retransmission ambiguity. QUIC uses the commonly accepted min RTO of
 200ms instead of the 1s the RFC specifies.

5.2. FACK Loss Recovery (paper)

 QUIC implements the algorithm for early loss recovery described in
 the FACK paper (and implemented in the Linux kernel.) QUIC uses the
 packet number to measure the FACK reordering threshold. Currently

https://datatracker.ietf.org/doc/html/rfc6298

Iyengar & Swett Expires May 4, 2017 [Page 8]

Internet-Draft QUIC October 2016

 QUIC does not implement an adaptive threshold as many TCP
 implementations(ie: the Linux kernel) do.

5.3. RFC 3782, RFC 6582 (NewReno Fast Recovery)

 QUIC only reduces its CWND once per congestion window, in keeping
 with the NewReno RFC. It tracks the largest outstanding packet at
 the time the loss is declared and any losses which occur before that
 packet number are considered part of the same loss event. It's worth
 noting that some TCP implementations may do this on a sequence number
 basis, and hence consider multiple losses of the same packet a single
 loss event.

5.4. TLP (draft)

 QUIC always sends two tail loss probes before RTO is triggered. QUIC
 invokes tail loss probe even when a loss is outstanding, which is
 different than some TCP implementations.

5.5. RFC 5827 (Early Retransmit) with Delay Timer

 QUIC implements early retransmit with a timer in order to minimize
 spurious retransmits. The timer is set to 1/4 SRTT after the final
 outstanding packet is acked.

5.6. RFC 5827 (F-RTO)

 QUIC implements F-RTO by not reducing the CWND and SSThresh until a
 subsequent ack is received and it's sure the RTO was not spurious.
 Conceptually this is similar, but it makes for a much cleaner
 implementation with fewer edge cases.

5.7. RFC 6937 (Proportional Rate Reduction)

 PRR-SSRB is implemented by QUIC in the epoch when recovering from a
 loss.

5.8. TCP Cubic (draft) with optional RFC 5681 (Reno)

 TCP Cubic is the default congestion control algorithm in QUIC. Reno
 is also an easily available option which may be requested via
 connection options and is fully implemented.

5.9. Hybrid Slow Start (paper)

 QUIC implements hybrid slow start, but disables ack train detection,
 because it has shown to falsely trigger when coupled with packet
 pacing, which is also on by default in QUIC. Currently the minimum

https://datatracker.ietf.org/doc/html/rfc3782
https://datatracker.ietf.org/doc/html/rfc6582
https://datatracker.ietf.org/doc/html/rfc5827
https://datatracker.ietf.org/doc/html/rfc5827
https://datatracker.ietf.org/doc/html/rfc6937
https://datatracker.ietf.org/doc/html/rfc5681

Iyengar & Swett Expires May 4, 2017 [Page 9]

Internet-Draft QUIC October 2016

 delay increase is 4ms, the maximum is 16ms, and within that range
 QUIC exits slow start if the min_rtt within a round increases by more
 than ⅛ of the connection mi

5.10. RACK (draft)

 QUIC's loss detection is by it's time-ordered nature, very similar to
 RACK. Though QUIC defaults to loss detection based on reordering
 threshold in packets, it could just as easily be based on fractions
 of an rtt, as RACK does.

 n

 _rtt.

6. References

6.1. Normative References

 [RFC2119] Bradner, S., "Key Words for use in RFCs to Indicate
 Requirement Levels", March 1997.

6.2. Informative References

 [draft-hamilton-quic-transport-protocol]
 Hamilton, R., Iyengar, J., Swett, I., and A. Wilk, "QUIC:
 A UDP-Based Multiplexed and Secure Transport", July 2016.

Authors' Addresses

 Janardhan Iyengar
 Google

 Email: jri@google.com

 Ian Swett
 Google

 Email: ianswett@google.com

https://datatracker.ietf.org/doc/html/draft-hamilton-quic-transport-protocol

Iyengar & Swett Expires May 4, 2017 [Page 10]

