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The SPEKE Password-Based Key Agreement Methods

Status of this Memo

   This document is an Internet-Draft and is subject to all provisions
   of Section 10 of RFC2026.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

   The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Abstract

   This document describes the SPEKE, B-SPEKE, and W-SPEKE methods
   for password-based key agreement and authentication.  In the same
   category of techniques as EKE and SRP, these methods provide a zero-
   knowledge password proof and authenticate session keys over an
   unprotected channel, with minimal dependency on infrastructure and
   proper user behavior.  These methods are compatible with IEEE 1363
   and ANSI X9 standards and provide important options for convenient
   and secure personal authentication.
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1. Introduction

   This document describes SPEKE, B-SPEKE, and W-SPEKE, three methods
   that provide cryptographically strong password-based key agreement
   and network authentication.  These methods are in the same category
   as the earlier EKE [BM92] and later SRP [RFC2945] methods, but use
   some different techniques. Some advantages of these methods over SRP
   are slightly increased security and compatibility with IEEE 1363 and
   ANSI X9 cryptography standards.  An appendix highlights changes that
   can be made to an RFC 2945-compliant application or standard to use
   these as alternatives. Other documents may adapt these methods for
   specific applications.

Section 2 describes background and rationale for this class of
   method, where they were developed, what they do, and why.  Section 3
   describes the SPEKE methods in detail, and section 4 discusses method
   selection, parameter selectio, and other application issues. Two
   potentially relevant patents are listed in Section 6.

2. Background

   Convenient and secure personal authentication is important for many
   Internet applications.  People want their passwords to be easy to
   remember and type, and also secure.  But most earlier password
   systems offer insufficient protection against passive and active
   network attack on passwords.  While complex public key based
   infrastructures have evolved, they often still rely on a password as
   the human link.

   Some older systems fail by treating passwords as cryptographic keys,
   without any real ability to insure appropriate cryptographic quality
   for these values.  As such, they provide the option for either
   security or convenience, but not both at the same time.  Purely hash-
   based "challenge-response" techniques as described in [RFC2095] and
   [RFC1760], and various forms of Kerberos initial authentication
   [RFC1510], were designed to defeat simple sniffing attacks, but
   unfortunately use the password directly as a message authentication
   key, and can thus be compromised by exhaustive guessing or dictionary
   attack by one who obtains protocol messages [BM90].  Passwords often
   need to be simple, easy-to-remember, and easy-to-type, which means
   that they cannot safely be used like traditional encryption keys.

   Still other systems try to protect transmitted passwords by relying
   on a separate security infrastructure.  The password-thru-SSL
   approach as commonly used in web browsing is vulnerable to spoofing
   attacks.  These are not the result of weak cryptography, but rather,
   due to the generally weak concept of giving away a password to prove
   knowledge of it.  In so-called "tunnelled" protocols, the password

https://datatracker.ietf.org/doc/html/draft-jablon-speke-02.txt
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   may flow through a authenticated channel in which the sole act of
   server authentication is ignored or bypassed by a typical user.  When
   people must authenticate the server, but don't, their passwords are
   at risk.
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   Old methods for proving knowledge of a secret force disclosure of the
   secret from the prover to the verifier during each act. Such
   practices should be discouraged where non-disclosing zero-knowledge
   methods are available.

   Strong password methods, including SPEKE, were first discovered in
   the 1990's.  They use ephemeral public key techniques to securely
   bind people to keys, using a small or not-so-random password, and
   perform a zero-knowledge password proof (ZKPP), where each party
   proves to the other that it knows the password without revealing it
   to any party that doesn't already know it.   These methods also
   negotiate a mutually authenticated session key between the parties
   based on knowledge of the password.  This can happen over an
   unprotected network, without revealing the password or keys to
   attackers, requiring no certificates, no long-term sensitive data at
   the client, and minimal demands on the user.

   These benefits are attractive for providing secure and convenient
   personal authentication.  While these methods work with passwords
   alone, they are also used to provide secure mobility and credential
   provisioning in systems that use additional secret key or public key
   infrastructure.  Security is improved by reducing assumptions on
   proper user behavior and reducing dependencies on security
   infrastructure.

   SPEKE and other zero-knowledge password methods have been deployed in
   both academic and commercial settings.  SRP has been described in
   [RFC2944] and [RFC2945], and referenced in several Internet Drafts.
   These methods are also described in the proposed IEEE standard for
   password-based public key cryptography [P1363.2].

2.1  Summary of Features and Benefits

   SPEKE, B-SPEKE and W-SPEKE all perform mutual authentication and key
   agreement across an untrusted network while protecting passwords
   and negotiated authenticated keys.  These methods do not send any
   passwords or password-crackable data over the network; Instead they
   integrate the password into a standard Diffie-Hellman exchange in a
   way that negotiates a mutually authenticated key.

   Even with a password that is too small to serve as a cryptographic
   key, these methods prevent passive and active network attacks (man-
   in-the-middle, replay, etc.), as well as password-sniffing and
   unconstrained brute force attack from the network. These methods
   surpass the requirements in [RFC1704] for non-disclosing
   authentication protocols. Because both acts of user and server
   authentication are based on a common credential, and a step that the

https://datatracker.ietf.org/doc/html/draft-jablon-speke-02.txt
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   user can't forget to do, these methods are superior to tunnelled
   methods in common applications. ZKPP techniques prevent unnecessary
   password disclosures whether or not the authentication succeeds,
   defending against both simple accidents (typing the wrong password)
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   and malicious attacks (interception by a spoofed or compromised
   server).

   The methods are as efficient as a Diffie-Hellman key exchange (DH)
   computation, using any standard groups. The incorporation of DH
   provides the benefits of forward secrecy and so-called "backward
   secrecy", which are important for robust password changing protocols
   [Jas96] and for strong key management in general.

   These methods include both balanced and augmented password-based key
   agreement methods. SPEKE is a balanced method, in that both parties
   share identical password-derived data. B-SPEKE and W-SPEKE are
   augmented methods, typically used in client/server applications, in
   which a server stores password verification data derived from a one-
   way function of the client's password.  A thief that steals augmented
   password verification data from a server cannot use it to pose as the
   user in the protocol, without first "cracking" the password. W-SPEKE
   is comparable to SRP, with differences in structure, benefits, and
   limitations as described in section 4.2 and Appendix A.

   Two of these methods are compatible with standard Diffie-Hellman as
   described in [IEEE 1363] and [ANSI X9.42], and are also aligned with
   the emerging IEEE [P1363.2] standard for password-based cryptography
   (see section 4.5). Implementation requires little more than a hash
   function and big integer modular exponentiation. Use of alternative
   settings, such as elliptic curve groups [ANSI X9.63], is beyond the
   scope of this document.

   Methods in this class are particularly valuable for bootstrapping
   applications, where an initial act of personal authentication
   authorizes the download, transmission, or remote verification of
   private keys, certificates, and other sensitive configuration data.
   Personal key retrieval, so-called roaming applications, and general
   provisioning of keys are all ideal applications in both wired and
   wireless settings. Continued proliferation of ad-hoc password systems
   still remains a large problem on the Internet -- SPEKE and other
   zero-knowledge password methods provide an appropriate foundation for
   future consolidation and replacement of such ad-hoc systems.

2.2  Origin

   SPEKE stands for "Simple Password-authenticated Exponential Key
   Exchange", and was first published in [Jab96].  It has been reviewed,
   cited, and/or studied in many subsequent papers including [Jab97] and
   [MacK01b], and has been commercially deployed.  SPEKE is a "balanced"
   method, where two parties share an identical password-derived value
   that is used to derive and mutually authenticate a Diffie-Hellman
   key.

https://datatracker.ietf.org/doc/html/draft-jablon-speke-02.txt


   B-SPEKE, first published in [Jab97], is an augmented method, where
   the server's password verification data cannot be used directly by
   the client.
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   W-SPEKE is an augmented method that has similarities to both B-SPEKE
   and SRP [Wu98]. W-SPEKE was described as "SRP-4" in an earlier
   Internet draft and a submission to IEEE P1363.

   A brief comparison of some of these methods is in section 4.3, and
   lists of research papers are available in [P1363.2] and [ZKPPLinks].

3. Description

   This section describes the SPEKE, B-SPEKE, and W-SPEKE password-
   authenticated key agreement methods.  It begins with preliminary
   notation, conventions, and terminology in subsection 3.1, followed by
   a combined description of all three methods in 3.2.

3.1. Notation, Conventions, and Terminology

   This section describes the system parameters, notation, and data
   format conversion functions used in these methods.  The parameter
   notation is similar to RFC 2945, and the function names are aligned
   with IEEE 1363.

 3.1.1  Parameters

   The methods described here use multiplicative groups of integers,
   parameterized with the following values and functions:

      N     field modulus, a suitable 1024-bit prime of the form kq + 1
      q     prime order of the subgroup to be used, larger than 2^159
      k     the "co-factor", k=N-1/q.  It is recommended that all
            divisors of k/2 other than 1 be larger than q.
      hash  SHA-1, or an alternate suitable hash function
      kdf   KDF1-SHA1, as defined in [IEEE 1363], or an alternate
             suitable key derivation function

   Selection of suitable values is discussed in section 4.4.

 3.1.2  Notation

   In these descriptions, the | symbol denotes concatenation of byte
   strings.  All hash functions operate on and produce byte strings.

   The * and + operators denote integer multiplication and addition.
   The ^ and % operators denote integer exponentiation and the integer
   modular remainder operation.

   The / operator denotes integer division.

   The := operator denotes either a definition of a term or the function

https://datatracker.ietf.org/doc/html/draft-jablon-speke-02.txt
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   of assigning a value to a variable.
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   Note also that variables may be bracketed with '<' and '>' in the
   text for readability, but the brackets are often omitted in
   equations; Unambiguous uses of x and <x> refer to the same thing.

   "DH" stands for "Diffie-Hellman".  "DL" refers to the so-called
   discrete logarithm setting that uses a multiplicative group of
   integers.  ("EC" would refer to the elliptic curve setting.)

   SHA1() refers to the SHA-1 Secure Hash Algorithm, as defined in
   [SHA1]. <hash> is a hash function used to process passwords. <kdf> is
   a key derivation function used to derive authenticated keys.

   SHA1 may be used for both <hash> and <kdf>, although other suitable
   standard hash and key derivation functions are acceptable.

 3.1.3  Data Formats and Conversion

   The functions in this description are defined to operate on either
   byte strings or on unsigned big integers, with an implied standard
   conversion between these types of values.  The necessary conversion
   functions are specified in this section.

   The conversion functions used are OS2IP and FE2OSP as defined in
   [IEEE 1363]. OS2IP converts a byte string (or "octet string") into a
   non-negative integer, where the first byte represents the most
   significant 8 bits, presuming unsigned big-endian format.  FE2OSP
   converts a field element into a big-endian byte string, where high
   zero bytes are added as needed to make the length equal to the number
   of significant bytes in the field modulus N.  A field element is a
   big integer in the range [0,N-1], with no sign bit used in the
   encoding.

   For example, the computation "hash(x)^k % N" implies that the big
   integer value x is converted to a byte string before being hashed,
   and the hash output is converted from a byte string to a big integer
   prior to the modular exponentiation.  Thus, a long way to describe
   this step is "OS2FEP(hash(FE2OSP(x)))^k % N".

 3.1.4  Bits and Bytes

   Bit strings in this document (such as the input and output of hash
   functions) are always a multiple of 8 bits in length, and are treated
   as byte strings.  The high bit of a bit string is treated as the
   high-bit of the first byte of the corresponding byte string. Thus,
   the input to SHA1 is a byte string of arbitrary length less than 2^56
   bytes, and the 160-bit output is treated as a big-endian 20-byte
   string.

3.2  General Construction

https://datatracker.ietf.org/doc/html/draft-jablon-speke-02.txt


   This section describes the general construction of SPEKE, B-SPEKE and
   W-SPEKE.
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   When used in a client/server application, the authentication server
   must have access to a password repository (database or file) which
   associates a username or similar identifier with password
   verification data, and, optionally, a salt value.

   For SPEKE, password verification data can be any arbitrary byte
   string (designated as <x>) that preserves the randomness of the
   password and is available to both client and server.

   The parties must agree on which method to use, including domain
   parameters, hash, key derivation, and key confirmation functions.
   These values may be fixed in the implementation of the client and
   server. The parties must also initially agree on a password, and how
   they do that is beyond the scope of this document.

 3.2.1  Enrollment

   During enrollment of the user's credentials with a server, the
   password value x is hashed and converted to a value <g> that serves
   as password verification data.  <g> is in the range [1,N-1].  For
   B-SPEKE and W-SPEKE, the server's password verification data is a
   specially constructed pair of values {<g>,<v>}.

      SPEKE server stores:           { <username>, <g> [, <salt>] }
      B-SPEKE/W-SPEKE server stores: { <username>, <g>, <v> [, <salt>] }

   The value <g> is of order <q>. <v> is a standard DH public key
   corresponding to a base <g> raised to the power of password-derived
   DH private key <x>.  These methods also require that <x> cannot be
   derivable from <g>, which is enforced using a hash function to
   compute <g> from <x>.  These values are defined as follows:

      p := the password or other potentially small authenticator string
      x := any suitable derivation of <p> that preserves its randomness
      g := REDP(x), "REDP" is a random element derivation function
      v := g^x % N        (only used in B-SPEKE and W-SPEKE)

   Two suitable REDP functions [P1363.2] are:

      REDP-1(x) = hash(x)^k % N
      REDP-2(x) = (ga * gb^hash(x)) % N
             ga = REDP-1("Alice")
             gb = REDP-2("Bob")

   <ga> and <gb> are two arbitrary elements of order q that have no
   known exponential relationship to each other.

 3.2.2  Identification

https://datatracker.ietf.org/doc/html/draft-jablon-speke-02.txt


   To start the login process, the client typically sends a user name or
   identifier to the server, after which the server retrieves the stored
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   value of <g>, and optionally <v> and/or <salt> values that have been
   associated with the user's password. The server sends back any
   optional <salt>.

         Client                                          Server

         <username>  --------------->
                              get {g [,v] [,salt]} from storage
                                 <-------------------  [<salt>]

 3.2.3  Key Exchange

   The client computes <x> and <g> from the user's password and
   (optionally) the server-supplied <salt> or other parameters.
   Alternately, in a peer-to-peer application using SPEKE, both parties
   may compute <g> directly from the shared password.

   The client generates a secret random number <a> in the range [1,q-1],
   computes the remainder of raising <g> to the power <a> modulo the
   field prime <N>, and sends the result to the server.

   The server generates a secret random number <b> in the range [1,q-1],
   computes the remainder of raising <g> to the power <b> modulo the
   field prime <N>, and sends the result to the client.

         Client                                          Server

         a := random integer
         A := g^a % N
         A  ------------------------>
                                            b := random integer
                                                   B := g^b % N
                                 <--------------------------  B

   In the DL setting where <k> equals 2 or 2r and where all divisors of
   r other than 1 are greater than q, the value of <A> or <B> is defined
   to be unacceptable if it is not in the range [2,<N>-2] inclusive.
   When <B> is an unacceptable value, the client must abort before
   revealing any information derived from <B>.  When <A> is an
   unacceptable value, the server must abort before revealing any
   information derived from <A>.

   In general, for any DH group, acceptable values of <A> and <B> are
   those that generate a suitably large set of possible values for <S>,
   to preclude enumeration of the possible results by an attacker.

 3.2.4  Secret Value Derivation

   When a received value is valid, each party computes a secret byte

https://datatracker.ietf.org/doc/html/draft-jablon-speke-02.txt


   string <S> based on the appropriate computation as shown here:

         Client                                              Server
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   For SPEKE:
         S := B^a % N                                  S := A^b % N

   For BSPEKE:
         S := (B^a % N) | (B^x % N)      S := (A^b % N) | (v^b % N)

   For WSPEKE:
         u := hash(B) / (2^128)              u := hash(B) / (2^128)
         S := B^(a + u*x) % N                  S := (A * v^u)^b % N

   If the client has used the password that corresponds to the server's
   verification data, authentication is successful and both parties will
   share the same value for <S>.

 3.2.5  Key Derivation

   At this point, both parties can derive a set of one or more keys
   { K_1, K_2, ... } from the (hopefully) shared secret <S> using an
   appropriate key derivation function.  Any set of prefix-free distinct
   derivation parameters can be used to derive a set of distinct derived
   keys.  (See security note in 4.6.1.)

         K_i := kdf(S, <key derivation parameter i>)

   Note that none of these keys <K_i> can be determined by any third-
   party observer of <B> and <A>, and no second party can negotiate a
   matching <S> without using the correct password data.  Derived keys
   are useful for various purposes, such as for proving knowledge of <S>
   in key confirmation, and for use in generating secure session keys.

 3.2.6  Key Confirmation

   To complete the act of explicit mutual authentication, both parties
   prove to each other that their shared secret <S> values are
   identical.  They can use a key confirmation function (KCF) to derive
   a unique parameterized key from <S>, send the KCF output key to the
   other party, after which each party verifies the other's correct
   computation.

   One specific construction compatible with [P1363.2] also incorporates
   other shared secret and public values as shown here.  The client and
   server agree that the client will send KCF(<kcfParam1>), and the
   server will send KCF(kcfParam2).

         Client                                          Server

         K_1 := kcf(<kcfParam1>)        K_1 := kcf(<kcfParam1>)
         K_1 ----------------------->                verify K_1
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         K_2 := kcf(<kcfParam2>)        K_2 := kcf(<kcfParam2>)
         verify K_2               <------------------------ K_2
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      <kcfParam1> := hex byte 04
      <kcfParam2> := hex byte 03
      <kcf> := KCF1-SHA1

      KCF1-SHA1(<kcfParam>) := SHA1(<kcfParam> | A | B | S | g)

   The server computes its value for K_1 as a hash of its concatentated
   values for <kcfParam1>, A, B, S, and g, and then it compares its K_1
   value to the value of K_1 received from the client.  If they are not
   equal, the server must abort and signal an error.  The client
   performs the analogous procedure for verifying the server's K_2.

3.3  Message Ordering

   The message flows in these key agreement protocols do not necessarily
   have a one-to-one correspondence with application protocol messages.
   There are no special security constraints on message flows, so that
   they may be generally combined and arranged in any order that permits
   necessary computation and interoperability.

3.4  Compatibility with RFC 2945

   In RFC 2945, <g> is of order (N-1), but here <g> is of order <q>.

   For close alignment with RFC 2945, one can use the following specific
   definitions:

      p        := the raw password byte string
      username := byte string identifying the user
      salt     := a random byte string stored on the server
      x        := SHA1( <salt> | SHA1( <username> | ":" | <p> ) )

   The value <u> is a 32-bit unsigned integer equal to the high-order 32
   bits of SHA1(B), and is compatible with RFC 2945.

   The "Interleaved SHA1" key derivation function in RFC 2945 is not
   compatible with KDF1-SHA1 or other KDFs defined in [IEEE 1363].

4.  Method Selection and Application Notes

   SPEKE, B-SPEKE, and W-SPEKE are three similar but distinct methods.
   The general benefits of these and other zero-knowledge password
   methods over earlier techniques is reviewed in section 2. This
   section compares these and some other methods in the same category,
   and discusses issues to consider in choosing a specific method,
   selecting system parameters and primitive functions, and related
   application notes.
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   Flexibility may be desirable, as people have different opinions and
   relative priorities for efficiency, compatibility, security, and
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   licensing concerns in a variety of applications.  This section
   discusses technical criteria for selecting one method over another.
   Business issues may also be relevant, but are beyond the scope of
   this document.

4.1  W-SPEKE, B-SPEKE, and SRP

   W-SPEKE may be described as a variant of B-SPEKE that uses an
   optimized exponential computation from SRP.  W-SPEKE may also be seen
   as a variant of SRP with the following differences:

      *  Derives generator <g> from password, instead of <g>=2.
      *  Removes the +v and -v steps associated with <B>.
      *  <g> is of order <q>, instead of order N-1.
      *  Host stores <g>, along with <username> and <v>.
      *  Modified test for unacceptable A and B.

   The resulting limitations & benefits are:

      SRP                               W-SPEKE, B-SPEKE
      --------------------------------  --------------------------------
      Restrictions on message order     No restrictions on message order
      Not aligned with IEEE/ANSI        May use IEEE/ANSI DH primitives
      Two guesses per run [MacK01b]     One guess per run

   B-SPEKE has somewhat increased computation over W-SPEKE and an added
   password verification value <g> stored on the server as compared to
   SRP.

   See also Appendix A for a description of a form of W-SPEKE in the
   style of RFC 2945. Other changes between RFC 2945 and this document
   include additional background material and clarifications in
   presentation and safety recommendations.

   SRP and W-SPEKE use an additional security parameter in the
   construction of <u>, that is not present B-SPEKE (or SPEKE), which
   may merit additional study for some applications.

4.2  Balanced vs. Augmented Methods

   All of the SPEKE methods provide a strong basic level of protection
   against network attack for passwords and their authenticated keys.
   The augmented methods W-SPEKE and B-SPEKE provide the added benefit
   over SPEKE of permitting the host to store passwords in a form that
   is not directly useful to an attacker.  In an augmented system, even
   if the host's password database is stolen, the thief still needs to
   perform a successful guessing attack to determine the password in
   order to login. In either case, however, servers are still required
   to maintain secure storage of password verification data. References

https://datatracker.ietf.org/doc/html/draft-jablon-speke-02.txt
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   that discuss relative value of augmented methods are [Wu98], [Jab97],
   and [PK99], the latter providing reasons why the augmented benefit
   may not be necessary for key-retrieval applications.
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   SPEKE is the simplest, most efficient, and by some measures the most
   widely studied of the three.  These advantages warrant its use in
   applications that cannot obtain significant extra benefit from an
   augmented method.  It may also be preferred for client/server
   applications where the server cannot control the format of password
   verification data -- for example, where the server has access to
   clear-text passwords or passwords transformed with a legacy one-way
   function.

4.3  B-SPEKE vs. W-SPEKE

   W-SPEKE and B-SPEKE are both augmented methods that may provide an
   added benefit in client/server applications.  W-SPEKE combines the
   benefits of B-SPEKE with the computational efficiency boost of an
   optimized computation similar to that used in SRP. A factor that
   might favor B-SPEKE over W-SPEKE is conformance with IEEE 1363 and
   ANSI DH standards.

4.4  Parameter Selection

   This specification requires that the modulus <N> is, in general, any
   modulus that is suitable for a Diffie-Hellman key exchange.
   A suitable <N> is prime, defines a suitably large subgroup of prime
   order q (for compliance with standard DH in [IEEE 1363] and [ANSI
   X9.42]), and allows group elements to be checked for membership in a
   small subgroup. If there are any divisors of <k>/2 other than 1, it
   is recommended that they be larger than q.

   The modulus must also be one in which the parties can trust has not
   been specially crafted to provide advantages for an attacker.
   Construction methods and examples of verifiable primes suitable for
   SPEKE are defined in [RFC2412] and in [FIPS 186-2] Appendix 2.

   The random secret exponents <a> and <b> have length and quality
   constraints similar to any Diffie-Hellman exchange.  A common
   acceleration trick for DH, that applies here too, is to choose <a>
   and <b> from a range [1,t], where <t> is much smaller than <q>, but
   still sufficiently large. The general rule is for t to have enough
   bits to avoid a brute-force attack of order 2^(t/2). A typical value
   is t = 2^160 to preclude known attacks using 2^80 operations. Such
   security issues are discussed in [IEEE 1363]. This document
   recommends that <a> and <b> each contain at least 160 random bits.

   For the value <u> in W-SPEKE, implementors may choose to increase the
   length, as long as both client and server agree, but in general this
   document recommends that it not be shorter than 32 bits.  This value
   limits a thief who steals <g> and <v> (but hasn't cracked the
   password) to having no more than a 1 in 2^32 chance of being

https://datatracker.ietf.org/doc/html/draft-jablon-speke-02.txt
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   successful in a single run with a lucky random guess.
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4.5  Compatibility with Other Standards

   Compatibility and alignment with other existing standards promotes
   re-use of implementation components. Even when strict compatibility
   cannot be achieved, re-use of standard settings, primitives, and
   related functions may still encourage implementation compatibility
   and help provide assurance of security.

   These methods are aligned with the BPKAS-SPEKE, APKAS-BSPEKE, and
   APKAS-WSPEKE schemes as described in the IEEE proposed standard for
   password-based public key cryptography [P1363.2].

   These methods are also compatible with the settings, schemes, and
   primitives defined for Diffie-Hellman in [IEEE 1363] and the related
   [ANSI X9.42] and [ANSI X9.63] equivalents.  SPEKE, B-SPEKE and W-
   SPEKE in the DL and EC settings are compatible with the 1363
   EC/DLSVDP-DH primitives, and SPEKE and B-SPEKE are furthermore
   compatible with the EC/DLKAS-DH1 and EC/DLKAS-DH2 schemes.

   This document further shows where W-SPEKE is aligned with RFC 2945
   and where such alignment conflicts with other standards.  It
   maximizes consistency with RFC 2945, and the various Internet Drafts
   and other documents that reference it, to facilitate "drop-in"
   replacement of these methods for SRP.

4.6  Other Key Derivation and Hash Functions

   Standard DH1 and DH2 key agreement [IEEE 1363] specifies that the
   negotiated shared-secret field elements be converted to fixed-length
   byte strings using FE2OSP, and then processed through a standard key
   derivation function.  Examples using KDF1-SHA1 are shown here:

      SPEKE:  K_i = SHA1( FE2OSP(A^b % N) | <key derivation parameter> )
      BSPEKE: K_i = SHA1( FE2OSP(A^b % N) | FE2OSP(v^b % N) |
                          <key derivation parameter> )

   This document permits the key derivation function to be any suitable
   standard function, such as KDF1-SHA1, or other non-standard yet
   suitable functions, such as SHA_Interleave ([RFC2945] and Appendix

A).  Although SHA Interleave is not the preferred choice, we know of
   no security concern with it.  However, although this function
   attempts to preserve up to 320 bits of entropy in <S>, we note that
   the effective entropy in <S> is also limited by the entropy in <a>
   and <b>.

   Another well-studied alternative is the HMAC-SHA1 function [RFC2104]
   which is useful for deriving the keyed message authentication codes
   used in key confirmation.

https://datatracker.ietf.org/doc/html/draft-jablon-speke-02.txt
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   Any of these methods can be used with suitable alternative hash
   functions other than SHA-1, such as SHA-256, RIPEMD, and HMAC
   constructions.
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 4.6.1  Security Note

   To securely use any standard key derivation function, it is important
   that key derivation parameters be prefix-free, that is, no string
   should be a prefix substring of any other (as in "p1", "p2", ...
   "p10").  Using KDF1 with same-fixed-length strings or a length-
   containing encoding such as ASN.1 BER or DER is suggested (see [IEEE
   1363], D.5.1.4).

4.7  Key Confirmation Functions

   Alternate key confirmation functions may be desired in different
   applications.  For example RFC 2945 describes acceptable functions
   for key confirmation (also shown in Appendix A) that are not
   compatible with KCF1.

   Note that the protocol messages prior to key confirmation, such as
   the user name, are not integrity-protected, and as such parties must
   not rely on these values for security-sensitive purposes.  Including
   party identifiers in the key derivation parameter of a key
   confirmation message is one way to prevent identity confusion
   attacks.

   Many application security protocols include all previously shared
   messages as key derivation parameters in a key confirmation messages,
   just to be sure.

4.8  Salt

   The purpose of salt is to frustrate an attacker who may plan to build
   a generic dictionary of password verification data that corresponds
   to a set of likely passwords.  Such a dictionary could assist a
   database thief who steals <g> or <v> in a mass-cracking attack.  Salt
   forces such a dictionary to be built on a case-by-case basis.
   To be effective, salt must be incorporated into both <g> and <v> in
   the augmented methods W-SPEKE and B-SPEKE.

   Note that W-SPEKE incorporates salt in the computation of <A>,
   whereas in SRP3, salt is incorporated at a later stage.  This may
   affect consolidated forms of a server-salted protocol (see Appendix

A).

   In applications where the client sends <A> before contacting
   the server, a server-supplied salt cannot be incorporated into <x>.
   In such applications, one might alternately use a self-salting
   technique, such as by incorporating the username or servername in
   <x>.
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4.9  Iterated Hashing

   Using an iterated hash function in combination with any of these
   protocols can increase the required cracking effort for stolen
   password verification data.  For example, one may use:

      <p> := hash(hash(... hash(<password>) ...))
           ... for perhaps thousands of iterations

   However, in any case, security of the server password database
   remains a primary way to prevent unconstrained attack, whereas salt
   and iterated hashing are secondary backup defensive measures.

5. Security Considerations

   Security considerations are discussed throughout this document,
   including parameter selection, relevant cryptographic research, and
   comparison of these to other methods.

6. Intellectual Property Notice

   Phoenix Technologies Ltd. and Stanford University own patents that
   describe the SPEKE and SRP methods respectively.  For more
   information, including contact information for resolving questions,
   readers are referred to the IPR statements available at

http://www.ietf.org/ipr.html.
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Appendix A: An APKAS-WSPEKE mechanism
-------------------------------------

   This section describes a form of APKAS-WSPEKE employing SHA-1 to
   authenticate users and generate session keys.  This text is revised
   from section 3 of RFC 2945 (SRP), and is suitable for "diff"ing.

   The host stores user passwords as quartets of the form

      { <username>, <password generator>, <password verifier>, <salt> }

   Password entries are generated as follows:

      <salt> = random()
      x = SHA(<salt> | SHA(<username> | ":" | <raw password>))
      <password generator> = g = SHA(x)^2 % N
      <password verifier> = v = g^x % N

   The | symbol indicates string concatenation, the ^ operator is the
   exponentiation operation, and the % operator is the integer remainder
   operation.  Most implementations perform the exponentiation and
   remainder in a single stage to avoid generating unwieldy intermediate
   results.  Note that the 160-bit output of SHA is implicitly converted
   to an integer before it is operated upon.

   Authentication is generally initiated by the client.

      Client                             Host
     --------                           ------
      U = <username>              -->
                                  <--    s = <salt from passwd file>

   Upon identifying himself to the host, the client will receive the
   salt stored on the host under his username.

      a = random()
      x = SHA(s | SHA(U | ":" | p))
      g = SHA(x)^2 % N
      A = g^a % N                 -->
                                         g = <stored password generator>
                                         v = <stored password verifier>
                                         b = random()
                                  <--    B = g^b % N
      p = <raw password>

      S = B ^ (a + u * x) % N            S = (A * v^u) ^ b % N
      K = SHA_Interleave(S)              K = SHA_Interleave(S)
      (this function is described
       in section A.1)

https://datatracker.ietf.org/doc/html/draft-jablon-speke-02.txt
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   The client generates a random number a, computes x and g from the
   password, raises g to the power of random number a and reduces it
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   modulo the field prime, and sends the result to the host.  The host
   generates a random number b, raises g to the power of random number
   b and reduces it modulo the field prime, and sends the result to the
   client.  Both sides then construct the shared session key based on
   the respective formulae.

   The parameter u is a 32-bit unsigned integer which takes its value
   from the first 32 bits of the SHA1 hash of B, MSB first.

   The client MUST abort authentication if B is less than 2 or greater
   than N-2.

   The host MUST abort the authentication attempt if A is less than 2
   or greater than N-2.

   At this point, the client and server should have a common session key
   that is secure (i.e. not known to an outside party).  To finish
   authentication, they must prove to each other that their keys are
   identical.

      M = H(H(N) XOR H(g) | H(U) | s | A | B | K)
                                  -->
                                  <--    H(A | M | K)

   The server will calculate M using its own K and compare it against
   the client's response.  If they do not match, the server MUST abort
   and signal an error before it attempts to answer the client's
   challenge.

   If the server receives a correct response, it issues its own proof to
   the client.  The client will compute the expected response using its
   own K to verify the authenticity of the server.  If the client
   responded correctly, the server MUST respond with its hash value.

   The transactions in this protocol description do not necessarily have
   a one-to-one correspondence with actual protocol messages.  This
   description is only intended to illustrate the relationships between
   the different parameters and how they are computed.  It is possible,
   for example, for an implementation of the APKAS-WSPEKE-SHA1 mechanism
   to consolidate some of the flows as follows:

      Client                             Host
     --------                           ------
      U                           -->
                                  <--    s, B
      A, H(H(N) XOR H(g) | H(U) | s | A | B | K)
                                  -->
                                  <--    H(A | M | K)

https://datatracker.ietf.org/doc/html/draft-jablon-speke-02.txt


   (Note: In RFC 2945, A is sent along with U.  This consolidated
   W-SPEKE protocol sends A after receiving s, as A is derived from s.)
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   The value of N used in this protocol must be agreed upon by the
   two parties in question.  It can be set in advance, or the host
   can supply it to the client.  In the latter case, the host should
   send N in the first message along with the salt.  For
   maximum security, N should be a safe prime (i.e. a number of the form
   N = 2q + 1, where q is also prime), chosen in a random manner, and
   the client must have a means of assuring the suitability of N.
   Also, note that g is a generator of the group of order q,
   which means that for any element X in the group of order q,
   there exists a value x in the range [1,q] for which g^x % N == X.

A.1.  Interleaved SHA

   The SHA_Interleave function used in WSPEKE-SHA1 is used to generate a
   session key that is twice as long as the 160-bit output of SHA1.  To
   compute this function, remove all leading zero bytes from the input.
   If the length of the resulting string is odd, also remove the first
   byte.  Call the resulting string T.  Extract the even-numbered bytes
   into a string E and the odd-numbered bytes into a string F, i.e.

     E = T[0] | T[2] | T[4] | ...
     F = T[1] | T[3] | T[5] | ...

   Both E and F should be exactly half the length of T.  Hash each one
   with regular SHA1, i.e.

     G = SHA(E)
     H = SHA(F)

   Interleave the two hashes back together to form the output, i.e.

     result = G[0] | H[0] | G[1] | H[1] | ... | G[19] | H[19]

   The result will be 40 bytes (320 bits) long.

A.2.  Other Hash Algorithms

   W-SPEKE can be used with hash functions other than SHA.  If the hash
   function produces an output of a different length than SHA (20
   bytes), it may change the length of some of the messages in the
   protocol, but the fundamental operation will be unaffected.

   Earlier versions of the SRP mechanism used the MD5 hash function,
   described in [RFC 1321].  Keyed hash transforms are also recommended
   for use with SRP; one possible construction uses HMAC [RFC 2104],
   using K to key the hash in each direction instead of concatenating it
   with the other parameters.

   Any hash function used with SRP should produce an output of at least

https://datatracker.ietf.org/doc/html/draft-jablon-speke-02.txt
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc2104


   16 bytes and have the property that small changes in the input cause
   significant nonlinear changes in the output.  [Wu98] covers these
   issues in more depth.
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Appendix B: Extended FIPS 186-2 Prime Generation and Verification
-----------------------------------------------------------------

   This section describes an extension of the method to generate
   "kosherized" primes for DSA, as described in [FIPS186-2].  The FIPS
   method could be used to generate primes of the form p=2qr+1, but it
   was limited to 1024 bit p with 160 bit subgroup order q.  This
   extended method can generate larger p's and q's, and supports
   explicit options for requiring that r be prime, or r = 1, which are
   all useful for Diffie-Hellman, SPEKE, and related methods.  The
   option for prime r is fully compatible with the standard in that all
   primes p,q of suitable size generated by this method can be verified
   by any compliant implementation of FIPS 186-2.

B.1 Extended Method for Generation of Primes

   This method generates primes, p and q, satisfying the following three
   or four conditions:

      a. 2^(M-1) < q < 2^M for a specified M (e.g. M = 224)

      b. 2^(L-1) < p < 2^L for a specified L (e.g. L = 2048)

      c. q divides p - 1.

      d. (optionally) r is prime, where r = (p-1)/(2q).

   This method is a compatible extension of the DSA prime generation
   method specified in  FIPS 186-2 Appendix 2.2.  It is extended to
   generate values for q that are larger than 160 bits, to generate
   primes where p = 2q+1, and with the option to require that r is
   prime.

   This prime generation scheme starts by using the SHA-1 and a user
   supplied SEED to construct a prime, q, in the range 2^(M-1) < q< 2^M.
   Once this is accomplished, the same  SEED value is used to construct
   an X in the range 2^(L-1) < X < 2^L. The prime, p, is then formed by
   rounding X to a number congruent to 1 mod 2q as described below.

   An integer x in the range 0 <= x < 2g may be converted to a g-long
   sequence of bits by using its binary expansion as shown below:

      x = x[1]*2^(g-1) + x[2]*2^(g-2) + ... + x[g-1]*2 + x[g]
           -> { x[1],...,x[g] }.

   Conversely, a g-long sequence of bits { x1,...,xg } is converted to
   an integer by the rule

      { x[1],...,x[g] } -> x[1]*2^(g-1) + x[2]*2^(g-2) + ... +

https://datatracker.ietf.org/doc/html/draft-jablon-speke-02.txt


          x[g-1]*2 + x[g].
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   Note that the first bit of a sequence corresponds to the most
   significant bit of the corresponding integer and the last bit to the
   least significant bit.

   Let L - 1 = n*M + b, where both b and n are integers and 0 <= b < M.

      Step 1. Choose an arbitrary sequence of at least 160 bits and call
        it SEED. Let g be the length of SEED in bits.

      Step 2. Let z = (M+159) DIV 160.  DIV is defined as integer
        division. For i = 0,...,z-1 compute

           U[i] = SHA-1[SEED] XOR SHA-1[(SEED+1+i) mod 2^g ].

      Step 3. Let U be the integer

           U = (U[0] + U[1]*2^160 + ... + U[z-1]*(z-1)2^160) mod 2^M.

         Form q from U by setting the most significant bit(the 2^(M-1)
         bit) and the least significant bit to 1. In terms of boolean
         operations, q = U OR 2^(M-1) OR 1. Note that 2^(M-1) < q < 2^M.

      Step 4. Use a robust primality testing algorithm to test whether q
        is prime [footnote 1].  If M = L-1,  let p = 2q+1 and test
        whether p is prime.

      Step 5. If q is not prime, go to step 1.  If M = L-1, go to step 1
        if p is not prime and go to step 15 if p is prime.

      Step 6. Let counter = 0.  Let offset = 1 + z.

      Step 7. For k = 0,...,n let

           V[k] = SHA-1[(SEED + offset + k) mod 2^g ].

      Step 8. Let W be the integer

        W = V[0] + V[1]*2^160 + ... + V[n-1]*2^((n-1)*160) +
            (V[n] mod 2^b ) * 2^(n*160)

        and let X = W + 2^(L-1). Note that 0 <= W < 2^(L-1) and hence
        2^(L-1) <= X < 2^L.

      Step 9. Let c = X mod 2q and set p = X - (c - 1) and, if r must be
        prime, let r = X DIV 2q. Note that p is congruent to 1 mod 2q.

      Step 10. If p < 2^(L-1), then go to step 13.

      Step 11. Perform a robust primality test on p, and if r must be
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        prime, perform a robust  primality test on r.

      Step 12. If p passes the test performed in step 11, and if r must
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        be prime and r passes the  test, go to step 15.  If p passes the
        test and r must be prime, but r fails the test, go to  step 1.

      Step 13. Let counter = counter + 1 and offset = offset + n + 1.

      Step 14. If counter <= 2^12 = 4096 go to step 1, otherwise
        (i.e. if counter < 4096) go to step 7.

      Step 15. Save the value of SEED and the value of counter for use
        in certifying the proper generation of p and q.

B.2 Method for Verification of Primes

   FIPS 186-2 does not explicitly describe specific steps for verify
   that p and q have been generated properly.  There are two somewhat
   obvious ways this might be done, with one being faster than the
   other.  Both methods are described here, and both may be used to
   verify primes generated with either FIPS 186-2 or the extended
   method.

 B.2.1 Fast method

   Input: SEED, counter, p, q, and, if r must be prime, r.

   Perform the generation method described in FIPS 186-2 Appendix 2.2 or
   the extended method in A.1 above as appropriate with the following
   inputs and changes:

      Set L = the size of p, and (if extended) set M = the size of q and
      specify whether r must be prime.

      In Step 1, set the "arbitrary sequence" to the SEED value to be
      verified.

      Instead of Step 6, set counter equal to the counter value to be
      verified, and set offset = 1+z + counter*(n+1).  (Let z = 1 when
      not using the extended method.)

      After Step 11, stop.

   If the Step 11 tests for the values of p, q, and (optionally) r have
   all passed, and these values are the same as their corresponding
   input values, the values are verified.  Otherwise verification has
   failed.

 B.2.2 Slow method

   Note:  This method may be very slow, by performing a lot of
   unnecessary searching and testing of irrelevant values, particularly
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   in case of failure.  It is described primarily to show how to perform
   verification using an implementation of the generation method that
   does not allow one to specify an initial counter.
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   Input: SEED, counter, p, q, and, if r must be prime, r

   Perform the generation method described in FIPS 186-2 Appendix 2.2 or
   the extended method in A.1 above as appropriate with the following
   inputs:

      Set L = the size of p, and (if extended) set M = the size of q and
      specify whether r must be prime.

      In Step 1, set the "arbitrary sequence" to the SEED value to be
      verified.

   Compare the resulting values of SEED, counter, p, q, and (optionally)
   r to the input values.  If these values are the same, the values are
   verified.  Otherwise verification has failed.
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