
Network Working Group D. Jablon
Internet Draft Phoenix Technologies
draft-jablon-speke-02.txt October 22, 2003

The SPEKE Password-Based Key Agreement Methods

Status of this Memo

 This document is an Internet-Draft and is subject to all provisions
 of Section 10 of RFC2026.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Abstract

 This document describes the SPEKE, B-SPEKE, and W-SPEKE methods
 for password-based key agreement and authentication. In the same
 category of techniques as EKE and SRP, these methods provide a zero-
 knowledge password proof and authenticate session keys over an
 unprotected channel, with minimal dependency on infrastructure and
 proper user behavior. These methods are compatible with IEEE 1363
 and ANSI X9 standards and provide important options for convenient
 and secure personal authentication.

https://datatracker.ietf.org/doc/html/draft-jablon-speke-02.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Jablon [Page 1]

Internet-Draft draft-jablon-speke-02.txt October 22, 2002

Table of Contents

 Status of this Memo .. 1
 Abstract ... 1

1. Introduction .. 3
2. Background .. 3

2.1 Summary of Features and Benefits 4
2.3 Origin ... 5

3. Description ... 6
3.1. Notation, Conventions, and Terminology 6

3.1.1 Parameters .. 6
3.1.2 Notation .. 6
3.1.3 Data Formats and Conversion 7
3.1.4 Bits and Bytes 7

3.2 General Construction 7
3.2.1 Enrollment .. 8
3.2.2 Identification 8
3.2.3 Key Exchange .. 9
3.2.4 Secret Value Derivation 9
3.2.5 Key Derivation 10
3.2.6 Key Confirmation 10

3.3 Message Ordering ... 11
3.4 Compatibility with RFC 2945 11

4. Method Selection and Application Notes 11
4.1 W-SPEKE, B-SPEKE, and SRP 12
4.2 Balanced vs. Augmented Methods 12
4.3 B-SPEKE vs. W-SPEKE 13
4.4 Parameter Selection 13
4.5 Compatibility with Other Standards 14
4.6 Other Key Derivation and Hash Functions 14

4.6.1 Security Note 15
4.7 Key Confirmation Functions 15
4.8 Salt ... 15
4.9 Iterated Hashing ... 16

5. Security Considerations 16
6. Intellectual Property Notice 16

 References ... 17
 Author's Address ... 19
 Full Copyright Statement ... 19
 Acknowledgements ... 19

Appendix A: An APKAS-WSPEKE mechanism 20
A.1. Interleaved SHA ... 22
A.2. Other Hash Algorithms 22

Appendix B: Extended FIPS 186-2 Prime Generation and Verification..23
B.1 Extended Method for Generation of Primes 23
B.2 Method for Verification of Primes 25

B.2.1 Fast method .. 25
B.2.2 Slow method .. 25

https://datatracker.ietf.org/doc/html/draft-jablon-speke-02.txt
https://datatracker.ietf.org/doc/html/rfc2945

Jablon [Page 2]

Internet-Draft draft-jablon-speke-02.txt October 22, 2002

1. Introduction

 This document describes SPEKE, B-SPEKE, and W-SPEKE, three methods
 that provide cryptographically strong password-based key agreement
 and network authentication. These methods are in the same category
 as the earlier EKE [BM92] and later SRP [RFC2945] methods, but use
 some different techniques. Some advantages of these methods over SRP
 are slightly increased security and compatibility with IEEE 1363 and
 ANSI X9 cryptography standards. An appendix highlights changes that
 can be made to an RFC 2945-compliant application or standard to use
 these as alternatives. Other documents may adapt these methods for
 specific applications.

Section 2 describes background and rationale for this class of
 method, where they were developed, what they do, and why. Section 3
 describes the SPEKE methods in detail, and section 4 discusses method
 selection, parameter selectio, and other application issues. Two
 potentially relevant patents are listed in Section 6.

2. Background

 Convenient and secure personal authentication is important for many
 Internet applications. People want their passwords to be easy to
 remember and type, and also secure. But most earlier password
 systems offer insufficient protection against passive and active
 network attack on passwords. While complex public key based
 infrastructures have evolved, they often still rely on a password as
 the human link.

 Some older systems fail by treating passwords as cryptographic keys,
 without any real ability to insure appropriate cryptographic quality
 for these values. As such, they provide the option for either
 security or convenience, but not both at the same time. Purely hash-
 based "challenge-response" techniques as described in [RFC2095] and
 [RFC1760], and various forms of Kerberos initial authentication
 [RFC1510], were designed to defeat simple sniffing attacks, but
 unfortunately use the password directly as a message authentication
 key, and can thus be compromised by exhaustive guessing or dictionary
 attack by one who obtains protocol messages [BM90]. Passwords often
 need to be simple, easy-to-remember, and easy-to-type, which means
 that they cannot safely be used like traditional encryption keys.

 Still other systems try to protect transmitted passwords by relying
 on a separate security infrastructure. The password-thru-SSL
 approach as commonly used in web browsing is vulnerable to spoofing
 attacks. These are not the result of weak cryptography, but rather,
 due to the generally weak concept of giving away a password to prove
 knowledge of it. In so-called "tunnelled" protocols, the password

https://datatracker.ietf.org/doc/html/draft-jablon-speke-02.txt
https://datatracker.ietf.org/doc/html/rfc2945
https://datatracker.ietf.org/doc/html/rfc2945
https://datatracker.ietf.org/doc/html/rfc2095
https://datatracker.ietf.org/doc/html/rfc1760
https://datatracker.ietf.org/doc/html/rfc1510

 may flow through a authenticated channel in which the sole act of
 server authentication is ignored or bypassed by a typical user. When
 people must authenticate the server, but don't, their passwords are
 at risk.

Jablon [Page 3]

Internet-Draft draft-jablon-speke-02.txt October 22, 2002

 Old methods for proving knowledge of a secret force disclosure of the
 secret from the prover to the verifier during each act. Such
 practices should be discouraged where non-disclosing zero-knowledge
 methods are available.

 Strong password methods, including SPEKE, were first discovered in
 the 1990's. They use ephemeral public key techniques to securely
 bind people to keys, using a small or not-so-random password, and
 perform a zero-knowledge password proof (ZKPP), where each party
 proves to the other that it knows the password without revealing it
 to any party that doesn't already know it. These methods also
 negotiate a mutually authenticated session key between the parties
 based on knowledge of the password. This can happen over an
 unprotected network, without revealing the password or keys to
 attackers, requiring no certificates, no long-term sensitive data at
 the client, and minimal demands on the user.

 These benefits are attractive for providing secure and convenient
 personal authentication. While these methods work with passwords
 alone, they are also used to provide secure mobility and credential
 provisioning in systems that use additional secret key or public key
 infrastructure. Security is improved by reducing assumptions on
 proper user behavior and reducing dependencies on security
 infrastructure.

 SPEKE and other zero-knowledge password methods have been deployed in
 both academic and commercial settings. SRP has been described in
 [RFC2944] and [RFC2945], and referenced in several Internet Drafts.
 These methods are also described in the proposed IEEE standard for
 password-based public key cryptography [P1363.2].

2.1 Summary of Features and Benefits

 SPEKE, B-SPEKE and W-SPEKE all perform mutual authentication and key
 agreement across an untrusted network while protecting passwords
 and negotiated authenticated keys. These methods do not send any
 passwords or password-crackable data over the network; Instead they
 integrate the password into a standard Diffie-Hellman exchange in a
 way that negotiates a mutually authenticated key.

 Even with a password that is too small to serve as a cryptographic
 key, these methods prevent passive and active network attacks (man-
 in-the-middle, replay, etc.), as well as password-sniffing and
 unconstrained brute force attack from the network. These methods
 surpass the requirements in [RFC1704] for non-disclosing
 authentication protocols. Because both acts of user and server
 authentication are based on a common credential, and a step that the

https://datatracker.ietf.org/doc/html/draft-jablon-speke-02.txt
https://datatracker.ietf.org/doc/html/rfc2944
https://datatracker.ietf.org/doc/html/rfc2945
https://datatracker.ietf.org/doc/html/rfc1704

 user can't forget to do, these methods are superior to tunnelled
 methods in common applications. ZKPP techniques prevent unnecessary
 password disclosures whether or not the authentication succeeds,
 defending against both simple accidents (typing the wrong password)

Jablon [Page 4]

Internet-Draft draft-jablon-speke-02.txt October 22, 2002

 and malicious attacks (interception by a spoofed or compromised
 server).

 The methods are as efficient as a Diffie-Hellman key exchange (DH)
 computation, using any standard groups. The incorporation of DH
 provides the benefits of forward secrecy and so-called "backward
 secrecy", which are important for robust password changing protocols
 [Jas96] and for strong key management in general.

 These methods include both balanced and augmented password-based key
 agreement methods. SPEKE is a balanced method, in that both parties
 share identical password-derived data. B-SPEKE and W-SPEKE are
 augmented methods, typically used in client/server applications, in
 which a server stores password verification data derived from a one-
 way function of the client's password. A thief that steals augmented
 password verification data from a server cannot use it to pose as the
 user in the protocol, without first "cracking" the password. W-SPEKE
 is comparable to SRP, with differences in structure, benefits, and
 limitations as described in section 4.2 and Appendix A.

 Two of these methods are compatible with standard Diffie-Hellman as
 described in [IEEE 1363] and [ANSI X9.42], and are also aligned with
 the emerging IEEE [P1363.2] standard for password-based cryptography
 (see section 4.5). Implementation requires little more than a hash
 function and big integer modular exponentiation. Use of alternative
 settings, such as elliptic curve groups [ANSI X9.63], is beyond the
 scope of this document.

 Methods in this class are particularly valuable for bootstrapping
 applications, where an initial act of personal authentication
 authorizes the download, transmission, or remote verification of
 private keys, certificates, and other sensitive configuration data.
 Personal key retrieval, so-called roaming applications, and general
 provisioning of keys are all ideal applications in both wired and
 wireless settings. Continued proliferation of ad-hoc password systems
 still remains a large problem on the Internet -- SPEKE and other
 zero-knowledge password methods provide an appropriate foundation for
 future consolidation and replacement of such ad-hoc systems.

2.2 Origin

 SPEKE stands for "Simple Password-authenticated Exponential Key
 Exchange", and was first published in [Jab96]. It has been reviewed,
 cited, and/or studied in many subsequent papers including [Jab97] and
 [MacK01b], and has been commercially deployed. SPEKE is a "balanced"
 method, where two parties share an identical password-derived value
 that is used to derive and mutually authenticate a Diffie-Hellman
 key.

https://datatracker.ietf.org/doc/html/draft-jablon-speke-02.txt

 B-SPEKE, first published in [Jab97], is an augmented method, where
 the server's password verification data cannot be used directly by
 the client.

Jablon [Page 5]

Internet-Draft draft-jablon-speke-02.txt October 22, 2002

 W-SPEKE is an augmented method that has similarities to both B-SPEKE
 and SRP [Wu98]. W-SPEKE was described as "SRP-4" in an earlier
 Internet draft and a submission to IEEE P1363.

 A brief comparison of some of these methods is in section 4.3, and
 lists of research papers are available in [P1363.2] and [ZKPPLinks].

3. Description

 This section describes the SPEKE, B-SPEKE, and W-SPEKE password-
 authenticated key agreement methods. It begins with preliminary
 notation, conventions, and terminology in subsection 3.1, followed by
 a combined description of all three methods in 3.2.

3.1. Notation, Conventions, and Terminology

 This section describes the system parameters, notation, and data
 format conversion functions used in these methods. The parameter
 notation is similar to RFC 2945, and the function names are aligned
 with IEEE 1363.

 3.1.1 Parameters

 The methods described here use multiplicative groups of integers,
 parameterized with the following values and functions:

 N field modulus, a suitable 1024-bit prime of the form kq + 1
 q prime order of the subgroup to be used, larger than 2^159
 k the "co-factor", k=N-1/q. It is recommended that all
 divisors of k/2 other than 1 be larger than q.
 hash SHA-1, or an alternate suitable hash function
 kdf KDF1-SHA1, as defined in [IEEE 1363], or an alternate
 suitable key derivation function

 Selection of suitable values is discussed in section 4.4.

 3.1.2 Notation

 In these descriptions, the | symbol denotes concatenation of byte
 strings. All hash functions operate on and produce byte strings.

 The * and + operators denote integer multiplication and addition.
 The ^ and % operators denote integer exponentiation and the integer
 modular remainder operation.

 The / operator denotes integer division.

 The := operator denotes either a definition of a term or the function

https://datatracker.ietf.org/doc/html/draft-jablon-speke-02.txt
https://datatracker.ietf.org/doc/html/rfc2945

 of assigning a value to a variable.

Jablon [Page 6]

Internet-Draft draft-jablon-speke-02.txt October 22, 2002

 Note also that variables may be bracketed with '<' and '>' in the
 text for readability, but the brackets are often omitted in
 equations; Unambiguous uses of x and <x> refer to the same thing.

 "DH" stands for "Diffie-Hellman". "DL" refers to the so-called
 discrete logarithm setting that uses a multiplicative group of
 integers. ("EC" would refer to the elliptic curve setting.)

 SHA1() refers to the SHA-1 Secure Hash Algorithm, as defined in
 [SHA1]. <hash> is a hash function used to process passwords. <kdf> is
 a key derivation function used to derive authenticated keys.

 SHA1 may be used for both <hash> and <kdf>, although other suitable
 standard hash and key derivation functions are acceptable.

 3.1.3 Data Formats and Conversion

 The functions in this description are defined to operate on either
 byte strings or on unsigned big integers, with an implied standard
 conversion between these types of values. The necessary conversion
 functions are specified in this section.

 The conversion functions used are OS2IP and FE2OSP as defined in
 [IEEE 1363]. OS2IP converts a byte string (or "octet string") into a
 non-negative integer, where the first byte represents the most
 significant 8 bits, presuming unsigned big-endian format. FE2OSP
 converts a field element into a big-endian byte string, where high
 zero bytes are added as needed to make the length equal to the number
 of significant bytes in the field modulus N. A field element is a
 big integer in the range [0,N-1], with no sign bit used in the
 encoding.

 For example, the computation "hash(x)^k % N" implies that the big
 integer value x is converted to a byte string before being hashed,
 and the hash output is converted from a byte string to a big integer
 prior to the modular exponentiation. Thus, a long way to describe
 this step is "OS2FEP(hash(FE2OSP(x)))^k % N".

 3.1.4 Bits and Bytes

 Bit strings in this document (such as the input and output of hash
 functions) are always a multiple of 8 bits in length, and are treated
 as byte strings. The high bit of a bit string is treated as the
 high-bit of the first byte of the corresponding byte string. Thus,
 the input to SHA1 is a byte string of arbitrary length less than 2^56
 bytes, and the 160-bit output is treated as a big-endian 20-byte
 string.

3.2 General Construction

https://datatracker.ietf.org/doc/html/draft-jablon-speke-02.txt

 This section describes the general construction of SPEKE, B-SPEKE and
 W-SPEKE.

Jablon [Page 7]

Internet-Draft draft-jablon-speke-02.txt October 22, 2002

 When used in a client/server application, the authentication server
 must have access to a password repository (database or file) which
 associates a username or similar identifier with password
 verification data, and, optionally, a salt value.

 For SPEKE, password verification data can be any arbitrary byte
 string (designated as <x>) that preserves the randomness of the
 password and is available to both client and server.

 The parties must agree on which method to use, including domain
 parameters, hash, key derivation, and key confirmation functions.
 These values may be fixed in the implementation of the client and
 server. The parties must also initially agree on a password, and how
 they do that is beyond the scope of this document.

 3.2.1 Enrollment

 During enrollment of the user's credentials with a server, the
 password value x is hashed and converted to a value <g> that serves
 as password verification data. <g> is in the range [1,N-1]. For
 B-SPEKE and W-SPEKE, the server's password verification data is a
 specially constructed pair of values {<g>,<v>}.

 SPEKE server stores: { <username>, <g> [, <salt>] }
 B-SPEKE/W-SPEKE server stores: { <username>, <g>, <v> [, <salt>] }

 The value <g> is of order <q>. <v> is a standard DH public key
 corresponding to a base <g> raised to the power of password-derived
 DH private key <x>. These methods also require that <x> cannot be
 derivable from <g>, which is enforced using a hash function to
 compute <g> from <x>. These values are defined as follows:

 p := the password or other potentially small authenticator string
 x := any suitable derivation of <p> that preserves its randomness
 g := REDP(x), "REDP" is a random element derivation function
 v := g^x % N (only used in B-SPEKE and W-SPEKE)

 Two suitable REDP functions [P1363.2] are:

 REDP-1(x) = hash(x)^k % N
 REDP-2(x) = (ga * gb^hash(x)) % N
 ga = REDP-1("Alice")
 gb = REDP-2("Bob")

 <ga> and <gb> are two arbitrary elements of order q that have no
 known exponential relationship to each other.

 3.2.2 Identification

https://datatracker.ietf.org/doc/html/draft-jablon-speke-02.txt

 To start the login process, the client typically sends a user name or
 identifier to the server, after which the server retrieves the stored

Jablon [Page 8]

Internet-Draft draft-jablon-speke-02.txt October 22, 2002

 value of <g>, and optionally <v> and/or <salt> values that have been
 associated with the user's password. The server sends back any
 optional <salt>.

 Client Server

 <username> --------------->
 get {g [,v] [,salt]} from storage
 <------------------- [<salt>]

 3.2.3 Key Exchange

 The client computes <x> and <g> from the user's password and
 (optionally) the server-supplied <salt> or other parameters.
 Alternately, in a peer-to-peer application using SPEKE, both parties
 may compute <g> directly from the shared password.

 The client generates a secret random number <a> in the range [1,q-1],
 computes the remainder of raising <g> to the power <a> modulo the
 field prime <N>, and sends the result to the server.

 The server generates a secret random number in the range [1,q-1],
 computes the remainder of raising <g> to the power modulo the
 field prime <N>, and sends the result to the client.

 Client Server

 a := random integer
 A := g^a % N
 A ------------------------>
 b := random integer
 B := g^b % N
 <-------------------------- B

 In the DL setting where <k> equals 2 or 2r and where all divisors of
 r other than 1 are greater than q, the value of <A> or is defined
 to be unacceptable if it is not in the range [2,<N>-2] inclusive.
 When is an unacceptable value, the client must abort before
 revealing any information derived from . When <A> is an
 unacceptable value, the server must abort before revealing any
 information derived from <A>.

 In general, for any DH group, acceptable values of <A> and are
 those that generate a suitably large set of possible values for <S>,
 to preclude enumeration of the possible results by an attacker.

 3.2.4 Secret Value Derivation

 When a received value is valid, each party computes a secret byte

https://datatracker.ietf.org/doc/html/draft-jablon-speke-02.txt

 string <S> based on the appropriate computation as shown here:

 Client Server

Jablon [Page 9]

Internet-Draft draft-jablon-speke-02.txt October 22, 2002

 For SPEKE:
 S := B^a % N S := A^b % N

 For BSPEKE:
 S := (B^a % N) | (B^x % N) S := (A^b % N) | (v^b % N)

 For WSPEKE:
 u := hash(B) / (2^128) u := hash(B) / (2^128)
 S := B^(a + u*x) % N S := (A * v^u)^b % N

 If the client has used the password that corresponds to the server's
 verification data, authentication is successful and both parties will
 share the same value for <S>.

 3.2.5 Key Derivation

 At this point, both parties can derive a set of one or more keys
 { K_1, K_2, ... } from the (hopefully) shared secret <S> using an
 appropriate key derivation function. Any set of prefix-free distinct
 derivation parameters can be used to derive a set of distinct derived
 keys. (See security note in 4.6.1.)

 K_i := kdf(S, <key derivation parameter i>)

 Note that none of these keys <K_i> can be determined by any third-
 party observer of and <A>, and no second party can negotiate a
 matching <S> without using the correct password data. Derived keys
 are useful for various purposes, such as for proving knowledge of <S>
 in key confirmation, and for use in generating secure session keys.

 3.2.6 Key Confirmation

 To complete the act of explicit mutual authentication, both parties
 prove to each other that their shared secret <S> values are
 identical. They can use a key confirmation function (KCF) to derive
 a unique parameterized key from <S>, send the KCF output key to the
 other party, after which each party verifies the other's correct
 computation.

 One specific construction compatible with [P1363.2] also incorporates
 other shared secret and public values as shown here. The client and
 server agree that the client will send KCF(<kcfParam1>), and the
 server will send KCF(kcfParam2).

 Client Server

 K_1 := kcf(<kcfParam1>) K_1 := kcf(<kcfParam1>)
 K_1 -----------------------> verify K_1

https://datatracker.ietf.org/doc/html/draft-jablon-speke-02.txt

 K_2 := kcf(<kcfParam2>) K_2 := kcf(<kcfParam2>)
 verify K_2 <------------------------ K_2

Jablon [Page 10]

Internet-Draft draft-jablon-speke-02.txt October 22, 2002

 <kcfParam1> := hex byte 04
 <kcfParam2> := hex byte 03
 <kcf> := KCF1-SHA1

 KCF1-SHA1(<kcfParam>) := SHA1(<kcfParam> | A | B | S | g)

 The server computes its value for K_1 as a hash of its concatentated
 values for <kcfParam1>, A, B, S, and g, and then it compares its K_1
 value to the value of K_1 received from the client. If they are not
 equal, the server must abort and signal an error. The client
 performs the analogous procedure for verifying the server's K_2.

3.3 Message Ordering

 The message flows in these key agreement protocols do not necessarily
 have a one-to-one correspondence with application protocol messages.
 There are no special security constraints on message flows, so that
 they may be generally combined and arranged in any order that permits
 necessary computation and interoperability.

3.4 Compatibility with RFC 2945

 In RFC 2945, <g> is of order (N-1), but here <g> is of order <q>.

 For close alignment with RFC 2945, one can use the following specific
 definitions:

 p := the raw password byte string
 username := byte string identifying the user
 salt := a random byte string stored on the server
 x := SHA1(<salt> | SHA1(<username> | ":" | <p>))

 The value <u> is a 32-bit unsigned integer equal to the high-order 32
 bits of SHA1(B), and is compatible with RFC 2945.

 The "Interleaved SHA1" key derivation function in RFC 2945 is not
 compatible with KDF1-SHA1 or other KDFs defined in [IEEE 1363].

4. Method Selection and Application Notes

 SPEKE, B-SPEKE, and W-SPEKE are three similar but distinct methods.
 The general benefits of these and other zero-knowledge password
 methods over earlier techniques is reviewed in section 2. This
 section compares these and some other methods in the same category,
 and discusses issues to consider in choosing a specific method,
 selecting system parameters and primitive functions, and related
 application notes.

https://datatracker.ietf.org/doc/html/draft-jablon-speke-02.txt
https://datatracker.ietf.org/doc/html/rfc2945
https://datatracker.ietf.org/doc/html/rfc2945
https://datatracker.ietf.org/doc/html/rfc2945
https://datatracker.ietf.org/doc/html/rfc2945
https://datatracker.ietf.org/doc/html/rfc2945

 Flexibility may be desirable, as people have different opinions and
 relative priorities for efficiency, compatibility, security, and

Jablon [Page 11]

Internet-Draft draft-jablon-speke-02.txt October 22, 2002

 licensing concerns in a variety of applications. This section
 discusses technical criteria for selecting one method over another.
 Business issues may also be relevant, but are beyond the scope of
 this document.

4.1 W-SPEKE, B-SPEKE, and SRP

 W-SPEKE may be described as a variant of B-SPEKE that uses an
 optimized exponential computation from SRP. W-SPEKE may also be seen
 as a variant of SRP with the following differences:

 * Derives generator <g> from password, instead of <g>=2.
 * Removes the +v and -v steps associated with .
 * <g> is of order <q>, instead of order N-1.
 * Host stores <g>, along with <username> and <v>.
 * Modified test for unacceptable A and B.

 The resulting limitations & benefits are:

 SRP W-SPEKE, B-SPEKE
 -------------------------------- --------------------------------
 Restrictions on message order No restrictions on message order
 Not aligned with IEEE/ANSI May use IEEE/ANSI DH primitives
 Two guesses per run [MacK01b] One guess per run

 B-SPEKE has somewhat increased computation over W-SPEKE and an added
 password verification value <g> stored on the server as compared to
 SRP.

 See also Appendix A for a description of a form of W-SPEKE in the
 style of RFC 2945. Other changes between RFC 2945 and this document
 include additional background material and clarifications in
 presentation and safety recommendations.

 SRP and W-SPEKE use an additional security parameter in the
 construction of <u>, that is not present B-SPEKE (or SPEKE), which
 may merit additional study for some applications.

4.2 Balanced vs. Augmented Methods

 All of the SPEKE methods provide a strong basic level of protection
 against network attack for passwords and their authenticated keys.
 The augmented methods W-SPEKE and B-SPEKE provide the added benefit
 over SPEKE of permitting the host to store passwords in a form that
 is not directly useful to an attacker. In an augmented system, even
 if the host's password database is stolen, the thief still needs to
 perform a successful guessing attack to determine the password in
 order to login. In either case, however, servers are still required
 to maintain secure storage of password verification data. References

https://datatracker.ietf.org/doc/html/draft-jablon-speke-02.txt
https://datatracker.ietf.org/doc/html/rfc2945
https://datatracker.ietf.org/doc/html/rfc2945

 that discuss relative value of augmented methods are [Wu98], [Jab97],
 and [PK99], the latter providing reasons why the augmented benefit
 may not be necessary for key-retrieval applications.

Jablon [Page 12]

Internet-Draft draft-jablon-speke-02.txt October 22, 2002

 SPEKE is the simplest, most efficient, and by some measures the most
 widely studied of the three. These advantages warrant its use in
 applications that cannot obtain significant extra benefit from an
 augmented method. It may also be preferred for client/server
 applications where the server cannot control the format of password
 verification data -- for example, where the server has access to
 clear-text passwords or passwords transformed with a legacy one-way
 function.

4.3 B-SPEKE vs. W-SPEKE

 W-SPEKE and B-SPEKE are both augmented methods that may provide an
 added benefit in client/server applications. W-SPEKE combines the
 benefits of B-SPEKE with the computational efficiency boost of an
 optimized computation similar to that used in SRP. A factor that
 might favor B-SPEKE over W-SPEKE is conformance with IEEE 1363 and
 ANSI DH standards.

4.4 Parameter Selection

 This specification requires that the modulus <N> is, in general, any
 modulus that is suitable for a Diffie-Hellman key exchange.
 A suitable <N> is prime, defines a suitably large subgroup of prime
 order q (for compliance with standard DH in [IEEE 1363] and [ANSI
 X9.42]), and allows group elements to be checked for membership in a
 small subgroup. If there are any divisors of <k>/2 other than 1, it
 is recommended that they be larger than q.

 The modulus must also be one in which the parties can trust has not
 been specially crafted to provide advantages for an attacker.
 Construction methods and examples of verifiable primes suitable for
 SPEKE are defined in [RFC2412] and in [FIPS 186-2] Appendix 2.

 The random secret exponents <a> and have length and quality
 constraints similar to any Diffie-Hellman exchange. A common
 acceleration trick for DH, that applies here too, is to choose <a>
 and from a range [1,t], where <t> is much smaller than <q>, but
 still sufficiently large. The general rule is for t to have enough
 bits to avoid a brute-force attack of order 2^(t/2). A typical value
 is t = 2^160 to preclude known attacks using 2^80 operations. Such
 security issues are discussed in [IEEE 1363]. This document
 recommends that <a> and each contain at least 160 random bits.

 For the value <u> in W-SPEKE, implementors may choose to increase the
 length, as long as both client and server agree, but in general this
 document recommends that it not be shorter than 32 bits. This value
 limits a thief who steals <g> and <v> (but hasn't cracked the
 password) to having no more than a 1 in 2^32 chance of being

https://datatracker.ietf.org/doc/html/draft-jablon-speke-02.txt
https://datatracker.ietf.org/doc/html/rfc2412

 successful in a single run with a lucky random guess.

Jablon [Page 13]

Internet-Draft draft-jablon-speke-02.txt October 22, 2002

4.5 Compatibility with Other Standards

 Compatibility and alignment with other existing standards promotes
 re-use of implementation components. Even when strict compatibility
 cannot be achieved, re-use of standard settings, primitives, and
 related functions may still encourage implementation compatibility
 and help provide assurance of security.

 These methods are aligned with the BPKAS-SPEKE, APKAS-BSPEKE, and
 APKAS-WSPEKE schemes as described in the IEEE proposed standard for
 password-based public key cryptography [P1363.2].

 These methods are also compatible with the settings, schemes, and
 primitives defined for Diffie-Hellman in [IEEE 1363] and the related
 [ANSI X9.42] and [ANSI X9.63] equivalents. SPEKE, B-SPEKE and W-
 SPEKE in the DL and EC settings are compatible with the 1363
 EC/DLSVDP-DH primitives, and SPEKE and B-SPEKE are furthermore
 compatible with the EC/DLKAS-DH1 and EC/DLKAS-DH2 schemes.

 This document further shows where W-SPEKE is aligned with RFC 2945
 and where such alignment conflicts with other standards. It
 maximizes consistency with RFC 2945, and the various Internet Drafts
 and other documents that reference it, to facilitate "drop-in"
 replacement of these methods for SRP.

4.6 Other Key Derivation and Hash Functions

 Standard DH1 and DH2 key agreement [IEEE 1363] specifies that the
 negotiated shared-secret field elements be converted to fixed-length
 byte strings using FE2OSP, and then processed through a standard key
 derivation function. Examples using KDF1-SHA1 are shown here:

 SPEKE: K_i = SHA1(FE2OSP(A^b % N) | <key derivation parameter>)
 BSPEKE: K_i = SHA1(FE2OSP(A^b % N) | FE2OSP(v^b % N) |
 <key derivation parameter>)

 This document permits the key derivation function to be any suitable
 standard function, such as KDF1-SHA1, or other non-standard yet
 suitable functions, such as SHA_Interleave ([RFC2945] and Appendix

A). Although SHA Interleave is not the preferred choice, we know of
 no security concern with it. However, although this function
 attempts to preserve up to 320 bits of entropy in <S>, we note that
 the effective entropy in <S> is also limited by the entropy in <a>
 and .

 Another well-studied alternative is the HMAC-SHA1 function [RFC2104]
 which is useful for deriving the keyed message authentication codes
 used in key confirmation.

https://datatracker.ietf.org/doc/html/draft-jablon-speke-02.txt
https://datatracker.ietf.org/doc/html/rfc2945
https://datatracker.ietf.org/doc/html/rfc2945
https://datatracker.ietf.org/doc/html/rfc2945
https://datatracker.ietf.org/doc/html/rfc2104

 Any of these methods can be used with suitable alternative hash
 functions other than SHA-1, such as SHA-256, RIPEMD, and HMAC
 constructions.

Jablon [Page 14]

Internet-Draft draft-jablon-speke-02.txt October 22, 2002

 4.6.1 Security Note

 To securely use any standard key derivation function, it is important
 that key derivation parameters be prefix-free, that is, no string
 should be a prefix substring of any other (as in "p1", "p2", ...
 "p10"). Using KDF1 with same-fixed-length strings or a length-
 containing encoding such as ASN.1 BER or DER is suggested (see [IEEE
 1363], D.5.1.4).

4.7 Key Confirmation Functions

 Alternate key confirmation functions may be desired in different
 applications. For example RFC 2945 describes acceptable functions
 for key confirmation (also shown in Appendix A) that are not
 compatible with KCF1.

 Note that the protocol messages prior to key confirmation, such as
 the user name, are not integrity-protected, and as such parties must
 not rely on these values for security-sensitive purposes. Including
 party identifiers in the key derivation parameter of a key
 confirmation message is one way to prevent identity confusion
 attacks.

 Many application security protocols include all previously shared
 messages as key derivation parameters in a key confirmation messages,
 just to be sure.

4.8 Salt

 The purpose of salt is to frustrate an attacker who may plan to build
 a generic dictionary of password verification data that corresponds
 to a set of likely passwords. Such a dictionary could assist a
 database thief who steals <g> or <v> in a mass-cracking attack. Salt
 forces such a dictionary to be built on a case-by-case basis.
 To be effective, salt must be incorporated into both <g> and <v> in
 the augmented methods W-SPEKE and B-SPEKE.

 Note that W-SPEKE incorporates salt in the computation of <A>,
 whereas in SRP3, salt is incorporated at a later stage. This may
 affect consolidated forms of a server-salted protocol (see Appendix

A).

 In applications where the client sends <A> before contacting
 the server, a server-supplied salt cannot be incorporated into <x>.
 In such applications, one might alternately use a self-salting
 technique, such as by incorporating the username or servername in
 <x>.

https://datatracker.ietf.org/doc/html/draft-jablon-speke-02.txt
https://datatracker.ietf.org/doc/html/rfc2945

Jablon [Page 15]

Internet-Draft draft-jablon-speke-02.txt October 22, 2002

4.9 Iterated Hashing

 Using an iterated hash function in combination with any of these
 protocols can increase the required cracking effort for stolen
 password verification data. For example, one may use:

 <p> := hash(hash(... hash(<password>) ...))
 ... for perhaps thousands of iterations

 However, in any case, security of the server password database
 remains a primary way to prevent unconstrained attack, whereas salt
 and iterated hashing are secondary backup defensive measures.

5. Security Considerations

 Security considerations are discussed throughout this document,
 including parameter selection, relevant cryptographic research, and
 comparison of these to other methods.

6. Intellectual Property Notice

 Phoenix Technologies Ltd. and Stanford University own patents that
 describe the SPEKE and SRP methods respectively. For more
 information, including contact information for resolving questions,
 readers are referred to the IPR statements available at

http://www.ietf.org/ipr.html.

https://datatracker.ietf.org/doc/html/draft-jablon-speke-02.txt
http://www.ietf.org/ipr.html

Jablon [Page 16]

Internet-Draft draft-jablon-speke-02.txt October 22, 2002

References

 [ANSI X9.42] ANSI X9.42-2001, "Public Key Cryptography for the
 Financial Services Industry: Agreement of Symmetric Keys
 Using Discrete Logarithm Cryptography", ANSI, 2001.

 [ANSI X9.63] ANSI X9.63-2001, "Public Key Cryptography for the
 Financial Services Industry, Key Agreement and Key
 Transport Using Elliptic Curve Cryptography", ANSI,
 2001.

 [BM90] Bellovin, S., and M. Merritt, "Limitations of the
 Kerberos Authentication System", ACM Computer
 Communications Review, October 1990.

 [BM92] Bellovin, S., and M. Merritt, "Encrypted Key Exchange:
 Password-Based Protocols Secure Against Dictionary
 Attacks", Proceedings of the I.E.E.E. Symposium on
 Research in Security and Privacy, Oakland, May 1992.

 [FIPS 186-2] FIPS 186-2, Digital Signature Standard, NIST.

 [IEEE 1363] IEEE Std 1363-2000, "IEEE Standard Specifications for
 Public-Key Cryptography 2000", IEEE, 2000.

 [Jab96] Jablon, D., "Strong Password-Only Authenticated Key
 Exchange", Computer Communication Review, ACM SIGCOMM,
 vol. 26, no. 5, pp. 5-26, October 1996.

 [Jab97] Jablon, D., "Extended Password Key Exchange Protocols
 Immune to Dictionary Attacks", Proceedings of the Sixth
 Workshops on Enabling Technologies: Infrastructure for
 Collaborative Enterprises (WET-ICE '97), IEEE Computer
 Society, June 18-20, 1997, Cambridge, MA, pp. 248-255.

 [Jas96] B. Jaspan, Dual-workfactor Encrypted Key Exchange:
 Efficiently Preventing Password Chaining and Dictionary
 Attacks, Proceedings of the Sixth Annual USENIX Security
 Conference, July 1996, pp. 43-50.

 [RFC1510] Kohl, J., and C. Neuman, "The Kerberos Network
 Authentication Service (V5)", RFC 1510, Digital
 Equipment Corporation, USC/Information Sciences
 Institute, September 1993.

 [MacK01b] MacKenzie, P., "On the Security of the SPEKE Password-
 Authenticated Key Exchange Protocol", Cryptology ePrint
 Archive: Report 2001/057,
 <http://eprint.iacr.org/2001/057/>.

https://datatracker.ietf.org/doc/html/draft-jablon-speke-02.txt
https://datatracker.ietf.org/doc/html/rfc1510
http://eprint.iacr.org/2001/057/

Jablon [Page 17]

Internet-Draft draft-jablon-speke-02.txt October 22, 2002

 [P1363.2] IEEE P1363.2, "Standard Specifications for Public-Key
 Cryptography: Password-Based Techniques", (work in
 progress), IEEE, <http://grouper.ieee.org/groups/1363/>.

 [PK99] Perlman, R. and C. Kaufman, "Secure Password-Based
 Protocol for Downloading a Private Key", Proceedings of
 the 1999 Network and Distributed System Security,
 February 3-5, 1999.

 [RFC1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC
1321, April 1992.

 [RFC1704] Haller, N. and R. Atkinson, "On Internet
 Authentication", RFC 1704, October 1994.

 [RFC1760] Haller, N., "The S/Key One-Time Password System", RFC
1760, Feburary 1995.

 [RFC2095] Klensin, J., Catoe, R. and P. Krumviede, "IMAP/POP
 AUTHorize Extension for Simple Challenge/Response", RFC

2095, January 1997.

 [RFC2104] Krawczyk, H., Bellare, M. and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104, February
 1997.

 [RFC2944] T. Wu, "Telnet Authentication: SRP", RFC 2944, September
 2000.

 [RFC2945] T. Wu, "The SRP Authentication and Key Exchange System",
RFC 2945, September 2000.

 [SHA1] National Institute of Standards and Technology (NIST),
 "Announcing the Secure Hash Standard", FIPS 180-1, U.S.
 Department of Commerce, April 1995.

 [Wu98] T. Wu, "The Secure Remote Password Protocol", In
 Proceedings of the 1998 Internet Society Symposium on
 Network and Distributed Systems Security, San Diego, CA,
 pp. 97-111.

 [ZKPPLinks] "Research Papers on Strong Password Authentication",
 <http://www.integritysciences.com/links.html>.

https://datatracker.ietf.org/doc/html/draft-jablon-speke-02.txt
http://grouper.ieee.org/groups/1363/
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc1704
https://datatracker.ietf.org/doc/html/rfc1760
https://datatracker.ietf.org/doc/html/rfc1760
https://datatracker.ietf.org/doc/html/rfc2095
https://datatracker.ietf.org/doc/html/rfc2095
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc2944
https://datatracker.ietf.org/doc/html/rfc2945
http://www.integritysciences.com/links.html

Jablon [Page 18]

Internet-Draft draft-jablon-speke-02.txt October 22, 2002

Author's Address

 David Jablon
 Phoenix Technologies Ltd.
 320 Norwood Park South
 Norwood, MA 02062

 EMail: david_jablon at phoenix.com

Full Copyright Statement

 Copyright (C) The Internet Society (2002). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgements

 The author thanks Paul Funk, Nora Hanley, Jim Walker, and Tom Wu for
 their review and thoughtful comments on earlier drafts. This
 document includes significant material derived from RFC 2945. The
 author is also grateful for the encouragement and advice from Steve
 Bellovin and Michael Wiener during the initial refinement of these
 methods.

https://datatracker.ietf.org/doc/html/draft-jablon-speke-02.txt
https://datatracker.ietf.org/doc/html/rfc2945

Jablon [Page 19]

Internet-Draft draft-jablon-speke-02.txt October 22, 2002

Appendix A: An APKAS-WSPEKE mechanism

 This section describes a form of APKAS-WSPEKE employing SHA-1 to
 authenticate users and generate session keys. This text is revised
 from section 3 of RFC 2945 (SRP), and is suitable for "diff"ing.

 The host stores user passwords as quartets of the form

 { <username>, <password generator>, <password verifier>, <salt> }

 Password entries are generated as follows:

 <salt> = random()
 x = SHA(<salt> | SHA(<username> | ":" | <raw password>))
 <password generator> = g = SHA(x)^2 % N
 <password verifier> = v = g^x % N

 The | symbol indicates string concatenation, the ^ operator is the
 exponentiation operation, and the % operator is the integer remainder
 operation. Most implementations perform the exponentiation and
 remainder in a single stage to avoid generating unwieldy intermediate
 results. Note that the 160-bit output of SHA is implicitly converted
 to an integer before it is operated upon.

 Authentication is generally initiated by the client.

 Client Host
 -------- ------
 U = <username> -->
 <-- s = <salt from passwd file>

 Upon identifying himself to the host, the client will receive the
 salt stored on the host under his username.

 a = random()
 x = SHA(s | SHA(U | ":" | p))
 g = SHA(x)^2 % N
 A = g^a % N -->
 g = <stored password generator>
 v = <stored password verifier>
 b = random()
 <-- B = g^b % N
 p = <raw password>

 S = B ^ (a + u * x) % N S = (A * v^u) ^ b % N
 K = SHA_Interleave(S) K = SHA_Interleave(S)
 (this function is described
 in section A.1)

https://datatracker.ietf.org/doc/html/draft-jablon-speke-02.txt
https://datatracker.ietf.org/doc/html/rfc2945#section-3

 The client generates a random number a, computes x and g from the
 password, raises g to the power of random number a and reduces it

Jablon [Page 20]

Internet-Draft draft-jablon-speke-02.txt October 22, 2002

 modulo the field prime, and sends the result to the host. The host
 generates a random number b, raises g to the power of random number
 b and reduces it modulo the field prime, and sends the result to the
 client. Both sides then construct the shared session key based on
 the respective formulae.

 The parameter u is a 32-bit unsigned integer which takes its value
 from the first 32 bits of the SHA1 hash of B, MSB first.

 The client MUST abort authentication if B is less than 2 or greater
 than N-2.

 The host MUST abort the authentication attempt if A is less than 2
 or greater than N-2.

 At this point, the client and server should have a common session key
 that is secure (i.e. not known to an outside party). To finish
 authentication, they must prove to each other that their keys are
 identical.

 M = H(H(N) XOR H(g) | H(U) | s | A | B | K)
 -->
 <-- H(A | M | K)

 The server will calculate M using its own K and compare it against
 the client's response. If they do not match, the server MUST abort
 and signal an error before it attempts to answer the client's
 challenge.

 If the server receives a correct response, it issues its own proof to
 the client. The client will compute the expected response using its
 own K to verify the authenticity of the server. If the client
 responded correctly, the server MUST respond with its hash value.

 The transactions in this protocol description do not necessarily have
 a one-to-one correspondence with actual protocol messages. This
 description is only intended to illustrate the relationships between
 the different parameters and how they are computed. It is possible,
 for example, for an implementation of the APKAS-WSPEKE-SHA1 mechanism
 to consolidate some of the flows as follows:

 Client Host
 -------- ------
 U -->
 <-- s, B
 A, H(H(N) XOR H(g) | H(U) | s | A | B | K)
 -->
 <-- H(A | M | K)

https://datatracker.ietf.org/doc/html/draft-jablon-speke-02.txt

 (Note: In RFC 2945, A is sent along with U. This consolidated
 W-SPEKE protocol sends A after receiving s, as A is derived from s.)

Jablon [Page 21]

https://datatracker.ietf.org/doc/html/rfc2945

Internet-Draft draft-jablon-speke-02.txt October 22, 2002

 The value of N used in this protocol must be agreed upon by the
 two parties in question. It can be set in advance, or the host
 can supply it to the client. In the latter case, the host should
 send N in the first message along with the salt. For
 maximum security, N should be a safe prime (i.e. a number of the form
 N = 2q + 1, where q is also prime), chosen in a random manner, and
 the client must have a means of assuring the suitability of N.
 Also, note that g is a generator of the group of order q,
 which means that for any element X in the group of order q,
 there exists a value x in the range [1,q] for which g^x % N == X.

A.1. Interleaved SHA

 The SHA_Interleave function used in WSPEKE-SHA1 is used to generate a
 session key that is twice as long as the 160-bit output of SHA1. To
 compute this function, remove all leading zero bytes from the input.
 If the length of the resulting string is odd, also remove the first
 byte. Call the resulting string T. Extract the even-numbered bytes
 into a string E and the odd-numbered bytes into a string F, i.e.

 E = T[0] | T[2] | T[4] | ...
 F = T[1] | T[3] | T[5] | ...

 Both E and F should be exactly half the length of T. Hash each one
 with regular SHA1, i.e.

 G = SHA(E)
 H = SHA(F)

 Interleave the two hashes back together to form the output, i.e.

 result = G[0] | H[0] | G[1] | H[1] | ... | G[19] | H[19]

 The result will be 40 bytes (320 bits) long.

A.2. Other Hash Algorithms

 W-SPEKE can be used with hash functions other than SHA. If the hash
 function produces an output of a different length than SHA (20
 bytes), it may change the length of some of the messages in the
 protocol, but the fundamental operation will be unaffected.

 Earlier versions of the SRP mechanism used the MD5 hash function,
 described in [RFC 1321]. Keyed hash transforms are also recommended
 for use with SRP; one possible construction uses HMAC [RFC 2104],
 using K to key the hash in each direction instead of concatenating it
 with the other parameters.

 Any hash function used with SRP should produce an output of at least

https://datatracker.ietf.org/doc/html/draft-jablon-speke-02.txt
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc2104

 16 bytes and have the property that small changes in the input cause
 significant nonlinear changes in the output. [Wu98] covers these
 issues in more depth.

Jablon [Page 22]

Internet-Draft draft-jablon-speke-02.txt October 22, 2002

Appendix B: Extended FIPS 186-2 Prime Generation and Verification

 This section describes an extension of the method to generate
 "kosherized" primes for DSA, as described in [FIPS186-2]. The FIPS
 method could be used to generate primes of the form p=2qr+1, but it
 was limited to 1024 bit p with 160 bit subgroup order q. This
 extended method can generate larger p's and q's, and supports
 explicit options for requiring that r be prime, or r = 1, which are
 all useful for Diffie-Hellman, SPEKE, and related methods. The
 option for prime r is fully compatible with the standard in that all
 primes p,q of suitable size generated by this method can be verified
 by any compliant implementation of FIPS 186-2.

B.1 Extended Method for Generation of Primes

 This method generates primes, p and q, satisfying the following three
 or four conditions:

 a. 2^(M-1) < q < 2^M for a specified M (e.g. M = 224)

 b. 2^(L-1) < p < 2^L for a specified L (e.g. L = 2048)

 c. q divides p - 1.

 d. (optionally) r is prime, where r = (p-1)/(2q).

 This method is a compatible extension of the DSA prime generation
 method specified in FIPS 186-2 Appendix 2.2. It is extended to
 generate values for q that are larger than 160 bits, to generate
 primes where p = 2q+1, and with the option to require that r is
 prime.

 This prime generation scheme starts by using the SHA-1 and a user
 supplied SEED to construct a prime, q, in the range 2^(M-1) < q< 2^M.
 Once this is accomplished, the same SEED value is used to construct
 an X in the range 2^(L-1) < X < 2^L. The prime, p, is then formed by
 rounding X to a number congruent to 1 mod 2q as described below.

 An integer x in the range 0 <= x < 2g may be converted to a g-long
 sequence of bits by using its binary expansion as shown below:

 x = x[1]*2^(g-1) + x[2]*2^(g-2) + ... + x[g-1]*2 + x[g]
 -> { x[1],...,x[g] }.

 Conversely, a g-long sequence of bits { x1,...,xg } is converted to
 an integer by the rule

 { x[1],...,x[g] } -> x[1]*2^(g-1) + x[2]*2^(g-2) + ... +

https://datatracker.ietf.org/doc/html/draft-jablon-speke-02.txt

 x[g-1]*2 + x[g].

Jablon [Page 23]

Internet-Draft draft-jablon-speke-02.txt October 22, 2002

 Note that the first bit of a sequence corresponds to the most
 significant bit of the corresponding integer and the last bit to the
 least significant bit.

 Let L - 1 = n*M + b, where both b and n are integers and 0 <= b < M.

 Step 1. Choose an arbitrary sequence of at least 160 bits and call
 it SEED. Let g be the length of SEED in bits.

 Step 2. Let z = (M+159) DIV 160. DIV is defined as integer
 division. For i = 0,...,z-1 compute

 U[i] = SHA-1[SEED] XOR SHA-1[(SEED+1+i) mod 2^g].

 Step 3. Let U be the integer

 U = (U[0] + U[1]*2^160 + ... + U[z-1]*(z-1)2^160) mod 2^M.

 Form q from U by setting the most significant bit(the 2^(M-1)
 bit) and the least significant bit to 1. In terms of boolean
 operations, q = U OR 2^(M-1) OR 1. Note that 2^(M-1) < q < 2^M.

 Step 4. Use a robust primality testing algorithm to test whether q
 is prime [footnote 1]. If M = L-1, let p = 2q+1 and test
 whether p is prime.

 Step 5. If q is not prime, go to step 1. If M = L-1, go to step 1
 if p is not prime and go to step 15 if p is prime.

 Step 6. Let counter = 0. Let offset = 1 + z.

 Step 7. For k = 0,...,n let

 V[k] = SHA-1[(SEED + offset + k) mod 2^g].

 Step 8. Let W be the integer

 W = V[0] + V[1]*2^160 + ... + V[n-1]*2^((n-1)*160) +
 (V[n] mod 2^b) * 2^(n*160)

 and let X = W + 2^(L-1). Note that 0 <= W < 2^(L-1) and hence
 2^(L-1) <= X < 2^L.

 Step 9. Let c = X mod 2q and set p = X - (c - 1) and, if r must be
 prime, let r = X DIV 2q. Note that p is congruent to 1 mod 2q.

 Step 10. If p < 2^(L-1), then go to step 13.

 Step 11. Perform a robust primality test on p, and if r must be

https://datatracker.ietf.org/doc/html/draft-jablon-speke-02.txt

 prime, perform a robust primality test on r.

 Step 12. If p passes the test performed in step 11, and if r must

Jablon [Page 24]

Internet-Draft draft-jablon-speke-02.txt October 22, 2002

 be prime and r passes the test, go to step 15. If p passes the
 test and r must be prime, but r fails the test, go to step 1.

 Step 13. Let counter = counter + 1 and offset = offset + n + 1.

 Step 14. If counter <= 2^12 = 4096 go to step 1, otherwise
 (i.e. if counter < 4096) go to step 7.

 Step 15. Save the value of SEED and the value of counter for use
 in certifying the proper generation of p and q.

B.2 Method for Verification of Primes

 FIPS 186-2 does not explicitly describe specific steps for verify
 that p and q have been generated properly. There are two somewhat
 obvious ways this might be done, with one being faster than the
 other. Both methods are described here, and both may be used to
 verify primes generated with either FIPS 186-2 or the extended
 method.

 B.2.1 Fast method

 Input: SEED, counter, p, q, and, if r must be prime, r.

 Perform the generation method described in FIPS 186-2 Appendix 2.2 or
 the extended method in A.1 above as appropriate with the following
 inputs and changes:

 Set L = the size of p, and (if extended) set M = the size of q and
 specify whether r must be prime.

 In Step 1, set the "arbitrary sequence" to the SEED value to be
 verified.

 Instead of Step 6, set counter equal to the counter value to be
 verified, and set offset = 1+z + counter*(n+1). (Let z = 1 when
 not using the extended method.)

 After Step 11, stop.

 If the Step 11 tests for the values of p, q, and (optionally) r have
 all passed, and these values are the same as their corresponding
 input values, the values are verified. Otherwise verification has
 failed.

 B.2.2 Slow method

 Note: This method may be very slow, by performing a lot of
 unnecessary searching and testing of irrelevant values, particularly

https://datatracker.ietf.org/doc/html/draft-jablon-speke-02.txt

 in case of failure. It is described primarily to show how to perform
 verification using an implementation of the generation method that
 does not allow one to specify an initial counter.

Jablon [Page 25]

Internet-Draft draft-jablon-speke-02.txt October 22, 2002

 Input: SEED, counter, p, q, and, if r must be prime, r

 Perform the generation method described in FIPS 186-2 Appendix 2.2 or
 the extended method in A.1 above as appropriate with the following
 inputs:

 Set L = the size of p, and (if extended) set M = the size of q and
 specify whether r must be prime.

 In Step 1, set the "arbitrary sequence" to the SEED value to be
 verified.

 Compare the resulting values of SEED, counter, p, q, and (optionally)
 r to the input values. If these values are the same, the values are
 verified. Otherwise verification has failed.

https://datatracker.ietf.org/doc/html/draft-jablon-speke-02.txt

Jablon [Page 26]

