
CoRE Working Group I. Jarvinen
Internet-Draft M. Kojo
Intended status: Experimental I. Raitahila
Expires: January 8, 2020 University of Helsinki
 Z. Cao
 Huawei
 July 7, 2019

Fast-Slow Retransmission Timeout and Congestion Control Algorithm for
CoAP

draft-jarvinen-core-fasor-02

Abstract

 This document specifies an alternative retransmission timeout and
 congestion control back off algorithm for the CoAP protocol, called
 Fast-Slow RTO (FASOR).

 The algorithm specified in this document employs an appropriate and
 large enough back off of Retransmission Timeout (RTO) as the major
 congestion control mechanism to allow acquiring unambiguous RTT
 samples with high probability and to prevent building a persistent
 queue when retransmitting. The algorithm also aims to retransmit
 quickly using an accurately managed retransmission timeout when link-
 errors are occuring, basing RTO calculation on unambiguous round-trip
 time (RTT) samples.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 8, 2020.

Jarvinen, et al. Expires January 8, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft Fast-Slow RTO and CC Algorithm July 2019

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Conventions . 3
3. Problems with Existing CoAP Congestion Control Algorithms . . 3
4. FASOR Algorithm . 4
4.1. Computing Normal RTO (FastRTO) 4
4.2. Slow RTO . 5
4.3. Retransmission Timeout Back Off Logic 6
4.3.1. Overview . 6
4.3.2. Retransmission State Machine 7

4.4. Retransmission Count Option 9
 4.5. Alternatives for Exchanging Retransmission Count
 Information . 11

5. Security Considerations 11
6. IANA Considerations . 11
7. References . 11
7.1. Normative References 11
7.2. Informative References 12

Appendix A. Pseudocode for Basic FASOR without Dithering 13
 Authors' Addresses . 15

1. Introduction

 CoAP senders use retransmission timeout (RTO) to infer losses that
 have occurred in the network. For such a heuristic to be correct,
 the RTT estimate used for calculating the retransmission timeout must
 match to the real end-to-end path characteristics. Otherwise,
 unnecessary retransmission may occur. Both default RTO mechanism for
 CoAP [RFC7252] and CoCoA [I-D.ietf-core-cocoa] have issues in dealing
 with unnecessary retransmissions and in the worst-case the situation
 can persist causing congestion collapse [JRCK18a].

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/rfc7252

Jarvinen, et al. Expires January 8, 2020 [Page 2]

Internet-Draft Fast-Slow RTO and CC Algorithm July 2019

 This document specifies FASOR retransmission timeout and congestion
 control algorithm [JRCK18b]. FASOR algorithm ensures unnecessary
 retransmissions that a sender may have sent due to an inaccurate RTT
 estimate will not persist avoiding the threat of congestion collapse.
 FASOR also aims to quickly restore the accuracy of the RTT estimate.
 Armed with an accurate RTT estimate, FASOR not only handles
 congestion robustly but also can quickly infer losses due to link
 errors.

2. Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in BCP 14, RFC 2119
 [RFC2119].

3. Problems with Existing CoAP Congestion Control Algorithms

 Correctly inferring losses requires the retransmission timeout (RTO)
 to be longer than the real RTT in the network. Under certain
 circumstances the RTO may be incorrectly small. If the real end-to-
 end RTT is larger than the retransmission timeout, it is impossible
 for the sender to avoid making unnecessary retransmissions that
 duplicate data still existing in the network because the sender
 cannot receive any feedback in time. Unnecessary retransmissions
 cause two basic problems. First, they increase the perceived end-to-
 end RTT if the bottleneck has buffering capacity, and second, they
 prevent getting unambiguous RTT samples. Making unnecessary
 retransmissions is also a pre-condition for the congestion collapse
 [RFC0896], which may occur in the worst case if retransmissions are
 not well controlled [JRCK18a]. Therefore, the sender retransmission
 timeout algorithm should actively attempt to prevent unnecessary
 retransmissions from persisting under any circumstance.

 Karn's algorithm [KP87] has prevented unnecessary retransmission from
 turning into congestion collapse for decades due to robust RTT
 estimation and retransmission timeout backoff handling. The recent
 CoAP congestion control algorithms, however, diverge from the
 principles of Karn's algorithm in significant ways and may pose a
 threat to the stability of the Internet due to those differences.

 The default RTO mechanism for CoAP [RFC7252] uses only an initial RTO
 dithered between 2 and 3 seconds, while CoCoA [I-D.ietf-core-cocoa]
 measures RTT both from unambiguous and ambiguous RTT samples and
 applies a modified version of the TCP RTO algorithm [RFC6298]. The
 algorithm in RFC 7252 lacks solution to persistent congestion. The
 binary exponential back off used for the retransmission timeout does
 not properly address unnecessary retransmissions when RTT is larger

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc0896
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc7252

Jarvinen, et al. Expires January 8, 2020 [Page 3]

Internet-Draft Fast-Slow RTO and CC Algorithm July 2019

 than the default RTO (ACK_TIMEOUT). If the CoAP sender performs
 exchanges over an end-to-end path with such a high RTT, it
 persistently keeps making unnecessary retransmissions for every
 exchange wasting some fraction of the used resources (network
 capacity, battery power).

 CoCoA [I-D.ietf-core-cocoa] attempts to improve scenarios with link-
 error related losses and solve persistent congestion by basing its
 RTO value on an estimated RTT. However, there are couple of
 exceptions when the RTT estimation is not available:

 - At the beginning of a flow where initial RTO of 2 seconds is
 used.

 - When RTT suddenly jumps high enough to trigger the rule in CoCoA
 that prevents taking RTT samples when more than two
 retransmissions are needed. This may also occur when the packet
 drop rate on the path is high enough.

 When RTT estimate is too small, unnecessary retransmission will occur
 also with CoCoA. CoCoA being unable to take RTT samples at all is a
 particularly problematic phenomenon as it is similarly persisting
 state as with the algorithm outlined in RFC 7252 and the network
 remains in a congestion collapsed state due to persisting unnecessary
 retransmissions.

4. FASOR Algorithm

 FASOR [JRCK18b] is composed of three key components: RTO computation,
 Slow RTO, and novel retransmission timeout back off logic.

4.1. Computing Normal RTO (FastRTO)

 The FASOR algorithm measures the RTT for an CoAP message exchange
 over an end-to-end path and computes the RTO value using the TCP RTO
 algorithm specified in [RFC6298]. We call this normal RTO or
 FastRTO. In contrast to the TCP RTO mechanism, FASOR SHOULD NOT use
 1 second lower-bound when setting the RTO because RTO is only a
 backup mechanisms for loss detection with TCP, whereas with CoAP RTO
 is the primary and only loss detection mechanism. A lower-bound of 1
 second would impact timeliness of the loss detection in low RTT
 environments. The RTO value MAY be upper-bounded by at least 60
 seconds. A CoAP sender using the FASOR algorithm SHOULD set initial
 RTO to 2 seconds. The computed RTO value as well as the initial RTO
 value is subject to dithering; they are dithered between RTO + 1/4 x
 SRTT and RTO + SRTT. For dithering initial RTO, SRTT is unset;
 therefore, SRTT is replaced with initial RTO / 3 which is derived
 from the RTO formula and equals to a hypothetical initial RTT that

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc6298

Jarvinen, et al. Expires January 8, 2020 [Page 4]

Internet-Draft Fast-Slow RTO and CC Algorithm July 2019

 would yield the initial RTO using the SRTT and RTTVAR initialization
 rule of RFC 6298. That is, for initial RTO of 2 seconds we use SRTT
 value of 2/3 seconds.

 FastRTO is updated only with unambiguous RTT samples. Therefore, it
 closely tracks the actual RTT of the network and can quickly trigger
 a retransmission when the network state is not dubious.
 Retransmitting without extra delay is very useful when the end-to-end
 path is subject to losses that are unrelated to congestion. When the
 first unambiguous RTT sample is received, the RTT estimator is
 initialized with that sample as specified in [RFC6298] except RTTVAR
 that is set to R/2K.

4.2. Slow RTO

 We introduce Slow RTO as a safe way to ensure that only a unique copy
 of message is sent before at least one RTT has elapsed. To achieve
 this the sender must ensure that its retransmission timeout is set to
 a value that is larger than the path end-to-end RTT that may be
 inflated by the unnecessary retransmission themselves. Therefore,
 whenever a message needs to be retransmitted, we measure Slow RTO as
 the elapsed time required for getting an acknowledgement. That is,
 Slow RTO is measured starting from the original transmission of the
 request message until the receipt of the acknowledgement, regardless
 of the number of retransmissions. In this way, Slow RTO always
 covers the worst-case RTT during which a number of unnecessary
 retransmissions were made but the acknowledgement is received for the
 original transmission. In contrast to computing normal RTO, Slow RTO
 is not smoothed because it is derived from the sending pattern of the
 retransmissions (that may turn out unnecessary). In order to drain
 the potential unnecessary retransmissions successfully from the
 network, it makes sense to wait for the time used for sending them
 rather than some smoothed value. However, Slow RTO is multiplied by
 a factor to allow some growth in load without making Slow RTO too
 aggressive (by default the factor of 1.5 is used). FASOR then
 applies Slow RTO as one of the backed off timer values used with the
 next request message.

 Slow RTO allows rapidly converging towards stable operating point
 because 1) it lets the duplicate copies sent earlier to drain from
 the network reducing the perceived end-to-end RTT, and 2) allows
 enough time to acquire an unambiguous RTT sample for the RTO
 computation. Robustly acquiring the RTT sample ensures that the next
 RTO is set according to the recent measurement and further
 unnecessary retransmissions are avoided. Slow RTO itself is a form
 of back off because it includes the accumulated time from the
 retransmission timeout back off of the previous exchange. FASOR uses
 this for its advantage as the time included into Slow RTO is what is

https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc6298

Jarvinen, et al. Expires January 8, 2020 [Page 5]

Internet-Draft Fast-Slow RTO and CC Algorithm July 2019

 needed to drain all unnecessary retransmissions possibly made during
 the previous exchange. Assuming a stable RTT and that all of the
 retransmissions were unnecessary, the time to drain them is the time
 elapsed from the original transmission to the sending time of the
 last retransmission plus one RTT. When the acknowledgement for the
 original transmission arrives, one RTT has already elapsed, leaving
 only the sending time difference still unaccounted for which is at
 minimum the value for Slow RTO (when an RTT sample arrives
 immediately after the last retransmission). Even if RTT would be
 increasing, the draining still occurs rapidly due to exponentially
 backed off frequency in sending the unnecessary retransmissions.

4.3. Retransmission Timeout Back Off Logic

4.3.1. Overview

 FASOR uses normal RTO as the base for binary exponential back off
 when no retransmission were needed for the previous CoAP message
 exchange. When retransmission were needed for the previous CoAP
 message exchange, the algorithm rules, however, are more complicated
 than with the traditional RTO back off because Slow RTO is injected
 into the back off series to reduce high impact of using Slow RTO.
 FASOR logic chooses from three possible back off series alternatives:

 FAST back off: Perform traditional RTO back off with the normal
 RTO as the base. Applied when the previous message was not
 retransmitted.

 FAST_SLOW_FAST back off: First perform a probe using the normal
 RTO for the original transmission of the request message to
 improve cases with losses unrelated to congestion. If the probe
 for the original transmission of the request message is successful
 without retransmissions, continue with FAST back off for the next
 message exchange. If the request message needs to be
 retransmitted, continue by using Slow RTO for the first
 retransmission in order to respond to congestion and drain the
 network from the unnecessary retransmissions that were potentially
 sent for the previous exchange. If still further RTOs are needed,
 continue by backing off the normal RTO further on each timeout.
 FAST_SLOW_FAST back off is applied just once when the previous
 request message using FAST back off required one or more
 retransmissions.

 SLOW_FAST back off: Perform Slow RTO first for the original
 transmisssion to respond to congestion and to acquire an
 unambiguous RTT sample with high probability. Then, if the
 original request needs to be retransmitted, continue with the
 normal RTO-based RTO back off serie by backing off the normal RTO

Jarvinen, et al. Expires January 8, 2020 [Page 6]

Internet-Draft Fast-Slow RTO and CC Algorithm July 2019

 on each timeout. SLOW_FAST back off is applied when the previous
 request message using FAST_SLOW_FAST or SLOW_FAST back off
 required one or more retransmissions. Once an acknowledgement for
 the original transmission with unambigous RTT sample is received,
 continue with FAST back off for the next message exchange.

 For the initial message, FAST is used with INITIAL_RTO as the FastRTO
 value. From there on, state is updated when an acknowledgement
 arrives. Following unambiguous RTT samples, FASOR always uses FAST.
 Whenever retransmissions are needed, the back off series selection is
 first downgraded to FAST_SLOW_FAST back off and then to SLOW_FAST
 back off if further retransmission are needed in FAST_SLOW_FAST.

 When Slow RTO is used as the first RTO value, the sender is likely to
 acquire unambiguous RTT sample even when the network has high delay
 due to congestion because Slow RTO is based on a very recent
 measurement of the worst-case RTT. However, using Slow RTO may
 negatively impact the performance when losses unrelated to congestion
 are occurring. Due to its potential high cost, FASOR algorithm
 attempts to avoid using Slow RTO unnecessarily.

 The CoAP protocol is often used by devices that are connected through
 a wireless network where non-congestion related losses are much more
 frequent than in their wired counterparts. This has implications for
 the retransmission timeout algorithm. While it would be possible to
 implement FASOR such that it immediately uses Slow RTO when a dubious
 network state is detected, which would handle congestion very well,
 it would do significant harm for performance when RTOs occur due to
 non-congestion related losses. Instead, FASOR uses first normal RTO
 for one transmission and only responds using Slow RTO if RTO expires
 also for that request message. Such a pattern quickly probes if the
 losses were unrelated to congestion and only slightly delays response
 if real congestion event is taking place. To ensure that an
 unambiguous RTT sample is also acquired on a congested network path,
 FASOR then needs to use Slow RTO for the original transmission of the
 subsequent packet if the probe was not successful.

4.3.2. Retransmission State Machine

 FASOR consists of the three states discussed above while making
 retranmission decisions, FAST, FAST_SLOW_FAST and SLOW_FAST. The
 state machine of the FASOR algorithm is depicted in Figure 1.

Jarvinen, et al. Expires January 8, 2020 [Page 7]

Internet-Draft Fast-Slow RTO and CC Algorithm July 2019

 +-------------------b----------------+
 | |
 v |
 +--FAST--a-->FAST_SLOW_FAST-----a----->SLOW_FAST--+
 | ^ ^ | ^ |
 | | | | | |
 +-b-+ +------b------+ +-a-+

 a: retransmission acknowledged, ambiguous RTT sample acquired;
 b: no retransmission, umambiguous RTT sample acquired;

 Figure 1: State Machine of FASOR

 In the FAST state, if the original transmission of the message has
 not been acknowledged by the receiver within the time defined by
 FastRTO, the sender will retransmit it. If there is still no
 acknowledgement of the retransmitted packet within 2*FastRTO, the
 sender performs the second retransmission and if necessary, each
 further retransmission applying binary exponential back off of
 FastRTO. The retransmission interval in this state is defined as
 FastRTO, 2^1 * FastRTO, ..., 2^i * FastRTO.

 When there is an acknowledgement after any retransmission, the sender
 will calculate SlowRTO value based on the algorithm defined in

Section 4.2.

 When these is an acknowledgement after any retransmission, the sender
 will also switch to the second state, FAST_FLOW_FAST. In this state,
 the retransmission interval is defined as FastRTO, Max(SlowRTO,
 2*FastRTO), FastRTO * 2^1, ..., 2^i * FastRTO. The state will be
 switched back to the FAST state once an acknowledgement is returned
 within FastRTO, i.e., no retransmission happens for a message. This
 is reasonable because it shows the network has recovered from
 congestion or bloated queue.

 If some retransmission has been made before the acknowledged arrives
 in the FAST_SLOW_FAST state, the sender updates the SlowRTO value,
 and moves to the third state, SLOW_FAST. The retransmission interval
 in the SLOW_FAST state is defined as SlowRTO, FastRTO, FastRTO * 2^1,
 ..., 2^i * FastRTO.

 In SLOW_FAST state, the sender switches back to the FAST state if an
 unambiguous acknowledgement arrives. Otherwise, the sender stays in
 the SLOW_FAST state if retransmission happens again.

Jarvinen, et al. Expires January 8, 2020 [Page 8]

Internet-Draft Fast-Slow RTO and CC Algorithm July 2019

4.4. Retransmission Count Option

 When retransmissions are needed to deliver a CoAP message, it is not
 possible to measure RTT for the RTO computation as the RTT sample
 becomes ambiguous. Therefore, it would be beneficial to be able to
 distinguish whether an acknowledgement arrives for the original
 transmission of the message or for a retransmission of it. This
 would allow reliably acquiring an RTT sample for every CoAP message
 exchange and thereby compute a more accurate RTO even during periods
 of congestion and loss.

 The Retransmission Count Option is used to distinguish whether an
 Acknowledgement message arrives for the original transmission or one
 of the retransmissions of a Confirmable message. However, the
 Retransmission Count Option cannot be used with an Empty
 Acknowledgement (or Reset) message because the CoAP protocol
 specification [RFC7252] does not allow adding options to an Empty
 message. Therefore, Retransmission Count Option is useful only for
 the common case of Piggybacked Response. In case of Empty
 Acknowledgements the operation of FASOR is the same as without the
 option.

 +-----+---+---+---+---+------------+--------+--------+---------+
 | No. | C | U | N | R | Name | Format | Length | Default |
 +-----+---+---+---+---+------------+--------+--------+---------+
 | TBD | | | X | | Rexmit-Cnt | uint | 0-1 | 0 |
 +-----+---+---+---+---+------------+--------+--------+---------+

 C=Critical, U=Unsafe, N=NoCacheKey, R=Repeatable

 Table 1: Retransmission Count Option

 Implementation of the Retransmission Count option is optional and it
 is identified as elective. However, when it is present in a CoAP
 message and a CoAP endpoint processes it, it MUST be processed as
 described in this document. The Retransmission Count option MUST NOT
 occur more than once in a single message.

 The value of the Retransmission Count option is a variable-size (0 to
 1 byte) unsigned integer. The default value for the option is the
 number 0 and it is represented with an empty option value (a zero-
 length sequence of bytes). However, when a client intents to use
 Retransmit Count option, it MUST reserve space for it by limiting the
 request message size also when the value is empty in order to fit the
 full-sized option into retransmissions.

 The Retransmission Count option can be present in both the request
 and response message. When the option is present in a request it

https://datatracker.ietf.org/doc/html/rfc7252

Jarvinen, et al. Expires January 8, 2020 [Page 9]

Internet-Draft Fast-Slow RTO and CC Algorithm July 2019

 indicates the ordinal number of the transmission for the request
 message.

 If the server supports (implements) the Retransmission Count option
 and the option is present in a request, the server MUST echo the
 option value in its Piggybacked Response unmodified. If the server
 replies with an Empty Acknowledgement the server MUST silently ignore
 the option and MUST NOT include it in a later separate response to
 that request.

 When Piggybacked Response carrying the Retransmission Count option
 arrives, the client uses the option to match the response message to
 the corresponding transmission of the request. In order to measure a
 correct RTT, the client must store the timestamp for the original
 transmission of the request as well as the timestamp for each
 retransmission, if any, of the request. The resulting RTT sample is
 used for the RTO computation. If the client retransmitted the
 request without the option but the response includes the option, the
 client MUST silently ignore the option.

 The original transmission of a request is indicated with the number
 0, except when sending the first request to a new destination
 endpoint. The first original transmission of the request to a new
 endpoint carries the number 255 (0xFF) and is interpreted the same as
 an original transmission carrying the number 0. Retransmissions, if
 any, carry the ordinal number of the retransmission. Once the first
 Piggybacked Response from the new endpoint arrives the client learns
 whether or not the other endpoint implements the option. If the
 first response includes the echoed option, the client learns that the
 other endpoint supports the option and may continue including the
 option to each retransmitted request. From this point on the
 original transmissions of requests implicitly include the option
 number 0 and a zero-byte integer will be sent according to the CoAP
 uint-encoding rules. If the first Piggybacked Response does not
 include the option, the client SHOULD stop including the option into
 the requests to that endpoint.

 When the Retransmission Count option is in use, the client bases the
 retransmission timeout for the normal RTO in the back off series as
 follows:

 max(RTO, Previous-RTT-Sample)

 Previous-RTT-Sample is the RTT sample acquired from the previous
 message exchange. If no RTT sample was available with the previous
 message exchange (e.g., the server replied with an Empty
 Acknowledgement), RTO computed earlier is used like in case the
 Retransmission Count option is not in use.

Jarvinen, et al. Expires January 8, 2020 [Page 10]

Internet-Draft Fast-Slow RTO and CC Algorithm July 2019

4.5. Alternatives for Exchanging Retransmission Count Information

 An alternative way of exchanging the retransmission count information
 between a client and server is to encode it in the Token. The Token
 is a client-local identifier and a client solely decides how it
 generates the Token. Therefore, including a varying Token value to
 retransmissions of the same request is all possible as long as the
 client can use the Token to differentiate between requests and match
 a response to the corresponding request. The server is required to
 make no assumptions about the content or structure of a Token and
 always echo the Token unmodified in its response.

 How exactly a client encodes the retransmission count into a Token is
 an implementation issue. Note that the original transmission of a
 request may carry a zero-length Token given that the rules for
 generating a Token as specified in RFC 7252 [RFC7252] are followed.
 This allows reducing the overhead of including the Token into the
 reguests in such cases where Token could otherwise be omitted.
 However, similar to Retransmit Count option the maximum request
 message size MUST be limited to accommodate the Token with retransmit
 count into the retransmissions of the request.

5. Security Considerations

6. IANA Considerations

 This memo includes no request to IANA.

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC6298] Paxson, V., Allman, M., Chu, J., and M. Sargent,
 "Computing TCP's Retransmission Timer", RFC 6298,
 DOI 10.17487/RFC6298, June 2011,
 <https://www.rfc-editor.org/info/rfc6298>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <https://www.rfc-editor.org/info/rfc7252>.

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc6298
https://www.rfc-editor.org/info/rfc6298
https://datatracker.ietf.org/doc/html/rfc7252
https://www.rfc-editor.org/info/rfc7252

Jarvinen, et al. Expires January 8, 2020 [Page 11]

Internet-Draft Fast-Slow RTO and CC Algorithm July 2019

7.2. Informative References

 [I-D.ietf-core-cocoa]
 Bormann, C., Betzler, A., Gomez, C., and I. Demirkol,
 "CoAP Simple Congestion Control/Advanced", draft-ietf-

core-cocoa-03 (work in progress), February 2018.

 [JRCK18a] Jarvinen, I., Raitahila, I., Cao, Z., and M. Kojo, "Is
 CoAP Congestion Safe?", Applied Networking Research
 Workshop (ANRW'18), July 2018.

 [JRCK18b] Jarvinen, I., Raitahila, I., Cao, Z., and M. Kojo, "FASOR
 Retransmission Timeout and Congestion Control Mechanism
 for CoAP?", Proceedings of IEEE Global Communications
 Conference (Globecom 2018), to appear, December 2018.

 [KP87] Karn, P. and C. Partridge, "Improving Round-trip Time
 Estimates in Reliable Transport Protocols", SIGCOMM'87
 Proceedings of the ACM Workshop on Frontiers in Computer
 Communications Technology, August 1987.

 [RFC0896] Nagle, J., "Congestion Control in IP/TCP Internetworks",
RFC 896, DOI 10.17487/RFC0896, January 1984,

 <https://www.rfc-editor.org/info/rfc896>.

https://datatracker.ietf.org/doc/html/draft-ietf-core-cocoa-03
https://datatracker.ietf.org/doc/html/draft-ietf-core-cocoa-03
https://datatracker.ietf.org/doc/html/rfc896
https://www.rfc-editor.org/info/rfc896

Jarvinen, et al. Expires January 8, 2020 [Page 12]

Internet-Draft Fast-Slow RTO and CC Algorithm July 2019

Appendix A. Pseudocode for Basic FASOR without Dithering

 var state = NORMAL_RTO

 rfc6298_init(var fastrto, 2 secs)

 var slowrto
 SLOWRTO_FACTOR = 1.5

 var original_sendtime
 var retransmit_count

 /*
 * Sending Original Copy and Retransmitting 'req'
 */
 send_request(req) {
 original_sendtime = time.now
 retransmit_count = 0

 arm_rto(calculate_rto())
 send(req)
 }

 rto_for(req) {
 retransmit_count += 1

 arm_rto(calculate_rto())
 send(req)
 }

 /*
 * ACK Processings
 */
 ack() {
 sample = time.now - original_sendtime
 if (retransmit_count == 0)
 unambiguous_ack(sample)
 else
 ambiguous_ack(sample)
 }

 unambiguous_ack(sample) {
 k = 4 // RFC6298 default K = 4
 if (rfc6298_is_first_sample(fastrto))
 k = 1
 rfc6298_update(fastrto, k, sample) // Normal RFC6298 processing
 state = NORMAL_RTO
 }

https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc6298

Jarvinen, et al. Expires January 8, 2020 [Page 13]

Internet-Draft Fast-Slow RTO and CC Algorithm July 2019

 ambiguous_nextstate = {
 [NORMAL_RTO] = FAST_SLOW_FAST_RTO,
 [FAST_SLOW_FAST_RTO] = SLOW_FAST_RTO,
 [SLOW_FAST_RTO] = SLOW_FAST_RTO
 }

 ambiguous_ack(sample) {
 slowrto = sample * SLOWRTO_FACTOR
 state = ambiguous_nextstate[state]
 }

 /*
 * RTO Calculations
 */
 calculate_rto() {
 return <state>_rtoseries()
 }

 normal_rtoseries() {
 switch (retransmit_count) {
 case 0: return fastrto_series_init()
 default: return fastrto_series_backoff()
 }
 }

 fastslowfast_rtoseries() {
 switch (retransmit_count) {
 case 0: return fastrto_series_init()
 case 1: return MAX(slowrto, 2*fastrto)
 default: return fastrto_series_backoff()
 }
 }

 slowfast_rtoseries() {
 switch (retransmit_count) {
 case 0: return slowrto
 case 1: return fastrto_series_init()
 default: return fastrto_series_backoff()
 }
 }

 var backoff_series_timer

 fastrto_series_init() {
 backoff_series_timer = fastrto
 return backoff_series_timer
 }

Jarvinen, et al. Expires January 8, 2020 [Page 14]

Internet-Draft Fast-Slow RTO and CC Algorithm July 2019

 fastrto_series_backoff() {
 backoff_series_timer *= 2
 return backoff_series_timer
 }

 Figure 2

Authors' Addresses

 Ilpo Jarvinen
 University of Helsinki
 P.O. Box 68
 FI-00014 UNIVERSITY OF HELSINKI
 Finland

 EMail: ilpo.jarvinen@cs.helsinki.fi

 Markku Kojo
 University of Helsinki
 P.O. Box 68
 FI-00014 UNIVERSITY OF HELSINKI
 Finland

 EMail: markku.kojo@cs.helsinki.fi

 Iivo Raitahila
 University of Helsinki
 P.O. Box 68
 FI-00014 UNIVERSITY OF HELSINKI
 Finland

 EMail: iivo.raitahila@helsinki.fi

 Zhen Cao
 Huawei
 Beijing
 China

 EMail: zhencao.ietf@gmail.com

Jarvinen, et al. Expires January 8, 2020 [Page 15]

