
Internet Engineering Task Force I. Jarvinen
INTERNET-DRAFT M. Kojo
draft-jarvinen-tcpm-sack-recovery-entry-00.txt University of Helsinki
Intended status: Standards Track 5 March 2009
Expires: September 2009

Using TCP Selective Acknowledgement (SACK) Information to Determine
Duplicate Acknowledgements for Loss Recovery Initiation

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with
 the provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as
 reference material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on September 2009.

Copyright Notice

 Copyright (c) 2009 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents in effect on the date of
 publication of this document (http://trustee.ietf.org/license-info).
 Please review these documents carefully, as they describe your
 rights and restrictions with respect to this document.

Jarvinen/Kojo [Page 1]

https://datatracker.ietf.org/doc/html/draft-jarvinen-tcpm-sack-recovery-entry-00.txt
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

INTERNET-DRAFT Expires: September 2009 March 2009

Abstract

 This document describes a TCP sender algorithm to trigger loss
 recovery based on the information gathered on a SACK scoreboard
 instead of simply counting the number of arriving duplicate
 acknowledgements in the traditional way. The given algorithm is more
 robust to ACK losses, ACK reordering, missed duplicate
 acknowledgements due to delayed acknowledgements, and extra
 duplicate acknowledgements due to duplicated segments and out-of-
 window segments. The algorithm allows not only a timely initiation
 of TCP loss recovery but also reduces false fast retransmits. It
 has a low implementation cost on top of the SACK scoreboard defined
 in RFC 3517.

https://datatracker.ietf.org/doc/html/rfc3517

Jarvinen/Kojo [Page 2]

INTERNET-DRAFT Expires: September 2009 March 2009

 Table of Contents

1. Introduction. 3
1.1. Conventions and Terminology. 4
1.2. Definitions. 5

2. Algorithm Details . 5
3. Discussion. 6

3.1. Small Segment Sender 6
3.2. Third Segment after a Hole is Small. 7
3.3. SACK Capability Misbehavior. 7

 3.4. Compatibility with Duplicate ACK based Loss
 Recovery Algorithms . 7

4. Security Considerations 8
5. IANA Considerations . 8
6. Acknowledgements. 8

 Appendix . 8
A. Scenarios . 9

A.1. Basic Case . 9
A.2. Delayed ACK. 10
A.3. ACK Losses . 11
A.4. ACK Reordering . 11
A.5. Packet Duplication 12

 A.6. Mitigation of Blind Throughput Reduction
 Attack. 12
 References . 13
 Normative References . 13
 Informative References . 13
 AUTHORS' ADDRESSES . 14

1. Introduction

 The Transmission Control Protocol (TCP) [RFC793] has two methods for
 triggering retransmissions. First, the TCP sender relies on
 incoming duplicate acknowledgement (ACKs) [RFC2581bis], indicating
 receipt of out-of-order segments at the TCP receiver. After
 receiving a required number of duplicate ACKs (usually three), the
 TCP sender retransmits the first unacknowledged segment and
 continues with a fast recovery algorithm such as Reno [RFC2581],
 NewReno [RFC3782] or SACK-based loss recovery [RFC3517]. Second,
 the TCP sender maintains a retransmission timer that triggers
 retransmission of segments, if the retransmission timer expires
 before the segments have been acknowledged.

 While the conservative loss recovery algorithm defined in [RFC3517]
 takes full advantage of SACK information during a loss recovery, it
 does not consider the very same information during the pre-recovery

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc3782
https://datatracker.ietf.org/doc/html/rfc3517
https://datatracker.ietf.org/doc/html/rfc3517

Jarvinen/Kojo Section 1. [Page 3]

INTERNET-DRAFT Expires: September 2009 March 2009

 detection phase. Instead, it simply counts the number of arriving
 duplicate ACKs and leans on the number of duplicate ACKs in deciding
 when to enter loss recovery. However, this traditional heuristics of
 simply counting the number of duplicate ACKs to trigger a loss
 recovery fails in several cases to determine correctly the actual
 number of valid out-of-order segments the receiver has successfully
 received. First, trusting on duplicate ACKs alone utterly fails to
 get hold of the whole picture in case of ACK losses and ACK
 reordering, resulting in delayed or missed initiation of fast
 retransmit and fast recovery. Similarly, the delayed ACK mechanism
 tends to conceal the first duplicate ACK as the delayed cumulative
 ACK becomes combined with the first duplicate ACK when the first
 out-of-order segment arrives at the receiver (in case of an enlarged
 ACK ratio such as with ACK congestion control [FARI08], even more
 significant portion is affected). Second, segment duplication or
 out-of-window segments increase the risk of falsely triggering loss
 recovery as they trigger duplicate ACKs.

 The algorithm specified in this document uses TCP Selective
 Acknowledgement Option [RFC2018] to determine duplicate ACKs and to
 trigger loss recovery based on the information gathered on the SACK
 scoreboard [RFC3517]. It works in the pre-recovery state giving a
 more accurate heurestic for determining the number of out-of-order
 segments arrived at the TCP receiver. The information gathered on
 the scoreboard reveals missing ACKs and allows detecting duplicate
 events. Therefore, the algorithm enables a timely triggering of Fast
 Retransmit. In addition, it allows the use of Limited Transmit
 regardless of lost ACKs and also in the cases where the SACK
 information is piggybacked to a cumulative ACK due to delayed ACKs.
 This, in turn, allows keeping ACK clock running more accurately.

 This algorithm is close to what Linux TCP implementation has used
 for a very long time. A similar approach is briefly mentioned along
 ACK congestion control [FARI08] but as the usefulness of the
 algorithm in this document is more general and not limited to ACK
 congestion control we specify it separately. We also note that the
 defination of a duplicate acknowledgement already suggests that an
 incoming ACK can be considered as a duplicate ACK if it "contains
 previously unknown SACK information" [RFC2581bis].

1.1. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in BCP 14, RFC 2119
 [RFC2119] and indicate requirement levels for protocols.

https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc3517
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Jarvinen/Kojo Section 1.1. [Page 4]

INTERNET-DRAFT Expires: September 2009 March 2009

1.2. Definitions

 The reader is expected to be familiar with the definitions given in
 [RFC2581bis], [RFC2018], and [RFC3517].

2. Algorithm Details

 In order to use this algorithm, a TCP sender MUST have TCP Selective
 Acknowledgement Option [RFC2018] enabled and negotiated for the TCP
 connection. A TCP sender MUST maintain SACK information in an
 approproate data structure such as scoreboard defined in [RFC3517].
 This algorithm uses functions IsLost (SeqNum), Update(), and SetPipe
 () and variables DupThresh, HighData, HighRxt, Pipe, and
 RecoveryPoint, as defined in [RFC3517].

 A TCP sender using this algorithm MUST take following steps:

 1) Upon the receipt of any ACK containing SACK information:

 If no previous loss event has occurred on the connection OR
 RecoveryPoint is less than SND.UNA (the oldest unacknowledged
 sequence number [RFC793]), continue with the other steps of this
 algorithm. Otherwise, continue the ongoing loss recovery.

 2) Update the scoreboard via the Update () function as outlined in
 [RFC3517].

 3) Determinate if a loss recovery should be initiated:

 If IsLost(SND.UNA) returns false, goto step 4A. Otherwise goto
 step 4B.

 4A) Invoke optional Limited Transmit:

 Set HighRxt to SND.UNA and run SetPipe(). The TCP sender MAY
 transmit previously unsent data segments according the
 guidelines of Limited Transmit [RFC3042], with the exception
 that the amount of octets that can be send is determined by Pipe
 and cwnd.

 If cwnd - pipe >= 1 SMSS, the TCP sender can transmit one or
 more segments as follows:

 Send Loop:

 a) If available unsent data exists and the receiver's advertised

https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc3517
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc3517
https://datatracker.ietf.org/doc/html/rfc3517
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc3517
https://datatracker.ietf.org/doc/html/rfc3042

Jarvinen/Kojo Section 2. [Page 5]

INTERNET-DRAFT Expires: September 2009 March 2009

 window allows, transmit one segment of up to SMSS octets of
 previously unsent data starting with sequence number
 HighData+1 and update HighData to reflect the transmission of
 the data segment. Otherwise, exit Send Loop.

 b) Run SetPipe() to re-calculate the number of outstanding
 octets in the network. If cwnd - pipe >= 1 SMSS, go to step
 a) of Send Loop. Otherwise, exit Send Loop.

 4B) Invoke Fast Retransmit and enter loss recovery:

 Initiate a loss recovery phase, per the fast retransmit
 algorithm outlined in [RFC2581] and continue with a fast
 recovery algorithm, such as the SACK-based loss recovery
 algorithm outlined in [RFC3517].

3. Discussion

 In scenarios where no ACK losses nor reordering occur and the first
 acknowledgement with SACK information is not the ACK held due to
 delayed acknowledgements mechanism, the new SACK information with
 each duplicate ACK covers a single segment. In such a case, this
 algorithm will trigger loss recovery after three duplicate
 acknowledgements and will allow transmission of a single new segment
 using Limited Transmit on each acknowledgement. This is identical
 to the behavior that would occur without this algorithm (assuming
 DupThresh is 3 and that all segments are SMSS sized). This scenario
 together with other scenarios describing the behavior of the
 algorithm are depicted in Appendix A.

 A set of potential issues to consider with the algorithm are
 discussed in the following.

3.1. Small Segment Sender

 If a TCP sender is sending small segments (usually intentionally
 overriding Nagle algorithm [RFC896]), the IsLost(SND.UNA) used in
 step 3 of the algorithm might fail to detect the need for loss
 recovery on the third duplicate acknowledgement because not enough
 octets have been sacked to cover DupThresh * SMSS bytes above
 SND.UNA. If the SACKed octects are discontiguous (the second rule of
 IsLost()), the loss recovery is still triggered on time. Otherwise,

https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc3517
https://datatracker.ietf.org/doc/html/rfc896

Jarvinen/Kojo Section 3.1. [Page 6]

INTERNET-DRAFT Expires: September 2009 March 2009

 the loss recovery is delayed, either until enough additional octets
 are SACKed later or until RTO is triggered.

 If such a concern exists, a TCP sender MAY compare, in parallel to
 the check given by this algorithm, the number of duplicate ACKs to
 DupThresh to trigger loss recovery on time. However, some robustness
 of this algorithm is lost. In any case, such a solution is likely to
 just postpone the problem since the very same IsLost() gets used
 later during the SACK-based loss recovery [RFC3517].

 A TCP sender with fully packet based scoreboard is able to discern
 the packet boundaries with precision higher to SMSS heurestics
 (e.g., in Linux TCP), and thus can consider full segments in
 IsLost() regardless of SMSS. Therefore, a TCP sender can avoid the
 problem with small segments both with this algorithm and with loss
 recovery given in [RFC3517].

3.2. Third Segment after a Hole is Small

 A variant of small segment sender case is the case where only the
 third (last) segment after the hole is smaller than SMSS. It would
 be possible to detect this case by modifying IsLost() function.

3.3. SACK Capability Misbehavior

 If the receiver represents such a SACK misbehavior that it
 advertizes SACK capability but never sends any SACK blocks when it
 should, this algorithm fails to enter loss recovery and
 retransmission timeout is required for recovery. However, such
 misbehavior does not allow SACK-based loss recovery [RFC3517] to
 work either, and a TCP sender will anyway require a timeout to
 recover.

3.4. Compatibility with Duplicate ACK based Loss Recovery Algorithms

 This algorithm SHOULD NOT be used together with a fast recovery
 algorithm that determines the segments that have left the network
 based on the number of arriving duplicate acknowledgements (e.g.,
 NewReno [RFC3782]), instead of the actual segments reported by SACK.
 In presence of ACK reordering such an algorithm will count the
 delayed duplicate acknowledgements during the fast recovery
 algorithm as extra while detemining the number of packets that have
 left the network.

https://datatracker.ietf.org/doc/html/rfc3517
https://datatracker.ietf.org/doc/html/rfc3517
https://datatracker.ietf.org/doc/html/rfc3517
https://datatracker.ietf.org/doc/html/rfc3782

Jarvinen/Kojo Section 3.4. [Page 7]

INTERNET-DRAFT Expires: September 2009 March 2009

 In general there should be very little reason to combine this
 algorithm with a loss recovery algorithm that is based on inferior,
 non-SACK based information only.

4. Security Considerations

 A malicious TCP receiver may send false SACK information for
 sequence number ranges which it has not received in order to trigger
 Fast Retransmit sooner. Such behavior would only be useful when out-
 of-order segments have arrived because otherwise the flow undergoes
 a loss recovery with a window reduction. This kind of lying involves
 guessing which segments will arrive later. In case the guess was
 wrong, the performance of the flow is ruined because the TCP sender
 will need a retransmission timeout as it will not retransmit the
 segments until it assumes SACK reneging. On a successful guess the
 attacker is able to trigger the recovery slightly earlier. The later
 segments would have allowed reporting the very same regions with
 SACK anyway. Therefore, the gain from this attack is small, hardly
 justifiable considering the drastic effect of a misguess. Also, a
 similar attack can be made with the duplicate acknowledgment based
 algorithm (even if the new SACK information rule is applied) by
 sending false duplicate acknowledgements with false SACK ranges, and
 trivially without the new SACK information rule.

 A variation of the lying attack discards reliability of the flow but
 as soon as the reliability is not a concern of the receiver, a
 number of simpler ways exists to attacked TCP independently of this
 algorithm. Thus this algorithm is not considered to weaken TCP
 security properties against false information.

5. IANA Considerations

 This document has no actions for IANA.

6. Acknowledgements

Appendix

Jarvinen/Kojo [Page 8]

INTERNET-DRAFT Expires: September 2009 March 2009

A. Scenarios

A.1. Basic Case

 In this scenario no Delayed ACK, ACK losses, reordering or other
 "abnormal" behavior happens. For simplicity all the segments are
 SMSS sized.

 Once the TCP receiver gets first out-of-order segment, it sends a
 duplicate ACK with SACK information about the received octets. The
 following two out-of-order segments trigger a duplicate ACK each,
 with the corresponding range SACKed in addition to the previously
 know information. The sender gets those duplicate ACKs in-order,
 each of them will SACK a new previously unknown segment.

 This algorithm triggers loss recovery on third duplicate ACK because
 IsLost returns true as DupThresh * SMSS bytes became SACKed above
 the SND.UNA on the same acknowledgement, thus the behavior is
 identical to that of a sender which is using duplicate
 acknowledgments. If Limited Transmit is in use, two first duplicate
 ACKs allow a single segment to be sent with either of the algorithms
 (Pipe is decremented by SMSS by the SACKed octets per ACK allowing
 SMSS worth of new octets).

 ACK Transmitted Received ACK Sent
 Received Segment Segment (Including SACK Blocks)

 1000
 3000-3499 3000-3499 (delayed ACK)
 3500-3999 3500-3999 4000
 2000
 4000-4499 (dropped)
 4500-4999 4500-4999 4000, SACK=4500-5000
 3000
 5000-5499 5000-5499 4000, SACK=4500-5500
 5500-5999 5500-5999 4000, SACK=4500-6000
 4000
 6000-6499 6000-6499 4000, SACK=4500-6500
 6500-6999 6500-6999 4000, SACK=4500-7000
 4000, SACK=4500-5000
 7000-7499 7000-7499 4000, SACK=4500-7500
 4000, SACK=4500-5500
 7500-7999 7500-7999 4000, SACK=4500-8000
 4000, SACK=4500-6000
 4000-4499 4000-4499 8000
 4000, SACK=4500-6500

Jarvinen/Kojo Section A.1. [Page 9]

INTERNET-DRAFT Expires: September 2009 March 2009

A.2. Delayed ACK

 A basic case with delayed ACK send the first ACK with SACK
 information but since the previous ACK was sent with a lower
 sequence number because an acknowledgment is held by delayed ACK,
 the sender will not considered it as duplicate ACK. Because the
 segment contains SACK information that is identical to the basic
 case, the sender can use Limited Transmit with the same segments as
 in the basic case and will start loss recovery at the third
 acknowledgment, i.e., with the second duplicate acknowledgment. In
 the same situation the duplicate ACK based sender will have to wait
 for one more duplicate ACK to arrive to do the same as the first
 acknowledgment is fully "wasted".

 Technically an acknowledgement with a sequence number higher than
 what was previously acknowledged is not a duplicate acknowledgement
 but a presence of the SACK block tells another story revealing the
 receiver which used delayed ACK, and thus the missing duplicate
 acknowledgement in between. The response of a TCP sender taking
 advantage of such inferred duplicate acknowledgements is well within
 the guidelines of packet conservation principle [Jac88] as it still
 sends only when segments have left the network.

 ACK Transmitted Received ACK Sent
 Received Segment Segment (Including SACK Blocks)

 1500
 3000-3499 3000-3499 3500
 3500-3999 3500-3999 (delayed ACK)
 2500
 4000-4499 (dropped)
 4500-4999 4500-4999 4000, SACK=4500-5000
 3500
 5000-5499 5000-5499 4000, SACK=4500-5500
 5500-5999 5500-5999 4000, SACK=4500-6000
 4000, SACK=4500-5000
 6000-6499 6000-6499 4000, SACK=4500-6500
 6500-6999 6500-6999 4000, SACK=4500-7000
 4000, SACK=4500-5500
 7000-7499 7000-7499 4000, SACK=4500-7500
 4000, SACK=4500-60000
 4000-4499 4000-4499 7500
 4000, SACK=4500-6500

Jarvinen/Kojo Section A.2. [Page 10]

INTERNET-DRAFT Expires: September 2009 March 2009

A.3. ACK Losses

 This case with ACK loss shares much behavior with the case with
 delayed ACK. If hole at rcv.nxt is filled, the sender will notice
 that cumulative ACK advanced. In case of out-of-order segments the
 first ACK which gets through to the sender includes SACK blocks up
 to the quantity the SACK block redundancy is able to cover. With
 this algorithm the sender immediately takes use of all the
 information that is made available by the incoming ACK.

 ACK Transmitted Received ACK Sent
 Received Segment Segment (Including SACK Blocks)

 1000
 3000-3499 3000-3499 (delayed ACK)
 3500-3999 3500-3999 4000
 2000
 4000-4499 (dropped)
 4500-4999 4500-4999 4000, SACK=4500-5000
 (dropped)
 3000
 5000-5499 5000-5499 4000, SACK=4500-5500
 5500-5999 5500-5999 4000, SACK=4500-6000
 4000
 6000-6499 6000-6499 4000, SACK=4500-6500
 6500-6999 6500-6999 4000, SACK=4500-7000
 4000, SACK=4500-5500 (two segments left the network)
 7000-7499 7000-7499 4000, SACK=4500-7500
 7500-7999 7500-7999 4000, SACK=4500-8000
 4000, SACK=4500-6000
 4000-4499 4000-4499 8000
 4000, SACK=4500-6500

A.4. ACK Reordering

 With ACK reordering an ACK is postponed. Due to redundancy the next
 ACK after postponed one contains not only its own information but
 also the information of the reordered ACK (similar to the ACK losses
 case). Then when the reordered ACK arrives, the sender already knows
 about the information it provides and therefore no actions are taken
 with this algorithm.

 ACK Transmitted Received ACK Sent
 Received Segment Segment (Including SACK Blocks)

 1000
 3000-3499 3000-3499 (delayed ACK)

Jarvinen/Kojo Section A.4. [Page 11]

INTERNET-DRAFT Expires: September 2009 March 2009

 3500-3999 3500-3999 4000
 2000
 4000-4499 (dropped)
 4500-4999 4500-4999 4000, SACK=4500-5000
 (delayed)
 3000
 5000-5499 5000-5499 4000, SACK=4500-5500
 5500-5999 5500-5999 4000, SACK=4500-6000
 4000
 6000-6499 6000-6499 4000, SACK=4500-6500
 6500-6999 6500-6999 4000, SACK=4500-7000
 4000, SACK=4500-5500
 7000-7499 7000-7499 4000, SACK=4500-7500
 7500-7999 7500-7999 4000, SACK=4500-8000
 4000, SACK=4500-5000 (has only redundant information)
 4000, SACK=4500-6000
 4000-4499 4000-4499 8000
 4000, SACK=4500-6500

A.5. Packet Duplication

 Packet duplication happens either due to unnecessary retransmission
 or hardware duplication. It adds a redundant ACK which has only
 redundant information or a data segment to the stream which will
 triggers a redundant duplicate ACK (possibly with SACK and/or DSACK
 information). Because neither adds any new SACKed octets at the
 sender, this algorithm will not do anything while duplicate ACK
 based receiver would falsely consider it as a duplicate ACK.

 If one of the redundant ACKs is lost, the effect of duplication is
 just negated.

 It is possible for the sender to detect this case using DSACK alone.

A.6. Mitigation of Blind Throughput Reduction Attack

 In case an attacker knows or is able to guess 4-tuple of a TCP
 connection, it may apply a blind throughput reduction attack. In
 this attack TCP is tricked to send duplicate ACK to the other
 endpoint using out-of-window segments which it is considerably
 easier to achieve than a match with sequence numbers. If more than
 dupThresh duplicate ACKs can be triggered in row without any
 legimate segment that advances acknowledged sequence number, the
 other end acts according that false congestion signal and halves the
 window.

Jarvinen/Kojo Section A.6. [Page 12]

INTERNET-DRAFT Expires: September 2009 March 2009

 With this algorithm such duplicate ACKs are filtered because they do
 not have any new in-window SACK blocks (DSACK might be present
 though).

References

Normative References

 [RFC793] Postel, J., "Transmission Control Protocol", STD 7, RFC
793, September 1981.

 [RFC2018] Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow,
 "TCP Selective Acknowledgment Options", RFC 2018,
 October 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2581] Allman, M., Paxson, V., and W. Stevens, "TCP Congestion
 Control", RFC 2581, April 1999.

 [RFC2581bis] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 2581bis, April 2008.

 [RFC3042] Allman, M., Balakrishnan, H., and S. Floyd, "Enhancing
 TCP's Loss Recovery Using Limited Transmit", RFC 3042,
 January 2001.

 [RFC3517] Blanton, E., Allman, M., Fall, K., and L. Wang,
 "A Conservative Selective Acknowledgment (SACK)-based
 Loss Recovery Algorithm for TCP", RFC 3517, April 2003.

Informative References

 [FARI08] Floyd, S., Arcia, A., Ros, D., and J. Iyengar, Adding
 Acknowledgement Congestion Control to TCP, Internet-Draft,

draft-floyd-tcpm-ackcc-04, July 2008.

 [Jac88] Jacobson, V., "Congestion Avoidance and Control", In
 Proc. ACM SIGCOMM 88.

 [RFC896] Nagle, J., "Congestion Control in IP/TCP Internetworks",

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc3042
https://datatracker.ietf.org/doc/html/rfc3517
https://datatracker.ietf.org/doc/html/draft-floyd-tcpm-ackcc-04

Jarvinen/Kojo [Page 13]

INTERNET-DRAFT Expires: September 2009 March 2009

RFC 896, January 1984.

 [RFC2883] Floyd, S., Mahdavi, J., Mathis, M., and M. Podolsky, "An
 Extension to the Selective Acknowledgement (SACK) Option
 for TCP", RFC 2883, July 2000.

 [RFC3782] Floyd, S., Henderson, T., and A. Gurtov, "The NewReno
 Modification to TCP's Fast Recovery Algorithm", RFC 3782,
 April 2004.

AUTHORS' ADDRESSES

 Ilpo Jarvinen
 University of Helsinki
 P.O. Box 68
 FI-00014 UNIVERSITY OF HELSINKI
 Finland
 Email: ilpo.jarvinen@helsinki.fi

 Markku Kojo
 University of Helsinki
 P.O. Box 68
 FI-00014 UNIVERSITY OF HELSINKI
 Finland
 Email: kojo@cs.helsinki.fi

https://datatracker.ietf.org/doc/html/rfc896
https://datatracker.ietf.org/doc/html/rfc2883
https://datatracker.ietf.org/doc/html/rfc3782

Jarvinen/Kojo [Page 14]

