
Internet Engineering Task Force

INTERNET-DRAFT Anura

Jayasumana

draft-jayasumana-reorder-density-01.txt Nischal M.

Piratla

 Abhijit A.

Bare

 Tarun

Banka

 Colorado State

University

 July

2003

 Expires: December

2003

 Reorder Density Function - Metric for packet reordering measurement

Status of this memo

 This document is an Internet-Draft and is subject to all provisions

 of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF), its areas, and its working groups. Note that

 other groups may also distribute working documents as Internet-

 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six

months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at

 http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft shadow directories can be accessed at

 http://www.ietf.org/shadow.html

 This memo provides information for the Internet community. This

memo

 does not specify an Internet standard of any kind. Distribution of

 this memo is unlimited.

Abstract

 Out-of-order arrival of packets can significantly degrade the

 performance of many TCP-based, VoIP-based and Video-based

 applications. There is a need for a metric that can meaningfully,

 accurately and unambiguously characterize reordering. This memo

 proposes a new metric called Reorder Density function (RD), which

can

 give an in-depth view of the reordering present in any packet

 sequence. This well-defined metric can also be used to evaluate

https://datatracker.ietf.org/doc/html/draft-jayasumana-reorder-density-01.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

 effects of protocol and hardware implementations on packet

 reordering. The memo also provides an algorithm to compute the

 reorder density function followed by some illustrative examples.

Anura Jayasumana [Page

1]

Internet Draft <draft-jayasumana-reorder-density-01.txt> July

2003

1. Introduction and Motivation

 Out-of-order arrival of packets is a common phenomenon on the

 Internet. Major cause of reordering of packets is the local

 parallelism present in network routers and switches. This

parallelism

 is caused due to different load balancing algorithms used in routers

 and switches. Packets can also be reordered due to different queuing

 schemes within the networking equipment itself. Packet reordering

 leads to degradation of the performance of the applications. For

 example, perceived quality of voice degrades if a VoIP application

 receives packets out of order. Once we are able to quantify the

 degree of reordering in arriving packet streams, it is possible to

 predict the effects of reordering on applications that are sensitive

 to reordering, and perhaps even compensate for reordering. This can

 further help us in evaluating network protocols with respect to

 packet reordering.

 Until now, the percentage of out-of-order packets has been used as a

 metric for characterizing reordering. However, this metric is vague

 and lacks in detail. There is also no uniform definition for the

 the degree of reordering of an arrived packet. For example, consider

 two packet sequences (1,3,4,2,5) and (1,4,3,2,5). It is possible to

 interpret the reordering of packets differently in this case,

 for example [1],

 (i) Packets 2, 3 and 4 are out ûof order in both cases.

 (ii) Only packet 2 is out of order in the first sequence, while

 packets 2 and 3 are out of order in the second.

 (iii) Packets 3 and 4 are out of order in both the sequences.

 (iv) Packets 2, 3 and 4 are out of order in the first sequence,

while

 packets 4 and 2 are out ûof order in the second sequence.

 In essence, the percentage of out-of-order packets is subject to

 interpretation and it cannot capture the reordering unambiguously

 and, hence, accurately. Thus, there is a need for a more precise and

 complete definition.

 Taking any of the above sequences, if buffers are available to store

 the packets 3 and 4 while waiting for packet 2, it is possible to

 recover from the reordering. However, there may be cases where the

 application requirement is such that the arrival of packet 2 after

 this delay renders it useless. While one can argue that a good

packet

 reordering measurement scheme should capture such effects, a counter

 argument can also be made that packet reordering should be measured

 strictly with respect to the order of delivery and should be

 application independent.

 In this memo, we define a metric called Reorder Density function

 (RD). RD is the normalized form of a histogram of the occupancy of a

https://datatracker.ietf.org/doc/html/draft-jayasumana-reorder-density-01.txt

 hypothetical buffer that would allow the recovery from out-of-order

 delivery of packets.

Anura Jayasumana [Page

2]

Internet Draft <draft-jayasumana-reorder-density-01.txt> July

2003

 In addition to providing a consistent percentage reordering

measure,

 RD can also be used to compute the percentages corresponding to

 different degrees of reordering. Next sections explain the concept

of

 the reorder density function (RD).

2. Definitions of terms used

 Some important terms are defined, which will help us describe the

 Reorder Density Function (RD).

2.1 Out-of-order packet:

 When a packet other than the expected packet arrives, it is

 considered as an out-of-order packet, provided it is not a duplicate

 of an already received packet.

2.2 Buffer Occupancy (D):

 An arrived packet with a sequence number greater than the expected

 packet is considered to be stored in a buffer. Note that this is

 only a hypothetical buffer that we use to define RD. At any packet

 arrival instant, the buffer occupancy (assuming one buffer per

 packet) is therefore the number of such out-of-order packets.

 If the newly arrived packet is out of order, it will occupy the

 buffer as well. For example, for the sequence of packets

 (1,2,4,5,3), the buffer occupancy value, when the packet with the

 sequence number 4 arrives is 1 because it arrived when 3 was

 expected. Similarly, the buffer occupancy becomes 2 when the packet

 with the sequence number 5 arrives, as both packets 3 and 4 have to

 be held in the buffer. When packet 3 arrives, the occupancy becomes

 zero as it is no longer necessary to hold packets 4 and 5 to

recover

 from reordering. (The term buffer occupancy was called displacement

 in [1].)

2.3 Occupancy Threshold (DT):

 This parameter defines the tolerance of the application to the

 maximum allowed displacement of a packet. It can also be viewed as

 the maximum size of the hypothetical buffer. If an out-of-order

 packet needs to be stored in the hypothetical buffer already filled

 to the value of occupancy threshold, the currently expected packet

is

 considered to be delayed more than the tolerance and hence, is

 assumed to be lost. The threshold may be chosen such that even if

the

 packet ultimately arrives after the threshold, it is of no use to

the

 application. Many factors influence the selection of the occupancy

 threshold value, for example, the transport layer protocol (UDP or

https://datatracker.ietf.org/doc/html/draft-jayasumana-reorder-density-01.txt

 TCP), the amount of redundant information sent to recover from

 losses, and whether the sequence of packets belong to a

 time-sensitive application or not.

Anura Jayasumana [Page

3]

Internet Draft <draft-jayasumana-reorder-density-01.txt> July

2003

 In case of a VoIP application, for example, with a bit-rate of 128

 kbps and packet size of 200 bytes, DT value can be determined as

 follows. Assume that the application can wait at most 50 ms for an

 expected packet, and that the packets arrive at constant rate. That

 means within 50 ms, the application can receive

 (128*1000*0.05)/(200*8) i.e. 4 packets. Therefore, the occupancy

 threshold should be kept at 4.

 In case of TCP, a lost or delayed packet will be retransmitted and

 will reach the destination. So the value of the DT should be kept at

 least equal to the size of the receiving window on the receiver

side.

2.4 Frequency of Occurences (F)

 At the arrival of each packet the buffer occupancy may take any

value

 'i' ranging from 0 to DT. The frequency of occurrence F[i] is the

 number of times the occupancy takes the value of 'i'.

2.5 Definition of RD

 RD is defined as the distribution of all frequencies of occurrence,

 F[i], normalized with respect to the total number of occurrences,

 i.e, sum(F[i]) for all i in [0, DT].

3. Algorithm to compute reorder density (RD) function

 This section describes an algorithm to compute the reorder density

 function. Without loss of generality, the description assumes that

 the sequence numbers start at 1 and increment by 1 for each in-order

 packet.

 # E : Next expected sequence number.

 # S : Sequence number of the packet just arrived.

 # D : Current buffer occupancy.

 # DT : Occupancy threshold.

 # F[i] : Frequency of occurrence of D = i.

 # RD[i] : Normalized frequency for D = i.

 # in_buffer(N) : True if the packet with sequence number N is

 already stored in the buffer.

===

 1. Initialize E = 1,D = 0 and F[i] = 0 for all values of i (0 <= i

 <= DT).

 2. Do the following for each arrived packet.

 If (in_buffer(S) || S < E) /*Do nothing*/;

https://datatracker.ietf.org/doc/html/draft-jayasumana-reorder-density-01.txt

 /* Case a: S is a duplicate or delayed packet. Discard the

 packet.*/

Anura Jayasumana [Page

4]

Internet Draft <draft-jayasumana-reorder-density-01.txt> July

2003

 ElseIf (S == E)

 /* Case b: Expected packet has arrived.*/

 {

 E = E + 1;

 While (in_buffer(E))

 {

 D = D - 1; /* Free buffer occupied by E.*/

 E = E + 1; /* Expect next packet.*/

 }

 F[D] = F[D] + 1; /* Update frequency for buffer occupancy

 D.*/

 } /* End of ElseIf (S == E)*/

 ElseIf (S > E)

 /*Case c: Arrived packet has a sequence number higher

 than expected.*/

 {

 If (D < DT)

 /* Store the arrived packet in a buffer.*/

 D = D + 1;

 Else

 /* Expected packet is delayed beyond the DT. Treat it as

 lost.*/

 {

 Repeat

 {

 E = E + 1;

 }

 Until (in_buffer(E) || E == S);

 While (in_buffer(E) || E == S)

 {

 D = D - 1;

 E = E + 1;

 }

 }

 F[D] = F[D] + 1; /* Update frequency for buffer occupancy

 D.*/

 } /* End of ElseIf (S > E)*/

 3. Normalize F[i] to get RD[i] for all values of i (0 <= i <= DT)

 using

 F[i]

 RD[i] = ----------------------------------

 Sum(F[j] for 0 <= j <= DT)

 The algorithm starts with the initialization of D to 0 and E to 1.

 Let S be the sequence number of an arrived packet.

https://datatracker.ietf.org/doc/html/draft-jayasumana-reorder-density-01.txt

Anura Jayasumana [Page

5]

Internet Draft <draft-jayasumana-reorder-density-01.txt> July

2003

 If S has been received previously or delayed subject to the

 occupancy threshold condition (case a), it is discarded.

 If S is the expected packet (case b), E is incremented by 1 (i.e.

the

 next packet in the sequence is now expected). If the packet with new

 E, i.e., the next packet in the sequence has already arrived, it

need

 not be held in the buffer any more (it can be used by the

 application). So the buffer occupancy value is reduced by 1 and E is

 incremented by 1. This is repeated till all the in-sequence waiting

 packets are removed.

 If the received packet with the sequence number S is not the

expected

 packet, two cases are possible. First case is when S is higher than

E

 (case c), i.e., received packet is an out-of-order packet. If the

 buffer occupancy is less than the occupancy threshold, the packet

 with the sequence number E can still be expected. The value of the

 buffer occupancy is incremented, because the newly arrived packet

 needs to be stored in the hypothetical buffer. On the other hand, if

 the buffer occupancy is equal to the occupancy threshold, the

 currently expected packet E is assumed to be lost and E is

 incremented repeatedly till E reaches the sequence number of a

packet

 that has been already received. This packet can now be removed from

 the hypothetical buffer giving space to the newly arrived packet. E

 is incremented further to check if there are any packets with higher

 sequence numbers already arrived and waiting, similar to what is

done

 in the S=E case (in case b).

 The frequency value for the new value of the buffer occupancy is

 incremented as shown in the algorithm.

 Once the algorithm deals with all the packets and the frequency F[D]

 is computed, for all the values of D, the F[D] values are normalized

 to get the density with respect to D. This function is called the

 Reorder Density function.

4. Examples

 We consider a few different sequences to exemplify the above

 algorithm.

 a. Case of no packet loss:

 Consider a sequence of 5 packets (1,4,2,5,3) with DT = 10.

 Table 1 and 2 show the computation steps when RD algorithm is

https://datatracker.ietf.org/doc/html/draft-jayasumana-reorder-density-01.txt

applied

 to above sequence.

Anura Jayasumana [Page

6]

Internet Draft <draft-jayasumana-reorder-density-01.txt> July

2003

 Table 1: Reorder Histogram computation steps

 E 1 2 2 3 3

 S 1 4 2 5 3

 D 0 1 1 2 0

 F[D] 1 1 2 1 2

 (E,S,D,F[D] as described in section 3)

 The last row (F[D]) represents the current frequency of occurrence

of

 the buffer occupancy D. The final set of values for F[D] are shown

in

 table 2.

 When the first packet with the sequence number S=1 arrives, it is

 same as the expected sequence number E=1, resulting in the

 buffer occupancy D=0. Next, when the packet S=4 arrives instead of

 the expected packet E=2, the buffer occupancy D becomes 1. After

 receiving the packet with the sequence number 2, the buffer

occupancy

 D is still 1, since the packet 3 that is expected now is not yet

 received. Packet 4 continues to occupy a buffer. Only one buffer is

 needed and hence D = 1. On receiving the packet with the sequence

 number 5, the buffer occupancy D becomes 2. Finally, when we receive

 the packet with sequence number 3, all the packets up to the

sequence

 number 5 have been received. Thus the buffers can be released and

 hence the buffer occupancy D becomes 0. The reorder density function

 (RD) is derived by normalizing reorder histogram in Table 1 as

 follows:

 Table 2: Reorder Density Function (RD)

 D 0 1 2

 F[D] 2 2 1

 RD[D] 0.4 0.4 0.2

 (D,F[D],RD[D] as described in section 3)

https://datatracker.ietf.org/doc/html/draft-jayasumana-reorder-density-01.txt

Anura Jayasumana [Page

7]

Internet Draft <draft-jayasumana-reorder-density-01.txt> July

2003

 Graphical representation of above RD is as follows:

 ^

 |

 0.4 |_____

 ^ | | |

 | | | |

 0.2 | | |__

 RD[D] | | | |

 | | | |

 0 +--+--+--+----------->

 0 1 2

 D -->

 b. Case of packet loss:

 Consider a sequence of 6 packets (1,2,4,5,6,7) with DT = 3.

 Tables 3 and 4 show the computation steps, when the RD algorithm is

 applied to the above sequence.

 Table 3: Reorder Histogram computation steps

 E 1 2 3 3 3 3

 S 1 2 4 5 6 7

 D 0 0 1 2 3 0

 F[D] 1 2 1 1 1 3

 (E,S,D,F[D] as described in section 3)

 When a packet with the sequence number 4 is received, the expected

 packet E is 3. So the buffer occupancy D increases by 1. When the

 packets with the sequence numbers 5 and 6 arrive, D increases to 2

 and then to 3 respectively. The buffer occupancy is now equal to the

 occupancy threshold DT=3. Therefore, when the packet 7 is received,

 we no longer expect the packet with the sequence number 3 to arrive

 and assume that it is lost. We can now use all the waiting packets

 (4,5,6 and 7), reducing the buffer occupancy to 0. The reorder

 density function (RD) is derived by normalizing the reorder

histogram

 in Table 3 as follows:

 Table 4: Reorder Density Function (RD)

 D 0 1 2 3

 F[D] 3 1 1 1

 RD[D] 0.5 0.17 0.17 0.17

 (D,F[D],RD[D] as described in section 3)

https://datatracker.ietf.org/doc/html/draft-jayasumana-reorder-density-01.txt

Anura Jayasumana [Page

8]

Internet Draft <draft-jayasumana-reorder-density-01.txt> July

2003

 Graphical representation of above RD is as follows.

 ^

 0.5 |__

 ^ | |

 | | |

 | |

 RD[D] 0.17| |________

 | | | | |

 0 +--+--+--+--+--------->

 0 1 2 3

 D -->

 c. Case of Duplicate packets:

 Consider a sequence of 6 packets (1,3,2,3,4,5) with DT = 5.

 Tables 5 and 6 show the computation steps when the RD algorithm is

 applied to the above sequence.

 Table 5: Reorder Histogram computation steps

 E 1 2 2 4 4 5

 S 1 3 2 3 4 5

 D 0 1 0 - 0 0

 F[D] 1 1 2 - 3 4

 (E,S,D,F[D] as described in section 3)

 In the above sequence, duplicate packets are received by the

 destination. The RD algorithm ignores the arrivals of the duplicate

 packets.

 The reorder density function (RD) is derived by normalizing reorder

 histogram in Table 5 as follows:

 Table 6: Reorder Density Function (RD)

 D 0 1

 F[D] 4 1

 RD[D] 0.80 0.20

 (D,F[D],RD[D] as described in section 3)

https://datatracker.ietf.org/doc/html/draft-jayasumana-reorder-density-01.txt

Anura Jayasumana [Page

9]

Internet Draft <draft-jayasumana-reorder-density-01.txt> July

2003

 Graphical Representation of RD is as follows:

 ^

 |

 0.80 |__

 | |

 | |

 ^ | |

 | | |

 | |

 RD[D] 0.20| |__

 | | |

 0 +--+--+----->

 0 1

 D --->

5. Simple metrics derived from RD

 While the reorder density can provide a detailed picture of the

 degree of reordering present in a sequence of packets, there may be

 instances, where a simpler metric is needed to compare sequences.

 The following parameters derived from the reorder density may be

used

 as simpler metrics for packet reordering. Reference [1] shows that

 these simpler metrics can effectively capture the relative degrees

of

 reordering of packet in sequences effectively.

5.1 90th percentile of RD

 This parameter is the buffer occupancy value, such that 90 % of the

 arrived packets have buffer occupancy less than this value.

5.2 Mean and Standard Deviation of RD

 Mean and standard deviation of the buffer occupancy values of the

 arrived packets may be used as simple metrics.

6. Current Schemes

 Currently, the percentage of out-of-order packets is the most

 commonly used packet reordering metric. With the percentage reorder

 metric, the information provided by the metric is purely for

 information only. For example, consider two sequences at the

receiver

 end (2,3,4,5,1) and (2,1,3,4,5). Taking the definition of late

 arrival as reordered packet [2], in both the cases the percentage

 reordering is 20. However, it is obvious that the reordering in the

 second sequence is more acceptable than the first one as the

recovery

https://datatracker.ietf.org/doc/html/draft-jayasumana-reorder-density-01.txt

 from the packet reordering is much easier in the former case. This

 metric is a significant simplification and is not useful in the

 recovery from reordering.

Anura Jayasumana [Page

10]

Internet Draft <draft-jayasumana-reorder-density-01.txt> July

2003

 N-reordering [3] is a metric where an expected packet is 1-

reordered,

 2-reordered and so on till it arrives. If a packet arrives after 40

 positions from its expected position then it is 40-reordered. Two

 examples are listed in Appendix A to show the difference between

 reorder density and N-reordering. These examples how that

 N-reordering is much more susceptible to delayed packets as it

cannot

 treat them as lost when their useful life is over, whereas with RD

 this is taken care of using threshold.

 Reordering offset[4] is another metric to measure reordering. In

this

 metric the packet is not reordered until it arrives. However, a

 duplicate packet is considered as a reordered packet. Unlike RD,

this

 metric is not orthogonal to duplication of packets. Appendix B uses

a

 few few example sequences to compare Reordering offset and RD.

7. Security Considerations

 This document does not define any protocol. The metric definition

 per se is believed to have no security implications.

8. IANA Considerations

 This document requires nothing from the IANA.

9. References

 1. T. Banka, A. A. Bare, A. P. Jayasumana, "Metrics for Degree of

 Reordering in Packet Sequences", Proc. 27th IEEE Conference on Local

 Computer Networks, Tampa, FL, Nov. 2002.

 2. V.Paxson, "Measurements and Analysis of End-to-End Internet

 Dynamics," Ph.D. dissertation, U.C. Berkeley, 1997,

 ftp://ftp.ee.lbl.gov/papers/vp-thesis/dis.ps.gz.

 3. S. Shalunov, "Definition of IP Packet Reordering Metric",

 Internet Draft, <draft-shalunov-reordering-definition-02.txt>,

 March 2003.

 4. A. Morton, L. Ciavattone, G. Ramachandran, S.Shalunov and J.

 Perser, "Packet Reordering Metric for IPPM", Internet Draft,

 <draft-ietf-ippm-reordering-03.txt>, June 2003.

https://datatracker.ietf.org/doc/html/draft-jayasumana-reorder-density-01.txt
ftp://ftp.ee.lbl.gov/papers/vp-thesis/dis.ps.gz
https://datatracker.ietf.org/doc/html/draft-shalunov-reordering-definition-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-ippm-reordering-03.txt

Anura Jayasumana [Page

11]

Internet Draft <draft-jayasumana-reorder-density-01.txt> July

2003

10. Authors' Addresses

 Anura Jayasumana <anura@engr.colostate.edu>

 Nischal M. Piratla <nischal@engr.colostate.edu>

 Abhijit A. Bare <abhijit@cs.colostate.edu>

 Tarun Banka <tarunb@cs.colostate.edu>

 Computer Networking Research Laboratory,

 Department of Electrical and Computer Engineering,

 Colorado State University,

 Fort Collins, CO 80523.

 Expiration Date: December 2003

11. Appendix A

 Example 1:For the sequence <1,2,3,4,5,2,1>

 RD output:

 D 0 1 2 3

 F[D] 5 0 0 0

 RD[D] 1.00 0.00 0.00 0.00

 N-reordering output:

 1-reordering = 33.333333%

 2-reordering = 40.000000%

 3-reordering = 50.000000%

 4-reordering = 33.333333%

 5-reordering = 50.000000%

 no 6-reordering

 1-reordering = 2

 2-reordering = 2

 3-reordering = 2

 4-reordering = 1

 5-reordering = 1

 no 6-reordering

 In this example, the N-reordering algo shows that there is

 5-reordering. If you look at the sequence there are two duplicate

 packets namely, seq#s 2 & 1. In RD, the F[D] does not exist for D>0

 i.e., there is no reordering. As one can see, the sequence has no

 reordering.

https://datatracker.ietf.org/doc/html/draft-jayasumana-reorder-density-01.txt

Anura Jayasumana [Page

12]

Internet Draft <draft-jayasumana-reorder-density-01.txt> July

2003

 Example 2: For Sequence:

 <1,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,

 27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,2>

 RD output with DT = 5:

 D 0 1 2 3 4 5

 F[D] 35 1 1 1 1 1

 RD[D] 0.875 0.025 0.025 0.025 0.025 0.025

 N-reordering output:

 1-reordering = 2.500000%

 2-reordering = 2.564103%

 3-reordering = 2.631579%

 4-reordering = 2.702703%

 5-reordering = 2.777778%

 6-reordering = 2.857143%

 7-reordering = 2.941176%

 8-reordering = 3.030303%

 9-reordering = 3.125000%

 10-reordering = 3.225806%

 11-reordering = 3.333333%

 12-reordering = 3.448276%

 13-reordering = 3.571429%

 14-reordering = 3.703704%

 15-reordering = 3.846154%

 16-reordering = 4.000000%

 17-reordering = 4.166667%

 18-reordering = 4.347826%

 19-reordering = 4.545455%

 20-reordering = 4.761905%

 21-reordering = 5.000000%

 22-reordering = 5.263158%

 23-reordering = 5.555556%

 24-reordering = 5.882353%

 25-reordering = 6.250000%

 26-reordering = 6.666667%

 27-reordering = 7.142857%

 28-reordering = 7.692308%

 29-reordering = 8.333333%

 30-reordering = 9.090909%

 31-reordering = 10.000000%

 32-reordering = 11.111111%

 33-reordering = 12.500000%

 34-reordering = 14.285714%

 35-reordering = 16.666667%

Anura Jayasumana [Page

13]

https://datatracker.ietf.org/doc/html/draft-jayasumana-reorder-density-01.txt

Internet Draft <draft-jayasumana-reorder-density-01.txt> July

2003

 36-reordering = 20.000000%

 37-reordering = 25.000000%

 38-reordering = 33.333333%

 39-reordering = 50.000000%

 no 40-reordering

 This example clearly shows that N-reordering is much more

susceptible

 to delayed packets as it cannot treat them as lost when their useful

 life is over, whereas with RD this is taken care of.

12. Appendix B

 From <draft-ietf-ippm-reordering-01.txt>

 "...Table 1 Example with Packet 4 Reordered,

 Sending order(SrcNum@Src): 1,2,3,4,5,6,7,8,9,10

 SrcNum Src Dst Dst Posit. Late

 @Dst NextExp Time Time Delay IPDV Order Offset Time

 1 1 0 68 68 1

 2 2 20 88 68 0 2

 3 3 40 108 68 0 3

 5 4 80 148 68 -82 4

 6 6 100 168 68 0 5

 7 7 120 188 68 0 6

 8 8 140 208 68 0 7

 4 9 60 210 150 82 8 4 62

 9 9 160 228 68 0 9

 10 10 180 248 68 0 10

 Each column gives the following information:

 SrcNum Packet sequence number at the Source.

 NextExp The value of NextExp when the packet arrived(before

 update).

 SrcTime Packet time stamp at the Source, ms.

 DstTime Packet time stamp at the Destination, ms.

 Delay 1-way delay of the packet, ms.

 IPDV IP Packet Delay Variation, ms

 IPDV = Delay(SrcNum)-Delay(SrcNum-1)..."

 Reorder Density for the above example:

Anura Jayasumana [Page

14]

https://datatracker.ietf.org/doc/html/draft-jayasumana-reorder-density-01.txt
https://datatracker.ietf.org/doc/html/draft-ietf-ippm-reordering-01.txt

Internet Draft <draft-jayasumana-reorder-density-01.txt> July

2003

 SrcNum

 @Dst NextExp Buffer occupancy Frequency

 1 1 0 F[0] = 1

 2 2 0 F[0]++

 3 3 0 F[0]++

 5 4 1 F[1] = 1

 6 4 2 F[2] = 1

 7 4 3 F[3] = 1

 8 4 4 F[4] = 1

 4 4 0 F[0]++

 9 9 0 F[0]++

 10 10 0 F[0]++

 Normalized F[i] for all i: F[0] = 0.6, F[1] = 0.1, F[2] = 0.1, F[3]

=

 0.1, F[4] = 0.1

 In this case, if we can set DT = 3, then the table will look like

 this:

 SrcNum

 @Dst Expected Buffer occupancy Frequency

 1 1 0 F[0] = 1

 2 2 0 F[0]++

 3 3 0 F[0]++

 5 4 1 F[1] = 1

 6 4 2 F[2] = 1

 7 4 3 F[3] = 1

 8 4 0 F[0]++ {after the current

packet's

 arrival, packet '4' is

 rendered useless!}

 4 9 0 - {discarded pkt.}

 9 9 0 F[0]++

 10 10 0 F[0]++

 Normalized F[i] for all i: F[0] = 5/9, F[1] = 1/9, F[2] = 1/9, F[3]

=

 1/9

 Other examples in current metrics are almost similar. However, there

 are no examples with packet duplication. Here is one for the metric

 proposed. (Note: Packet '5' is duplicated.)

https://datatracker.ietf.org/doc/html/draft-jayasumana-reorder-density-01.txt

Anura Jayasumana [Page

15]

Internet Draft <draft-jayasumana-reorder-density-01.txt> July

2003

 SrcNum

 @Dst NextExp Buffer Occupancy Frequency

 1 1 0 F[0] = 1

 2 2 0 F[0]++

 3 3 0 F[0]++

 5 4 1 F[1] = 1

 6 4 2 F[2] = 1

 7 4 3 F[3] = 1

 8 4 4 F[4] = 1

 4 4 0 F[0]++

 5 9 0 - {duplicate packet}

 9 9 0 F[0]++

 Normalized F[i] for all i: F[0] = 5/9, F[1] = 1/9, F[2] = 1/9, F[3]

=

 1/9, F[4] = 1/9.

 At the arrival of a duplicate packet the buffer occupancy is held

the

 same as the duplicate packet will be discarded and the contents of

 the buffer remain.

https://datatracker.ietf.org/doc/html/draft-jayasumana-reorder-density-01.txt

Anura Jayasumana [Page 16]

