
JMAP N. Jenkins
Internet-Draft FastMail
Intended status: Standards Track October 19, 2016
Expires: April 22, 2017

JSON Meta Application Protocol
draft-jenkins-jmap-00

Abstract

 This document specifies a protocol for synchronising JSON-based data
 objects efficiently, with support for push and out-of-band binary
 data upload/download.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 22, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Jenkins Expires April 22, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft JMAP October 2016

Table of Contents

1. Introduction . 3
1.1. Notational Conventions 4
1.2. Terminology . 4
1.2.1. User . 4
1.2.2. Accounts . 5
1.2.3. Data types and records 5

1.3. Ids . 5
1.4. JSON as the data encoding format 5
1.5. The JMAP API model 6

2. Authentication . 6
2.1. Service autodiscovery 6
2.2. Getting an access token 7

 2.2.1. 200: Success, but more authorization required. . . . 8
 2.2.2. 201: Authentication is complete, access token
 created. . 11

2.2.3. 400: Malformed request 13
 2.2.4. 403: Authentication step failed, but client may try
 again . 13

2.2.5. 404: Not found 13
2.2.6. 410: Restart authentication 14
2.2.7. 429: Rate limited 14
2.2.8. 500: Internal server error 14
2.2.9. 503: Service unavailable 14

2.3. Refetching URL endpoints 14
 2.3.1. 201: Authentication is complete, access token
 created. . 14

2.3.2. 403: Restart authentication 15
2.3.3. 404: Not found 15
2.3.4. 500: Internal server error 15
2.3.5. 503: Service unavailable 15

2.4. Revoking an access token 15
2.4.1. 204: Success . 16
2.4.2. 401: Unauthorized 16

2.5. Authenticating HTTP requests 16
2.5.1. Signed GET requests 16

3. Structured data exchange 18
3.1. Making an API request 18
3.1.1. 200: OK . 18
3.1.2. 400: Bad Request 18
3.1.3. 401: Unauthorized 18
3.1.4. 404: Not Found 19
3.1.5. 413: Payload Too Large 19
3.1.6. 429: Rate limited 19
3.1.7. 500: Internal Server Error 19
3.1.8. 503: Service Unavailable 19

3.2. The structure of an API request 19

Jenkins Expires April 22, 2017 [Page 2]

Internet-Draft JMAP October 2016

3.3. Errors . 20
3.4. Vendor-specific extensions 21
3.5. Security . 21
3.6. Concurrency . 21
3.7. The Number datatype 22
3.8. The Date datatypes 22
3.9. Use of null . 22
3.10. CRUD methods . 22
3.10.1. getFoos . 23
3.10.2. getFooUpdates 24
3.10.3. setFoos . 26

4. Downloading binary data 29
4.1. 200: OK . 30
4.2. 401: Unauthorized . 30
4.3. 404: Not Found . 30
4.4. 503: Service Unavailable 30

5. Uploading binary data . 30
5.1. 201: File uploaded successfully 30
5.2. 400: Bad request . 31
5.3. 401: Unauthorized . 31
5.4. 404: Not Found . 32
5.5. 413: Request Entity Too Large 32
5.6. 415: Unsupported Media Type 32
5.6.1. 429: Rate limited 32

5.7. 503: Service Unavailable 32
6. Push . 32
6.1. Event Source . 33
6.2. Web hook . 34
6.2.1. setPushCallback 34
6.2.2. getPushCallback 35

7. References . 35
7.1. Normative References 35
7.2. URIs . 36

 Author's Address . 36

1. Introduction

 JMAP is a generic protocol for synchronising data, such as mail,
 calendars or contacts, between a client and a server. It is
 optimised for mobile and web environments, and aims to provide a
 consistent interface to different data types.

 This specification is for the generic mechanism of authentication and
 synchronisation. Further specifications define the data models for
 different data types that may be synchronised via JMAP.

 JMAP is designed to make efficient use of limited network resources.
 Multiple API calls may be batched in a single request to the server,

Jenkins Expires April 22, 2017 [Page 3]

Internet-Draft JMAP October 2016

 reducing round trips and improving battery life on mobile devices.
 Push connections remove the need for polling, and an efficient delta
 update mechanism ensures a minimum of data is transferred.

 JMAP is designed to be horizontally scalable to a very large number
 of users. This is facilitated by the separate end points for users
 after login, the separation of binary and structured data, and a
 shared data model that does not allow data dependencies between
 accounts.

1.1. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 The underlying format used for this specification is JSON.
 Consequently, the terms "object" and "array" as well as the four
 primitive types (strings, numbers, booleans, and null) are to be
 interpreted as described in Section 1 of [RFC7159].

 Some examples in this document contain "partial" JSON documents used
 for illustrative purposes. In these examples, three periods "..."
 are used to indicate a portion of the document that has been removed
 for compactness.

 Types signatures are given for all JSON objects in this document.
 The following conventions are used:

 o "Boolean|String" - The value is either a JSON "Boolean" value, or
 a JSON "String" value.

 o "Foo" - Any name that is not a native JSON type means an object
 for which the properties (and their types) are defined elsewhere
 within this document.

 o "Foo[]" - An array of objects of type "Foo".

 o "String[Foo]" - A JSON "Object" being used as a map (associative
 array), where all the values are of type "Foo".

1.2. Terminology

1.2.1. User

 A user represents a set of permissions relating to what data can be
 seen. To access data in JMAP, you first authenticate as a particular
 user.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc7159#section-1

Jenkins Expires April 22, 2017 [Page 4]

Internet-Draft JMAP October 2016

1.2.2. Accounts

 An account is a collection of data.

 All data, other than the Account objects themselves, belong to a
 single account. A single account may contain an arbitrary set of
 data, for example a collection of mail, contacts and calendars. Most
 operations in JMAP are isolated to a single account; there are a few
 explicit operations to copy data between them. Certain properties
 are guaranteed for data within the same account, for example
 uniqueness of ids within a type in that account.

 An account is not the same as a user, although it is common for the
 primary account to directly belong to the user. For example, you may
 have an account that contains data for a group or business, to which
 multiple users have access. Users may also have access to accounts
 belonging to another user if that user is sharing some of their data.

1.2.3. Data types and records

 JMAP provides a uniform interface for creating, retrieving, updating
 and deleting various types of objects. A *data type* is a collection
 of named, typed properties, just like the schema for a database
 table. Each instance of a data type is called a *record*.

1.3. Ids

 All object ids are assigned by the server, and are immutable. They
 MUST be unique among all objects of the *same type* within the *same
 account*. Ids may clash across accounts, or for two objects of
 different types within the same account.

 Ids are always "String"s. An id MUST be a valid UTF-8 string of at
 least 1 character in length and maximum 256 bytes in size, but MUST
 NOT start with the "#" character, as this is reserved for doing back
 references during object creation (see the _setFoos_ description).

1.4. JSON as the data encoding format

 JSON is a text-based data interchange format as specified in
 [RFC7159]. The I-JSON format defined in [RFC7493] is a strict subset
 of this, adding restrictions to avoid potentially confusing scenarios
 (for example, it mandates that an object MUST NOT have two properties
 with the same key).

 All data sent from the client to the server or from the server to the
 client (except binary file upload/download) MUST be valid I-JSON

https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7493

Jenkins Expires April 22, 2017 [Page 5]

Internet-Draft JMAP October 2016

 according to the RFC, and is therefore case-sensitive and encoded in
 UTF-8.

1.5. The JMAP API model

 All data exchanges are authenticated using an access token.
 Authentication is covered in section 2.

 An authenticated client may exchange data with the server using four
 different mechanisms:

 1. The client may make an API request to the server to get or set
 structured data. This request consists of an ordered series of
 method calls. These are processed by the server, which then
 returns an ordered series of responses. This is described in

section 3.

 2. The client may download binary files from the server. This is
 detailed in section 4.

 3. The client may upload binary files to the server. This is
 specified in section 5.

 4. The client may connect to a push channel on the server, to be
 notified when data has changed. This is explained in section 6.

2. Authentication

 When connecting to any JMAP server, the client must first gain an
 access token. It cannot just use a username/password directly. This
 allows the server to know (and show the user) which clients currently
 have access to the account, and to be able to revoke access
 individually.

 The server may support multiple different mechanisms for
 authenticating a user to gain the access token. It is expected that
 further types may be added in future extensions to the JMAP
 specification.

2.1. Service autodiscovery

 To begin authentication, the client needs to know the authentication
 URL for the JMAP server.

 There are two standardised autodiscovery methods in use for internet
 protocols:

 o *DNS srv* See [RFC6186] and [RFC6764]

https://datatracker.ietf.org/doc/html/rfc6186
https://datatracker.ietf.org/doc/html/rfc6764

Jenkins Expires April 22, 2017 [Page 6]

Internet-Draft JMAP October 2016

 o *.well-known/servicename* See [RFC5785]

 A JMAP-supporting host for the domain "example.com" SHOULD publish a
 SRV record "_jmaps._tcp.example.com" which gives a _hostname_ and
 port (usually port "443"). The authentication URL is then
 "https://${hostname}[:${port}]/.well-known/jmap" (following any
 redirects).

 If the client has a username in the form of an email address, it MAY
 use the domain portion of this to attempt autodiscovery of the JMAP
 server.

 To support clients that are unable to do SRV lookups, the server
 SHOULD make the _hostname_ the same domain as the username if
 possible.

2.2. Getting an access token

 Authorization always starts with the client making a POST request to
 the authentication URL (found either via service autodiscovery or
 manual entry). The request MUST be of type "application/json" and
 specify an "Accept: application/json" header. The body of the
 request MUST be a single JSON object, encoded in UTF-8, with the
 following properties:

 o *username*: "String" The username the client wishes to
 authenticate. This is normally the primary email address of the
 user.

 o *clientName*: "String" The name of the client software. e.g.
 "Mozilla Thunderbird".

 o *clientVersion*: "String" Information to identify the version of
 the client. This MUST change for any changed client code (e.g. a
 version control tag or counter for development software) and
 SHOULD sort lexically later for newer versions.

 o *deviceName*: "String" A human-friendly string to identify the
 device making the request, e.g. "Joe Blogg's iPhone".

 The server may use the client/device information to help identify the
 login to the user in a login log or other security reporting.
 Although hopefully unnecessary, they may also be helpful for working
 around client bugs in the future.

 The server will respond with one of the following HTTP status codes:

https://datatracker.ietf.org/doc/html/rfc5785

Jenkins Expires April 22, 2017 [Page 7]

Internet-Draft JMAP October 2016

2.2.1. 200: Success, but more authorization required.

 The response body will be a single JSON object with the following
 properties.

 o *loginId*: "String" An id from the server to allow it to connect
 the next request with previous requests in the login process.
 This SHOULD be of limited time validity (e.g. 15 minutes from
 previous call).

 o *methods*: "AuthMethod[]" A list of the supported authentication
 methods to continue with authentication. See below for definition
 of the *AuthMethod* object.

 o *prompt*: "String|null" A message to display in the client to the
 user. The client MUST treat this as plain text, but SHOULD
 automatically hyperlink any URLs it finds if a system browser is
 available.

 This is the standard response to an initial request. Note, a server
 may return this even if the username is not actually active, to
 prevent enumeration. The client should then pick one of the
 methods from the list in the response to continue with
 authentication (if no methods supported by the client are in the
 list, it will not be able to get an access token).

 An *AuthMethod* object MUST have a *type* property. This is a
 "String" representing the method of authentication. For some types,
 there may be other values required on the AuthMethod object in
 addition; see the description of types below. The following types
 are currently defined, but more may be added in the future. A client
 SHOULD offer the user the option to choose any of the method types
 returned that the client supports. The client MUST ignore any types
 it does not understand:

 o "external": The user must do something out-of-band to authorize
 the app. The server SHOULD use the _prompt_ property of the
 response to tell the user what they need to do. A client that
 supports the _external_ authorisation type MUST offer a mechanism
 for the user to indicate to the client when they have completed
 the out-of-band authentication.

 o "oauth": OAuth based authentication. For OAuth integration, see
 the docs of the service in question, since every service
 implements it slightly differently and the client must register
 with the service beforehand to use it. If using this method, an
 access token is obtained entirely through the OAuth mechanism from
 this point on, and requests will be authenticated as per the OAuth

Jenkins Expires April 22, 2017 [Page 8]

Internet-Draft JMAP October 2016

 spec. See the "Refetching URL endpoints" section below for how to
 obtain the URL endpoints after successfully authenticating using
 OAuth.

 o "password": The user must input their current password for the
 account.

 o "totp": The user must input a TOTP [1] code from a device
 registered with the account.

 o "yubikeyotp": The user must input a Yubico OTP [2] code from a
 Yubikey registered with the account.

 o "u2f": The user must sign a challenge using a FIDO U2F [3] key
 registered with the account. The AuthMethod object for this type
 MUST also have the following properties:

 * *appId*: "String" The app id to use.

 * *signChallenge*: "String" The challenge to be signed by the U2F
 key.

 * *registeredKeys*: "RegisteredKey[]" The keys associated with
 this user. A *RegisteredKey* object has the following
 properties:

 * *version*: "String" The U2F protocol version.

 * *keyHandle*: "String" The key handle of the registered key.

 o "sms": The user must input a one-time code sent via SMS to a phone
 number registered with the account. The AuthMethod object for
 this type MUST also have the following property:

 * *phoneNumbers*: "LoginPhone[]|null" An array of *LoginPhone*
 objects, each of which represents a phone registered with the
 account. A *LoginPhone* object has the following properties:

 + *id*: "String" The id of the phone. This is used when
 asking the server to send a code.

 + *number*: "String" The phone number to display to the user
 to remind them which number the SMS will be/was sent to.
 This MAY have some characters replaced with an "X" or other
 "blanked-out" character if the server does not wish to
 disclose the full phone number at this point. e.g. if the
 phone registered with the account is "+61 123 456 789", the
 server might return "+61 1XX XXX X89" as the number.

Jenkins Expires April 22, 2017 [Page 9]

Internet-Draft JMAP October 2016

 + *isCodeSent*: "Boolean" Has the verification code been sent
 to this number yet? The server MAY choose to send the SMS
 before the first time this auth option is returned, or may
 wait for the user to explicitly request it.

 If not using ""oauth"", the user will at some point indicate to the
 client to continue authentication (after inputing any required
 token/code/password dependent on the auth method chosed). At this
 point the client submits a POST request to the same URL as before,
 with the body being a single JSON object with the following
 properties:

 o *loginId*: "String" The _loginId_ the server sent from the
 previous request.

 o *type*: "String" The type of the method chosen to continue
 authentication.

 o *value*: "*" The value as appropriate for the given type:

 * "external": "null"

 * "password"/"totp"/"yubikeyotp"/"sms": "String" - the password/
 one-time code.

 * "u2f": "SignResponse" - an object with _keyHandle_,
 signatureData and _clientData_ "String" properties, as
 defined in the U2F spec.

 Note: The client SHOULD NOT store any password/code the user has
 entered beyond what is required to submit it to the server in this
 step.

 The server will then return one of the same set of responses as
 before, which should be handled the same (for example, if two-factor
 authentication is required, a "200" response may be returned again
 and TOTP/U2F prompted for).

 If the user chooses to authenticate using SMS, they may need to
 request the server to send the code to a particular number before
 they can submit a code. To do this, the client submits a POST
 request to the same URL as before, with the body being a single JSON
 object with the following properties:

 o *loginId*: "String" The _loginId_ the server sent from the
 previous request.

Jenkins Expires April 22, 2017 [Page 10]

Internet-Draft JMAP October 2016

 o *sendCodeTo*: "String" The id of the phone number to send the code
 to.

 The server SHOULD send the code to the given phone if the phone id is
 valid. If the code has already been sent, it is server-dependent
 whether it is sent again or ignored. The server MUST return one of
 the same set of responses as before, which should be handled the same
 (in most cases this will be a "200" response identical to before
 except that the _isCodeSent_ property for the phone will now be
 "true").

2.2.2. 201: Authentication is complete, access token created.

 The response body will be a single JSON object with the following
 properties.

 o *username*: "String" The username that was successfully
 authenticated.

 o *accessToken*: "String" The secret token to be used by the client
 to authenticate all future JMAP requests. The client should keep
 this secure, preferably in an OS keychain or the like. Since
 tokens should not be reused across devices or clients, the client
 SHOULD NOT reveal this token to the user.

 o *accounts*: "String[Account]" A map of *account id* to Account
 object for each account the user has access to. A single access
 token may provide access to multiple accounts, for example if
 another user is sharing their mail with the logged in user, or if
 there is an account that contains data for a group or business.
 All data belongs to a single account. With the exception of a few
 explicit operations to copy data between accounts, all JMAP
 methods take an _accountId_ argument that specifies on which
 account the operations are to take place. This argument is always
 optional; if not specified, the primary account is used. All ids
 (other than Account ids of course) are only unique within their
 account. In the event of a severe internal error, a server may
 have to reallocate ids or do something else that violates standard
 JMAP data constraints. In this situation, the data on the server
 is no longer compatible with cached data the client may have from
 before. The server MUST treat this as though the account has been
 deleted and then recreated with a new account id. Clients will
 then be forced to throw away any data with the old account id and
 refetch all data from scratch. An *Account* object has the
 following properties:

Jenkins Expires April 22, 2017 [Page 11]

Internet-Draft JMAP October 2016

 * *name*: "String" A user-friendly string to show when presenting
 content from this account, e.g. the email address representing
 the owner of the account.

 * *isPrimary*: "Boolean" This MUST be true for exactly one of the
 accounts returned. This is to be considered the user's main or
 default account by the client.

 * *isReadOnly*: "Boolean" This is "true" if the entire account is
 read-only.

 * *hasDataFor*: "String[]" A list of the data profiles available
 in this account. Each future JMAP data types specification
 will define a profile name to encompass that set of types.

 o *capabilities*: "String[Object]" An object specifying the
 capabilities of this server. The keys are URIs, which specify the
 specifications supported by the server. The value for each of
 these keys is an object that MAY include further information about
 the server's capabilities in relation to that spec. The client
 MUST ignore any properties it does not understand. The
 capabilities object MUST include a property called "{TODO: URI for
 this spec}". The value of this property is an object which SHOULD
 contain the following information on server capabilities:

 * *maxSizeUpload*: "Number" The maximum file size, in bytes, that
 the server will accept for a single file upload (for any
 purpose).

 * *maxConcurrentUpload*: "Number" The maximum number of
 concurrent requests the server will accept to the upload
 endpoint.

 * *maxSizeRequest*: "Number" The maximum size, in bytes, that the
 server will accept for a single request to the API endpoint.

 * *maxConcurrentRequests*: "Number" The maximum number of
 concurrent requests the server will accept to the API endpoint.

 * *maxCallsInRequest*: "Number" The maximum number of method
 calls the server will accept in a single request to the API
 endpoint.

 * *maxObjectsInGet*: "Number" The maximum number of obje ts that
 the client may request in a single "getFoos" type method call.

Jenkins Expires April 22, 2017 [Page 12]

Internet-Draft JMAP October 2016

 * *maxObjectsInSet*: "Number" The maximum number of objects the
 client may send to create, update or destroy in a single
 "setFoos" type method call.

 Future specifications will define their own properties on the
 capabilities object.

 o *apiUrl*: "String" The URL to use for JMAP API requests.

 o *downloadUrl*: "String" The URL endpoint to use when downloading
 files (see the Download section of this spec), in [RFC6570] URI
 Template (level 1) format. The URL MUST contain a variable called
 "blobId". The URL SHOULD contain a variable called "name".

 o *uploadUrl*: "String" The URL endpoint to use when uploading files
 (see the Upload section of this spec).

 o *eventSourceUrl*: "String" The URL to connect to for push events
 (see the Push section of this spec).

 URLs are returned only after logging in. This allows different URLs
 to be used for users located in different geographic datacentres
 within the same service.

 Note, if authentication is done via IP or mobile subscriber ID or
 some similar mechanism, a "201" response MAY be returned in response
 to the initial request (with just the username and client info).

2.2.3. 400: Malformed request

 The request is of the wrong content type, or does not contain data in
 the expected format. The client MUST NOT retry the same request.
 There is no content in the response.

2.2.4. 403: Authentication step failed, but client may try again

 Returned in response to a continuation request which failed (e.g. the
 password entered was not correct, or the out-of-band step was not
 completed successfully). The response body will be a single JSON
 object with the same properties as the "200" response, and the client
 may try again.

2.2.5. 404: Not found

 The JMAP authentication server is not available at this address. The
 client needs to rediscover the authentication URL. There is no
 content in the response.

https://datatracker.ietf.org/doc/html/rfc6570

Jenkins Expires April 22, 2017 [Page 13]

Internet-Draft JMAP October 2016

2.2.6. 410: Restart authentication

 The login attempt has failed permanently. This may be due to a
 password being incorrect, the login id expiring, or any other reason.
 The client MUST restart authentication (go back to sending the
 username and client info to the server). There is no content in the
 response.

2.2.7. 429: Rate limited

 Returned if the server is temporarily blocking this IP/client from
 authenticating. This may be due to too many failed password
 attempts, or detected username enumeration attempts, or any other
 reason. (Legitimate) clients should wait a while then try again.
 There is no content in the response.

2.2.8. 500: Internal server error

 Something has gone wrong internally, and the server is in a broken
 state. Don't automatically retry. There is no content in the
 response.

2.2.9. 503: Service unavailable

 The server is currently down. Try again later with exponential
 backoff. There is no content in the response.

2.3. Refetching URL endpoints

 A server MAY (although SHOULD NOT) move end points for any services
 other than authentication at any time. If a request to the API/file
 upload/event source endpoint returns a "404", the client MUST refetch
 the URL endpoints. To do this, it should make an authenticated GET
 request to the authentication URL (see below for how to authenticate
 requests).

 For OAuth logins, this is how the URLs may be fetched initially as
 well.

 The server MUST respond with one of the following status codes:

2.3.1. 201: Authentication is complete, access token created.

 The request was successful. The response will be of type
 "application/json" and consists of a single JSON object containing
 the following properties:

Jenkins Expires April 22, 2017 [Page 14]

Internet-Draft JMAP October 2016

 o *username*: "String" The username that was successfully
 authenticated.

 o *accounts*: "String[Account]" An object representing the accounts
 the user has access to. See the full description above.

 o *capabilities*: "String[Object]" An object specifying the
 capabilities of this server. See the full description above.

 o *apiUrl*: "String" The URL to use for JMAP API requests.

 o *downloadUrl*: "String" The URL endpoint to use when downloading
 files (see above).

 o *uploadUrl*: "String" The URL endpoint to use when uploading files
 (see the Upload section of this spec).

 o *eventSourceUrl*: "String" The URL to connect to for push events
 (see the Push section of this spec).

2.3.2. 403: Restart authentication

 The "Authorization" header was missing or did not contain a valid
 token. Reauthenticate and then retry the request. There is no
 content in the response.

2.3.3. 404: Not found

 The JMAP server is no longer here. There is no content in the
 response.

2.3.4. 500: Internal server error

 Something has gone wrong internally, and the server is in a broken
 state. Don't automatically retry. There is no content in the
 response.

2.3.5. 503: Service unavailable

 The server is currently down. Try again later with exponential
 backoff. There is no content in the response.

2.4. Revoking an access token

 The validity of an access token is determined by the server. It may
 be valid for a limited time only, or expire after a certain time of
 inactivity, or be valid indefinitely etc. If an access token

Jenkins Expires April 22, 2017 [Page 15]

Internet-Draft JMAP October 2016

 expires, it MUST NOT be resurrected. The client MUST restart the
 authentication process to get a new access token.

 For OAuth, see the provider's documentation on revoking access
 tokens.

 Otherwise, a client may revoke an access token at any time by making
 an authenticated DELETE HTTP request to the authentication URL (the
 one used to get the token in the first place). The response from the
 server will be one of the following:

2.4.1. 204: Success

 The access token has now been revoked. There is no content in the
 response.

2.4.2. 401: Unauthorized

 Failed due to missing "Authorization" header, or the "Authorization"
 header did not contain a valid access token. As per the HTTP spec,
 the response MUST have a "WWW-Authenticate: Bearer" header. There is
 no content in the response.

2.5. Authenticating HTTP requests

 All HTTP requests other than to the authentication URL must be
 authenticated. To do this, the client MUST add an "Authorization"
 header to each request.

 Once authenticated, the client will have an access token. This is
 used with the "Bearer" scheme as specified in [RFC6750] to
 authenticate HTTP requests.

 For example, if _user@example.com_ successfully logged in and the
 client received an _accessToken_ of "abcdef1234567890", to
 authenticate requests you would add the following header:

 Authorization: Bearer abcdef1234567890

2.5.1. Signed GET requests

 Sometimes, particularly in the browser context, authenticating a GET
 request using the usual "Authorization" header is not easily
 implemented. In such situations, a client may use a signed request
 instead. A signed request is an unauthenticated GET request
 containing a special query string parameter (a so-called "token").
 The process below describes how a client can obtain such a token,
 then use it to download the file:

https://datatracker.ietf.org/doc/html/rfc6750

Jenkins Expires April 22, 2017 [Page 16]

Internet-Draft JMAP October 2016

 1. The client makes an authenticated POST request to the URL for
 which it is unable to make an authenticated GET request. If
 authorization is granted, the server MUST send the token back as
 the body of the response, in one of the following forms:

 * A JSON Web Token [4], in this case the response MUST have a
 "Content-Type" of "application/jwt".

 * A plain "String" or any other data structure, in this case the
 response SHOULD have a "Content-Type" of "text/plain" unless
 another standardised MIME type is applicable.

 2. The client makes an unauthenticated GET request to the same URL
 but with "access_token=<response to the previous request>"
 appended to the query part (see [RFC3986] section 3.4 for
 details). If no query part was present in the URL before this
 operation, a new query part is created. The server MUST send
 back the contents of the requested file, as if it were requested
 through a standard authenticated GET request to the URL.

 The server SHOULD expire any given signing "token" quickly for
 obvious security reasons, but the actual expiration policy is up to
 the server implementation.

 Sample HTTP exchange demonstrating the use of a signed request to
 download a file:

 o Obtain a token

 POST /jmap/download/act1/blob2/mydocument.pdf HTTP/1.1
 Host: server.example.com
 Authorization: Bearer abcdef1234567890

 HTTP/1.1 200 OK
 Content-Type: text/plain
 Content-Length: 10

 abcDEfGhIJ

 o Download the file

https://datatracker.ietf.org/doc/html/rfc3986#section-3.4

Jenkins Expires April 22, 2017 [Page 17]

Internet-Draft JMAP October 2016

GET /jmap/download/act1/blob2/mydocument.pdf?access_token=abcDEfGhIJ HTTP/1.1
Host: server.example.com

HTTP/1.1 200 OK
Content-Type: application/pdf
Content-Length: 987654

<< binary content >>

3. Structured data exchange

 The client may make an API request to the server to get or set
 structured data. This request consists of an ordered series of
 method calls. These are processed by the server, which then returns
 an ordered series of responses.

3.1. Making an API request

 To make an API request, the client makes an authenticated POST
 request to the API URL; see the Authentication section of the spec
 for how to discover this URL and how to authenticate requests.

 The request MUST have a content type of "application/json" and be
 encoded in UTF-8.

 The server SHOULD respond with one of the following HTTP response
 codes:

3.1.1. 200: OK

 The API request was successful. The response will be of type
 "application/json" and consists of the response to the API calls, as
 described below.

3.1.2. 400: Bad Request

 The request was malformed. For example, it may have had the wrong
 content type, or have had a JSON object that did not conform to the
 API calling structure (see _The structure of an API request_ below).
 The client SHOULD NOT retry the same request. There is no content in
 the response.

3.1.3. 401: Unauthorized

 The "Authorization" header was missing or did not contain a valid
 token. Reauthenticate and then retry the request. As per the HTTP
 spec, the response MUST have a "WWW-Authenticate" header listing the

Jenkins Expires April 22, 2017 [Page 18]

Internet-Draft JMAP October 2016

 available authentication schemes. There is no content in the
 response.

3.1.4. 404: Not Found

 The API endpoint has moved. See the Authentication section of the
 spec for how to rediscover the current URL to use. There is no
 content in the response.

3.1.5. 413: Payload Too Large

 Returned if the client makes a request with more method calls than
 the server is willing to accept in a single request, or if the total
 bytes of the request is larger than the max size the server is
 willing to accept.

3.1.6. 429: Rate limited

 Returned if the client has made too many requests recently, or has
 too many concurrent requests currently in progress. Clients SHOULD
 wait a while then try again. The response MAY include a "Retry-
 After" header indicating how long to wait before making a new
 request.

3.1.7. 500: Internal Server Error

 Something has gone wrong internally, and the server is in a broken
 state. Don't automatically retry. There is no content in the
 response.

3.1.8. 503: Service Unavailable

 The server is currently down. Try again later with exponential
 backoff. There is no content in the response.

3.2. The structure of an API request

 The client initiates an API request by sending the server a JSON
 array. Each element in this array is another array representing a
 method invocation on the server. The server will process the method
 calls and return a response consisting of an array in the same
 format. Each method call always contains three elements:

 1. The *name* of the method to call, or the name of the response
 from the server. This is a "String".

 2. An "Object" containing _named_ *arguments* for that method or
 response.

Jenkins Expires April 22, 2017 [Page 19]

Internet-Draft JMAP October 2016

 3. A *client id*: an arbitrary "String" to be echoed back with the
 responses emitted by that method call (as we'll see lower down, a
 method may return 1 or more responses, as some methods make
 implicit calls to other ones).

 Example query:

 [
 ["method1", {"arg1": "arg1data", "arg2": "arg2data"}, "#1"],
 ["method2", {"arg1": "arg1data"}, "#2"],
 ["method3", {}, "#3"]
]

 The method calls MUST be processed sequentially, in order. Each API
 request (which, as shown, may contain multiple method calls) receives
 a JSON response in exactly the same format. The output of the
 methods MUST be added to the array in the same order as the methods
 are processed.

 Example response:

 [
 ["responseFromMethod1", {"arg1": 3, "arg2": "foo"}, "#1"],
 ["responseFromMethod2", {"isBlah": true}, "#2"],
 ["anotherResponseFromMethod2", {
 "data": 10,
 "yetmoredata": "Hello"
 }, "#2"],
 ["aResponseFromMethod3", {}, "#3"]
]

3.3. Errors

 If the data sent as an API request is not valid JSON or does not
 match the structure above, an error will be returned at the transport
 level. For example, when using JMAP over HTTP, a "400 Bad Request"
 error will be returned at the HTTP level.

 Possible errors for each method are specified in the method
 descriptions. If a method encounters an error, the appropriate
 "error" response MUST be inserted at the current point in the output
 array and, unless otherwise specified, further processing MUST NOT
 happen within that method call.

 Any further method calls in the request MUST then be processed as
 normal.

 An "error" response looks like this:

Jenkins Expires April 22, 2017 [Page 20]

Internet-Draft JMAP October 2016

 ["error", {
 type: "unknownMethod"
 }, "client-id"]

 The response name is "error", and it has a type property as specified
 in the method description. Other properties may be present with
 further information; these are detailed in the method descriptions
 where appropriate.

 Any method MAY return an error of type "serverError" if an unexpected
 or unknown error occurs during the processing of that call. The
 state of the server after such an error is undefined.

 If an unknown method is called, an "unknownMethod" error (this is the
 type shown in the example above) MUST be inserted and then the next
 method call MUST be processed as normal.

 If an unknown argument or invalid arguments (wrong type, or in
 violation of other specified constraints) are supplied to a method,
 an "invalidArguments" error MUST be inserted and then the next method
 call MUST be processed as normal.

3.4. Vendor-specific extensions

 Individual services will have custom features they wish to expose
 over JMAP. This may take the form of extra datatypes and/or methods
 not in the spec, or extra arguments to JMAP methods, or extra
 properties on existing data types (which may also appear in arguments
 to methods that take property names). To ensure compatibility with
 clients that don't know about a specific custom extension, and for
 compatibility with future versions of JMAP, the server MUST ONLY
 expose these extensions if the client explicitly opts in. Without
 opt-in, the server MUST follow the spec and reject anything that does
 not conform to it as specified.

3.5. Security

 As always, the server must be strict about data received from the
 client. Arguments need to be checked for validity; a malicious user
 could attempt to find an exploit through the API. In case of invalid
 arguments (unknown/insufficient/wrong type for data etc.) the method
 MUST return an "invalidArguments" error and terminate.

3.6. Concurrency

 To ensure the client always sees a consistent view of the data, the
 state accessed by a method call MUST NOT change during the execution
 of the method, except due to actions by the method call itself. The

Jenkins Expires April 22, 2017 [Page 21]

Internet-Draft JMAP October 2016

 state MAY change in-between method calls (even within a single API
 request).

3.7. The Number datatype

 The JSON datatypes are limited to those found in JavaScript. A
 "Number" in JavaScript is represented as a signed double (64-bit
 floating point). However, except where explicitly specified, all
 numbers used in this API are unsigned integers <= 2^53 (the maximum
 integer that may be reliably stored in a double). This implicitly
 limits the maximum length of message lists in queries and the like.

3.8. The Date datatypes

 Where a JMAP API specifies "Date" as a type, it means a string in
 [RFC3339] _date-time_ format, with the _time-offset_ component always
 "Z" (i.e. the date-time MUST be in UTC time) and _time-secfrac_
 always omitted. The "T" and "Z" MUST always be upper-case. For
 example, ""2014-10-30T14:12:00Z"".

3.9. Use of null

 Unless otherwise specified, a missing property in the arguments
 object of a request (from the client), or a response (from the
 server) MUST be intepreted exactly the same as that property having
 the value "null".

 Unless otherwise specified, a missing property in a data object MUST
 be interpreted in the following ways: - In the response to a
 getFoos style call, or when *creating* an object in a _setFoos_
 style call, a missing property MUST be interpreted as though it had
 the default value for that type, or "null" if no default is
 specified. - When *updating* an object in a _setFoos_ style call, a
 missing property MUST be interpreted as the existing value for that
 property (i.e. don't update it).

 For network efficiency, when fetching the server and client may make
 use of the above and omit properties which have the default value for
 the data type.

3.10. CRUD methods

 JMAP provides a uniform interface for creating, retrieving, updating
 and deleting various types of objects. For a "Foo" data type,
 records of that type would be fetched via a "getFoos" call and
 modified via a "setFoos" call. Delta updates may be fetched via a
 "getFooUpdates" call. These methods all follow a standard format as
 described below.

https://datatracker.ietf.org/doc/html/rfc3339

Jenkins Expires April 22, 2017 [Page 22]

Internet-Draft JMAP October 2016

3.10.1. getFoos

 Objects of type *Foo* are fetched via a call to _getFoos_. Methods
 with a name starting with "get" MUST NOT alter state on the server.

 This method may take some or all of the following arguments; see the
 definition of the data type in question. However, if one of the
 following arguments is available, it will behave exactly as specified
 below.

 o *accountId*: "String|null" The id of the Account to use. If
 "null", the primary account is used.

 o *ids*: "String[]|null" The ids of the Foo objects to return. If
 "null" then *all* records of the data type are returned, if this
 is supported for that data type.

 o *properties*: "String[]|null" If supplied, only the properties
 listed in the array are returned for each Foo object. If "null",
 all properties of the object are returned. The id of the object
 is *always* returned, even if not explicitly requested.

 The response to "getFoos" is called "foos". It has the following
 arguments:

 o *accountId*: "String" The id of the account used for the call.

 o *state*: "String" A string representing the state on the server
 for *all* the data of this type. If the data changes, this string
 will change. It is used to get delta updates, if supported for
 the type.

 o *list*: "Foo[]" An array of the Foo objects requested. This is
 the *empty array* if no objects were found, or if the _ids_
 argument passed in was also the empty array.

 o *notFound*: "String[]|null" This array contains the ids passed to
 the method for records that do not exist. This property is "null"
 if all requested ids were found, or if the _ids_ argument passed
 in was either "null" or the empty array.

 The following error may be returned instead of the "foos" response:

 "accountNotFound": Returned if an _accountId_ was explicitly included
 with the request, but it does not correspond to a valid account.

Jenkins Expires April 22, 2017 [Page 23]

Internet-Draft JMAP October 2016

 "accountNotSupportedByMethod": Returned if the _accountId_ given
 corresponds to a valid account, but the account does not support this
 data type.

 "requestTooLarge": Returned if the number of _ids_ requested by the
 client exceeds the maximum number the server is willing to process in
 a single method call.

 "invalidArguments": Returned if one of the arguments is of the wrong
 type, or otherwise invalid. A "description" property MAY be present
 on the response object to help debug with an explanation of what the
 problem was.

3.10.2. getFooUpdates

 When the state of the set of Foo records changes on the server
 (whether due to creation, updates or deletion), the _state_ property
 of the _foos_ response will change. The _getFooUpdates_ call allows
 a client to efficiently update the state of any its Foo cache to
 match the new state on the server. It takes the following arguments:

 o *accountId*: "String|null" The id of the Account to use. If
 "null", the primary account is used.

 o *sinceState*: "String" The current state of the client. This is
 the string that was returned as the _state_ argument in the _foos_
 response. The server will return the changes made since this
 state.

 o *maxChanges*: "Number|null" The maximum number of Foo ids to
 return in the response. The server MAY choose to return fewer
 than this value, but MUST NOT return more. If not given by the
 client, the server may choose how many to return. If supplied by
 the client, the value MUST be a positive integer greater than 0.
 If a value outside of this range is given, the server MUST reject
 the call with an "invalidArguments" error.

 o *fetchRecords*: "Boolean|null" If "true", immediately after
 outputting the _fooUpdates_ response, the server will make an
 implicit call to _getFoos_ with the _changed_ property of the
 response as the _ids_ argument. If "false" or "null", no implicit
 call will be made.

 o *fetchRecordProperties*: "String[]|null" If the _getFoos_ method
 takes a _properties_ argument, this argument is passed through on
 implicit calls (see the _fetchRecords_ argument).

Jenkins Expires April 22, 2017 [Page 24]

Internet-Draft JMAP October 2016

 The response to _getFooUpdates_ is called _fooUpdates_. It has the
 following arguments:

 o *accountId*: "String" The id of the account used for the call.

 o *oldState*: "String" This is the _sinceState_ argument echoed
 back; the state from which the server is returning changes.

 o *newState*: "String" This is the state the client will be in after
 applying the set of changes to the old state.

 o *hasMoreUpdates*: "Boolean" If "true", the client may call
 getFooUpdates again with the _newState_ returned to get further
 updates. If "false", _newState_ is the current server state.

 o *changed*: "String[]" An array of Foo ids for records which have
 been created or changed but not destroyed since the oldState.

 o *removed*: "String[]" An array of Foo ids for records which have
 been destroyed since the old state.

 The _maxChanges_ argument (and _hasMoreUpdates_ response argument) is
 available for data types with potentially large amounts of data (i.e.
 those for which there is a _getFooList_ method available for loading
 the data in pages). If a _maxChanges_ is supplied, or set
 automatically by the server, the server must try to limit the number
 of ids across _changed_ and _removed_ to the number given. If there
 are more changes than this between the client's state and the current
 server state, the update returned MUST take the client to an
 intermediate state, from which the client can continue to call
 getFooUpdates until it is fully up to date. The server MUST NOT
 return more ids than the _maxChanges_ total. If the server is unable
 to calculate a suitable intermediate state, it MUST return a
 "cannotCalculateChanges" error.

 If a Foo record has been modified AND deleted since the oldState, the
 server SHOULD just return the id in the _removed_ response, but MAY
 return it in the changed response as well. If a Foo record has been
 created AND deleted since the oldState, the server SHOULD remove the
 Foo id from the response entirely, but MAY include it in the
 removed response.

 The following errors may be returned instead of the _fooUpdates_
 response:

 "accountNotFound": Returned if an _accountId_ was explicitly included
 with the request, but it does not correspond to a valid account.

Jenkins Expires April 22, 2017 [Page 25]

Internet-Draft JMAP October 2016

 "accountNotSupportedByMethod": Returned if the _accountId_ given
 corresponds to a valid account, but the account does not support this
 data type.

 "invalidArguments": Returned if the request does not include one of
 the required arguments, or one of the arguments is of the wrong type,
 or otherwise invalid. A _description_ property MAY be present on the
 response object to help debug with an explanation of what the problem
 was.

 "cannotCalculateChanges": Returned if the server cannot calculate the
 changes from the state string given by the client. Usually due to
 the client's state being too old, or the server being unable to
 produce an update to an intermediate state when there are too many
 updates. The client MUST invalidate its Foo cache.

3.10.3. setFoos

 Modifying the state of Foo objects on the server is done via the
 setFoos method. This encompasses creating, updating and destroying
 Foo records. This has two benefits:

 1. It allows the server to sort out ordering and dependencies that
 may exist if doing multiple operations at once (for example to
 ensure there is always a minimum number of a certain record
 type).

 2. A single call can make all the changes you want to a particular
 type. If the client wants to use _ifInState_ to guard its
 changes, it can only make one call that modifies a particular
 type per request, since it will need the new state following that
 call to make the next modification.

 The _setFoos_ method takes the following arguments:

 o *accountId*: "String|null" The id of the Account to use. If
 "null", the primary account is used.

 o *ifInState*: "String|null" This is a state string as returned by
 the _getFoos_ method. If supplied, the string must match the
 current state, otherwise the method will be aborted and a
 "stateMismatch" error returned. If "null", any changes will be
 applied to the current state.

 o *create*: "String[Foo]|null" A map of _creation id_ (an arbitrary
 string set by the client) to Foo objects (containing all
 properties except the id, unless otherwise stated in the specific

Jenkins Expires April 22, 2017 [Page 26]

Internet-Draft JMAP October 2016

 documentation of the data type). If "null", no objects will be
 created.

 o *update*: "String[Foo]|null" A map of id to Foo objects. The
 object may omit any property; only properties that have changed
 need be included. If "null", no objects will be updated.

 o *destroy*: "String[]|null" A list of ids for Foo objects to
 permanently delete. If "null", no objects will be deleted.

 Each create, update or destroy is considered an atomic unit. It is
 permissible for the server to commit some of the changes but not
 others, however it is not permissible to only commit part of an
 update to a single record (e.g. update a _name_ property but not a
 count property, if both are supplied in the update object).

 If a create, update or destroy is rejected, the appropriate error
 MUST be added to the notCreated/notUpdated/notDestroyed property of
 the response and the server MUST continue to the next create/update/
 destroy. It does not terminate the method.

 If an id given cannot be found, the update or destroy MUST be
 rejected with a "notFound" set error.

 Some record objects may hold references to others (foreign keys).
 When records are created or modified, they may reference other
 records being created _in the same API request_ by using the creation
 id prefixed with a "#". The order of the method calls in the request
 by the client MUST be such that the record being referenced is
 created in the same or an earlier call. The server thus never has to
 look ahead. Instead, while processing a request (a series of method
 calls), the server MUST keep a simple map for the duration of the
 request of creation id to record id for each newly created record, so
 it can substitute in the correct value if necessary in later method
 calls. Creation ids sent by the client SHOULD be unique within the
 single API request for a particular data type. If a creation id is
 reused, the server MUST map the creation id to the most recently
 created item with that id.

 The response to _setFoos_ is called _foosSet_. It has the following
 arguments:

 o *accountId*: "String" The id of the account used for the call.

 o *oldState*: "String|null" The state string that would have been
 returned by _getFoos_ before making the requested changes, or
 "null" if the server doesn't know what the previous state string
 was.

Jenkins Expires April 22, 2017 [Page 27]

Internet-Draft JMAP October 2016

 o *newState*: "String" The state string that will now be returned by
 getFoos.

 o *created*: "String[Foo]" A map of the creation id to an object
 containing any *server-assigned* properties of the Foo object
 (including the id) for all successfully created records.

 o *updated*: "String[]" A list of Foo ids for records that were
 successfully updated.

 o *destroyed*: "String[]" A list of Foo ids for records that were
 successfully destroyed.

 o *notCreated*: "String[SetError]" A map of creation id to a
 SetError object for each record that failed to be created. The
 possible errors are defined in the description of the method for
 specific data types.

 o *notUpdated*: "String[SetError]" A map of Foo id to a SetError
 object for each record that failed to be updated. The possible
 errors are defined in the description of the method for specific
 data types.

 o *notDestroyed*: "String[SetError]" A map of Foo id to a SetError
 object for each record that failed to be destroyed. The possible
 errors are defined in the description of the method for specific
 data types.

 A *SetError* object has the following properties:

 o *type*: "String" The type of error.

 o *description*: "String|null" A description of the error to display
 to the user.

 Other properties may also be present on the object, as described in
 the relevant methods.

 The following errors may be returned instead of the "foosSet"
 response:

 "accountNotFound": Returned if an _accountId_ was explicitly included
 with the request, but it does not correspond to a valid account.

 "accountNotSupportedByMethod": Returned if the _accountId_ given
 corresponds to a valid account, but the account does not support this
 data type.

Jenkins Expires April 22, 2017 [Page 28]

Internet-Draft JMAP October 2016

 "accountReadOnly": Returned if the account has isReadOnly == true.

 "requestTooLarge": Returned if the total number of objects to create,
 update or destroy exceeds the maximum number the server is willing to
 process in a single method call.

 "invalidArguments": Returned if one of the arguments is of the wrong
 type, or otherwise invalid. A "description" property MAY be present
 on the response object to help debug with an explanation of what the
 problem was.

 "stateMismatch": Returned if an "ifInState" argument was supplied and
 it does not match the current state.

4. Downloading binary data

 Binary data is referenced by a _blobId_ in JMAP. A blob id does not
 have a name inherent to it, but this is normally given in the same
 object that contains the blob id.

 After completing authentication, the client will receive a
 downloadUrl as part of the response. This is in [RFC6570] URI
 Template (level 1) format. The URL MUST contain variables called
 "accountId" and "blobId". The URL SHOULD contain a variable called
 "name".

 The client may use this template in combination with an accountId and
 blobId to download any binary data (files) referenced by other
 objects. Since a blob is not associated with a particular name, the
 template SHOULD allow a name to be substituted in as well; the server
 will return this as the filename if it sets a "Content-Disposition"
 header.

 To download the data the client MUST make an authenticated GET
 request to the download URL with the appropriate variables
 substituted in, and then follow any redirects. In situations where
 it's not easy to authenticate the download request (e.g.: when
 downloading a file through a link in a HTML document), the client MAY
 use a signed GET request (see below for how to issue a signed
 request).

 After following redirects, the server MUST return one of the
 following responses to a request to the download URL:

https://datatracker.ietf.org/doc/html/rfc6570

Jenkins Expires April 22, 2017 [Page 29]

Internet-Draft JMAP October 2016

4.1. 200: OK

 Request successful. The binary data is returned. The "Content-Type"
 header SHOULD be set to the correct content type for the content.

4.2. 401: Unauthorized

 The "Authorization" header was missing or did not contain a valid
 token and there was no "access_token" query parameter, or it did not
 contain a valid token. Reauthenticate and then retry the request.
 As per the HTTP spec, the response MUST have a "WWW-Authenticate"
 header listing the available authentication schemes.

 The server MAY return an HTML page response, which clients MAY show
 to the user. This is primarily for when the URL is passed off to the
 browser, and the JMAP client may not see the actual response.

4.3. 404: Not Found

 The file was not found at this address.

4.4. 503: Service Unavailable

 The server is currently down. The client should try again later with
 exponential backoff. There is no content in the response.

5. Uploading binary data

 There is a single endpoint which handles all file uploads, regardless
 of what they are to be used for. To upload a file, the client
 submits a POST request to the file upload endpoint (see the
 authentication section for information on how to obtain this URL).
 The Content-Type MUST be correctly set for the type of the file being
 uploaded. The request MUST be authenticated as per any HTTP request.
 The request MAY include an "X-JMAP-AccountId" header, with the value
 being the account to use for the request. Otherwise, the default
 account will be used.

 The server will respond with one of the following HTTP response
 codes:

5.1. 201: File uploaded successfully

 The content of the response is a single JSON object with the
 following properties:

 o *accountId*: "String" The id of the account used for the call.

Jenkins Expires April 22, 2017 [Page 30]

Internet-Draft JMAP October 2016

 o *blobId*: "String", The id representing the binary data uploaded.
 The data for this id is immutable. The id _only_ refers to the
 binary data, not any metadata.

 o *type*: "String" The content type of the file.

 o *size*: "Number" The size of the file in bytes.

 o *expires*: "Date" The date the file will be deleted from tempoary
 storage if not referenced by another object, e.g. used in a draft.

 Once the file has been used, for example attached to a draft message,
 the file will no longer expire, and is instead guaranteed to exist
 while at least one other object references it. Once no other object
 references it, the server MAY immediately delete the file at any
 time. It MUST NOT delete the file during the method call which
 removed the last reference, so that if there is a create and a delete
 within the same call that both reference the file, this always works.

 If uploading a file would take the user over quota, the server SHOULD
 delete previously uploaded (but unused) files before their expiry
 time. This means a client does not have to explicitly delete unused
 temporary files (indeed, there is no way for it to do so).

 If identical binary content is uploaded, the same _blobId_ SHOULD be
 returned.

 The server MUST return one of the following responses to a request to
 the upload URL:

5.2. 400: Bad request

 The request was malformed (this includes the case where an "X-JMAP-
 AccountId" header is sent with a value that does not exist). The
 client SHOULD NOT retry the same request. There is no content in the
 response.

5.3. 401: Unauthorized

 The "Authorization" header was missing or did not contain a valid
 token. Reauthenticate and then retry the request. As per the HTTP
 spec, the response MUST have a "WWW-Authenticate" header listing the
 available authentication schemes. There is no content in the
 response.

Jenkins Expires April 22, 2017 [Page 31]

Internet-Draft JMAP October 2016

5.4. 404: Not Found

 The upload endpoint has moved. See the Authentication section of the
 spec for how to rediscover the current URL to use. There is no
 content in the response.

5.5. 413: Request Entity Too Large

 The file is larger than the maximum size the server is willing to
 accept for a single file. The client SHOULD NOT retry uploading the
 same file. There is no content in the response. The client may
 discover the maximum size the server is prepared to accept by
 inspecting the server _capabilities_ object, returned with the
 successful authentication response.

5.6. 415: Unsupported Media Type

 The server MAY choose to not allow certain content types to be
 uploaded, such as executable files. This error response is returned
 if an unacceptable type is uploaded. The client SHOULD NOT retry
 uploading the same file. There is no content in the response.

5.6.1. 429: Rate limited

 Returned if the client has made too many upload requests recently, or
 has too many concurrent uploads currently in progress. Clients
 SHOULD wait a while then try again. The response MAY include a
 "Retry-After" header indicating how long to wait before making a new
 request.

5.7. 503: Service Unavailable

 The server is currently down. The client should try again later with
 exponential backoff. There is no content in the response.

6. Push

 Any modern email client should be able to update instantly whenever
 the data on the server is changed by another client or message
 delivery. Push notifications in JMAP occur out-of-band (i.e. not
 over the same connection as API exchanges) so that they can make use
 of efficient native push mechanisms on different platforms.

 The general model for push is simple and does not send any sensitive
 data over the push channel, making it suitable for use with less
 trusted 3rd party intermediaries. The format allows multiple changes
 to be coalesced into a single push update, and the frequency of
 pushes to be rate limited by the server. It doesn't matter if some

Jenkins Expires April 22, 2017 [Page 32]

Internet-Draft JMAP October 2016

 push events are dropped before they reach the client; it will still
 get all changes next time it syncs.

 When something changes on the server, the server pushes a small JSON
 object to the client with the following property:

 o *changed*: "String[ChangedStates]" A map of _account id_ to an
 object encoding the state of data types which have changed for
 that account since the last push event, for each of the accounts
 to which the user has access and for which something has changed.

 A *ChangedStates* object is a map of the type name (e.g. "Mailbox"
 or "Message") to the current state token for that type (i.e. the
 "state" property that would currently be returned by a call to
 "getMailboxes" or "getMessages", as appropriate). The types in JMAP
 are "Mailbox", "Thread", "Message", "ContactGroup", "Contact",
 "Calendar", "CalendarEvent".

 Upon receiving this data, the client can compare the new state
 strings with its current values to see whether it has the current
 data for these types. The actual changes can then be efficiently
 fetched in a single standard API request (using the _getFooUpdates_
 type methods).

6.1. Event Source

 There are two mechanisms by which the client can receive the push
 events. The first is directly via a "text/event-stream" resource, as
 described in <http://www.w3.org/TR/eventsource/>. This is
 essentially a long running HTTP request down which the server can
 push data. When a change occurs, the server MUST push an event
 called *state* to any connected clients.

 The server MAY also set a new "Last-Event-Id" that encodes the entire
 server state visible to the user. When a new connection is made to
 the event-source endpoint, the server can then work out whether the
 client has missed some changes which it should send immediately.

 The server MUST also send an event called *ping* with an empty object
 as the data if a maximum of 5 minutes has elapsed since the previous
 event. This MUST NOT set a new "Last-Event-Id". A client may detect
 the absence of these to determine that the HTTP connection has been
 dropped somewhere along the route and so it needs to re-establish the
 connection.

 Refer to the Authentication section of this spec for details on how
 to get the URL for the event-source endpoint. The request must be
 authenticated using an "Authorization" header like any HTTP request.

http://www.w3.org/TR/eventsource/

Jenkins Expires April 22, 2017 [Page 33]

Internet-Draft JMAP October 2016

 A client MAY hold open multiple connections to the event-source,
 although it SHOULD try to use a single connection for efficiency.

6.2. Web hook

 The second push mechanism is to register a callback URL to which the
 JMAP server will make an HTTPS POST request whenever the event
 occurs. The request MUST have a content type of "application/json"
 and contain the same UTF-8 JSON encoded object as described above as
 the body.

 The JMAP server MUST also set the following headers in the POST
 request: - "X-JMAP-EventType: state" - "X-JMAP-User: ${username}"
 where "${username}" is the username of the authenticated user for
 which the push event occurred.

 The JMAP server MUST follow any redirects. If the final response
 code from the server is "2xx", the callback is considered a success.
 If the response code is "503" (Service Unavailable), the JMAP server
 MAY try again later (but may also just drop the event). If the
 response code is "429" (Too Many Requests) the JMAP server SHOULD
 attempt to reduce the frequency of pushes to that URL. Any other
 response code MUST be considered a *permanent failure* and the
 callback should be deregistered (not tried again even for future
 events unless explicitly re-registered by the client).

 The URL set by the client MUST use the HTTPS protocol and SHOULD
 encode within it a unique token that can be verified by the server to
 know that the request comes from the JMAP server the authenticated
 client connected to.

 The callback is tied to the access token used to create it. Should
 the access token expire or be revoked, the callback MUST be removed
 by the JMAP server. The client MUST re-register the callback after
 reauthenticating to resume callbacks.

 Each session may only have a single callback URL registered. It can
 be set or retrieved using the following API calls.

6.2.1. setPushCallback

 To set the web hook, make a call to _setPushCallback_. It takes the
 following argument:

 o *callback*: "String|null" The (HTTPS) URL the JMAP server should
 POST events to. This will replace any previously set URL. Set to
 "null" to just remove any previously set callback URL.

Jenkins Expires April 22, 2017 [Page 34]

Internet-Draft JMAP October 2016

 The response to _setPushCallback_ is called _pushCallbackSet_. It has
 the following argument:

 o *callback*: "String|null" Echoed back from the call.

 The following error may be returned instead of the _mailboxesSet_
 response:

 "invalidUrl": Returned if the URL does not begin with "https://", or
 is otherwise syntactically invalid or does not resolve.

6.2.2. getPushCallback

 To check the currently set callback URL (if any), make a call to
 getPushCallback. It does not take any arguments. The response to
 getPushCallback is called "pushCallback". It has a single
 argument:

 o *callback*: "String|null" The URL the JMAP server is currently
 posting push events to, or "null" if none.

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3339] Klyne, G. and C. Newman, "Date and Time on the Internet:
 Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,
 <http://www.rfc-editor.org/info/rfc3339>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <http://www.rfc-editor.org/info/rfc3986>.

 [RFC5785] Nottingham, M. and E. Hammer-Lahav, "Defining Well-Known
 Uniform Resource Identifiers (URIs)", RFC 5785,
 DOI 10.17487/RFC5785, April 2010,
 <http://www.rfc-editor.org/info/rfc5785>.

 [RFC6186] Daboo, C., "Use of SRV Records for Locating Email
 Submission/Access Services", RFC 6186,
 DOI 10.17487/RFC6186, March 2011,
 <http://www.rfc-editor.org/info/rfc6186>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3339
http://www.rfc-editor.org/info/rfc3339
https://datatracker.ietf.org/doc/html/rfc3986
http://www.rfc-editor.org/info/rfc3986
https://datatracker.ietf.org/doc/html/rfc5785
http://www.rfc-editor.org/info/rfc5785
https://datatracker.ietf.org/doc/html/rfc6186
http://www.rfc-editor.org/info/rfc6186

Jenkins Expires April 22, 2017 [Page 35]

Internet-Draft JMAP October 2016

 [RFC6570] Gregorio, J., Fielding, R., Hadley, M., Nottingham, M.,
 and D. Orchard, "URI Template", RFC 6570,
 DOI 10.17487/RFC6570, March 2012,
 <http://www.rfc-editor.org/info/rfc6570>.

 [RFC6750] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
 Framework: Bearer Token Usage", RFC 6750,
 DOI 10.17487/RFC6750, October 2012,
 <http://www.rfc-editor.org/info/rfc6750>.

 [RFC6764] Daboo, C., "Locating Services for Calendaring Extensions
 to WebDAV (CalDAV) and vCard Extensions to WebDAV
 (CardDAV)", RFC 6764, DOI 10.17487/RFC6764, February 2013,
 <http://www.rfc-editor.org/info/rfc6764>.

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <http://www.rfc-editor.org/info/rfc7159>.

 [RFC7493] Bray, T., Ed., "The I-JSON Message Format", RFC 7493,
 DOI 10.17487/RFC7493, March 2015,
 <http://www.rfc-editor.org/info/rfc7493>.

7.2. URIs

 [1] https://tools.ietf.org/html/rfc6238

 [2] https://developers.yubico.com/OTP/

 [3] https://fidoalliance.org/specifications/download/

 [4] https://jwt.io/

Author's Address

 Neil Jenkins
 FastMail
 Level 1, 91 William St
 Melbourne VIC 3000
 Australia

 Email: neilj@fastmail.com
 URI: https://www.fastmail.com

https://datatracker.ietf.org/doc/html/rfc6570
http://www.rfc-editor.org/info/rfc6570
https://datatracker.ietf.org/doc/html/rfc6750
http://www.rfc-editor.org/info/rfc6750
https://datatracker.ietf.org/doc/html/rfc6764
http://www.rfc-editor.org/info/rfc6764
https://datatracker.ietf.org/doc/html/rfc7159
http://www.rfc-editor.org/info/rfc7159
https://datatracker.ietf.org/doc/html/rfc7493
http://www.rfc-editor.org/info/rfc7493
https://tools.ietf.org/html/rfc6238
https://developers.yubico.com/OTP/
https://fidoalliance.org/specifications/download/
https://jwt.io/
https://www.fastmail.com

Jenkins Expires April 22, 2017 [Page 36]

