
Workgroup: Network Working Group

Internet-Draft:

draft-jennings-moq-quicr-arch-00

Published: 4 March 2022

Intended Status: Informational

Expires: 5 September 2022

Authors: C. Jennings

cisco

S. Nandakumar

Cisco

QuicR - Media Delivery Protocol over QUIC

Abstract

This specification outlines the design for a media delivery protocol

over QUIC. It aims at supporting multiple application classes with

varying latency requirements including ultra low latency

applications such as interactive communication and gaming. It is

based on a publish/subscribe metaphor where entities publish and

subscribe to data that is sent through, and received from, relays in

the cloud. The information subscribed to is named such that this

forms an overlay information centric network. The relays allow for

efficient large scale deployments.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 5 September 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. QuicR

2. Contributing

3. Terminology

4. Advantages of QuicR

5. QuicR architecture

5.1. QuicR Delivery Network Architecture with Origin as the only

Relay Function.

5.2. QuicR Delivery Network Architecture

6. Names and Named Objects

6.1. Objects Groups

6.2. Named Objects

6.3. Name Hashes

6.4. Wildcarding with Names

7. Objects

8. Relays

9. QuicR Usage Design Patterns

9.1. QuicR Manifest Objects

9.2. QuicR Video Objects

9.2.1. RUSH over QuicR

9.2.2. Warp over QuicR

9.3. QuicR Audio Objects

9.4. QuicR Game Moves Objects

9.5. Messaging Objects

10. Security Considerations

11. Protocol Design Considerations

11.1. HTTP/3

11.2. QUIC Streams and Datagrams

11.3. QUIC Congestion Control

11.4. Why not RTP

Appendix A. Acknowledgments

Authors' Addresses

1. Introduction

Recently new usecases have emerged requiring higher scalability of

delivery for interactive realtime applications and much lower

latency for streaming applications and a combination thereof. On one

side are usecases such as normal web conferences wanting to

distribute out to millions of viewers and allow viewers to instantly

move to being a presenter. On the other side are usescases such as

streaming a soccer game to millions of people including people in

¶

the stadium watching the game live. Viewers watching an e-sports

event want to be able to comment with mininal latency to ensure the

interactivity aspects between what different viewers are seeing is

preserved. All of these usescases push towards latencies that are in

the order of 100ms over the natural latency the network causes.

Interactive realtime applications, such as web conferencing systems,

require ultra low latency (< 150ms). Such applications create their

own application specific delivery network over which latency

requirements can be met. Realtime transport protocols such as RTP

over UDP provide the basic elements needed for realtime

communication, both contribution and distribution, while leaving

aspects such as resiliency and congestion control to be provided by

each application. On the other hand, media streaming applications

are much more tolerant to latency and require highly scalable media

distribution. Such applications leverage existing CDN networks, used

for optimizing web delivery, to distribute media. Streaming

protocols such as HLS and MPEG-DASH operates on top of HTTP and gets

transport-level resiliency and congestion control provided by TCP.

This document outlines, QuicR, a unified architecture and protocol

for data delivery that enables a wide range of realtime applications

with different resiliency and latency needs without compromising the

scalability and cost effectiveness associated with content delivery

networks.

1.1. QuicR

The architecture defines and uses QuicR, a delivery protocol that is

based on a publish/subscribe metaphor where client endpoints publish

and subscribe to named objects that is sent to, and received from

relays, that forms an overlay delivery network similar to what CDN

provides today. The subscribe messages allow subscription to a name

that includes a wildcard to match multiple published names, so a

single subscribe can allow a client to receive publishes for a wide

class of named objects. Objects are named such that it is unique for

the relay/delivery network and scoped to an application.

QuicrR provides services based on application requirements (with the

support of underlying transport, where necessary) such as estimation

of available bandwidth, fragmentation and reassembly, resiliency,

congestion control and prioritization of data delivery based on data

lifetime and importance of data. It is designed to be NAT and

firewall traversal friendly and can be fronted with load balancers.

The Relays are arranged in a logical tree (as shown below) where,

for a given application, there is an origin Relay at root of the

tree that controls the namespace. Publish messages are sent towards

the root of the tree and down the path of any subscribers to that

¶

¶

¶

¶

¶

named object. QuicR is designed to make it easy to implement relays

so that fail over could happen between relays with minimal impact to

the clients and relays can redirect a client to a different relay.

 ┌────────────┐

 │ │

 │ ▼

 │ ┌────────┐

 │ ▬ ▬▶│Relay-0 │ ◀▬▬ ▬▬ ▬▮
 pub │ ▮ │ Origin ├┐ ▮
 │ ▮ └────────┘│ ▮
 │ ▮ sub │ ▮ sub
 │ ▮ pub │ ▮
 │ ▮ │ ▮
 ┌───────▮┐ ◀▬▮ │ ┌─────▮──┐
 ┌──▶│ Relay-1│ ▮ └─▶│ Relay-2│◀▮▮
 │ └─────┬──┘ ▮ ▲──┬────┤ ▮
 pub │ │ ▮ sub sub ▮ │ │ ▮ sub
 │ pub│ ▮ ▮ │pub ▼ ▮
 ┌┴─────┐ │ ┌────▮─┐ ┌─────▮┐ │ ┌───▮──┐
 │Alice │ └▶│ Bob │ │ Carl │◀┘ │Derek │
 └──────┘ └──────┘ └──────┘ └──────┘

Figure 1: QuicR Delivery Tree

The design supports sending media and other named objects between a

set of participants in a game or video call with under a hundred

milliseconds of latency and meets the needs of conferencing systems.

The design can also be used for large scale streaming to millions of

participants with latency ranging from a few seconds to under a

hundred milliseconds based on applications needs. It can also be

used as low latency publish/subscribe system for real time systems

such as messaging, gaming, and IoT.

2. Contributing

All significant discussion of development of this protocol is in the

GitHub issue tracker at: https://github.com/fluffy/draft-jennings-

moq-arch

QuicR is pronounced something close to “ (U+201C)quicker” (U+201D)

but with more of a pirate "arrrr" at the end.

3. Terminology

Relay Function: Functionality of the QuicR architecture, that

implements store and forward behavior at the minimum. Such a

function typically receives subscriptions and publishes data to

the other endpoints that have subscribed to the named data. Such

¶

¶

¶

¶

*

functions may cache the data as well for optimizing the delivery

experience.

Relay: Server component (physical/logical) in the cloud that

implements the Relay Function.

Publisher: An endpoint that sends named objects to a Relay. [

also referred to as producer of the named object]

Subscriber: An endpoint that subscribes and receives the named

objects. Relays can act as subscribers to other relays.

Subscribers can also be referred to as consumers.

Client/QuicR Client: An endpoint that acts as a Publisher,

Subscriber, or both. May also implement a Relay Function in

certain contexts.

Named Object: Application level chunk of Data that has a unique

Name, a limited lifetime, priority and is transported via QuicR

protocol.

Origin server: Component managing the QuicR namespace for a

specific application and is responsible for establishing trust

between clients and relays. Origin servers can implement other

QuicR functions.

4. Advantages of QuicR

As its evident, QuicR and its architecture uses similar concepts and

delivery mechanisms to those used by streaming standards such as HLS

and MPEG-DASH. Specifically the use of a CDN-like delivery network,

the use of named objects and the receiver-triggered media/data

delivery. However there are fundamental characteristics that QuicR

provides to enable ultra low latency delivery for interactive

applications such as conferencing and gaming.

To support low latency the granularity of the delivered objects,

in terms of time duration, need to be quite small making it

complicated for clients to request each object individually.

QuicR uses a publish and subscription semantic along with a

wildcard name to simplify and speed object delivery for low

latency applications. For latency-tolerant applications, larger

granularity of data, aka group of objects, can be individually

requested and delivered without instantiating state in the

backend.

Some realtime applications operating in ultra low latency mode

require objects delivered as and when they are available without

having to wait for previous objects delayed due to network loss

or out of order network delivery. QuicR supports Quic datagrams

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

*

¶

*

based object delivery for this purpose. Note that QuicR also uses

Quic stream for delivery of objects that are latency-tolerant.

QuicR supports resiliency mechanisms that are more suitable for

realtime delivery such as FEC and selective retransmission.

QUIC's current congestion control algorithms need to be evaluated

for efficacy in low latency interactive real-time contexts,

specifically mechanisms such as slow start, multiplicative

decrease and queue buildup drainage during BBR probing. Based on

the results of the evaluation work, QuicR can select the

congestion control algorithm suitable for the application's

class.

Published objects in QuicR have associated max-age that specifies

the validity of such objects. max-age influences relay's drop

decisions and can also be used by the underlying QUIC transport

to cease retransmissions associated with the named object.

Unlike streaming architectures where media contribution and media

distribution are treated differently, QuicR can be used for both

object contribution/publishing and distribution/subscribing as

the split does not exist for interactive communications.

QuicR supports "aggregation of subscriptions" to the named

objects where the subscriptions are aggregated at the relay

functions and allows "short-circuited" delivery of published

objects when there is a match at a given relay function.

QuicR allows publishers to associate a priority with objects.

Priorities can help the delivery network and the subscribers to

make decisions about resiliency, latency, drops etc. Priorities

can used to set relative importance between different qualities

for layered video encoding, for example.

QuicR is designed so that objects are encrypted end-to-end and

will pass transparently through the delivery network. Any

information required by the delivery network, e.g priorities,

will be included as part of the metadata that is accessible to

the delivery network for further processing as appropriate.

5. QuicR architecture

A typical media delivery architecture based on QuicR enables

delivery tree allowing :

Publishing entities to publish named data

Subscribers to express interest in the named objects

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

* ¶

* ¶

Delivery tree made up of one or more Relays to allow the flow of

the named objects.

In the following subsections, 2 common QuicR delivery tree

architectures are non-normatively discussed

5.1. QuicR Delivery Network Architecture with Origin as the only Relay

Function.

 +-------------+

 |Relay |

 +----------------> |Origin:tw.com|-----+

 | +-------------+ |

 | ^ |

 |pub:tw.com/ch22/3/1 | |

 | | |

 | sub:tw.com/ch22/*| |

 | | |pub:tw.com/ch22/3/1

 | | v

+-----------+ +----------+

| Publisher | |Subscriber|

+-----------+ +----------+

The above picture shows QuicR delivery network for an hypothetical

streaming architecture rooted at the Origin Relay (for the domain

tw.com). In this architecture, the media contribution is done by

publishing named objects corresponding to channel-22 to the ingest

server at the Origin Relay. Media consumption happens via subscribes

sent to the Origin Relay to the wildcarded name (ch22/*) for all

media streams happening over the named channel-22. The media

published either by the source publisher or the Relay (as Publisher)

might be encoded into multiple qualities.

*

¶

¶

¶

¶

5.2. QuicR Delivery Network Architecture

 +--------+

 +----> |Realay-O| <----------------+

 | +--------+ |

 | ^ | |sub:alice-low

 pub:alice-hi | pub:alice-hi |sub:alice-hi

 pub:alice-low | pub:alice-low |

 | sub:alice-low | |

 | | | |

 +---------+ | +------------------------+

 +------>| Relay-A | +->| Relay-B |

 | +---------+ +------------------------+

 | | ^ | ^ | ^

 pub1:alice-hi| | | | | |

 pub2:alice-low | | | | |

 | | | | | | |

 | pub:alice-low pub:alice-hi,low pub:alice-hi,low

 | | | | | | |

 | | sub:alice-low | sub:alice* | sub:alice*

 | v | v | v |

 +------+ +---+ +----+ +-----+

 | Alice| |Bob| |Carl| |Derek|

 +------+ +---+ +----+ +-----+

The above picture shows QuicR media delivery tree formed with

multiple relays in the network. The example has 4 participants with

Alice being the publisher and rest being the subscribers. Alice's is

capable of publishing video streams at 2 qualities identified by

their appropriate names. Bob subscribes to a low resolution video

feed from alice, where as Carl/Derek carryout wildcard subscribes to

all the qualities of video feed published by Alice. All the

subscribes are sent to the Origin Relay and are saved at the on-path

Relays, this allowing for "short-circuited" delivery of published

data at the relays. In the above example, Bob gets Alice's published

data directly from Relay-A instead of hairpinning from the Origin

Relay. Carl and Derek, however get their video stream relayed from

Alice via Origin Relay and Relay-B.

6. Names and Named Objects

Names are basic elements with in the QuicR architecture and they

uniquely identify objects. Named objects can be cached in relays in

a way CDNs cache resources and thus can obtain similar benefits such

caching mechanisms would offer.

¶

¶

¶

6.1. Objects Groups

Objects with in QuicR belong to a group. A group (a.k.a group of

objects) represent an independent composition of set of objects,

where there exists dependency relationship between the objects

within the group. Groups, thus can be independently consumable by

the subscriber applications.

A typical example would be a group of pictures/video frames or group

of audio samples that represent synchronization point in the video

conferencing example.

Latency-tolerant applications can request individual group of

objects allowing delivery of objects without instantiation of

persistent state within the delivery network. This is important for

the preservation of the scalability of delivery networks at levels

similar to what is currently available when streaming protocols such

as HLS/HTTP are used.

6.2. Named Objects

The names of each object in QuicR is composed of the following

components:

Domain Component

Application Component

Group ID Component

Object ID Component

Domain component uniquely identifies a given application domain.

This is like a HTTP Origin and uniquely identifies the application

and a root relay function. This is a DNS domain name or IP address

combined with a UDP port number mapped to into the domain. Example:

sfu.webex.com:5004.

Application component is scoped under a given Domain. This component

identifies aspects specific to a given application instance hosted

under a given domain (e.g.meeting identifier, which movie or

channel, media type or media quality identifier).

Inside each Application Component, there is a set of groups. Each

group is identified by a monotonically increasing integer. Inside of

each Group, each object is identified by another monotonically

increasing integer inside that group. The groupID and objectID start

at 0 and are limited to 16 bits long.

¶

¶

¶

¶

1. ¶

2. ¶

3. ¶

4. ¶

¶

¶

¶

Example: In the example below, the domain component identifies

acme.meeting.com domain, the application component identifies an

instance of a meeting under this domain, say "meeting123", and high

resolution camera stream from the user "alice". It also identifies

the object 17 under group 15.

6.3. Name Hashes

All Names need to hash or map down to 128 bits. This allows for:

compact representation for efficient transmission and storage,

cache friendly datatypes (like Keys in CDN caches) for storage

and lookup purposes and,

enable rapid data lookup at the relays based on partial as well

as whole names (wildcard support).

┌─────────────┬───────────────┬───────────────┬─────────────┐

│ Domain │ Application │ GroupID │ ObjectID │

│ Component │ Component │ Component │ Component │

└─────────────┴───────────────┴───────────────┴─────────────┘

 48 bits 48 bits 16 bits 16 bits

Figure 2: QuicR Name

This is done by hashing the origin to first 48 bits. Any relay that

forms an connection to an new origin needs to ensure this does not

collide with an existing origin. The application component is mapped

to the next 48 bits and it is the responsibility of the application

to ensure there are no collisions within a given origin. Finally the

group ID and object ID each map to 16 bits.

Design Note: It is possible to let each application define the size

of these boundaries as well as sub boundaries inside the application

component but for sake of simplicity it is described as fixed

boundaries for now.

Wildcard search simply turns into a bitmask at the appropriate bit

location of the hashed name.

The hash names are key part of the design for allowing small objects

without adding lots of overhead and for efficient implementation of

Relays.

¶

quicr://acme.meeting.com/meeting123/alice/cam5/HiRes/15/17¶

¶

* ¶

*

¶

*

¶

¶

¶

¶

¶

6.4. Wildcarding with Names

QuicR allows subscribers to request for media based on wildcard'ed

names. Wildcarding enables subscribes to be made as aggregates

instead of at the object level granularity. Wildcard names are

formed by skipping the right most segments of names.

For example, in an web conferencing use case, the client may

subscribe to just the origin and meetingId to get all the media for

a particular conference as indicated by the example below. The

example matches all the named objects published as part of

meeting123.

quicr://acme.meeting.com/meeting123/*

When subscribing, there is an option to tell the relay to one of:

A. Deliver any new objects it receives that matches the name

B. Deliver any new objects it receives and in addition send any

previous objects it has received that are in the same group that

matches the name.

C. Wait until an object that has a objectID that matches the name is

received then start sending any objects that match the name.

7. Objects

Once a named object is created, the content inside the named object

can never be changed. Objects have an expiry time after which they

should be discarded by caches. Objects have an priority that the

relays and clients can use to sequence the sending order. The data

inside an object is end-to-end encrypted whose keys are not

available to Relay(s).

8. Relays

The Relays receive subscriptions and intent to publish request and

forward them towards the origin. This may send the messages directly

to the Origin Relay or possibly traverse another Relay. Replies to

theses message follow the reverse direction of the request and when

the Origin gives the OK to a subscription or intent to publish, the

Relay allows the subscription or future publishes to the Names in

the request.

Subscription received are aggregated. When a relay receives a

publish request with data, it will forward it both towards the

Origin and to any clients or relays that have a matching

subscription. This "short circuit" of distribution by a relay before

¶

¶

¶

¶

¶

¶

¶

¶

¶

the data has even reached the Origin servers provides significant

latency reduction for nearby client.

The Relay keeps an outgoing queue of objects to be sent to the each

subscriber and objects are sent in priority order.

Relays MAY cache some of the information for short period of time

and the time cached may depend on the Origin.

9. QuicR Usage Design Patterns

This section explains design patters that can be use to build

applications on top of QuicR.

9.1. QuicR Manifest Objects

Names can optionally be discovered via manifests. In such cases, the

role of the manifest is to identify the names as well as aspects

pertaining to the associated data in a given usage context of the

application.

Typically a manifest identifies the domain and application

aspects for the set of names that can be published.

The content of Manifest is application defined and end-to-end

encrypted.

The manifest is owned by the application's origin server and are

accessed as a protected resources by the authorized QuicR

clients.

The QuicR protocol treats Manifests as a named object, thus

allowing for clients to subscribe for the purposes of

bootstrapping into the session as well as to follow manifest

changes during a session [new members joining a conference for

example].

The manifest has well known name on the Origin server.

Also to note, a given application might provide non QuicR mechanisms

to retrieve the manifest.

9.2. QuicR Video Objects

Most video applications would use the application component to

identity the video stream, as well as the encoding point such as

resolution and bitrate. Each independently decodable set of frames

would go in a single group, and each frame inside that group would

go in a separate named object inside the group. This allows an

application to receive a given encoding of the video by subscribing

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

* ¶

¶

just to the application component of the Name with a wildcard for

group and object IDs.

This also allows a subscription to get all the frames in the current

group if it joins lates, or wait until the next group before

starting to get data, based on the subscription options. Changing to

a different bitrate or resolution would use a new subscription to

the appropriate Name.

The QUIC transport that QuicR is running on provides the congestion

control but the application can see what objects are received and

determine if it should change it's subscription to a different

bitrate application component.

Todays video is often encoded with I-frames at a fixed internal but

this can result in pulsing video quality. Future system may want to

insert I-frames at each change of scene resulting in groups with a

variable number of frames. QuicR easily supports that.

9.2.1. RUSH over QuicR

RUSH is an application-level protocol for ingesting live video. This

section defines at a higher level how aspects of the RUSH protocol

could be realized with QuicR.

RUSH's video frame is equivalent to QuicR video object that

represents an instance of encoder output. For video ingestion, the

RUSH publisher can assign the same groupID for all the frames

generated between the I-Frame boundaries and the RUSH's frameID can

be directly mapped to QuicR's object ID. RUSH multistream mode can

enabled by publishing each frame over QUIC Stream indicated via

QuicR API, since QuicR supports both the QUIC Datagram and QUIC

Stream modes of transport.

The identifiers for the track and session forms the application

component of the name.

Below is an example that shows RUSH's video frame mapped to QuicR

name for the session1, track 12 and video-id that maps to a given

encoding. The groupID and objectID follow the encoder output. The

payload of the published message will be formed by the actual

encoded data along with metadata such as PresentationTimeStamp (PTS)

and so on.

quicr://rush-ingest-server/session1/track12/video-id/group1/object10

9.2.2. Warp over QuicR

Warp is a segmented live video transport protocol. Warp maps live

media to QUIC streams based on the underlying media encoding.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Conceptually, each Warp video media segment maps to QuicR groupID

and frames within segment to QuicR objectID. Warp video media

segments are made up of I-Frames and zero or more related frames,

which corresponds to QuicR group of objects. QuicR named objects

correspond to these frames mapped to these segments and are

published individually. For a given channel and video quality, a

segment and its frames can be mapped to QuicR name as below:

quicr://twitch.com/channel-fluffy/video-quality-id/group12/object0

In this example, groupID 12 maps to Warp segmentId 12 and objectID 0

corresponds to I-frame within that segment.

9.3. QuicR Audio Objects

Each small chuck of audio, such as 10 ms, can be its own QuicR

object.

Future sub 2 kbps audio codecs may take advantage of a rapidly

updated model that are needed to decode the audio which could result

in audio needing to use groups like video to ensure all the objects

needed to decode some audio are in the same group.

9.4. QuicR Game Moves Objects

Some games send out a base set of state information then incremental

deltas to this. Each time a new base set is sent, a new group can be

formed and each increment change as an Object in the group. When new

players join, they can subscribe to sync up to the latest state by

subscribing to the current group and the incremental changes that

follow.

9.5. Messaging Objects

Chat applications and messaging system can form a manifest

representing the roster of the people in a given channel or talk

room. The manifest can provide information on the application

component of the Quicr Name for user that are contributing messages.

A subscription to each application such component enables reception

of each new message. Each message would be a single object.

Typically QuicR would be used to get the recent messages and then a

more traditional HTTP CDN approach could be used to retrieve copies

of all the older objects.

10. Security Considerations

The links between Relay and other Relays or Clients can be

encrypted, however, this does not protect the content from Relays.

To mitigate this all the objects needs to be end-to-end encrypted

with a keying mechanism outside the scope of this protocol. For may

¶

¶

¶

¶

¶

¶

¶

applications, simply getting the keys over HTTPS for a particular

object/group from the origin server will be adequate. For other

applicants keying based on MLS may be more appropriate. Many

applications can leverage the existing key managed schemes used in

HLS and DASH for DRM protected content.

Relays reachable on the Internet are assumed to have a burstiness

relationship with the Origin and the protocol provides a way to

verify that any data moved is on behalf of a give Origin.

Relays in a local network may choose to process content for any

Origin but since only local users can access them, their is a way to

mange which applications use them.

Subscriptions need to be refreshed at least every 5 seconds to

ensure liveness and consent for the client to continue receiving

data.

11. Protocol Design Considerations

11.1. HTTP/3

It is tempting to base this on HTTP but there are a few high level

architectural mismatches. HTTP is largely designed for a stateless

server in a client server architecture. The whole concept of the

PUB/SUB is that the relays are not stateless and keep the

subscription information and this is what allows for low latency and

high throughput on the relays.

In todays CDN, the CDN nodes end up faking the credentials of the

origin server and this limits how and where they can be a deployed.

A design with explicitly designed relays that do not need to do

this, while still assuming an end to end encrypted model so the

relays did not have access to the content makes for a better design.

It would be possible to start with something that looked like HTTP

as the protocol between the relays with special conventions for

wildcards in URLs of a GET and ways to stream non final responses

for any responses perhaps using something like multipart MIME.

However, most of the existing code and logic for HTTP would not

really be usable with the low latency streaming of data. It is

probably much simpler and more scalable to simply define a PUB/SUB

protocol directly on top of QUIC.

11.2. QUIC Streams and Datagrams

There are pro and cons to mapping object transport on top of streams

or on top of QUIC datagrams. The working group would need to sort

this out and consider the possibility of using both for different

types of data and if there should be support for a semi-reliable

¶

¶

¶

¶

¶

¶

¶

transport of data. Some objects, for example the manifest would

always want to be received in a reliable way while other objects may

have to be realtime.

11.3. QUIC Congestion Control

The basic idea in BBR of speeding up to probe then slowing down to

drain the queue build up caused during probe can work fine with real

time applications. However the the current implementations in QUIC

do not seem optimized for real time applications and have some times

where the slow down causes too much jitter. To not have playout

drops, the jitter buffers adds latency to compensate for this.

Probing for the RTT has been one of the phases that causes

particular problems for this. To reduce the latency of QUIC, this

work should coordinate with the QUIC working group to have the QUIC

working group develop congestion control optimizations for low

latency use of QUIC.

11.4. Why not RTP

RTP has several desirable properties that optimize the transport of

media over networks, including media payload formats explicitly

designed for network packets, transport feedback, packet loss

resilience mechanisms, multiplexing, and strong security. It also

has experimental congestion control (CC) algorithms explicitly

designed for media delivery (RMCAT), without the issues described

above in BBR.

However, these properties have less value in the context of QuicR

for the following reasons. QUIC adequately handles multiplexing,

security, and transport feedback (except ack timestamps which

require extensions proposed in drafts that have not yet been adopted

by the QUIC WG). QUIC lacks CC and resilience mechanisms optimized

for media, but direct reuse of unaltered RTP mechanisms is not

practical, so these aspects must be redesigned in the context of

QUIC anyway, although they can leverage learnings from RTP.

Finally, and most significantly, RTP media payload formats that were

optimized for network packets are less useful in QuicR since a

primary goal is to unify the streaming and real-time media delivery

protocols. Streaming protocols use "container" formats like CMAF,

ISOBMFF, etc. Codecs always first define their core "elementary"

bitstream format, then define their container format binding, and

finally define their RTP payload format binding. These always

differ. The differences are not significant enough to justify

supporting both, so QuicR only supports the container format

binding.

¶

¶

¶

¶

¶

It is also interesting to observe that the use of RTP inadvertently

leads to media description and negotiation using SDP. Such

complexity is justifiable when huge variation exists between

clients' capabilities with very basic common lowest denominators.

Today, and while variations still exist, streamlining media

capabilities into reasonable capability sets that are declared by

publishers and subscribed to by subscribers is very feasible and is

how the streaming applications do operate. Simpler forms can and

should be used for media declarations. As a very wise guru once put

it "RTP is an gateway drug to SDP and friends done't let friends try

to debug SDP".

In summary, the desirable aspects of RTP are absorbed into QUIC or

QuicR layers rather than direct encapsulation of RTP.

Appendix A. Acknowledgments

Thanks to Nermeen Ismail, Mo Zanaty for contributions and

suggestions to this specification.

Authors' Addresses

Cullen Jennings

cisco

Canada

Email: fluffy@iii.ca

Suhas Nandakumar

Cisco

Email: snandaku@cisco.com

¶

¶

¶

mailto:fluffy@iii.ca
mailto:snandaku@cisco.com

	QuicR - Media Delivery Protocol over QUIC
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. QuicR

	2. Contributing
	3. Terminology
	4. Advantages of QuicR
	5. QuicR architecture
	5.1. QuicR Delivery Network Architecture with Origin as the only Relay Function.
	5.2. QuicR Delivery Network Architecture

	6. Names and Named Objects
	6.1. Objects Groups
	6.2. Named Objects
	6.3. Name Hashes
	6.4. Wildcarding with Names

	7. Objects
	8. Relays
	9. QuicR Usage Design Patterns
	9.1. QuicR Manifest Objects
	9.2. QuicR Video Objects
	9.2.1. RUSH over QuicR
	9.2.2. Warp over QuicR

	9.3. QuicR Audio Objects
	9.4. QuicR Game Moves Objects
	9.5. Messaging Objects

	10. Security Considerations
	11. Protocol Design Considerations
	11.1. HTTP/3
	11.2. QUIC Streams and Datagrams
	11.3. QUIC Congestion Control
	11.4. Why not RTP

	Appendix A. Acknowledgments
	Authors' Addresses

