
P2PSIP C. Jennings
Internet-Draft J. Rosenberg
Intended status: Standards Track Cisco
Expires: January 2, 2008 E. Rescorla
 Network Resonance
 July 1, 2007

Address Settlement by Peer to Peer
draft-jennings-p2psip-asp-00

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on January 2, 2008.

Copyright Notice

 Copyright (C) The IETF Trust (2007).

Abstract

 This document defines Address Settlement by Peer-to-Peer (ASP), a
 peer-to-peer (P2P) binary signaling protocol for usage on the
 Internet. A P2P signaling protocol provides its clients with an
 abstract hash table service between a set of cooperating peers that
 form the P2P network. ASP is designed to support a P2P Session
 Initiation Protocol (SIP) network, but it can be utilized by other

Jennings, et al. Expires January 2, 2008 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft ASP - Address Settlement by P2P July 2007

 applications with similar requirements. ASP introduces the notion of
 usages, which are a collection of data types that are required for a
 particular application. For SIP, these types include location, STUN
 and TURN servers. ASP defines a security model based on a
 certificate enrollment service that provides peers with unique
 identities. ASP also provides protocol extensibility and defines a
 migration methodology, allowing for major upgrades of the P2P network
 without service disruption.

Table of Contents

1. Introduction . 5
2. Overview . 7
2.1. Distributed Storage Layer 8
2.1.1. Distributed Storage API 8
2.1.2. DHT Topology . 8
2.1.3. Routing . 9
2.1.4. Storing and Retrieving Typed Data 9
2.1.5. Joining, Leaving, and Maintenance 10
2.1.6. Forming Direct Connections 11
2.1.7. Data Replication 12

2.2. Forwarding Layer . 12
2.2.1. Label Stacks . 12

2.3. Transport Layer . 13
2.4. Enrollment . 13
2.5. Security . 14
2.5.1. Storage Permissions 15
2.5.2. Peer Permissions 15
2.5.3. Expiry and Renewal 16

2.6. Migration . 16
3. Usages Layer . 16
3.1. SIP Usage . 17
3.1.1. SIP Location . 17
3.1.2. SIP GRUUs . 18
3.1.3. SIP Connect . 18

3.2. Certificate Store Usage 19
3.3. STUN Usage . 19
3.4. Other Usages . 20
3.4.1. Storing Buddy Lists 20
3.4.2. Storing Users' Vcards 20
3.4.3. Finding Voicemail Message Recorder 20
3.4.4. ID/Locator Mappings 20

4. Conventions . 20
5. Terminology . 21
6. Common Packet Encodings and Semantics 22
6.1. Forwarding Block . 22
6.2. Data Storage and Retrieval 24

Jennings, et al. Expires January 2, 2008 [Page 2]

Internet-Draft ASP - Address Settlement by P2P July 2007

6.2.1. STORE . 24
6.2.2. FETCH . 25
6.2.3. REMOVE . 25
6.2.4. FIND . 25

6.3. DHT Maintenance . 25
6.3.1. JOIN . 25
6.3.2. LEAVE . 26
6.3.3. UPDATE . 26

6.4. Connection Management 26
6.4.1. CONNECT . 26
6.4.2. PING . 26

6.5. Data Signature . 27
6.5.1. SIGNATURE . 27

7. Forwarding Operations . 27
8. Transport Operations . 27
8.1. Framing for stream transports 27
8.2. Framing for datagram transports 27
8.3. ICE and Connection Formation 28
8.3.1. Overview . 28
8.3.2. TURN and STUN Server Insertion 29
8.3.3. Gathering Candidates 30
8.3.4. Encoding the CONNECT Message 31
8.3.5. Verifying ICE Support 32
8.3.6. Role Determination 32
8.3.7. Connectivity Checks 32
8.3.8. Concluding ICE . 32
8.3.9. Subsequent Offers and Answers 33
8.3.10. Media Keepalives 33
8.3.11. Sending Media . 33
8.3.12. Receiving Media 33

9. DHT Algorithms . 34
9.1. Generic Algorithm Requirements 34
9.2. DHT API . 34

10. Chord Algorithm . 36
10.1. Overview . 36
10.2. Routing . 37
10.3. Redundancy . 37
10.4. Joining . 37
10.5. Receiving UPDATEs . 38
10.6. Sending UPDATEs . 38
10.7. Stabilization . 38
10.8. Leaving . 38

11. Enrollment and Bootstrap 39
12. Usages . 39
12.1. Generic Usage Requirements 39
12.2. SIP Usage . 39
12.3. STUN/TURN Usage . 39
12.4. Certificate Store Usages 39

Jennings, et al. Expires January 2, 2008 [Page 3]

Internet-Draft ASP - Address Settlement by P2P July 2007

13. Security Considerations 39
13.1. Overview . 39
13.2. General Issues . 40
13.2.1. Storage Security 40
13.2.2. Routing Security 42

13.3. SIP-Specific Issues 44
13.3.1. Fork Explosion . 44
13.3.2. Malicious Retargeting 44
13.3.3. Privacy Issues . 44

14. IANA Considerations . 44
14.1. DHT Types . 45
14.2. Stored Data Types . 45
14.3. Command & Responses Types 45
14.4. Parameter Types . 45

15. Examples . 45
16. Open Issues . 45
16.1. Peer-id and locus size 45
16.2. More efficient FIND command 45
16.3. Generation, E-Tags, link thing 45
16.4. Future upgrade support 45

17. Acknowledgments . 45
 18. Appendix: Operation with SIP clients outside the DHT domain . 45

19. Appendix: Notes on DHT Algorithm Selection 46
20. References . 46
20.1. Normative References 46
20.2. Informative References 46

 Authors' Addresses . 47
 Intellectual Property and Copyright Statements 49

Jennings, et al. Expires January 2, 2008 [Page 4]

Internet-Draft ASP - Address Settlement by P2P July 2007

1. Introduction

 With thy sharp teeth this knot intrinsicate
 Of life at once untie: poor venomous fool
 Be angry, and dispatch.

 -Cleopatra, Act V, scene II,
 Antony and Cleopatra by William Shakespeare

 This document defines Address Settlement by Peer-to-Peer (ASP), a
 peer-to-peer (P2P) signaling protocol for usage on the Internet. A
 P2P signaling protocol provides its clients with an abstract hash
 table service. Clients can both read and write entries into the hash
 table. The hash table is actually distributed: pieces of the table
 are stored by the various clients that access it. Such an abstract
 hash table service, in which the contents of the hash table are
 stored across many hosts, is called a Distributed Hash Table (DHT).

 ASP is a lightweight, binary protocol. It provides several functions
 that are critical for a successful P2P protocol for the Internet.
 These are:

 Security Framework: Security is one of the most challenging problems
 in a P2P protocol. A P2P network will often be established among
 a set of peers none of which trust each other. Yet, despite this
 lack of trust, the network must operate reliably to allow storage
 and retrieval of data. ASP defines an abstract enrollment server,
 which all entities trust to generate unique identifiers for each
 user. Using that small amount of trust as an anchor, ASP defines
 a security framework that allows for authorization of P2P protocol
 functions and DHT write operations. This framework mitigates many
 important threats, such as corruption of data in the DHT by
 malicious users. ASP itself runs only over TLS or DTLS.
 Usage Model: It is anticipated that many applications, including
 multimedia communications with the Session Initiation Protocol
 (SIP) [RFC3261], will utilize the services of ASP. Consequently,
 ASP has the notion of a usage, one of which is defined to support
 each application (this document also defines the SIP usage for
 multimedia communications). Each usage identifies a set of data
 types that need to be stored and retrieved from the DHT (the SIP
 usage defines one for registrations, one for certificates, one for
 Traversal Using Relay NAT (TURN) [I-D.ietf-behave-turn] servers
 and one for Session Traversal Utilities for NAT (STUN)
 [I-D.ietf-behave-rfc3489bis] servers). Each type defines a data
 structure, authorization policies, size quota, and information
 required for storage and retrieval in the DHT. The usage concept
 allows ASP to be used with new applications through a simple

https://datatracker.ietf.org/doc/html/rfc3261

Jennings, et al. Expires January 2, 2008 [Page 5]

Internet-Draft ASP - Address Settlement by P2P July 2007

 documentation process that supplies the details for each
 application.
 Pluggable DHT Algorithms: Many algorithms have been developed for
 DHTs, including Chord, CAN, Kademlia, and so on. The goal of ASP
 is to make it very easy to define how ASP works with each DHT
 algorithm, and furthermore, to minimize the amount of
 specification work, protocol change, and coding that are required
 to support each DHT. To accomplish this, ASP defines an
 abstracted interface between ASP and the DHT algorithm. ASP is
 designed so as to minimize the amount of logic within the DHT
 algorithm itself, so that core ASP services are as generalized as
 possible. This specification also defines how ASP is used with
 Chord.
 High Performance Routing: The very nature of DHT algorithms
 introduces a requirement that peers participating in the P2P
 network route requests on behalf of other peers in the network.
 This introduces a load on those other peers, in the form of
 bandwidth and processing power. ASP has been defined to reduce
 the amount of bandwidth and processing required of peers. It does
 so by using a very lightweight binary protocol, and furthermore,
 by defining a packet structure that facilitates low-complexity
 forwarding, including hardware-based forwarding. It borrows
 concepts in Multi-Protocol Label Switching (MPLS) around label
 stacks to minimize the computational costs of forwarding.
 NAT Traversal NAT and firewall traversal are built into the design
 of the protocol. ASP makes use of Interactive Connectivity
 Establishment (ICE) [I-D.ietf-mmusic-ice] to facilitate the
 creation of the P2P network and the establishment of links for use
 by the application protocol (SIP and RTP, for example). ASP also
 defines how the peers in the P2P network can act as STUN and TURN
 servers and how those resources can be discovered through the DHT.
 ASP runs over both TLS and DTLS, so that its connections can
 support both bulk transfer and datagram connectivity. With these
 features, ASP can run in modes in which all the peers are behind
 NATs, yet are able to fully participate without imposing any
 constraints on the actual DHT algorithm or routing topology.
 Multiple P2P Networks: ASP allows for multiple and unrelated P2P
 networks to operate at the same time. A single peer can
 participate in more than one, while at the same time running ASP
 on a single port.
 Extensible: Extending P2P protocols is a challenging task, due to
 the highly distributed nature of their behavior. ASP introduces a
 protocol extensibility model similar to the one used for the
 Border Gateway Protocol (BGP). BGP, like ASP, runs among a large
 number of peers to implement a highly distributed protocol. It
 does this by including bit flags for each command that indicate
 properties of that command. ASP also introduces a migration
 model, whereby parallel P2P networks are utilized during a cutover

Jennings, et al. Expires January 2, 2008 [Page 6]

Internet-Draft ASP - Address Settlement by P2P July 2007

 interval while a major protocol change is in progress.

 These properties were designed specifically to meet the requirements
 for a P2P protocol to support SIP. However, ASP is not limited to
 usage by SIP and could serve as a tool for supporting other P2P
 applications with similar needs. ASP is also based on the concepts
 introduced in [I-D.willis-p2psip-concepts].

2. Overview

 Architecturally this specification splits into several layers, as
 shown in the following figure.

 +-------+ +-----+ +-------+
Usage | SIP | |STUN | | Other | ...
Layer | Usage | |Usage| | Usage |
 +-------+ +-----+ +-------+
 --------------------------------------Distributed Storage API
 +---------------------+
Distributed Routing & | +-----+ +------+ |
Storage Replication | |Chord| ...|Bamboo| | Topology
Layer Logic | | | | | | Plugins
 | +-----+ +------+ |
 +---------------------+

Forwarding Forwarding & Encoding Logic
Layer NAT & FW Connection Logic
 -------------------------------------Common Packet Encoding
Transport +-------+ +------+
Layer |TLS | |DTLS |
 +-------+ +------+

 The top layer, called the Usage Layer, has application usages, such
 as SIP Location Usage, that use an abstract distributed storage API
 to store and retrieve data from the DHT. The goal of this layer is
 to implement application-specific usages of the Distributed Storage
 Layer below it. The Usage defines how a specific application maps
 its data into something that can be stored in the DHT, where to store
 the data, how to secure the data, and finally how applications can
 retrieve and use the data.

 The next layer is a Distributed Storage Layer. It can store and
 retrieve information, perform maintenance of the DHT as peers join
 and leave the DHT, and route messages. This layer is tightly bound
 to the specific DHT algorithm being used, as this algorithm
 determines how both routing and redundant storage are done in the
 DHT. The goal of this layer is to provide a fairly generic

Jennings, et al. Expires January 2, 2008 [Page 7]

Internet-Draft ASP - Address Settlement by P2P July 2007

 distributed and redundant storage service.

 The next layer down is the Forwarding Layer. This layer is
 responsible for getting a packet to the next peer in the DHT. It
 uses the routing layers above it to determine what the next hop is;
 this layer deals with actually forwarding the packet to the next hop.
 Forwarding can include setting up connections to other peers through
 NATs and firewalls using ICE; it can take advantage of relays for NAT
 and firewall traversal. This layer passes packets in a common packet
 encoding, regardless of what DHT algorithm is being used in the
 Transport Layer below it. The goal of the Forwarding Layer is to
 forward packets to other peers.

 Finally, in the bottom layer, packets are sent using a Transport
 Layer which uses TLS and DTLS.

2.1. Distributed Storage Layer

 Each logical address in the DHT where data can be stored is referred
 to as a locus. A given peer will be responsible for storing data
 from many loci. Typically literature on DHTs uses the term "key" to
 refer to a location in the DHT; however, in this specification the
 term key is used to refer to public or private keys used for
 cryptographic operations and the term locus is used to refer to a
 storage location in the DHT.

2.1.1. Distributed Storage API

 TODO

2.1.2. DHT Topology

 Each DHT will have a somewhat different structure, but many of the
 concepts are common. The DHT defines a large space of loci, which
 can be thought of as addresses. In many DHTs, the loci are simply
 128- or 160-bit integers. Each DHT also has a distance metric such
 that we can say that locus A is closer to locus B than to locus C.
 When the loci are n-bit integers, they are often considered to be
 arranged in a ring so that (2^n)-1 and (0) are consecutive and
 distance is simply distance around the ring.

 Each peer in the DHT is assigned a locus and is "responsible" for the
 nearby space of loci. So, for instance, if we have a peer P, then it
 would also be responsible for storing data associated with locus
 P+epsilon as long as no other peer P was closer. The DHT locus space
 is divided so that some peer is responsible for each locus.

Jennings, et al. Expires January 2, 2008 [Page 8]

Internet-Draft ASP - Address Settlement by P2P July 2007

2.1.3. Routing

 The way routing works in a DHT is specified by the specific DHT
 algorithm but the basic concepts are common to most systems. Each
 peer maintains connections to some other set of peers N. There need
 not be anything special about the peers in N, except that the peer
 has a direct connection to them: it can reach them without going
 through any other peer. When it wishes to deliver a message to some
 peer P, it selects some member of N, N_i that is closer to P than
 itself (as a degenerate case, P may be in N). It then sends the
 message to N_i. N_i repeats this procedure until the message
 eventually gets to P.

 In most DHTs, the peers in N are selected in a particular way. One
 common strategy is to have them arranged exponentially further away
 from yourself so that any message can be routed in a O(log(N)) steps.
 The details of the routing structure depend on the DHT algorithm,
 however, since it defines the distance metric and the structure of
 the direct connection table.

 In ASP, messages may either be COMMANDS or RESPONSES to COMMANDS.
 Messages are routed as described above. In principle, responses
 could be routed the same way, but this makes diagnosis of errors
 difficult. Instead, as commands travel through the network they
 accumulate a history of the peers they passed through and responses
 are routed in the opposite direction so that they follow the same
 path in reverse.

2.1.4. Storing and Retrieving Typed Data

 The Data Storage Layer provides operations to STORE, FETCH, and
 REMOVE data from the DHT. Each location in the DHT is referenced by
 a single integer locus. However, each location may contain data
 elements of multiple types. Furthermore, there may be multiple
 values of each type, as shown below.

Jennings, et al. Expires January 2, 2008 [Page 9]

Internet-Draft ASP - Address Settlement by P2P July 2007

 +--------------------------------+
 | Locus |
 | |
 | +------------+ +------------+ |
 | | Type 1 | | Type 2 | | | | | |
 | | | | | |
 | | +--------+ | | +--------+ | |
 | | | Value | | | | Value | | |
 | | +--------+ | | +--------+ | |
 | | | | | |
 | | +--------+ | | +--------+ | |
 | | | Value | | | | Value | | |
 | | +--------+ | | +--------+ | |
 | | | +------------+ |
 | | +--------+ | |
 | | | Value | | |
 | | +--------+ | |
 | +------------+ |
 +--------------------------------+

 Each type-id is a code point assigned to a specific application usage
 by IANA. As part of the Usage definition, protocol designers may
 define constraints, such as limits on size, on the values which may
 be stored. For many types, the set may be restricted to a single
 item; some sets may be allowed to contain multiple identical items
 while others may only have unique items. Some typical types of sets
 that a usage definition would use include:

 single value: There can be at most one item in the set and any value
 overwrites the previous item.
 set: Many values can be stored and each store appends to the set,
 but there cannot be two entries with the same value.
 bag: Similar to a set, but there can be more than one entry with the
 same value.
 dictionary: The values stored are indexed by a key. Often this key
 is one of the values from the certificate of the peer sending the
 STORE command.

2.1.5. Joining, Leaving, and Maintenance

 When a new peer wishes to join the DHT, it must have a peer-id that
 it is allowed to use. It uses one of the peer-ids in the certificate
 it received from the enrollment server. The main steps in joining
 the DHT are:

 o Forming connections to some other peers.

Jennings, et al. Expires January 2, 2008 [Page 10]

Internet-Draft ASP - Address Settlement by P2P July 2007

 o Acquiring the data values this peer is responsible for storing.
 o Informing the other peers which were previously responsible for
 that data that this peer has taken over responsibility.

 First, the peer ("JP," for Joining Peer) uses the bootstrap
 procedures to find some (any) peer in the DHT. It then typically
 contacts the peer which would have formerly been responsible for the
 peer's locus (since that is where in the DHT the peer will be
 joining), the Responsible Peer (RP). It copies the other peer's
 state, including the data values it is now responsible for and the
 identities of the peers with which the other peer has direct
 connections.

 The details of this operation depend mostly on the DHT involved, but
 a typical case would be:

 1. JP sends a JOIN command to RP announcing its intention to join.
 2. RP sends an OK response.
 3. RP does a sequence of STOREs to JP to give it the data it will
 need.
 4. RP does a sequence of UPDATEs to JP to tell it about its own
 routing table. At this point, both JP and RP consider JP
 responsible for some section of the DHT.
 5. JP makes its own connections to the appropriate peers in the DHT.
 Often this is done merely by copying RP's routing table.

 After this process is completed, JP is a full member of the DHT and
 can process STORE/FETCH commands.

2.1.6. Forming Direct Connections

 As described in Section 2.1.3, a peer maintains a set of direct
 connections to other peers in the DHT. Consider the case of a peer
 JP just joining the DHT. It communicates with the responsible peer
 RP and gets the list of the peers in RP's routing table. Naively, it
 could simply connect to the IP address listed for each peer, but this
 works poorly if some of those peers are behind a NAT or firewall.
 Instead, we use the CONNECT command to establish a connection.

 Say that peer A wishes to form a direct connection to peer B. It
 gathers ICE candidates and packages them up in a CONNECT command
 which it sends to B through usual DHT routing procedures. B does its
 own candidate gathering and sends back an OK response with its
 candidates. A and B then do ICE connectivity checks on the candidate
 pairs. The result is a connection between A and B. At this point, A
 and B can add each other to their routing tables and send messages
 directly between themselves without going through other DHT peers.

Jennings, et al. Expires January 2, 2008 [Page 11]

Internet-Draft ASP - Address Settlement by P2P July 2007

2.1.7. Data Replication

 TODO - More is needed here but the short version is that the
 replication approach is defined by the specific DHT algorithm not the
 Usage. The reason is that when a peer comes or goes, specific
 knowledge of the DHT topology is required to understand where the
 replication set is stored for the data. Also need to explain how
 data is merged after a network partition event.

2.2. Forwarding Layer

 The forwarding layer is responsible for looking at message and doing
 one of three things:
 o Deciding the message was destined for this peer and passing the
 message up to the layer above this.
 o Looking at the label that represents the flow to which this
 message needs to be sent next and forwarding the message over that
 flow.
 o Requesting the DHT Routing logic to tell the forwarding layer
 which flow the message needs to be forwarded on, and then sending
 the message on that flow.

2.2.1. Label Stacks

 In a general messaging system, messages need a source and a
 destination. In an overlay network it is often useful to specify the
 source or destination as the path through the overlay. In addition,
 responses to commands need to retrace the command's path. To support
 this, each message has a source label stack and a destination label
 stack. Each label is 32 bits long, and the labels 0 to 254 are
 reserved for special use. 0 is an invalid label and 1 indicates that
 the next 4 labels are to be interpreted as a peer-id.

 When a peer receives a message from the Transport Layer, it pushes a
 label on the source stack that indicates which TLS or DTLS flow the
 message arrived on. When a peer goes to transmit a message to the
 Transport Layer, it looks at the top label on the destination stack.
 If the top label is not one of the special use labels, it pops that
 label off the destination stack and sends the message over the TLS or
 DTLS flow that corresponds to that label. If the label is 1, then
 the next 4 labels are looked at and interpreted as a peer id. Note
 that these can be in the 0 to 254 range and still be interpreted as a
 peer-id. The routing logic in the Distributed Storage Layers is
 consulted to find out where to route this message. If this peer is
 responsible for the peer-id, then the 5 labels for the peer-id are
 popped off and the message is passed up to the Distributed Storage
 Layer for processing. Otherwise the labels are not popped off and
 the message is forwarded over the TLS or DTLS flow indicated in the

Jennings, et al. Expires January 2, 2008 [Page 12]

Internet-Draft ASP - Address Settlement by P2P July 2007

 routing logic.

 When a peer goes to send a response to a command, it can simply copy
 the source label stack from the command into the destination label
 stack of the response and then start forwarding the response.

 Peers that are willing to maintain state may do label compression.
 They do this by taking some number of labels off the top of the
 source label stack and replacing them with a single label that
 uniquely represents all the labels removed. Later, if the peer sees
 the compressed label in a destination label set, it removes it and
 replaces it with all the labels it originally popped off the s source
 label stack. Doing this requires a peer to save state but it allows
 certain peers to provide services in which they reduce the size of
 messages going across bandwidth-constrained links. It can also help
 protect the privacy of the per-compression peer topology. (TODO need
 more on length of validity of compressed labels)

 The label stack approach provides several features. First it allows
 a response to follow the same path as the request. This is
 particularly important for peers that are sending commands while they
 are joining and before other peers can route to them. It also makes
 it easier to diagnose and manage the system. Storing a label stack
 that includes a peer that does label compression provides the type of
 Local Network Protection described inRFC 4864 [RFC4864] without
 requiring a NAT.

2.3. Transport Layer

 This layer sends and receives messages over TLS and DTLS. Each TLS
 or DTLS connection is referred to as a flow. For TLS it does the
 framing of messages into the stream. For DTLS it takes care of
 fragmentation issues. The reason for including TLS is the improved
 performance it can offer for bulk transport of data. The reason for
 including DTLS is that the percentage of the time that two devices
 behind NATs can form a direct connection without a relay is much
 higher for DTLS than for TLS. The way DTLS and TLS certificates are
 used does not require a global PKI, and therefore no option that uses
 only TCP or UDP without any security is included.

2.4. Enrollment

 Before a new user can join the DHT for the first time, they must
 enroll in the P2P Network for the DHT they want to join. Enrollment
 will typically be done by contacting a centralized enrollment server.
 Other approaches are possible but are outside the scope of this
 specification. The user establishes his identity to the server's
 satisfaction and provides the server with its public key. The

https://datatracker.ietf.org/doc/html/rfc4864

Jennings, et al. Expires January 2, 2008 [Page 13]

Internet-Draft ASP - Address Settlement by P2P July 2007

 centralized server then returns a certificate binding the user's user
 name to their public key. The properties of the certificate are
 discussed more in Section 2.5. The amount of authentication
 performed here can vary radically depending on the DHT network being
 joined. Some networks may do no verification at all and some may
 require extensive identity verification. The only invariant that the
 enrollment server needs to ensure is that no two users may have the
 same identity.

 During the enrollment process, the central server also provides the
 peer/user with the root certificate for the DHT, information about
 the DHT algorithm that is being used, a P2P-Network-Id that uniquely
 identifies this ring, the list of bootstrap peers, and any other
 parameters it may need to connect to the DHT. The DHT also informs
 the peers what Usages it is required to support to be a peer on this
 P2P Network. Once the peer has enrolled, it may join the DHT.

2.5. Security

 The underlying security model revolves around the enrollment process
 allocating a unique name to the user and issuing a certificate [REF:

RFC3280] for a public/private key pair for the user. All peers in a
 particular DHT can verify these certificates. A given peer acts on
 behalf of a user, and that user is somewhat responsible for its
 operation.

 The certificate serves two purposes:

 o It entitles the user to store data at specific locations in the
 DHT.
 o It entitles the user to operate a peer that has a peer-id found in
 the certificate. When the peer is acting as a DTLS or TLS server,
 it can use this certificate so that a client connecting to it
 knows it is connected to the correct server.

 When a user enrolls, or enrolls a new device, the user is given a
 certificate. This certificate contains information that identifies
 the user and the device they are using. If a user has more than one
 device, typically they would get one certificate for each device.
 This allows each device to act as a separate peer.

 The contents of the certificate include:

 o A public key provided by the user.
 o Zero, one, or more user names that the DHT is allowing this user
 to use. For example, "alice@example.org". Typically a
 certificate will have one name. In the SIP usage, this name
 corresponds to the AOR.

https://datatracker.ietf.org/doc/html/rfc3280

Jennings, et al. Expires January 2, 2008 [Page 14]

Internet-Draft ASP - Address Settlement by P2P July 2007

 o Zero, one, or more peer-ids. Typically there will be one peer-id.
 Each device will use a different peer-id, even if two devices
 belong to the same user. Peer-IDs should be chosen randomly.
 o A serial number that is unique to this certificate across all the
 certificates issued for this DHT.
 o An expiration time for the certificate.

 Note that if peer-IDs are chosen randomly, they will be randomly
 distributed with respect to the user name. This has the result that
 any given peer is highly unlikely to be responsible for storing data
 corresponding to its own user, which promotes high availability.

2.5.1. Storage Permissions

 When a peer uses a STORE command to place data at a particular
 location X, it must sign with the private key that corresponds to a
 certificate that is suitable for storing at location X. Each data
 type in a usage defines the exact rules for determining what
 certificate is appropriate. However, the most natural rule is that a
 certificate with user name U allows the user to store data at locus
 H(U) where H is a cryptographic hash function characteristic of the
 DHT. The idea here is that someone wishing to look up identity U
 goes to locus H(U), which is where the user is permitted to store
 their data.

 The digital signature over the data serves two purposes. First, it
 allows the peer responsible for storing the data to verify that this
 STORE is authorized. Second, it provides integrity for the data.
 The signature is saved along with the data value (or values) so that
 any reader can verify the integrity of the data. Of course, the
 responsible peer can "lose" the value but it cannot undetectably
 modify it.

2.5.2. Peer Permissions

 The second purpose of a certificate is to allow the device to act as
 a peer with the specified peer-ID. When a peer wishes to connect to
 peer X, it forms a TLS/DTLS connection to the peer and then performs
 TLS mutual authentication and verifies that the presented certificate
 contains peer-ID X.

 Note that because the formation of a connection between two nodes
 generally requires traversing other nodes in the DHT, as specified in

Section 2.1.6, those nodes can interfere with connection initiation.
 However, if they attempt to impersonate the target peer they will be
 unable to complete the TLS mutual authentication: therefore such
 attacks can be detected.

Jennings, et al. Expires January 2, 2008 [Page 15]

Internet-Draft ASP - Address Settlement by P2P July 2007

2.5.3. Expiry and Renewal

 At some point before the certificate expires, the user will need to
 get a new certificate from the enrollment server.

2.6. Migration

 At some point in time, a given P2P Network may want to migrate from
 one underlying DHT algorithm to another or update to a later
 extension of the protocol. This can also be used for crypto agility
 issues. The migration approach is done by basically having peers
 initializing algorithm A. When the clients go to periodically renew
 their credentials, they find out that the P2P Network now requires
 them to use algorithm A but also to store all the data with algorithm
 B. At this point there are effectively two DHT rings in use, rings A
 and B. All data is written to both but queries only go to A. At some
 point when the clients periodically renew their credentials, they
 learn that the P2P Network has moved to storing to both A and B but
 that FETCH commands are done with P2P Network B and that any SEND
 should first be attempted on P2P Network B and if that fails, retried
 on P2P Network A. In the final stage when clients renew credentials,
 they find out that P2P Network A is no longer required and only P2P
 Network B is in use. Some types of usages and environments may be
 able to migrate very quickly and do all of these steps in under a
 week, depending on how quickly software that supports both A and B is
 deployed and how often credentials are renewed. On the other hand,
 some very ad-hoc environments involving software from many different
 providers may take years to migrate.

3. Usages Layer

 By itself, the distributed storage layer just provides infrastructure
 on which applications are built. In order to do anything useful, a
 usage must be defined. Each Usage needs to specify several things:
 o Register code points for any type that the Usage defines.
 o Define the data structure for each of the types.
 o Define access control rules for each type.
 o Provide a size limit for each type.
 o Define how the seed is formed that is hashed to form the locus
 where each type is stored.
 o Describe how values will be merged after a network partition.
 Unless otherwise specified, the default merging rule is to act as
 if all the values that need to be merged were stored and that the
 order they were stored in corresponds to the timestamps on the
 signatures associated with their values.

 TODO - Give advice on things that make bad usages - for example,

Jennings, et al. Expires January 2, 2008 [Page 16]

Internet-Draft ASP - Address Settlement by P2P July 2007

 things that involve unlimited storage such as storing voice mail.

3.1. SIP Usage

 From the perspective of P2PSIP, the most important usage is the SIP
 Usage. The basic function of the SIP usage is to allow Alice to
 start with a SIP URI (e.g., "bob@dht.example.com") and end up with a
 connection which Bob's SIP UA can use to pass SIP messages back and
 forth to Alice's SIP UA.

 This operation can take a number of forms, but in the simplest case,
 Bob's SIP UA has peer-ID "B". When Bob joins the DHT (i.e., turns on
 his phone), he stores the following mapping in the DHT:

 o sip:bob@dht.example.com -> B

 When Alice wants to call Bob, she starts with his URI and her UA uses
 the DHT to look up his peer-ID B. She then routes a message through
 the DHT to B requesting a direct connection. Once this connection is
 established she can send SIP messages over it, which allows her to
 set up the phone call.

 This is done using three key operations that are provided by the SIP
 Usage. They are:

 o Mapping SIP URIs that are not GRUUs to the DHT peer responsible
 for the SIP UA.
 o Mapping SIP GRUUs to the DHT peer responsible for the SIP UA.
 o Forming a connection directly to a DHT peer that is used to send
 SIP messages to the SIP UA.

3.1.1. SIP Location

 A peer acting as a SIP UA stores their registration information in
 the DHT by storing a label stack that routes to them at a locus in
 the DHT formed from the user's SIP AOR". When another peer wishes to
 find a peer that is registered for a SIP URI, the lookup of the
 user's name is done by taking the user's SIP Address or Record (AOR)
 and using it as the seed that is hashed to get a locus. A lookup for
 a data type of sip-location is done to this locus to find a set of
 values. Each value is a data structure contains a label stack that
 is used to reach a peer that represents a SIP UA registered for that
 AOR. The data structure also contains a string that would be a valid
 SIP header field value for the contact header in a 3xx response from
 a redirect server. This string can contain the caller-pref (TODO add
 reference) information for that SIP UA.

 The seed for this usage is a user's SIP AOR, such as

Jennings, et al. Expires January 2, 2008 [Page 17]

Internet-Draft ASP - Address Settlement by P2P July 2007

 "sip:alice@example.com", and the locus is formed by taking the top
 128 bits of the SHA-1 hash of the seed. The set is a dictionary
 style set and is indexed by the peer-id of the certificate used to
 sign the STORE command. This allows the set to store many values but
 only one for each peer. The authorization policy is that STORE
 commands are only allowed if the user name in the signing
 certificate, when turned into a SIP URL and hashed, matches the
 locus. This policy ensures that only a user with the certificate
 with the user name "alice@example.com" can write to the locus that
 will be used to look up calls to "sip:alice@example.com".

 Open Issue: Should the seed be "sip:alice@example.com",
 "alice@example.com", or a string that includes the code point defined
 for the type? The issue here is determining whether different usages
 that store data at a seed that is primarily formed from
 "alice@example.com" should hash to the same locus as the SIP Usage.
 For example, if a buddy list had a seed that was roughly the same,
 would we want the buddy list information to end up on the same peers
 that stored the SIP location data or on different peers?

3.1.2. SIP GRUUs

 GRUUs that refer to peers in the P2P network are constructed by
 simply forming a GRUU, where the value of gr URI parameter contains a
 base64 encoded version of the label stack that will reach the peer.
 The base64 encoding is done with the alphabet specified in table 1 of

RFC 4648 with the exception that ~ is used in place of =. An example
 GRUU is "sip:alice@example.com;gr=MDEyMzQ1Njc4OTAxMjM0NTY3ODk~".
 When a peer needs to route a message to a GRUU in the same P2P
 network, it simply decodes the label stack and connects to that peer.

 Anonymous GRUUs are done in roughly the same way but require either
 that the enrollment server issue a different peer-id for each
 anonymous GRUU required or that a label stack be used that includes a
 peer that compresses the label stack to stop the peer-id from being
 revealed.

3.1.3. SIP Connect

 This usage allows two clients to form a new TLS or DTLS connection
 between them and then use this connection for sending SIP messages to
 one another. This does not store any information in the DHT, but it
 allows the CONNECT command to be used to set up a TLS or DTLS
 connection between two peers and then use that connection to send SIP
 messages back and forth.

 The CONNECT command will ensure that the connection is formed to a
 peer that has a certificate which includes the user that the

https://datatracker.ietf.org/doc/html/rfc4648

Jennings, et al. Expires January 2, 2008 [Page 18]

Internet-Draft ASP - Address Settlement by P2P July 2007

 connection is being formed to.

3.2. Certificate Store Usage

 This usage allows each user to store their certificate in the DHT so
 that it can be retrieved to be checked by various peers and
 applications. Peers acting on behalf of a particular user store that
 user's certificate in the DHT, and any peer that needs the
 certificate can do a FETCH to retrieve the certificate. Typically it
 is retrieved to check a signature on a command or the signature on a
 chunk of data that the DHT has received.

 This usage defines one new type, called "certificate." Each locus
 stores only a single value which is the X.509 certificate encoded
 using DER. The seed used to generate the locus is simply the serial
 number of the certificate. When a peer receives a command to STORE a
 particular certificate, it needs to be signed with the certificate
 with that serial number. This ensures that an attacker cannot
 overwrite the certificate of some other user.

 Each user can store their current and previous certificate. This
 allows for transition from an old certificate to a new one. The
 certificate is stored as an X.509 certificate encoded with DER.

 A peer should ensure that the user's certificates are stored in the
 DHT when joining and redo the check about every 24 hours after that.
 Certificate data should be stored with an expiry time of 60 days.
 When a client is checking the existence of data, if the expiry is
 less than 30 days, it should be refreshed to have an expiry of 60
 days. The certificate information is frequently used for many
 operations, and peers should cache it for 8 hours.

3.3. STUN Usage

 This usage defines two new types, one for STUN servers and one for
 STUN-Relay servers.

 Peers that provide the STUN server type need to support both UDP and
 TCP hole punching as defined in XXX, while peers that provide the
 STUN-Relay server type need to support the TURN extensions to STUN
 for media relay of both UDP and TCP traffic as defined in XXX.

 The data is stored in a data structure with the IP address of the
 server and an indication whether the address is an IPv4 or IPv6
 address. The seed used to form the storage locus is simply the
 peer-id. The access control rule is that the certificate used to
 sign the request must contain a peer-id that when hashed would match
 the locus where the data is being stored.

Jennings, et al. Expires January 2, 2008 [Page 19]

Internet-Draft ASP - Address Settlement by P2P July 2007

 Peers can find other servers by selecting a random locus and then
 doing a FIND command for the appropriate server type with that locus.
 The FIND command gets routed to a random peer based on the locus. If
 that peer knows of any servers, they will be returned. The returned
 response may be empty if the peer does not know of any servers, in
 which case the process gets repeated with some other random locus.
 As long as the ratio of servers relative to peers is not too low,
 this approach will result in finding a server relatively quickly.

 Any peer that is not running in one of the RFC 1597 private address
 spaces MUST provide a STUN server. Open issues - what about
 requiring STUN-Relay servers? Should there be low and high bandwidth
 version of STUN-Relay one can find? Low would be usable for
 signaling type things and high would be usable for audio and more.

3.4. Other Usages

 This will likely be left out of scope of the initial system but just
 to give people a flavor of how these issues might be dealt with....

3.4.1. Storing Buddy Lists

 Buddy lists with reciprocal subscribes - when see indication buddy
 might be online, such as SUBSCRIBE from buddy, retry SUBSCRIBE to
 buddy. Subscriber ends up doing composition.

 Single users with different devices can synchronize buddy lists when
 both are online

3.4.2. Storing Users' Vcards

3.4.3. Finding Voicemail Message Recorder

 Can register a voicemail URI that fetches a greeting from a web
 server, plays this, and records a message, and then email the result
 to specified location. Could define a server usage for this similar
 to STUN/TURN server usage - may not have enough of them to
 effectively find with random probing and FIND command.

 Store a mailto contact in the SIP Location and have it mean you can
 record a G.711 wav file for this user and email it to them.

3.4.4. ID/Locator Mappings

4. Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

https://datatracker.ietf.org/doc/html/rfc1597

Jennings, et al. Expires January 2, 2008 [Page 20]

Internet-Draft ASP - Address Settlement by P2P July 2007

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

5. Terminology

 DHT: A distributed hash table. A DHT is an abstract hash table
 service realized by storing the contents of the hash table across
 a set of peers.
 DHT Algorithm: An algorithm that defines the rules for determining
 which peers in a DHT store a particular piece of data and for
 determining a topology of interconnections amongst peers in order
 to find a piece of data. Examples of DHT algorithms are Chord,
 Bamboo and Tapestry.
 DHT Instance: A specific hash table and the collection of peers that
 are collaborating to provide read and write access to it. There
 can be any number of DHT instances running in an IP network at a
 time, and each operates in isolation of the others.
 P2P Network: Another name for a DHT instance.
 P2P Network Name: A string that identifies a unique P2P network.
 P2P network names look like DNS names - for example,
 "example.org". Lookup of such a name in DNS would typically
 return services associated with the DHT, such as enrollment
 servers, bootstrap peers, or gateways (for example, a SIP gateway
 between a traditional SIP and a P2P SIP network called
 "example.com").
 P2P Network ID: A 24 bit identifier formed by taking portions of the
 hash of the P2P network name. The P2P network ID is present in
 ASP protocol messages and identifies the P2P network to which
 those messages are targeted.
 Hashspace: A range of integers from 0 to 2^N - 1 for some value of N
 (typically 128 or larger), defined by the DHT algorithm.
 Identifiers for peers and for resources stored in the DHT are
 taken from the hashspace.
 Locus: A locus is a single point in the hashspace.
 Seed: A seed is a string used as an input to a hash function, the
 result of which is a locus.
 Peer: A host that is participating in the DHT. By virtue of its
 participation it can store data and is responsible for some
 portion of the hashspace.
 Peer-ID: A locus that uniquely identifies a peer. Peer-IDs 0 and
 2^N - 1 are reserved and are invalid peer-IDs. A value of zero is
 not used in the wire protocol but can be used to indicate an
 invalid peer in implementations and APIs. The peer-id is used on
 the wire protocol as a wildcard.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Jennings, et al. Expires January 2, 2008 [Page 21]

Internet-Draft ASP - Address Settlement by P2P July 2007

 Resource: An object associated with an identifier. The identifier
 for the object is a string that can be mapped into a locus by
 using the string as a seed to the hash function. A SIP resource,
 for example, is identified by its AOR.
 User: A human being.
 Usage: A usage is an application that wishes to use the DHT for some
 purpose. Each application wishing to use the DHT defines a set of
 data types that it wishes to use. The SIP usage defines the
 location, certificate, STUN server and TURN server data types.
 About In this specification, the word "About" followed by some time,
 X, is used to mean a time that is randomly distributed between 90%
 and 100% of X.

6. Common Packet Encodings and Semantics

 This section provides the normative description of what peers need to
 do when sending and receiving the actual protocol commands. The
 basic message consists of a Forwarding Block that determines the
 destination of the message, followed by one or more Command Blocks or
 Response Blocks. The support for multiples of the Command or
 Response Blocks is just to pipeline several Commands or Responses
 together. Each Command Block specifies an operation and will receive
 a response.

6.1. Forwarding Block

 The common packet format consists of a forwarding block with a TTL,
 P2P-Network-Id and version for that network, a stack of source and
 destination labels, and finally a variable number of command blocks.
 The top two bits in the first byte indicate the version of the ASP
 protocol and are set to 0 for this version. When a label is pushed
 on the stack, it becomes the first label; label #1 is the top of the
 stack and #N is the bottom.

 Open issue: Do we want a magic number at front of block to indicate
 the protocol.

Jennings, et al. Expires January 2, 2008 [Page 22]

Internet-Draft ASP - Address Settlement by P2P July 2007

 Forwarding Block
 +-+
 |Ver|Resv(all 0)| Num Src Labels|Num Dst Labels | TTL |
 +-+
 | P2P Network ID | Network Ver |
 +-+
 | SRC Label #1 |
 +-+
 | SRC Label ... |
 +-+
 | SRC Label #N |
 +-+
 | DST Label #1 |
 +-+
 | DST Label ... |
 +-+
 | DST Label #N |
 +-+
 Command Block
 +-+
 |R E 0 0 0 0 0 0| Command | Command Length |
 +-+
 | Transaction ID |
 +-+
 | |
 + Command Data - variable length - 32 bit padded +
 | |
 +-+
 ...
 Command Block
 +-+
 |R E 0 0 0 0 0 0| Command | Command Length |
 +-+
 | Transaction ID |
 +-+
 | |
 + Command Data - variable length - 32 bit padded +
 | |
 +-+

 Each command block starts with a command header that includes
 extension bits, the command, and the length of the command data (not
 including the command header). The transaction-id is a random number
 and is preserved as the message is forwarded from one hop to the
 next. In the command block, the R bit, if set, indicates that the
 peer processing the request must be able to understand this command
 or else an error response MUST be returned (a peer that simply
 forwards is not required to look at or understand the command

Jennings, et al. Expires January 2, 2008 [Page 23]

Internet-Draft ASP - Address Settlement by P2P July 2007

 blocks). The E bit indicates that even if this command is not
 understood, it MUST be echoed in any response.

 The last Command Header Block in the message is typically a SIGNATURE
 command that computes a signature over all the previous command
 blocks.

 Each command typically has some fixed format data at the beginning of
 it that carries the information that must occur in every command of
 that type, followed by a series of optional parameters. The first
 byte of the optional parameters has the same semantics as the first
 byte of the Command block that indicates whether the receiver needs
 to understand the parameter or not. The second byte defines the
 actual parameter type (which are IANA registered). The data length
 follows this in the third and forth byte.

 Parameter Block
 +-+
 |R E 0 0 0 0 0 0| Parameter | Parameter Length |
 +-+
 | |
 + Parameter Data - variable length - 32 bit padded +
 | |
 +-+

6.2. Data Storage and Retrieval

6.2.1. STORE

 Stores a single copy of data in DHT. Includes a time to live for the
 data.

 Parameters: locus, type, data, expiration time, data signature,
 signature, [etag]

 Note the locus can be different than the destination when used for
 storing redundant data.

 The expiration time is an absolute time to stop replay attacks, as
 described in the Security section.

 Each time data is stored that is not bitwise identical to the
 previous data, the storing peer updates an entity-tag. If an etag is
 supplied in the command, then the operation will return an error if
 the current data does not have an entity-tag that matches the current
 etag.

Jennings, et al. Expires January 2, 2008 [Page 24]

Internet-Draft ASP - Address Settlement by P2P July 2007

6.2.2. FETCH

 Retrieves copy of data that is bitwise identical to the data in the
 store command

 Parameters: locus, type, [etag]

 If the entity tag of the data matches the optional etag in the FETCH,
 then a special response of SUCCESS-ETAG-MATCH is returned and no data
 is returned.

 Response: data, data signature

6.2.3. REMOVE

 Removes data - can only be done by the user that stored the data.

 Parameter: locus, signature, [etag]

6.2.4. FIND

 Returns the first instance of a stored data of a particular type that
 has a locus greater than or equal to the parameter

 Need to also support returning the number of loci of the specified
 type that a peer is storing values for, as well as the range of locus
 space the peer is responsible for.

 Parameter: locus, type

 Responses: data locus, data, data signature, loci responsibility
 range, number of loci stored

6.3. DHT Maintenance

 Many DHTs will not need all of these, but some will need to use them.

6.3.1. JOIN

 Used to indicate the sender is a new peer joining the DHT

 Parameters: joining peer id , user-id, signature

 Response: list of existing peers that the sender might be interested
 in knowing about

Jennings, et al. Expires January 2, 2008 [Page 25]

Internet-Draft ASP - Address Settlement by P2P July 2007

6.3.2. LEAVE

 Used to indicate that the sender is about to leave the DHT

6.3.3. UPDATE

 Used to indicate that the sender wishes to flag that they exist and
 that the receiver may want to take some action, as a result of their
 existence, to deal with the stability of the DHT.

 This one is highly dependent on the actually DHT algorithm. It may
 be possible to define some common identifiable peers such as 1st
 successor, nth successor, nth predecessor, other peer in finger
 table, and so on.

6.4. Connection Management

6.4.1. CONNECT

 A node sends a CONNECT command when it wishes to establish a direct
 TCP or UDP connection to another node for the purposes of sending ASP
 messages or application layer protocol messages, such as SIP.
 Detailed procedures for the CONNECT and its response are described in

Section 8.3.

 The attributes included in the CONNECT command and its response are:

 o One or more candidate attributes. Each candidate attribute has an
 IP address, IP address family, port, transport protocol, priority,
 foundation, component ID, STUN type and related address.
 o One username fragment.
 o One password.
 o One Next-Protocol attribute. This attribute contains a 16-bit
 port number. This port number represents the IANA registered port
 of the protocol that is going to be sent on this connection. For
 SIP, this is 5060 or 5061, and for ASP is TBD. By using the IANA
 registered port, we avoid the need for an additional registry and
 allow ASP to be used to set up connections for any existing or
 future application protocol.
 o One fingerprint attribute (from RFC 4572 [RFC4572].
 o An active/passive/actpass attribute from RFC 4145 [RFC4145].

 TODO: fill in binary encoding formats

6.4.2. PING

 Tests connectivity along a path. Can be addressed to a specific
 locus, in which case it is routed to the responsible peer to respond,

https://datatracker.ietf.org/doc/html/rfc4572
https://datatracker.ietf.org/doc/html/rfc4572
https://datatracker.ietf.org/doc/html/rfc4145
https://datatracker.ietf.org/doc/html/rfc4145

Jennings, et al. Expires January 2, 2008 [Page 26]

Internet-Draft ASP - Address Settlement by P2P July 2007

 or can be addressed to any locus, in which case the first peer to
 receive it will respond. Can be sent with anycast or multicast so it
 must have a small response that does not fragment and the receiver
 needs to be able to deal with multiple responses. Probably need the
 responder to insert a random response id.

 Nothing signed on this one.

 Responses: peer id of actual responding peer, label stack that the
 responding peer received

6.5. Data Signature

6.5.1. SIGNATURE

 Time-stamp - not sure if this is needed to limit replay window or not

 serial number of certificate used to sign

 Signature

7. Forwarding Operations

8. Transport Operations

 TODO - All transport flows need to have an associated label. SHOULD
 be unique to this peer or host and only use bottom 20 bits.

 Number of retransmissions determines rate at which failure detection
 can occur - need to keep in lower than say SIP was - may have to be
 parameter of DHT instance

 Need to make sure we can DEMUX this from other things - is a magic
 number needed at top of packet?

8.1. Framing for stream transports

 For TLS session, first the length of the message is sent as a 32 bit
 integer followed by the message. If the top two bits of the length
 are not set to zero, the receiver should consider this an error and
 close this stream. These bits are reserved for future extensibility.

8.2. Framing for datagram transports

 TODO - deal with retransmissions, TCP rate friendly congestion
 control, and fragmentation of large packets above the DTLS layer.

Jennings, et al. Expires January 2, 2008 [Page 27]

Internet-Draft ASP - Address Settlement by P2P July 2007

 Is a peer that routes a command transaction state-full on the
 command? Who runs a timer on a command to time it out? Who deals
 with retransmissions - has to be link by link. Suspect we can make
 all retransmission and timer at the original commanding peer and
 allow all forwarding peers to be stateless other than the issue of
 DTLS retransmissions - which will be a nightmare.

8.3. ICE and Connection Formation

 At numerous times during the operation of ASP, a node will need to
 establish a connection to another node. This may be for the purposes
 of building finger tables when the node joins the P2P network, or
 when the node learns of a new neighbor through an UPDATE and needs to
 establish a connection to that neighbor.

 In addition, a node may need to connect to another node for the
 purposes of an application connection. In the case of SIP, when a
 node has looked up the target AOR in the DHT, it will obtain a
 Node-ID that identifies that peer. The next step will be to
 establish a "direct" connection for the purposes of performing SIP
 signaling.

 In both of these cases, the node starts with a destination Node-ID,
 and its objective is to create a connection (ideally using TCP, but
 falling back to UDP when it is not available) to the node with that
 given Node-ID. The establishment of this connection is done using
 the CONNECT command in conjunction with ICE. It is assumed that the
 reader has familiarity with ICE.

 ASP implementations MUST implement full ICE. Because ASP always
 tries to use TCP and then UDP as a fallback, there will be multiple
 candidates of the same IP version, which requires full ICE.

8.3.1. Overview

 To utilize ICE, the CONNECT method provides a basic offer/answer
 operation that exchanges a set of candidates for a single "stream".
 In this case, the "stream" refers not to RTP or other types of media,
 but rather to a connection for ASP itself or for SIP signaling. The
 CONNECT request contains the candidates for this stream, and the
 CONNECT response contains the corresponding answer with candidates
 for that stream. Though CONNECT provides an offer/answer exchange,
 it does not actually carry or utilize Session Description Protocol
 (SDP) messages. Rather, it carries the raw ICE parameters required
 for ICE operation, and the ICE spec is utilized as if these
 parameters had actually been used in an SDP offer or answer. In
 essence, ICE is utilized by mapping the CONNECT parameters into an
 SDP for the purposes of following the details of ICE itself. That

Jennings, et al. Expires January 2, 2008 [Page 28]

Internet-Draft ASP - Address Settlement by P2P July 2007

 avoids the need for ASP to respecify ICE, yet allows it to operate
 without the baggage that SDP would bring.

 ICE uses server reflexive and relayed candidates learned from STUN
 and TURN servers. With ASP, the nodes in the P2P network can provide
 TURN and STUN services for other nodes. Using a bootstrapping STUN
 server on the public Internet, a node learns with some probability
 that it is not behind a NAT or firewall. If it believes it is
 probably not behind one, it writes itself into the P2P network using
 a particular algorithm described below. When it comes time to gather
 a STUN or TURN server, an agent uses the algorithm described below to
 gather several servers of each type. Several servers are used for
 redundancy, to handle failures or cases where the server is not
 actually behind a NAT (which will result in the connectivity check
 through that server failing).

 In addition, ASP only allows for a single offer/answer exchange.
 Unlike the usage of ICE within SIP, there is never a need to send a
 subsequent offer to update the default candidates to match the ones
 selected by ICE.

 ASP and SIP always run over TLS for TCP connections and DTLS
 [RFC4347] for UDP "connections". Consequently, once ICE processing
 has completed, both agents will begin TLS and DTLS procedures to
 establish a secure link. Its important to note that, had a TURN
 server been utilized for the TCP or UDP stream, the TURN server will
 transparently relay the TLS messaging and the encrypted TLS content,
 and thus will not have access to the contents of the connection once
 it is established. Any attack by the TURN server to insert itself as
 a man-in-the-middle are thwarted by the usage of the fingerprint
 mechanism of RFC 4572 [RFC4572], which will reveal that the TLS and
 DTLS certificates are not a match for the ones used to sign the ASP
 messages.

 An agent follows the ICE specification as described in
 [I-D.ietf-mmusic-ice] and [I-D.ietf-mmusic-ice-tcp] with the changes
 and additional procedures described in the subsections below.

8.3.2. TURN and STUN Server Insertion

 Open Issue: We are still working on the algorithm in the this
 section and as it is currently described, there are some security
 issues. Expect improvement in the next release :-)

 When a node starts up, it learns its bootstrap STUN server. It does
 this by taking the name of the DHT (for example, "example.com") and
 querying the DNS for the STUN server for that domain. The
 administrator of this domain MUST provide a STUN server. This

https://datatracker.ietf.org/doc/html/rfc4347
https://datatracker.ietf.org/doc/html/rfc4572
https://datatracker.ietf.org/doc/html/rfc4572

Jennings, et al. Expires January 2, 2008 [Page 29]

Internet-Draft ASP - Address Settlement by P2P July 2007

 bootstrap STUN server MUST be on the public Internet. The node then
 utilizes the diagnostics STUN usage
 [I-D.ietf-behave-nat-behavior-discovery]. If, based on this, the
 agent believes it is not behind a NAT or firewall, it MUST consider
 itself a candidate STUN server and SHOULD consider itself a candidate
 TURN server.

 Next, the node gets an estimate N of the number of nodes in the P2P
 network. This computation is actually very straightforward. A given
 node has connections to other nodes in the DHT. For each such node
 i, the node directs a FIND command to it, and will get back the range
 of loci that this neighbor is responsible for. For that node i, an
 estimate Ei of the total number of nodes is the size of the hashspace
 divided by the number of loci in this range. Then, the node takes
 the average Ei across all connections. The result is an estimate of
 N.

 Each node is configured with an estimate of the typical fraction, d,
 of the population that will serve as STUN or TURN servers. For STUN
 servers, this SHOULD be d_stun=.1, and for TURN, d_turn=.01.

 o OPEN ISSUE: Need to have a way to estimate this by ring
 measurements.

 If the node is a candidate STUN server, it picks a random number
 uniformly distributed between 0 and d_stun*N. This number is used as
 a seed, and the resulting value is a locus in the hashspace. The
 node performs a STORE operation at this locus, using the STUN server
 data type. This operation SHOULD be repeated four more times (for a
 total of five stores to different loci). If the node is a candidate
 TURN server, it performs the same process, but using d_turn.

 o This process causes each seed between 0 and Nd to have, on
 average, five values stored there. This allows the workload of
 storing TURN and STUN servers to be uniformly distributed across
 the ring. It also allows for a single query to return five TURN
 or STUN servers on average, the exact number needed in

Section 8.3.3.

8.3.3. Gathering Candidates

 When a node wishes to establish a connection for the purposes of ASP
 signaling or SIP signaling (or any other application protocol for
 that matter), it follows the process of gathering candidates as
 described in Section 4 of ICE [I-D.ietf-mmusic-ice]. ASP utilizes a
 single component, as does SIP. Consequently, gathering for these
 "streams" requires a single component.

Jennings, et al. Expires January 2, 2008 [Page 30]

Internet-Draft ASP - Address Settlement by P2P July 2007

 An agent MUST implement ICE-tcp [I-D.ietf-mmusic-ice], and MUST
 gather at least one UDP and one TCP host candidate for ASP and for
 SIP.

 The ICE specification assumes that an ICE agent is configured with,
 or somehow knows of, TURN and STUN servers. ASP provides a way for
 an agent to learn these by querying the ring. Using the procedures
 in Section 8.3.2, an agent estimates the number of nodes in the P2P
 network, N. If the node is utilizing TURN, it then computes a random
 number uniformly distributed between 0 and d_turn, and uses the
 resulting value as a seed. It then performs a FETCH targeted to the
 locus for that seed, asking for data of type TURN server. The result
 will, on average, return five TURN servers. The agent then uses each
 of these as its TURN servers for this CONNECT. If the agent is not
 utilizing TURN, it computes a random number uniformly distributed
 between 0 and d_stun, and uses the resulting value as a seed. It
 then performs a FETCH targeted to the locus for that seed, asking for
 data of type STUN server. The result will, on average, return five
 STUN servers. The agent then uses each of these as its STUN servers
 for this CONNECT.

 The agent SHOULD prioritize its TCP-based candidates over its UDP-
 based candidates in the prioritization described in Section 4.1.2 of
 ICE [I-D.ietf-mmusic-ice].

 The default candidate selection described in Section 4.1.3 of ICE is
 ignored; defaults are not signaled or utilized by ASP.

8.3.4. Encoding the CONNECT Message

Section 4.3 of ICE describes procedures for encoding the SDP.
 Instead of actually encoding an SDP, the candidate information (IP
 address and port and transport protocol, priority, foundation,
 component ID, type and related address) is carried within the
 attributes of the CONNECT command or its response. Similarly, the
 username fragment and password are carried in the CONNECT message or
 its response. Section 6.4.1 describes the detailed attribute
 encoding for CONNECT. The CONNECT command and its response do not
 contain any default candidates or the ice-lite attribute, as these
 features of ICE are not used by ASP. The CONNECT command and its
 response also contain a Next-Protocol attribute, with a value of SIP
 or ASP, which indicates what protocol is to be run over the
 connection. The ASP CONNECT command MUST only be utilized to set up
 connections for application protocols that can be multiplexed with
 STUN and ASP itself.

 Since the CONNECT command contains the candidate information and
 short term credentials, it is considered as an offer for a single

Jennings, et al. Expires January 2, 2008 [Page 31]

Internet-Draft ASP - Address Settlement by P2P July 2007

 media stream that happens to be encoded in a format different than
 SDP, but is otherwise considered a valid offer for the purposes of
 following the ICE specification. Similarly, the CONNECT response is
 considered a valid answer for the purposes of following the ICE
 specification.

 Since all messages with ASP are secured between nodes, the node MUST
 implement the fingerprint attribute of RFC 4572 [RFC4572], and encode
 it into the CONNECT command and response as described in

Section 6.4.1. This fingerprint will be matched with the
 certificates utilized to authenticate the ASP CONNECT command and its
 response.

 Similarly, the node MUST implement the active, passive, and actpass
 attributes from RFC 4145 [RFC4145]. However, here they refer
 strictly to the role of active or passive for the purposes of TLS
 handshaking. The TCP connection directions are signaled as part of
 the ICE candidate attribute.

8.3.5. Verifying ICE Support

 An agent MUST skip the verification procedures in Section 5.1 and 6.1
 of ICE. Since ASP requires full ICE from all agents, this check is
 not required.

8.3.6. Role Determination

 The roles of controlling and controlled as described in Section 5.2
 of ICE are still utilized with ASP. However, the offerer (the entity
 sending the CONNECT request) will always be controlling, and the
 answerer (the entity sending the CONNECT response) will always be
 controlled. The connectivity checks MUST still contain the ICE-
 CONTROLLED and ICE-CONTROLLING attributes, however, even though the
 role reversal capability for which they are defined will never be
 needed with ASP. This is to allow for a common codebase between ICE
 for ASP and ICE for SDP.

8.3.7. Connectivity Checks

 The processes of forming check lists in Section 5.7 of ICE,
 scheduling checks in Section 5.8, and checking connectivity checks in

Section 7 are used with ASP without change.

8.3.8. Concluding ICE

 The controlling agent MUST utilize regular nomination. This is to
 ensure consistent state on the final selected pairs without the need
 for an updated offer, as ASP does not generate additional offer/

https://datatracker.ietf.org/doc/html/rfc4572
https://datatracker.ietf.org/doc/html/rfc4572
https://datatracker.ietf.org/doc/html/rfc4145
https://datatracker.ietf.org/doc/html/rfc4145

Jennings, et al. Expires January 2, 2008 [Page 32]

Internet-Draft ASP - Address Settlement by P2P July 2007

 answer exchanges.

 The procedures in Section 8 of ICE are followed to conclude ICE, with
 the following exceptions:

 o The controlling agent MUST NOT attempt to send an updated offer
 once the state of its single media stream reaches Completed.
 o Once the state of ICE reaches Completed, the agent can immediately
 free all unused candidates. This is because ASP does not have the
 concept of forking, and thus the three second delay in Section 8.3
 of ICE does not apply.

8.3.9. Subsequent Offers and Answers

 An agent MUST NOT send a subsequent offer or answer. Thus, the
 procedures in Section 9 of ICE MUST be ignored.

8.3.10. Media Keepalives

 STUN MUST be utilized for the keepalives described in Section 10 of
 ICE.

8.3.11. Sending Media

 The procedures of Section 11 apply to ASP as well. However, in this
 case, the "media" takes the form of application layer protocols (ASP
 or SIP for example) over TLS or DTLS. Consequently, once ICE
 processing completes, the agent will begin TLS or DTLS procedures to
 establish a secure connection. The fingerprint from the CONNECT
 command and its response are used as described in RFC 4572 [RFC4572],
 to ensure that another node in the P2P network, acting as a TURN
 server, has not inserted itself as a man-in-the-middle. Once the TLS
 or DTLS signaling is complete, the application protocol is free to
 use the connection.

 The concept of a previous selected pair for a component does not
 apply to ASP, since ICE restarts are not possible with ASP.

8.3.12. Receiving Media

 An agent MUST be prepared to receive packets for the application
 protocol (TLS or DTLS carrying ASP, SIP or anything else) at any
 time. The jitter and RTP considerations in Section 11 of ICE do not
 apply to ASP or SIP.

https://datatracker.ietf.org/doc/html/rfc4572
https://datatracker.ietf.org/doc/html/rfc4572

Jennings, et al. Expires January 2, 2008 [Page 33]

Internet-Draft ASP - Address Settlement by P2P July 2007

9. DHT Algorithms

 This section describes what needs to be specified when specifying a
 new DHT Algorithm.

 Describe this from point of view of event driven system. Events
 include a user deciding to join, leave, etc. and protocol events such
 as receive update, join, etc. When an event is received, DHT defines
 a series of things to send and things to store - the DHT algorithm
 specifies what message gets sent on each event and what gets stored.

9.1. Generic Algorithm Requirements

 TODO

 o How to store redundant encoding
 o Algorithm to go from a seed, such as a user name, to a locus
 o Joining procedures
 o Stabilization procedures
 o Exit procedures
 o Keep alive procedures
 o Routing and loops
 o Merging procedures to recovering from network partitions
 o Detecting disconnection from rest of peers

9.2. DHT API

 Note: This section need is just a very rough strawman to start
 thinking about the right issues.

 In order to allow ASP to be used with existing and new DHT
 algorithms, it is important to define a clear model on how different
 DHTs are "plugged" into ASP. In order to make it easy to add new DHT
 algorithms, from the perspective of protocol changes, code changes
 and specification work, ASP defines an abstract API that exists
 between the Routing and Replication Logic and the DHT.

 This API takes the form of an event driven system. Events arrive as
 a consequence of operations invoked by the usage and by arrival of
 messages over the wire. For certain events, the DHT layer is
 expected to provide a response. In other cases, the DHT layer is
 just notified of the event. In response, the DHT layer can inject
 messages, typically ones used for DHT maintenance.

 The events passed to the DHT layer are:

Jennings, et al. Expires January 2, 2008 [Page 34]

Internet-Draft ASP - Address Settlement by P2P July 2007

 onMessageToForward(Peer-ID DestinationPeerID): When a message is
 received by the transport layer, the destination label set is
 examined. If the top-most label does not identify the node
 itself, the message needs to be forwarded closer towards the
 destination. The routing and replication logic layer maintains a
 series of connections to other nodes. However, the decision about
 which connection to use is a function of the DHT. So, when such a
 message arrives, the routing and replication logic layer invokes
 this event and passes the target Peer-ID to the DHT. The DHT
 consults its routing tables and passes back to the routing and
 replication layer the specific connection on which to forward the
 message.
 onStore(): When a STORE command is received, the actual storage of
 data, including authorization, quota management, and data
 processing are handled by the routing and replication logic layer.
 However, the determination of which peer nodes at which the data
 must be replicated is a function of the DHT. Thus, when a store
 is received, the DHT algorithm is notified, and it passes back the
 set of other nodes at which to perform the store by sending
 another STORE command to those nodes. Fetch and remove operations
 do not require interaction with the DHT layer.
 onFind(): When a FIND command is received, the computing the number
 of loci of the particular type is handled by the routing and
 replication logic layer. However, the DHT layer must indicate the
 range of loci the peer is responsible for. The response to the
 onFind() operation returns this number.
 onJoin(Peer-ID NewPeer): When a join is received and targeted for
 this node, the authentication is handled by the routing and
 replication logic layer. However the DHT algorithm does the real
 work of processing the join. It does so by passing back to the
 DHT a set of Peer-IDs that the joining node might be interested
 in. It can also send DHT maintenance messages as needed.
 onLeave(Peer-ID LeavingPeer: When a LEAVE is received and targeted
 for this node, the authentication is handled by the routing and
 replication logic layer. However the DHT algorithm does the real
 work of processing the leave. It can send DHT maintenance
 messages as needed.
 onUpdate(): When an UPDATE is received, its attributes are passed to
 the DHT. Update processing is entirely dependent on the DHT
 algorithm.
 onConnectionFailure(Peer-ID Neighbor): The routing and replication
 logic layer will perform keepalives on each connection to other
 peers. When a connection fails or timeouts, the DHT algorithm is
 informed of this fact.

Jennings, et al. Expires January 2, 2008 [Page 35]

Internet-Draft ASP - Address Settlement by P2P July 2007

 onJoinMyself(): When the routing and replication logic layer decides
 to join the network, it asks the DHT layer to do this for it. The
 DHT layer will generate messages as needed to affect the joining
 into the DHT.
 onLeaveMyself(): When the routing and replication logic layer
 decides to leave the network, it asks the DHT layer to do this for
 it. The DHT layer will generate messages as needed to affect the
 leaving of the DHT.

 The "commands" that the DHT layer can invoke include all of the
 commands supported by ASP. However, the DHT layer would not
 construct the message or perform authentication. Rather, it would
 instruct the routing and replication logic to send the message, and
 include attributes that the DHT layer wants to include in the
 message. When a response is received, this response is passed to the
 DHT layer.

10. Chord Algorithm

 This algorithm is assigned the name chord-128-2-32 to indicate it is
 based on Chord, and it uses a 128 bit hash function, stores 2
 redundant copies of all data, and has finger tables with 32 entries.

10.1. Overview

 The algorithm described here is a modified version of the Chord
 algorithm. Each peer keeps track of a finger table of 32 entries and
 a neighborhood table of 6 entries. The neighborhood table contains
 the 3 peers before this peer and the 3 peers after it in the DHT
 ring. The first entry in the finger table contains the peer half-way
 around the ring from this peer; the second entry contains the peer
 that is 1/4 of the way around; the third entry contains the peer that
 is 1/8th of the way around, and so on. Fundamentally, the chord data
 structure can be thought of a double-linked list formed by knowing
 the successors and predecessor peers in the neighborhood table,
 sorted by the peer-id. As long as the successor peers are correct,
 the DHT will return the correct result. The pointers to the prior
 peers are kept to enable inserting of new peers into the list
 structure. Keeping multiple predecessor and successor pointers makes
 it possible to maintain the integrity of the data structure even when
 consecutive peers simultaneously fail. The finger table forms a skip
 list too, so that entries in the linked list can rapidly be found -
 it needs to be there so that peers can be found in O(log(N)) time
 instead of the typical O(N) time that a linked list would provide.

 A peer, n, is responsible for a particular locus k if k is less than
 or equal to n and k is greater than p, where p is the peer id of the

Jennings, et al. Expires January 2, 2008 [Page 36]

Internet-Draft ASP - Address Settlement by P2P July 2007

 previous peer in the neighborhood table. Care must be taken when
 computing to note that all math is modulo 2^128.

10.2. Routing

 If a peer is not responsible for a locus k, then it routes a command
 to that location by routing it to the peer in either the neighborhood
 or finger table that has the largest peer-id that is still less than
 or equal to k.

10.3. Redundancy

 When a peer receives a STORE command for locus k, and it is
 responsible for locus k, it stores the data and returns a SUCCESS
 response. [Note open issue, should it delay sending this SUCCESS
 until it has successfully stored the redundant copies?]. It then
 sends a STORE command to its successor in the neighborhood table and
 to that peers successor. Note that these STORE commands are
 addressed to those specific peers, even though the locus they are
 being asked to store is outside the range that they are responsible
 for. The peers receiving these check they came from an appropriate
 predecessor in their neighborhood table and that they are in a range
 that this predecessor is responsible for, and then they store the
 data.

10.4. Joining

 [rewrite to be more event oriented]

 When a peer (with peer-id n) joins the ring, it first does a PING to
 peer n to discover the peer, called p, that is currently responsible
 for the loci this peer will need to store. It then does a PING on
 p+1 to discover p0, a PING on p0+1 to discover p1, and finally a PING
 on p1+1 to discover p2. The values for p, p0,p1, and p2 form the
 initial values of the neighborhood table. (The values for the two
 peers before p will be found at a later stage when n receives an
 UPDATE.) The peer then fills the finger table by, for the i'th
 entry, doing a PING to peer (n+2^(numBitsInPeerId-i). The peer then
 uses the CONNECT command to form connections to all the peers in the
 neighborhood and finger tables. The finger table is initialized
 before starting to accept data so that certificates can be looked up
 to check signatures.

 Next, peer n indicates it is ready to start receiving data by sending
 a JOIN command to peer p. At this point peer p transfers a copy of
 the data it will need to store on peer n by sending a series of STORE
 commands to transfer the data. Once peer p has finished sending all
 the STORE commands to transfer the data, it changes its neighborhood

Jennings, et al. Expires January 2, 2008 [Page 37]

Internet-Draft ASP - Address Settlement by P2P July 2007

 table to include n and then sends an UPDATE command to all the peers
 in the neighborhood table. Each one of the UPDATES contains the
 peer-id of all the entries in peer p's neighborhood table as well as
 the id for peer n.

10.5. Receiving UPDATEs

 When a peer, n, receives an UPDATE command, it looks at all the peer-
 ids in the UPDATE and at its neighborhood table and decides if this
 UPDATE would change its neighborhood table. If any peer, p, would be
 added or removed from the neighborhood table, the peer sends a PING
 to peer p; if this fails, peer p is removed from the neighborhood
 table, and if it succeeds, p is added to the table. After the PINGs
 are done, if the table has changed, peer n attempts to open a new
 connection to any new peers in the neighborhood table by sending them
 a CONNECT command. If the neighborhood table changes, the peer sends
 an UPDATE command to each of its neighbors.

10.6. Sending UPDATEs

 Every time a connection to a peer in the neighborhood set is lost (as
 determined by connectivity pings), the peer should remove the entry
 from its neighborhood table and send an UPDATE to all the remaining
 neighbors. The update will contain all the peer-ids of the current
 entries of the table (after the failed one has been removed).

 If connectivity is lost to all three of the peers that succeed this
 peer in the ring, then this peer should behave as if it is joining
 the network and use PINGs to find a peer and send it a JOIN. If
 connectivity is lost to all the peers in the finger table, this peer
 should assume that it has been disconnected from the rest of the
 network, and it should periodically try to join the DHT.

10.7. Stabilization

 About every hour, a peer should send UPDATE commands to all of the
 peers in its neighborhood table.

 About every hour a peer should select a random entry from the finger
 table and do a PING to peer (n+2^(numBitsInPeerId-i). If this
 returns a different peer than the one currently in this entry of the
 peer table, then a new connection should be formed to this peer and
 it should replace the old peer in the finger table.

10.8. Leaving

 Unfortunately most peers leave by just disconnecting. This is not
 good. A more orderly way to disconnect is the following. First the

Jennings, et al. Expires January 2, 2008 [Page 38]

Internet-Draft ASP - Address Settlement by P2P July 2007

 leaving peer stops responding to PINGS. It then sends CLOSE commands
 on any connections it has open. Next it sends an UPDATE to all of
 the peers in its neighbor set (both peers ahead and behind it in the
 ring) which includes its other neighbors but MUST NOT include its own
 peer id. It then does a STORE for each locus it has, to transfer
 that data to the new responsible peer. Finally it closes any
 connections that it has open.

11. Enrollment and Bootstrap

 Fixes the DHT and DHT parameters

 Provides user name and CERT

 May provide multiple DHTs for insertions multiple rings during
 migration from one to another

 Specify some XML over HTTP based enrollment process to a central
 server

 Discuss P2P-Network-Id creation. The top 24 bits are a hash of the
 P2P-Network-ID name (for example, "example.org"), while the bottom 8
 bits are controlled by the site and are used for different versions
 of the ring.

12. Usages

12.1. Generic Usage Requirements

12.2. SIP Usage

12.3. STUN/TURN Usage

12.4. Certificate Store Usages

13. Security Considerations

13.1. Overview

 This specification stores users' registrations and possibly other
 data in a Distributed Hash table (DHT). This requires a solution to
 securing this data as well as securing, as well as possible, the
 routing in the DHT. Both types of security are based on requiring
 that every entity in the system (whether user or peer) authenticate
 cryptographically using an asymmetric key pair tied to a certificate.

Jennings, et al. Expires January 2, 2008 [Page 39]

Internet-Draft ASP - Address Settlement by P2P July 2007

 When a user enrolls in the DHT, they request or are assigned a unique
 name, such as "alice@dht.example.net". These names are unique and
 are meant to be chosen and used by humans much like a SIP Address of
 Record (AOR) or an email address. The user is also assigned a
 peer-ID by the central enrollment authority. Both the name and the
 peer ID are placed in the certificate, along with the user's public
 key.

 Each certificate enables an entity to act in two sorts of roles:

 As a user, storing data at specific loci in the DHT corresponding
 to the user name.
 As a DHT peer with the peer ID(s) listed in the certificate.

 Note that since only users of this DHT need to validate a
 certificate, this usage does not require a global PKI. It does,
 however, require a central enrollment authority which acts as the
 certificate authority for the DHT.

13.2. General Issues

 ASP provides a somewhat generic DHT storage service, albeit one
 designed to be useful for P2P SIP. In this section we discuss
 security issues that are likely to be relevant to any usage of ASP.
 In the subsequent section we describe issues that are specific to
 SIP.

 In any DHT, any given user depends on a number of peers with which
 she has no well-defined relationship except that they are fellow
 members of the DHT. In practice, these other nodes may be friendly,
 lazy, curious, or outright malicious. No security system can provide
 complete protection in an environment where most nodes are malicious.
 The goal of security in ASP is to provide strong security guarantees
 of some properties even in the face of a large number of malicious
 nodes and to allow the DHT to function correctly in the face of a
 modest number of malicious nodes.

 The two basic functions provided by DHT nodes are storage and
 routing: some node is responsible for storing your data and for
 allowing you to fetch data from others. Some other set of nodes are
 responsible for routing messages to and from the storing nodes. Each
 of these issues is covered in the following sections.

13.2.1. Storage Security

 The foundation of storage security in ASP is that any given locus/
 type code pair (a slot) is deterministically bound to some small set
 of certificates. In order to write data in a slot, the writer must

Jennings, et al. Expires January 2, 2008 [Page 40]

Internet-Draft ASP - Address Settlement by P2P July 2007

 prove possession of the private key for one of those certificates.
 Moreover, all data is stored signed by the certificate which
 authorized its storage. This set of rules makes questions of
 authorization and data integrity - which have historically been
 thorny for DHTs - relatively simple.

13.2.1.1. Authorization

 When a client wants to store some value in a slot, it first digitally
 signs the value with its own private key. It then sends a STORE
 request that contains both the value and the signature towards the
 storing peer (which is defined by the seed construction algorithm for
 that particular type of value).

 When the storing peer receives the request, it must determine whether
 the storing client is authorized to store in this slot. In order to
 do so, it executes the seed construction algorithm for the specified
 type based on the user's certificate information. It then computes
 the locus from the seed and verifies that it matches the slot which
 the user is requesting to write to. If it does, the user is
 authorized to write to this slot, pending quota checks as described
 in the next section.

 For example, consider the certificate with the following properties:

 User name: alice@dht.example.com
 Peer-Id: 013456789abcdef
 Serial: 1234

 If Alice wishes to STORE a value of the "SIP Location" type, the seed
 will be the SIP AOR "sip:alice@dht.example.com". The locus will be
 determined by hashing the seed. When a peer receives a request to
 store a record at locus X, it takes the signing certificate and
 recomputes the seed, in this case "alice@dht.example.com". If
 H("alice@dht.example.com")=X then the STORE is authorized. Otherwise
 it is not. Note that the seed construction algorithm may be
 different for other types.

13.2.1.2. Distributed Quota

 Being a peer in a DHT carries with it the responsibility to store
 data for a given region of the DHT. However, if clients were allowed
 to store unlimited amounts of data, this would create unacceptable
 burdens on peers, as well as enabling trivial denial of service
 attacks. ASP addresses this issue by requiring each usage to define
 maximum sizes for each type of stored data. Attempts to store values
 exceeding this size SHOULD be rejected. Because each slot is bound
 to a small set of certificates, these size restrictions also create a

Jennings, et al. Expires January 2, 2008 [Page 41]

Internet-Draft ASP - Address Settlement by P2P July 2007

 distributed quota mechanism, with the quotas administered by the
 central enrollment server.

 Allowing different types of data to have different size restrictions
 allows new usages the flexibility to define limits that fit their
 needs without requiring all usages to have expansive limits. Because
 peers know at joining time what usages they must support (see Section
 XXX), peers can to some extent predict their storage requirements.

13.2.1.3. Correctness

 Because each stored value is signed, it is trivial for any retrieving
 peer to verify the integrity of the stored value. Some more care
 needs to be taken to prevent version rollback attacks. Rollback
 attacks on storage are prevented by the use of "expiration time"
 values in each store. An expiration time represents the latest time
 at which the data is valid and thus limits (though does not
 completely prevent) the ability of the storing node to perform a
 rollback attack on retrievers. In order to prevent a rollback attack
 at the time of the STORE request, we require that expiration times be
 monotonically increasing expiration time (see Section XXX). Storing
 peers MUST reject STORE requests with expiration times smaller than
 those they are currently storing.

13.2.1.4. Residual Attacks

 The mechanisms described here provide a high degree of security, but
 some attacks remain possible. Most simply, it is possible for
 storing nodes to refuse to store a value (reject any request). In
 addition, a storing node can deny knowledge of values which it
 previously accepted. To some extent these attacks can be ameliorated
 by attempting to store to/retrieve from replicas, but a retrieving
 client at least has no way of knowing what it should do so.

 In addition, when a type is multivalued (e.g., a set), the storing
 node can return only some subset of the values, thus biasing its
 responses. This can be countered by using single values rather than
 sets, but that makes coordination between multiple storing agents
 much more difficult. This is a tradeoff that must be made when
 designing any usage.

13.2.2. Routing Security

 Because the storage security system guarantees (within limits) the
 integrity of the stored data, routing security focuses on stopping
 the attacker from performing a DOS attack on the system by mis-
 routing requests in the DHT. There are a few obvious observations to
 make about this. First, it is easy to ensure that an attacker is at

Jennings, et al. Expires January 2, 2008 [Page 42]

Internet-Draft ASP - Address Settlement by P2P July 2007

 least a valid peer in the DHT. Second, this is a DOS attack only.
 Third, if a large percentage of the peers on the DHT are controlled
 by the attacker, it is probably impossible to perfectly secure
 against this.

13.2.2.1. Background

 In general, attacks on DHT routing are mounted by the attacker
 arranging to route traffic through or two nodes it controls. In the
 Eclipse attack [REF: Eclipse] the attacker tampers with messages to
 and from nodes for which it is on-path with respect to a given victim
 node. This allows it to pretend to be all the nodes that are
 reachable through it. In the Sybil attack [REF: Sybil], the
 attacker registers a large number of nodes and is therefore able to
 capture a large amount of the traffic through the DHT.

 Both the Eclipse and Sybil attacks require the attacker to be able to
 exercise control over her peer IDs. The Sybil attack requires the
 creation of a large number of peers. The Eclipse attack requires
 that the attacker be able to impersonate specific peers. In both
 cases, these attacks are limited by the use of centralized,
 certificate-based admission control.

13.2.2.2. Admissions Control

 Admission to an ASP DHT is controlled by requiring that each peer
 have a certificate containing its peer ID. The requirement to have a
 certificate is enforced by using TLS mutual authentication on each
 connection. Thus, whenever a peer connects to another peer, each
 side automatically checks that the other has a suitable certificate.
 These peer IDs are randomly assigned by the central enrollment
 server. This has two benefits:

 o It allows the enrollment server to limit the number of peer IDs
 issued to any individual user.
 o It prevents the attacker from choosing specific peer IDs.

 The first property allows protection against Sybil attacks (provided
 the enrollment server uses strict rate limiting policies). The
 second property deters but does not completely prevent Eclipse
 attacks. Because an Eclipse attacker must impersonate peers on the
 other side of the attacker, he must have a certificate for suitable
 peer IDs, which requires him to repeatedly query the enrollment
 server for new certificates which only will match by chance. From
 the attacker's perspective, the difficulty is that if he only has a
 small number of certificates the region of the DHT he is
 impersonating appears to be very sparsely populated by comparison to
 the victim's local region. [REF: Wallach]

Jennings, et al. Expires January 2, 2008 [Page 43]

Internet-Draft ASP - Address Settlement by P2P July 2007

13.2.2.3. Peer Identification and Authentication

 In general, whenever a peer engages in DHT activity that might affect
 the routing table it must establish its identity. This happens in
 two ways. First, whenever a peer establishes a direct connection to
 another peer it authenticates via TLS mutual authentication. All
 messages between peers are sent over this protected channel and
 therefore the peers can verify the data origin of the last hop peer
 for requests and responses without further cryptography.

 In some situations, however, it is desirable to be able to establish
 the identity of a peer with whom one is not directly connected. The
 most natural case is when a peer UPDATEs its state. At this point,
 other peers may need to update their view of the DHT structure, but
 they need to verify that the UPDATE message came from the actual peer
 rather than from an attacker. To prevent this, all DHT routing
 messages are signed by the peer that generated them.

 [TODO: this allows for replay attacks on requests. There are two
 basic defenses here. The first is global clocks and loose anti-
 replay. The second is to refuse to take any action unless you verify
 the data with the relevant node. This issue is undecided.]

 [TODO: I think we are probably going to end up with generic
 signatures or at least optional signatures on all DHT messages.]

13.2.2.4. Residual Attacks

 The routing security mechanisms in ASP are designed to contain rather
 than eliminate attacks on routing. It is still possible for an
 attacker to mount a variety of attacks. In particular, if an
 attacker is able to take up a position on the DHT routing between A
 and B it can make it appear as if B does not exist or is
 disconnected. It can also advertise false network metrics in attempt
 to reroute traffic. However, these are primarily DoS attacks.

13.3. SIP-Specific Issues

13.3.1. Fork Explosion

13.3.2. Malicious Retargeting

13.3.3. Privacy Issues

14. IANA Considerations

Jennings, et al. Expires January 2, 2008 [Page 44]

Internet-Draft ASP - Address Settlement by P2P July 2007

14.1. DHT Types

14.2. Stored Data Types

14.3. Command & Responses Types

14.4. Parameter Types

15. Examples

16. Open Issues

16.1. Peer-id and locus size

 Should these be 128 bits? Should the messages signal the size of
 them and the implementations use variable size for them?

16.2. More efficient FIND command

 It would be possible for a peer that had an empty list for a service
 like STUN to keep pointers to the previous and next peers that did
 have one a peer that performed the service and manage this as a
 linked list. When a FIND command came, it could return a hint of
 likely next and previous peers that might have pointers to a peer
 that provided the service.

16.3. Generation, E-Tags, link thing

 Should all data have a generation ID so that instead of fetching all
 the data you can just see if it has changed?

16.4. Future upgrade support

 How do we do required support like tags to add new commands?

 What about extension blocks inside commands?

17. Acknowledgments

18. Appendix: Operation with SIP clients outside the DHT domain

Jennings, et al. Expires January 2, 2008 [Page 45]

Internet-Draft ASP - Address Settlement by P2P July 2007

19. Appendix: Notes on DHT Algorithm Selection

 An important point: if you assume NATs are doing ICE to set up
 connections, you want a lot fewer connections than you might have on
 a very open network - this might push towards something like Chord
 with fewer connections than, say, bamboo.

 TODO - ref draft-irtf-p2prg-survey-search

20. References

20.1. Normative References

 [I-D.ietf-mmusic-ice]
 Rosenberg, J., "Interactive Connectivity Establishment
 (ICE): A Protocol for Network Address Translator (NAT)
 Traversal for Offer/Answer Protocols",

draft-ietf-mmusic-ice-16 (work in progress), June 2007.

 [I-D.ietf-behave-rfc3489bis]
 Rosenberg, J., "Session Traversal Utilities for (NAT)
 (STUN)", draft-ietf-behave-rfc3489bis-06 (work in
 progress), March 2007.

 [I-D.ietf-behave-turn]
 Rosenberg, J., "Obtaining Relay Addresses from Simple
 Traversal Underneath NAT (STUN)",

draft-ietf-behave-turn-03 (work in progress), March 2007.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

20.2. Informative References

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 June 2002.

 [I-D.willis-p2psip-concepts]
 Willis, D., "Concepts and Terminology for Peer to Peer
 SIP", draft-willis-p2psip-concepts-04 (work in progress),
 March 2007.

 [RFC4864] Van de Velde, G., Hain, T., Droms, R., Carpenter, B., and
 E. Klein, "Local Network Protection for IPv6", RFC 4864,
 May 2007.

https://datatracker.ietf.org/doc/html/draft-irtf-p2prg-survey-search
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-ice-16
https://datatracker.ietf.org/doc/html/draft-ietf-behave-rfc3489bis-06
https://datatracker.ietf.org/doc/html/draft-ietf-behave-turn-03
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/draft-willis-p2psip-concepts-04
https://datatracker.ietf.org/doc/html/rfc4864

Jennings, et al. Expires January 2, 2008 [Page 46]

Internet-Draft ASP - Address Settlement by P2P July 2007

 [I-D.ietf-behave-nat-behavior-discovery]
 MacDonald, D. and B. Lowekamp, "NAT Behavior Discovery
 Using STUN", draft-ietf-behave-nat-behavior-discovery-00
 (work in progress), February 2007.

 [I-D.ietf-mmusic-ice-tcp]
 Rosenberg, J., "TCP Candidates with Interactive
 Connectivity Establishment (ICE",

draft-ietf-mmusic-ice-tcp-03 (work in progress),
 March 2007.

 [RFC4347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security", RFC 4347, April 2006.

 [RFC4145] Yon, D. and G. Camarillo, "TCP-Based Media Transport in
 the Session Description Protocol (SDP)", RFC 4145,
 September 2005.

 [RFC4572] Lennox, J., "Connection-Oriented Media Transport over the
 Transport Layer Security (TLS) Protocol in the Session
 Description Protocol (SDP)", RFC 4572, July 2006.

Authors' Addresses

 Cullen Jennings
 Cisco
 170 West Tasman Drive
 MS: SJC-21/2
 San Jose, CA 95134
 USA

 Phone: +1 408 421-9990
 Email: fluffy@cisco.com

 Jonathan Rosenberg
 Cisco
 Edison, NJ
 USA

 Email: jdrosen@cisco.com

https://datatracker.ietf.org/doc/html/draft-ietf-behave-nat-behavior-discovery-00
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-ice-tcp-03
https://datatracker.ietf.org/doc/html/rfc4347
https://datatracker.ietf.org/doc/html/rfc4145
https://datatracker.ietf.org/doc/html/rfc4572

Jennings, et al. Expires January 2, 2008 [Page 47]

Internet-Draft ASP - Address Settlement by P2P July 2007

 Eric Rescorla
 Network Resonance
 3246 Louis Road
 Palo Alto, CA 94303
 USA

 Phone: +1 650 320-8549
 Email: fluffy@cisco.com

Jennings, et al. Expires January 2, 2008 [Page 48]

Internet-Draft ASP - Address Settlement by P2P July 2007

Full Copyright Statement

 Copyright (C) The IETF Trust (2007).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgment

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Jennings, et al. Expires January 2, 2008 [Page 49]

