
Network Working Group C. Jennings

Internet-Draft Cisco

Intended status: Standards Track March 08, 2011

Expires: September 09, 2011

Architecture and API Requirements for RTC Web

draft-jennings-rtcweb-api-00

Abstract

Internet browsers and other software applications are enabling support

for real time interactive voice and video. This draft outlines a set of

IETF protocols that can be used for this purpose and describes the

overall architecture. It also identifies the requirements for an

application programming interface to control these protocols.

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

documents as Internet-Drafts. The list of current Internet- Drafts is

at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as "work in progress."

This Internet-Draft will expire on September 09, 2011.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted

from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided

without warranty as described in the Simplified BSD License.

This document may not be modified, and derivative works of it may not

be created, and it may not be published except as an Internet-Draft.

Table of Contents

1. Overview*

1.1. Advertisement Proposal Model

1.2. Offer Answer Model

1.3. Use Cases

1.3.1. Facebook

1.3.2. Webex

1.3.3. Amazon

2. Terminology

3. Requirements

4. Connection API

4.1. Session API

4.1.1. Session Example Incoming

4.1.2. Session Example Outgoing

4.2. Connection API

4.3. Audio Video API

5. IANA Considerations

6. Security Considerations

6.1. Attack Model

6.2. Media Security

6.3. Signaling Security

7. Legacy VoIP Interoperability

8. Acknowledgement

9. References

9.1. Normative References

9.2. Informative References

Author's Address

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

1. Overview

This draft describes two models of how this would work, which are

referred to as the advertisement proposal (AdProp) model and the offer

answer (OffAns) model. Both of these models are useful in various

situations, and they involve very similar code development efforts.

This draft proposes an API and protocol set standardization that

supports both models.

1.1. Advertisement Proposal Model

The AdProp model standardizes a way to send media between two browsers

and standardizes an API in the browser, such that browser-based

applications can find out the media capabilities of the browser and can

tell the browser what media streams to send and receive. We use the

term "browser app" to refer to a program that is running in the browser

and using HTML, CSS, and JavaScript to control the browser. It is

assumed that the browser app could communicate with the web server

using existing approaches, and that the web server communicates with a

SIP server as a way of federating to other websites or connecting to

legacy VoIP systems. There are many different ways this model could be

used, but the diagram below covers a fairly complex case that most

other cases end up being a subset of. More use cases are discussed in

section XXX.

 +-----------+ +-----------+

 | Web/ | | Web/ |

 | SIP | SIP | SIP |

 | |-------------| |

 | Server | | Server |

 | | | |

 +-----------+ +-----------+

 / \

 / \ Proprietary over

 / \ HTTP/Websockets

 / \

 / Proprietary over \

 / HTTP/Websockets \

 / \

 +-----------+ +-----------+

 |JS/HTML/CSS| |JS/HTML/CSS|

 +-----------+ +-----------+

Add ^ |Prop Add ^ | Prop

 | v | v

 +-----------+ +-----------+

 | | | |

 | | | |

 | Browser | ------------------------- | Browser |

 | | ICE + SRTP | |

 | | | |

 +-----------+ +-----------+

The API for this model has two distinct phases. First there is a

Connection API that allows the browser app to use ICE to form a

connection to the other browsers. This API assumes that the browser

applications will be able to exchange ICE candidates lists by some out-

of-band means -- most likely involving passing them up to the web

servers over HTTP. The second stage is referred to as the AVT API. This

API allows the browser apps to discover which codecs and capabilities

the browser supports. It then allows the browser app to control which

media streams the browser will send and receive. The browser describes

its range of capabilities in an advertisement object. The browser app

requests that a particular set of media streams be set up in a proposal

to the browser. This is done as an atomic request which is either

accepted or not. Partial acceptance has proven to be very difficult to

deal with in the implementation of existing systems. The general

overview and advantage of the AdProp model is discussed in draft-

peterson-sipcore-advprop [I-D.peterson-sipcore-advprop].

The model above shows SIP as the protocol between the two web servers,

but the API proposed would also work using Jingle or H.323 as the

federation signaling protocol. It would also be possible to implement

the processing of SIP messages in the JavaScript in the browser

application and then somehow tunnel the SIP messaging between the

clients. XMPP over websockets has been proposed for this. The

architecture and API in this draft would support all of these

possibilities.

1.2. Offer Answer Model

The OffAns model standardizes a way to send media between the browsers,

but it also selects an existing signaling protocol to negotiate and set

up the media. The browser app would indicate to the browser that it

wished to form a communication session with another entity, and then

the browser would take care of the rest. A typical model for this is

show below.

+------+ +------+ +------+ +------+

| Web | | SIP | SIP | SIP | | Web |

| Serv | | Serv |---------| Serv | | Serv |

+------+ +------+ +------+ +------+

 | / \ |

 |HTTP / SIP \ | HTTP

 | / \ |

 | /SIP \ |

 | / \ |

 | / \ |

 | / \ |

 +-----------+ +-----------+

 |JS/HTML/CSS| |JS/HTML/CSS|

 +-----------+ +-----------+

 +-----------+ +-----------+

 | | | |

 | | | |

 | Browser |---------------------| Browser |

 | | ICE + SRTP | |

 | | | |

 +-----------+ +-----------+

The major goal for this API is to be extremely simple to use in

enabling a website for voice and video. On an iPhone today, one can

simply put a tel URL on the web page and the iPhone can call it. That

is a simple approach that web developers like and use. Since standards

are involved, this proposal will have to be more complex. The API

defines an HTML session element that can be used like a source element

inside of an audio or video element. It also provides a JavaScript API

to control the session and replace the user interface.

1.3. Use Cases

1.3.1. Facebook

Consider the case of a social networking site that allows IM between

users and wants to also allow voice and video between them, but does

not need to federate with others. The case could easily use the AdProp

model. Assuming that it was only supported on browsers meeting a

certain minimum functionality and it always uses the same capabilities,

there is no need to even negotiate or share the advertisements between

the two browsers. The browser app simply sets up the connection to the

far end, and then uses a proposal for the media steam that is always

the same.

 +-----------+

 | Web |

 | |

 | |

 | Server |

 | |

 +-----------+

 / \

 / \ Proprietary over

 / \ HTTP/Websockets

 / \

 / \

 / \

 / \

 +-----------+ +-----------+

 |JS/HTML/CSS| |JS/HTML/CSS|

 +-----------+ +-----------+

Add ^ |Prop Add ^ | Prop

 | v | v

 +-----------+ +-----------+

 | | | |

 | | | |

 | Browser |----------| Browser |

 | | ICE+RTP | |

 | | | |

 +-----------+ +-----------+

1.3.2. Webex

TBD

1.3.3. Amazon

Consider the case of a website that supports searching and displays

advertisements related to the search. In this case clicking on the

advertisement could directly connect the user with a sales agent at the

company associated with the advertisement.

+------+ +------+

| Web | | SIP |

| Serv | | Serv |

+------+ +------+

 | / |

 |HTTP / |

 | / |

 | /SIP |

 | / |

 | / |

 | / | SIP

 +-----------+ |

 |JS/HTML/CSS| |

 +-----------+ |

 +-----------+ |

 | | +-------+

 | | | Video |

 | Browser |----------| Phone |

 | | ICE+SRTP | |

 | | +-------+

 +-----------+

In this sort of case the people operating the web server do not need to

deploy anything special to display the advertisement, and the company

associated with the advertisement can use its existing call center,

assuming it meets the legacy VoIP requirements outlined in section XXX.

The security issue of a browser sending a SIP packet to a device that

does not meet the same origin policy is discussed in the section XXX,

but the brief preview of the solution is that the SIP messages can use

CORS REF much like a HTTP does.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in RFC 2119 [RFC2119].

3. Requirements

The section defines the set of protocols and selected subset profiles

of these protocols that a browser would need to implement, and forms

the requirements for the API to control these protocols. At a high

level we split this into connection management, transports for real

time media such as audio and video, transports for non media data,

codecs support, and signaling protocols.

All of the data plane sessions are set up using ICE [REF] or ICE-Lite

for security reasons, discussed in section XXX. Devices that could be

deployed behind NATs, such as a web browser, are REQUIRED to support

ICE while other devices that always deploy on public addresses can do

ICE-Lite. The only mode of ICE REQUIRED is aggressive. Real time media

is transported over RTP REF or SRTP [REF]. Support for multicast RTP is

OPTIONAL. To support ICE, implementation needs to be able to do STUN

REF and TURN REF. In addition, there is a strong interest to define a

TURN-like protocol that looks like HTTP to intermediaries, so that

media can be tunneled over HTTP. Support RTCPMUX REF is REQUIRED. RTP

keep alive is done using RTCP as described in REF. The API needs to

allow the DSCP REF for each RTP or media stream to be set. The API

needs to allow the browser app to observer and control the SSRC values

in the RTP.

Open Issue: There is a desire to be able to pass non media type data

directly between browsers. For example, an application such as Second

Life or gaming application may wish to pass small chunks of data such

as player position with stringent real time requirements. There are

several proposals for how to do this. The session would be set up using

ICE, just as with RTP. One proposal is just to use a thin shim on top

of UDP or DTLS to demux the packets from other packets such as RTP on

the same connection. Another proposal is DTLS over DCCP over UDP with

some appropriate congestion control scheme chosen for DCCP. Another

proposal is to define a data codec to carry the data in RTP.

The mandatory to implement audio codecs are: PCMA, PCMU, telephone-

event, and opus [REF]. The API needs to support the following OPTIONAL

codecs: G729, G722, G7221, G723, AMR, AMR-WB, iLBC, L16 and opus. PCMU

and PMCA codecs are REQUIRED to support 1 channel with a rate of 8000

and a ptime of 20. The mandatory to implement video codecs are: <to be

chosen by working group - leading candidates for consideration are H.

264-AVC and VP8>. The minimum profile and resolutions supported by the

mandatory to implement video codecs are TBD. The API needs to support

the following OPTIONAL codecs: H263-2000, H264, H264-SVC, raw and VP8.

The signaling protocol selected here is SIP though very little overall

architecture would change if the WG decided to use Jingle REF instead

of SIP. The browser needs to implement the subset of SIP

REF3261,3263,3264 and is required to support registration, invite, ack,

cancel, bye, and update. Support for the following features is

OPTIONAL: INVITES without an offer, re-invite, forking, S/MIME and

sips. Support for the following is REQUIRED: sip over TLS, outbound

proxy, 3xx redirects, early media, multipart mine REF 5621, update,

identity 4916 & 4471, rport REF 3581, SIP keep alive as described in

5626.

Open Issue: define a TURN like protocol to tunnel RTP over HTTP

Open Issues: define a RTP mux protocol to multiplex RTP on top of a

single UDP port. Would likely use SSRC as the demux code point.

Open Issue: Mandatory to implement video codec(s) and minimum profile.

Open Issue: Mandatory to implement audio codecs.

4. Connection API

It is expected this section will be removed from this draft and moved

to a W3C draft but it is provided for reference at this point. The

src:

aor:

credential:

proxy:

straw man API are many things including adequate error handling. The

API would likely end up using exceptions for many things.

4.1. Session API

The session element can be used anywhere in HTML that the source

element could be used. Fundamentally, this is an alternative way of

setting up a source for an audio or video element.

Categories: None

Contexts in which this element can be used: same as source element

Content model: Empty

Content attributes:

URL to destination to create session with.

Address of Record that identifies this user.

Password or credential for the specified AOR.

URL for outbound proxy.

DOM interface:

interface Session : HTMLElement {

 attribute double volume; // control speaker volume

 attribute boolean mute; // control microphone

 attribute boolean sendVideo; // control camera

 attribute DOMObject videoPane;

 attribute DOMString aorUrl;

 attribute DOMString credential;

 attribute DOMString outboundProxyURL;

 readonly attribute DOMString remoteName;

 readonly attribute boolean secure;

 readonly attribute DOMString registrationState;

 // noRegistrar, registering, registered, registrationFailed

 attribute Function onRegisterStateChange;

 void open(in DOMString url); // tel or SIP URL

 void close();

 void accept(boolean accept);

 readonly attribute DOMString sessionState;

 // noSession, openingSession, acceptingSession,

 // inSession, closingSession

 attribute Function onSessionStateChange;

 boolean sendKeyPress(in DOMString key); // send DTMF or KPML

 attribute Function onReceiveKeyPress;

};

If the session will be able to display video, the DOM object for a

video tag must be provided in the videoPane parameter of the

constructor. If an aorUrl is provided, the session will attempt to

register for incoming calls at the server using the provided

credentials. If an outbound proxy is provided, all signaling for this

session will use that proxy. The progress of the registration can be

tracked with the onRegisterStateChange callback. The registrationState

attribute will be a string with one of the following values:

noRegistrar, registering, registered, or registrationFailed.

Open Issue: need to decide how to handle credentials and if they will

be in the JavaScript. Similar issues for TURN server credentials.

To make a call, the open session method is called and the session state

will change to "opening session".

Events:

Exceptions:

4.1.1. Session Example Incoming

The following HTML snippet would display a video pane with a user

interface such that when the user clicked, it would create an audio

video session by making a SIP call to "sales@example.com".

<video width='320' height='240' >

 <session src="sip:sales@example.com" >

</video>

4.1.2. Session Example Outgoing

The following HTML snippet would register to receive calls to the

address "sip:fluffy@example.com". Furthermore it would use an outbound

SIP proxy at sip.example.com.

<video width='320' height='240' >

 <session aor="sip:fluffy@example.com"

 credential="password"

 proxy="sip:sip.example.com" >

</video>

4.2. Connection API

[NoInterfaceObject]

interface IceCandidate {

 DOMString foundation;

 unsigned short component-id; // always 1 ?

 DOMString transport; // udp

 unsigned long priority;

 DOMString type; // host, srflx, prflx, relay

 DOMString addressFamily; // v4 v6

 DOMString connectionAddress; // v4 or v6 ip address

 unsigned short port;

};

[NoInterfaceObject]

interface IceCandidateList {

 IceCandidate candiate[];

 DOMString icePassword;

 DOMString iceUFragment;

};

[NoInterfaceObject]

interface RelayServer {

 DOMString type; // stun turn

};

[NoInterfaceObject]

interface StunServer : RelayServer {

 DOMString ip;

};

[NoInterfaceObject]

interface TurnServer : RelayServer {

 DOMString ip;

 DOMString username;

 DOMString password;

};

[Constructor(in optional RelayServer relayServers[])]

interface Connection {

 attribute int keepAlivetime; // default 30 seconds

 attribute RelayServer relayServers[]

 readonly attribute IceCandidateList candidateList;

 readonly attribute IceCandidate connectionNearEnd;

 readonly attribute IceCandidate connectionFarEnd;

 void open(IceCandidateList addressList);

 readonly attribute DOMString state;

 // creating,ready,connecting,open,closed

 attribute Function onready;

 attribute Function onopen;

 void send(in DOMString data);

 attribute Function onmessage; // implements MessageEvent interface

 attribute Function onerror;

 void close();

 attribute Function onclose;

};

The general usage for a browser that had a stun server at 192.0.2.1

would be to create a connection, wait for ICE to gather candidates and

the state to change to ready, then send the ICE candidates list to the

far side as shown in the following code.

Open Issue: Need to add more into this so that an application can

understand what is going on and get information to provide status and

debug problems as well as statistics. Also may need parameters to

change the algorithm.

 myConn = new Connection([{type:"stun",ip:"192.0.2.1"}]);

 myConn.onready = function() {

 myCandidates = myConn.candidateList;

 // send myCandidates to far side

 }

Open issue: add text around setter calling function if in that state

when set.

Later when the far side has sent its candidate list to this side, the

browser app calls open to start opening the connection to the other

side. Once the connection is open, the browser app can start sending

and receiving data.

 myConn.open(farSideCandidateList);

 myConn.onOpen = function() {

 // can start sending data for far side

 myConn.send("Hello");

 }

 myConn.onmessage = function(e) {

 alert "Received data:" + e.data;

 }

4.3. Audio Video API

Note this section is far from complete and is more just a sketch to get

the flavor of the interface.

interface Advertisement {

 CodecAd codecs[];

 boolean rtcpMux; // default true

 boolean rtpMux; // default true

 boolean srtp; // default true

 DOMString protocols[];

 // RTP/AVP, RTP/AVPF, UDP/TLS/RTP/SAVP, UDP/TLS/RTP/SAPF

 srtpSuites[]; // AES_CM_128_HMAC_SHA1_32

};

interface CodecAd{

 string mediaType;

 int clockRate;

 float minBandwidth; // kbps

 float maxBandwidth; // kbps

 boolean canReceive;

 boolean canSend;

 boolean supportDscp;

};

interface TelEventDataCodecAd {

 int supportCodes[]; // defaults to 0-11 if not present

};

interface AudioCodecAd : CodecAd {

 int maxPacketTime; // ms

};

interface IlbcAudioCodecAd : AudioCodecAd {

 int modeList [];

}

interface G729AudioCodecAd : AudioCodecAd {

 boolean vadSupported;

};

interface G711uAudioCodecAd : AudioCodecAd {

 // G.711 PCMU must be 1 channel at rate of 8000

};

interface G711aAudioCodecAd : AudioCodecAd {

 // G.711 PCMA must be 1 channel at rate of 8000

};

interface L16AudioCodecAd : AudioCodecAd {

 int rates[];

 int channels[];

 DOMString emphasis[];

 DOMString channel-order[];

};

interface AMRAudioCodecAd : AudioCodecAd {

 DOMString modeSet;

 // bunch more needed here

};

interface VideoCodecAd : CodecAd {

 float maxFramerate; // fps

 int clockRate;

 int minXsize; int maxXsize;

 int minYsize; int maxYsixe;

 float minPar; float maxPar; float parList[];

 float minSar; float maxSar; float sarList[];

};

interface VP8CodecAd : VideoCodecAd {

 int versions[];

};

interface H264CodecAd : VideoCodecAd {

 unsigned short profile-levls[];

 unsigned short max-recv-level;

 int max-mbps;

 int max-smbps;

 int max-fs;

 int max-cpb;

 int max-dpb;

 int max-br;

 boolean redundant-pic-cap;

 DOMString sprop-parameter-sets;

 DOMString sprop-level-parameter-sets;

 boolean use-level-src-parameter-sets;

 boolean in-band-parameter-sets;

 boolean level-asymmetry-allowed;

 int packetization-modes[];

 int sprop-interleaving-depth;

 int sprop-deint-buf-req;

 long deint-buf-cap;

 int sprop-init-buf-time;

 // int sprop-init-buf-time;

 long max-rcmd-nalu-size;

 int sar-understood;

 int sar-supported;

};

interface Proposal {

 StreamProp streams[];

};

interface StreamProp {

 string mediaType;

 int clockRate;

 float minBandwidth; // kbps

 float maxBandwidth; // kbps

 boolean canReceive; // default true

 boolean canSend; // default true

 DOMString fingerprint; // RFC4572

 int pTime;

 DOMString protocol;

 // RTP/AVP, RTP/AVPF, UDP/TLS/RTP/SAVP, UDP/TLS/RTP/SAPF

 long ssrc;

 int dscp;

 DOMString srtpSuites;

 int srtpKdr;

 boolean srtpUnencryptedRtcp;

 boolean srtpUnauthenticated;

 DOMString srtpFecOrder; //FEC_SRTP, "SRTP_FEC"

 int srtpLifetime; // log base 2 of max packets with one kety

 DOMString srtpKeys[];

 int srtpMki[]; // MKI corresponding to srtpKeys at same index

};

interface VideoProp : StreamProp {

 int sizex;

 int sizey;

 float sar;

 float frameRate;

};

interface AudioProp : StreamProp {

 int pTime; // ms

};

interface Stats {

 StreamStats steam[];

};

interface StreamStats {

 // TODO RTCP stats

};

interface AVT {

 attribute Connection connection;

 readonly attribute Advertisement advertisement;

 readonly attribute Advertisement advertisementNoVideo;

 attribute DOMObject camera;

 attribute DOMObject mic;

 attribute HTMLVideoElement videoPane;

 readonly attribute Stats stats;

 readonly attribute Proposal proposal;

 boolean setProposal(Proposal newProp);

};

Using this interface is fairly simple. First an AVT object is loaded

and bound to an existing Connection object. It is also bound to

cameras, microphones, and speakers, Then the current advertisement can

be retried.

Open Issue: The SRTP keying should not be per stream.

var myAvt = org.w3c.device.load("device", "AVT", "1");

myAvt.connection = myConn; // the ICE formed connection

myAvt.camera = org.w3c.device.load("device", "camera", "1");

myAvt.mic = org.w3c.device.load("device", "mic", "1");

myAVT.videoPane = document.getElementById("myVideo");

mdAdv = myAvt.advertisement;

Open Issues: What's the best way to get an AVT object? How to get the

other devices and wire them up to the AVT object?

Assume that the browser supports VP8 video at 720P and G.711. The myAvt

object might look like:

{

 "codecs" : [

 {

 "mediaType" : "PCMU",

 "clockRate": "8000",

 "maxPacketTime" : "60"

 },

 {

 "mediaType" : "PCMA",

 "clockRate": "8000",

 "maxPacketTime" : "60"

 },

 {

 "mediaType" : "VP8",

 "clockRate" : "90000",

 "maxXsize" : ""1440,

 "maxYsize" : "720",

 "parList" : ["1.0"],

 "versions" : ["1"]

 }],

 "protocols" : ["RTP/AVP", "RTP/AVPF"]

};

Then, based on some knowledge about what the far end browser supports,

the system would decide that it wants to use PCMU with VP8 at a QCIF

resolution and 15fps. After forming a connection to the far end and

waiting for the connection object to be in the ready state, it would

construct the following proposal object and then send that proposal to

the AVT systems as shown in the code below. Assuming the proposal is

acceptable, the setProposal returns true and (returns false if it is

not).

var proposal = {

 "streams" : [

 {

 "mediaType" : "VP8",

 "clockRate: : "90000",

 "protcol" : "RTP/AVP",

 "sizex" : "176",

 "sizey" : "144",

 "sar" : "1.0",

 "frameRate" : "15",

 "version" : "1"

 },

 {

 "mediaType" : "PCMU",

 "clockRate: : "8000",

 "pTime" : "20",

 "protcol" : "RTP/AVP"

 }]

};

if (myAvt.setProposal(proposal)) {

 // it worked

}

5. IANA Considerations

This document does not require any action of IANA.

6. Security Considerations

6.1. Attack Model

This architecture involves all the normal security consideration and

attack models of HTTP, SIP and RTP but introduces yet another key

issue. The assumption is that a user may browse to the attacker's

website. The other assumption is that the browser is behind a firewall,

and inside that firewall there are devices that would not have

appropriate security models for the internet. For example, there could

be SIP gateways that if sent an invite to call a 1-900 number would do

so with no authentication or authorization. Whatever HTML/CS/Javascript

is downloaded must not be able to send arbitrary packets to hosts

behind the firewall or send SIP or RTP to devices that do not consent

to communicate with the browser.

6.2. Media Security

The browser MUST enforce the constraint that no RTP or other media is

sent to a given destination unless that destination completes an ICE

connectivity check and proves it knows the secret generated by the

browser. The browser must keep a list of locations it has attempted to

contact with ICE in the previous 30 seconds and not contact any

locations that have previously failed.

6.3. Signaling Security

The browser stops unwanted SIP signaling by using CORS REF. The same

CORS headers used for HTTP will be added to the SIP signaling. Before

the browser sends SIP signaling, it will preflight the SIP messaging

using a SIP OPTIONS message. This is done the same ways CORS can

preflight check an HTTP request.

7. Legacy VoIP Interoperability

There is no way to meet all the security requirements and maintain

comparability with all legacy VoIP equipment. This draft tries to

minimize the impedance mismatch. The requirements here would allow

interoperability with legacy VoIP equipment as long as that equipment

either directly supported, or was fronted by an SBC that supported, the

following: SIP CORS extension, ICE or ICE-Lite, codecs from the

mandatory to implement set, supported SIP invites containing an offer,

and supported DTMF over RTP with telephone events.

A substantial fraction of VoIP equipment does all of this except for

the CORS extensions. The item most commonly lacking is ICE-Lite but

that is becoming increasingly prevalent, particularly on devices

designed to sit on the edge of a domain and connect to remote UAs that

may be behind NATs. For an edge device that was willing to receive SIP

call from others, implementing the CORS is pretty trivial. When the UAS

receives a SIP options request with an Origin header, it checks whether

the header field value is on the white list, and if it is then the UAS

copies the value to the Access-Control-Allow-Origin header field value

in the response. For many situations the white list would be

everything, while for others it would be just the list of websites that

are expected to originate calls to this SIP device.

8. Acknowledgement

Thanks to Joe Hildebrand, Matt Miller, Matthew Kaufman, Eric Rescorla

and Lyndsay Campbell for their review, comments and contributed ideas.

9. References

9.1. Normative References

[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, March 1997.

mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119

9.2. Informative References

[I-D.peterson-

sipcore-

advprop]

Peterson, J and C Jennings, "The Advertisement/

Proposal Model of Session Description",

Internet-Draft draft-peterson-sipcore-

advprop-00, February 2010.

Author's Address

Cullen Jennings Jennings Cisco 170 West Tasman Drive San Jose, CA

95134 USA Phone: +1 408 421-9990 EMail: fluffy@cisco.com

http://tools.ietf.org/html/draft-peterson-sipcore-advprop-00
http://tools.ietf.org/html/draft-peterson-sipcore-advprop-00
mailto:fluffy@cisco.com

	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Overview
	1.1. Advertisement Proposal Model
	1.2. Offer Answer Model
	1.3. Use Cases
	1.3.1. Facebook
	1.3.2. Webex
	1.3.3. Amazon
	2. Terminology
	3. Requirements
	4. Connection API
	4.1. Session API
	4.1.1. Session Example Incoming
	4.1.2. Session Example Outgoing
	4.2. Connection API
	4.3. Audio Video API
	5. IANA Considerations
	6. Security Considerations
	6.1. Attack Model
	6.2. Media Security
	6.3. Signaling Security
	7. Legacy VoIP Interoperability
	8. Acknowledgement
	9. References
	9.1. Normative References
	9.2. Informative References
	Author's Address

